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OPEN CHANNEL PROJECTORS FOR REARRANGEMENT

PROCESSES IN MOLECULAR COLLISIONS

Thomas F. George and William H. MillerJr
Inorganic Materials Research Division, Lawrence Berkeley Laboratory

and Department of Chemistry; University of California,
: Berkeley, Callfornla 9Lk720

ABSTRACT

A general form for the projector onto open channels for electronically
adiabatic rearrangement processes in molecular collisions is given. This
form is investigated for two special cases of the three-atom process

A + BC » AB + C: a) the rearrangement to and from.the ground vibrational

.and rotational states of BC and AB for arbitrary total angular momentum

and b) the semiclassical limit of this form. The projector for special

case a) can be found exactly under either of two limiting conditions, and
for case b) we find the projector to be a local operator, such that in the
semiclassical 1limit the process A + BC —» AB + C occurs‘only when the

distance from A to the center of mass of BC equais the distance of C from

the centef of mass AB.
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I. INTRODUCTION

The ﬁnified reaction theory of Feshbachl has been applied extensively

to problems in nuclear and molecular collisions. The general expressions '

‘include an operator P, the projector onto some or all of the open channels ‘
and its orthogonal complement Q = 1-P. Explicit eiéressions for P can be

written ermally in a straightforward manner if the collision system

involves only elastic or inelastic transitions. For instance, for the

inelastic collision of molecules A and B, P can be written as

i

whére ¢i is a product of the iﬁternal state wavefunctions for each A and
B, and thé summation runs‘over all energetically allowed states ¢i. P is
uniquely defined in this manher to project onﬁo all open channels (corres-
ponding to the states of the system A + B at infinite separation). Q is
thus uniquely defined to projéct onto all closed channelsg. |

The definitions of P and Q for rearrangement collisions in a time-
independent theory has presented somewhat of a prbbiem in the past ten
years. This problem results from the fact that the basis set in one
arrangemenf is not orthogonal to the basis set in another arrangement3.
A P for rearrangement collisions was first derived By Mittlemanu and
modified by Coz5. The complexity of this derivation led Chen and'Mittleﬁan6
to derive simpler expressions for P which, however, did not account in
general for possible recoil of the target. Starting with the procedure
of Reference.6, Chen7 was able to derive explicit expressions for P for
general three-body rearrangement collisions, which allowed for recoil of

the target.



A general construction.of P for rearrangements was given by Hahn8 in

& multidimensional formulatiOnvof Feshbach's unified reaction theory that

could in principle be applied.ﬁo any rearrangement collision involving

three or more bodies. In this paper we shall present a general construction
of P fof électronically adiabatic molecular rearfangéments which does not
require a multicomponent form. In Section II we shall summarize the multig
componenﬁ formulation of Hahri and present the general singlé component
formulation of P. In Section III we shall a) consider a special case for
three-body rearrangements, namely the O —» O rotational 0 - 0 vibrAtional-
state rearrangement process for arbitrary total angular momentum and b)
lobk at thé semiclassical 1imi£ of the projector P. 1In Section IV we shall
discuss other possible single component formulations of P along with a §ummary
of the paper.. |

IT. GENERAL SINGLE COMPONENT P FOR REARRANGEMENTS.

The formulation of Hahn8 begins with the matrix projector P defined

as
F’Pl
P, 0
I (11.1)
~ 0 P |
CX».‘,P
N *

where P is defined by Equation (I.1), and N is the number of arrangements.
Q is defined as 9 = % - E. The total wave function is generalized in a

~

fashion similar to the Faddeev formulation of the three-body prob]_em9 as

(II.2)

re
]
e
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where %1 is defined such that

(I1.3)

23
{
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as the system goes asymptotically to arrangement o " Defining the N x N

matrix H - E as
~o PR as)
~s ~s

i . e o1
1
H - E = (H-E) | (TI.4)
1 1 1 .« . . 1 J 5

where H is the total Hamiltonian and E is the total'energy, we can then
write with the help of the Schrodinger equation,'(g - E)g = 0 , the matrix

analogue of the Feshbach equations

EIE - BIRY - - B
_ (I1.5)
QUE - EIQY = - gHPY .

Equation (II.1) does repfesent a general form of P for rearrangement
collisioﬁs, but it requires & matrix formulation of Feshbach's equatibns.
We present in this paper a general formulation of P in a single component
form. To motivate our derivation, we consider the projector onto the

monorthogonal basis {ui} . Given some arbitrary function X, we know that

PX.f :E: ues ' . (II.6)
i

where cs is some coefficient. Multiplying both sides by < ujl we have the

equation



Z <uj uy >e, o, (I1.7)
N , v

where we'used the fact that
< uj,l'_ PX > = < ujl X > . (11.8)

Multiplying both sides of Eqﬁatioh (I1.7) vy < ukluj > ana summing over

Jj, we find c,_ to be

k- .
=_ Z <y luy >t < u;}lx_’ > | o - (11.9)
' so that P is .
P = Z u, < uiluj >‘i <ug . , ' | (1I1.10)
i,J

We. see fhat P, depending on tﬁe inveree of the orerlap < uiluj >, is given
in a single component form by Equation (II.10).

To proceed in a 31m11ar fashion for rearrangement collisions, where
we have nonorthogonal channel states, we let T, designate t?e internal
coordinaﬁes of two molecules in channel ¢, and. let Ri designate the radial
coordinate between the centers of mass of the two molecules. Designating .
an inﬁernal state in channel o as qii(rl), then for en arbitrary funcfion.

‘X we write in analogous fashion to Equation (II¢6)
:E: ¢a1 a al( a) ? | - (Tr.12)

where the coefficient C .(R ) depends on X and is constructed such that

there is no multiple countlng of internal degrees of freedom. Multiplying

both sides of Equation (I1.11) by .,. (ra) we obtain
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fdrB BJ*(rB)X Z fdrB BJ*(r ¢ .(r)C .(R) | (II.12)

ai "o’ it a

where we have used the fact that

f ﬁB (r )PX =fdra¢ﬁj*(rﬁ)x .

Defining the overlap kernello
A . = ! * - (1T,
S LU COUAL CRISRCO I (11.13)
where f d'(aﬁ) indicates integration over all variables except Ra and RB »
we rewrite Equation (II.12) as
* _ .
ﬁr b X = X fmay RORIC(R) (TT.14)
Qi
: : -1 s .
The inverse of the kernel, Aﬁj,ai(Ron’RB)’ satisfies the equation
Z JRA L L ®ORIEL ROR) = 85 8(® Ry, (I1.15)
so that the coefficients from Equation (II.1lt) can be written as
R ) = R )A° * 11.16
4 (®,) Z SRR RINCCRIRY (11.16)
. , 11
and the projector P assumes the form
P = A al oRs A SRy )0, ¥ . (II.1

ayi,B,J

Equation (II.17 ) is a single component expression for the projector

onto all open channels for a general rearrangement molecular collision.

Such a projector can be defined uniquely, however, only in the asymptotic region
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RT-+ o where it assumes the form

P———-o-PY = Z‘ka > < ¢ka ' (IIle)

R >

due to the vanishing of the overlap kernel between ‘states of different
arrangements. In this region P is identical to Equation (I.1) defining’

P for inelastic collisions, anhd is thus uniquely defined.

IITI. THE INVERSE KERNEL

A. §pec1al Case.- In general, the inverse kernel as defined by -

Equation (II 15) is difficult to calculate, since it involves the solution
.of an 1ntegral equation whose kernel is not of finite rank . We shall
indicate how to find the invérse kernel for a special‘qase of atom-diatom
rearrangementZ the case where only two arrangements are open, say A + BC
and AB'+ C,_und where BC and AB are in their ground vibrational and.rota-
tional states. The procedurs we follow céu,.however, be generalized in a
straightforward manner to the case where ali three arrangements are open,
but for simplicity we shall restrict ourselves to two open arrangements.

For our special case we can write Equation (IT.15) as

de B -RIA (BB i (R B p(RRy) | (6(R,-R,) O (I1r.1)

By (Ry,RIO(Ry-Rg) Kzl(Rsz)Kze(Rg’_Re) 0 §R,-Rj)

where Kﬁj E-A£§ (the subscripts signify arrangements); and Rl and 32 are
the radial coordinates of arfangements A + BC and AB + C, respectively.
Writing the four equations resulting from Equation (III.1) and making the
ébpropriéte substitutions of these equationsvinto each other, we arrive

at the following four coupled equations
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Kll(Rl,Re) = 3(R1—R2) + deJdRuAlg(Rl,R:a)Azl(Rth)Kll(Ru,Rg) (I1I.2)

K (R5Ry) = - de3A21(Rl,R3)kll(R3,R2) - (T11.3)

Kop(RpsRy) = 8(R,-Ry) + desléRhAEl(Rl,R?))Ale(R3,Ru)K22(RLL,R2) (ITI.L)

Kp(R,Ry) = - JARA (R LRIKL(R R - ()

Let us concentrate on Eduation (III.2). Both matrices on the LHS of

Equation (IIT.1) are symmetric, so that AiQ = Aé Dispensing with the

l.
subscripts on A 5, we can write Kil(Rl’R2) as

v 2 4 6 | |
Kll'(Rl,Rg) = S(Rl-Re) + A (Rl,Re) + A (Rl,Rg) + A _(Rl,Re) + «o.  (III.6)
where A?(Rl,Re), for example; is

A (Rl,Rg) = de3A(Rl,R3)A(R3,R2) . ‘ (ITI.7)

Using harmonic oscillator vibrational wave fuhctions for AB and BC, we

find the kernel for our special case, with total angular momentum J, to be13

2 2
RR. 11 _e,2 » 2
_ 12 Loape T 21 T 272 J
A(Rl,Rg) = 4 [ drsiny —ﬂ%— e : doo(y) , (I11.8)
o]

where v is the angle between the Rl and Rg-vectors, and rl o

tional coordinates of BC and AB with force constants o and §. The transformation

equations from Ri, R2 to Ty Tp arelO
S 2 2 i
R R R.R
r2 = 0 2 1l . 2 ¢o1t2 CoSY s (111.9)
1 1 M 2 2 M2m2 -
: o T

and r, are the vibra- ;'

¥




v S
1

R R R.R ,
2 2 2 1 12 .
r, =Hy, |—pt+t—p+ gM — cosy , _ | (TII.10)
M2 ml : 21

where m, is the reduced mass of BC, m, is the reduced mass of AB, M2 is the

mass of B, and Hq andu2 are the reduced channel masses of arrangements
A + BC and AB + C, respectively. With Equations (III.9) and (III.10) we

can write the kernel as

2 2
k -5 - C2Rl - C3R2 .1' CMRlRECOSY
A(Rl:.RQ) = RlRE('l) 5 @ fd(c.os‘r) e PJ(cos*r) ,
| -1 (III.11)
vhere PJ(cosY) = dooJ(cosr), and the constants Ci are defined as
11
2.2
a J
C, = =—— (-1)
1
o3/ 2
2 2 2 2
Cp = =5 ¢ 5 (III.12)
2M2 2m1
QEH 2 GQH 2
2 1
Cy=—p + 5
2M2 2m2
2 2 2 2
Cy = TN
Mgmp o Mgy

The exponential function can be expanded za.leF

- C,R_R, _cosyt | T
o : T —_— C.R.R P
e FEE o 30T« D)\ TERE, IJ,,;- (C,RyRp) | B2 (cosy)

J':-'O'
(IIT.13)
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where iJ(z), defined as

i (2) ;, /ETFZ- IJ+ l(z) , | (IIT.1k4)

2

is a Modified Spherical Bessel function of the first kind and is defined

in terms of J (z) for our case as
I+ =
2
- Jri/2 .
i (z) -271- J l(ze“/g) . | (III.15) .
g+ ' |
2
Using the orthogonality relation
1 .
‘/ﬂd(cosr)PJ,(cosr)PJ(cosy) = QSJJ,/(QJ +1) (III.16)
-1

the kernel in Equation (III.11) is thus found to be

-C R‘2- C.R 2

_ 2717 732
A(Rl,RE) = R\RC.e i (CuR ) .

To calculate K , as given by Equation (III.6); we begin by calculating

22 in Equation (ITI.7),

2 2 2
o -C.R.© - (C.+ C_)R," - C_.R
2 B 2, 2,721 2" Y3773 32
Py (Rl,R2) = [ dR3R2RlR3 c,e
X iJ(cthRB) iJ(Cb, o 3) . (111.18)

Rewriting AE(Rl,RQ) with the help of Equation (IIT.15) as




' }0’?

- 2 | 2 2 o | -
P - S W - I (G CRsT g
’ o
2 ] .
we can write the résult dii‘ectly from integral tableg asl5 . 5

.
A°(R,,R,) = R.R 3

| (quﬁz) o | ( )
; . S II.20
X1y 22C2+C3) _ I .

This result is most interesting, for AE has the same form as A. We can

therefore write the general expression for e

(m). 2 (m)_ 2
- C R, -C R
m _ (m) 2 M17 Y3 T2 (m)

A (Rl,RQ) = RR.C, e ;LJ(CML RlRe) , (ITI.21)
where we have the recuision :g'elations for the constz_a.nts Ci(m) (Ci(l) being
equal to’ C, of Eqyation (III:12)) '

) . i (m-]_); N
o (m) _ ch ‘/F 3 .
1 - (m-1) (m-1) \ = ’
,laL(C2 ' + 03 12

v . (C (m—l))2

o (m) _ o (m-1) _ L .

2 2 ufe -1  (m-I) ?

Co 3
(I11.22)

. ‘ (c (m_l))e
o, - ¢ (1) L ,
3 3 4(02(m-l) +C (m-l)) o

3

o, - (e,

2(0 (m-1) c%(m'l)) .

2

C c '
2 Tl 2 N
¢y a o-20mi '}2‘ E(cgerc:_;}] ) '[03' E102+c35 Ry
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If A?(Rl,Rg) is small, say less than unity for all Rl and RE’ then
Equation (IIT.21) is quite useful, for we can write Kll(Rl’R2) through

Equation (III.6), retaining only a small number of terms which we can write:

down immediately from Equation (ITI.21). We know Kée since Kéa = Kll’ and s
; AN

the off-diagonal terms of the inverse kernel matrix are

K ,(Rp,Ry) = Ky (R,R,) = AR ,R,) + A3(R1,.R2) + AS(Rl,RE) + s
(ITI.23)

We can therefore write P if the kernel is less than unity for all R. and R2,

1
which 1s indicated by the shady area in the Figure below the horizontal

line at unity.

&”:“.“

R2 —

P’v‘\“""’"‘\ Py g
SRS
PSRN
"’:“O‘:“:“o"“
et tarS el tle s
Rl,

On the other hand, if the kernel goes to zero quickly as R, or R

1 e

as shown, for example, by the shaded area under the "Gaussian" in the Figure,

—~>oo,

then we can use the fact that the kernel can be made separable in this case

to solve for Kij exactly. We can expand iJ(z) in a series as®

2 .

2 1 2 ' »

X éJ % z 5z
lJ@)=1J}5”.@J&){1+11m&@)+zn@me)@a5)+'“} (TII.24)

(R,,R,) is written from Equation (III.6) as
14812R) -

K, (R,Ry) = 8(R,-R,) + de3 Az(Rl,R3)K11(Rl,R3) X (ITI.25)



" - Lo L . ., .
m.] \,; {;I. (] !,,9 {‘; 5 } & ,w) £y {2
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A?(Rl,RS)-can be expanded in a complete set hn(R3)l6

- . | |
5 » ,
AR R = D0 g (RM (R | (III.26)
n=1 S
If A behaves as the "Gaussian" in the Figure (i.e.,it approaches zero

quickly asRl or R2 - ), then we need only a few terms in the summation

in Equation (III.26), which we can identify immediately from Equation (III.2k),

Defining An(Re) as

A, (Ry) = de3hn(R3)Ku'(R3,R2) ; . (111.27)

Kll then i1s written as

K, (R,R,) = 8(R -R,) + Z gn(Ry)A (R,) . (I11.28)

Substituting Equation (III.27) into Equation (III.28), we arrive at the

following set of equations for Am(RE)

Y (o andiy(By) = bRy (111.29)
m=1 ' ' ' '

where
% = de3hn(R3)gm(R'3). | . | : (111.30) )

For example, if we need only one term of the series for iJ(z), then

Kll(Rl,Re)_ is (for J = 0) _
(2) 2(2)322'03(2)332

: C R_R.e '

K1 (RysRy) = 8(Ry-Ry) + 15 . (111.31)

e (QK/7¢( (e>)3/2




-1h-

If the kernel falls anywhere in the shaded area in the Figure, we are
able to calculaﬁe Kij’ and thus P, exactly. Let us consider an example, |
such as the rearrangement H + H2 - H2 + H on the lowest adiabatic electronic
surface and with J = 0. The constant v in the Morse potential for H2 in
the singlet state, V(r) =.De{1-exp(-y(r-re))}2 , where D, is the well-depth
17

and ro is the equilibrium disfance, is given as 1.0k a.u. We have used
the ground harmonic oscillatotr wave functions for the vibrational state of
H, in our exbression for A, so we expand V(r) to second order, equate it
to the harmonic oscillator potential, and find thaty and a!are related in
this appréximation by the equation a/2 = Y2De . We thus estimate o to be
near .38 a.u. and list in Table I the values of Ci(n) for ¢ = B = .48, .38,
and .28 a.u. (see Equation III.22). The odd values of n appear in the
series exprgssion for K, Kél (Equation III.23) and the even values.
appear in the series expression for Kll’

from Table I, we need retain only a few terms in the series expressions for

Kon (Equation IIT.6). As we see

Kij due to their rapid convergence. The kernel falls_into the shaded area
beneath the horizontal line dt unity in the Figﬁre.

As:m and B are decreased, the Gaussian wave funcfions for the internal
vibrational states of the two arrangements broadeh,_so that the amount of
overlap between them increases. In Table IT we see for the system of

masses H + H, —» H2 + H that when the value 6f a goes from .130 to .129,

2

Cl<n) no longer decreases as n increases. Cg(n) and C3(n) decrease as a

and 8 decrease, which we expect from the form of A% in Equation (III.20),

(n)
3

for the mass combination H + H2 seems to be critical as far as the rapid

i.e., smaller Cg(n) and C mean larger A?r The value of ¢ = f = .130

convergence of the series in Equation (III.6), so that the results of



o

ol
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Equations (III.7) and (III.20) are useful onlybfbr o and B above that

critical value. A(n)(Rl,Re), of course, goes to zero &s Rl’ R2 - o for

(n) are positive.

3

o, P below; as well as above, .130 since Cg<n) and C
- 18 . , |
B. Semiclassical Form%a Designating the initial scattering state

by its momentum P, and the final scattering state by its momentum PQ, the

1

matrix element < P2|Pl > is given in the classical limit as

<P |p > = 7l (Ppr ) . (III.32)

2

where fu'is the generator of the rearrangement, and

1
: 2 2

“\eri# " 3pep, - '

J (TII.33)

Since < fé|fi > 1is the Fourier transform of the kernel, we can Fourier

transform < Eé]fi > to obtain

| 1 i(R,P,-R.P))/0 iy (P,,P))/A
A(Rl,Rg) = (2771‘1)_ fdPl fd.P2 Je . e

(111.34)

Kll(Rl’RQ)’ for example, is written as

K (RRy) = 8(R;-Ry) +fd3'3deu'/Zx(Rl,R?))A(R3,RM)K11(RLF,RQ).-, :
(111.35)

and when we perform the integrations over coordinates and momenta by
stationary phase, we find Kij(Rl’RE) to be a local operator. ‘This meahs:
that in the classical limit the contribution to eichange 6ccurs only when

Rl equals R2.
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IVv. DISCUSSION

We have shown how one can construct the inverse kernel, and thus P,
for theVSPecial case of the rearrangement collision of an atom with a
diatomic molecule A + BC - AB + C, restricting ourselves to the ground
vibrational énd rotational states of BC and AB but éllowing‘the total
_angular momentum to be arbitrary. We were able to do this by considering
the general form of P in Equation (II.17)._ The cénstruction of the imverse
kernel is very difficult except for special cases, such as the one we
considered. Our construction was made particularly easy by the use of
Gaussian wave functions for the vibrational stateé of BC and AB.

Although the form of P in Equation (II.17) is the most general that
we know of for mqlecular rearrangements, it is by no means unique. P is
unique only‘in the asymptotic channels, and as long as P is correct
asymptotically, we are free to construct it in the way most suitable for
the system of interest. One possible construction is tqvavoid the non-
orthogonality'problem by choosing wave functions of fhe same zeroth order

19,20

Hamiltonian to describe reactant and product states We cohsider, for

example, the three-body rearrangement A + BC -» AB + C with the channel
AC + B closed. The Hamiltonian for the system can be written as H =

- . . . .
K VAB + VBC + V ABC’ where K is the kinetic energy, VAB is the

potential interaction between A and B,and VABC is the three-body potential

interaction. We designate %xi as the eigenfunction of HO =K + VAB + VBC’

which goes asymptotically to internal state i of arrangement o(A + BC),

and wbj as the eigenfunction of HO going asymptotically to internal state‘jx

of arrangement g(AB + C). Then the rearrangement, which is a transition

from Wa to wﬁ s can occur only through the residual interaction V ABC




by, *

|
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The projector onto open channels can then be written as
= + S L ><y ‘ o]
1 J

where the summation runs over all energetically accessible states. One
must use caution, however, in choosing P in this manner. TFor example, in

a coupled channel calculation on the equation
{PHP - E}PY =0 , | (1v.2)

where ¥ is the total wave function, the above choice of P is most likely
poor if there are significant long-range forces presentao,

The'proceduré of choosing some zeroth-order Hamiltonian HO is a
familiar one in collision theory. In nuclear physics Hb could be the
shell-model Hamiltonianel. In molecular rearrangements HO could be chosen
to be the Hartree-Fock Hamiltonian, in which case the P, constructed as in
Equation (IV.1), can be a projector onto the electronic space only. If P
is defiﬁed‘more generally as in Equation (II.l?), then it does not
necessarily commute with a cHosen HO; However, the construction of P as
in Equation (IV.i) can prove convenient sihce it commutes with Hol9.

As‘a final comment, P is not élways needed explicitiy. For example,
the coupled equations for open channels for rearrangements can be con-

structed without P22, but the solution of the coupled equations can be

facilitated with an explicit form for P.

ACKNOWLEDGMENTS. -~ One of us (TFG) acknowledges helpful discussions with
Professor Y. Hahn. This work was supported under the auspices of the

U. S. Atomic Energy Commission.
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‘TABLE T
i Cl(n) dg(n) | C.3(n) | Cu(n)
1| .31 x 10 2.56 x 107+ 2.56 x 10°- L4.10 x 107~
2 2.25 x 1073 1.7k x 107t 1.74 x 100 1.64 x 107t
3 1.09 x 1077 1.55 x 107t 1.55 x 107+ 3.86 x 1072
asp=-48 ) 3.05 x 1071 1.54 x 1071 1.54% x 107t 2.40 x 1073
5 2.42 x 1077 1.54 x 1071 1.54 x 107t 9.38 xlo'6
6 1.53 x 10737 1.54 x 107% 1.54 x 107t 1.43 x 107°
1 3.41 x 1072 1.60 x 107* 1.60 x 1071 2.57 x 107+
2 2.84 x 1073 1.09 x 1001 1.09 x 107F 1.03 x 107"
3 3.50 x 1077 9.70 x 102 9.70 x 1072 2.42 x 1072
asp=-38 | 6.36 x 1072 9.63 x 1072 9.63 x 1072 1.50 x 1073
5 2.12 x 10710 9.63 x 1072 9.63 x 1072 5.88 x 1070
6 2.36 x 10751 9.63 x 1072 9.63 x 1072 8.97 x 107
1 2.51 x 1072 8.71 x 1072 8.71 x 1072 1.39 x 10°%
2 3.85 x 1073 5.92 x 1072 5.92 x 1072 5.58 x 10‘2
w=p=. 28 3 1.61 x 10'2 5.27 x 10'2 5.27 x 10'2 1.31 x 1q'i
i 3.37 x 10~ 5.23 x 10~ 5.23 x 10 8.17 x 10
5 1.h9 x 10‘_12 5.23 x 1072 5.23 x 1072 3.19 x 10'6
6 2.90 x 10723 5.23 x 1072 5.23 x 1072 4.87 x 107t
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TABLE II
. Cl(n) | C2<n) C3(n) Ch(n)
1 1.17 x 1072 1.8 x 107°  1.88x 10°°  3.00 x 10°°
2 1 8.30 x 1073 1.28 x 1072 1.28 x 1072 1.20 x 1072
3 7.47 x 1073 1.14 x 1072 1.1k x 1072 2.83 x 1073
4 7.23 x 1073 1.13 x 1072 1.13 x 107 1.76 x 107%
5 - 6.85 x 1073 1.13 x 1072 1Q13 x 1072 6.88 x 10'_7 :
6 6.15 x 1073 1.13 x 1072 1.13 x 1072 1.05 x 107
.a=B=-l30 7 h.95 x 1073 1413 x'1o'2 1.13 . x 1072 2.4 x 10721
8 3.21 x 1073 1.13 x 1072 1.13 x 1072 1.32 x 10740
9 1.35 x 1073 113 x 1072 1.13 x 1072 3.89 x 10779
10 2.38 x 10'” 1.13 x 1072 1.13.x 1072 3.36 x 10“1.56
11 7.40 x 10'6 1.13 x 1072 1.13 x 1072 0.
12 7.18 x 1077 1,13 x 1072 1.13 x 1072 0.
13 6.75 x 10717 1,13 x 1072 1.13 x 1072 0.
1h 5.9 x 10027 113 x 107° .13 x 1070 o.
1 1.16 x 1072 1.85 x 1072 1.85 x 107° 2.96 x 107°
5 8.36 x 1073 1.26 x 1072 1.26 x 1072 1.18 x 1072
3 7.77 x 1073 1.12 x 10°° 1.12 x 1072 2.78 x 1073
L 7.99 x 1073 1.11 x 1072 1.11 x 10'2 1.73 x 1o'h
5 8.57 x 1073 1.11 x 1072 1.11 x 1072 6.77 x 10"'7
6 9.84 x 1073 1.11 x 1072 1.11 x 1072 1.03 x 107
4p=.129 7 1.30 x 10:2 1.11 x 10:2 1.11 x 10'2 2.41 x 1o'ii
8 2.26 x 10° 1.11 x 10 1.11 x 10° 1.30 x 10~
9 6.86 x 1072 1.11 x 107° 1.11 x 1072 '3.83 x 10717
10|  6.31 x 107t 1.11 x 100° 111 x 1072 3.31 x 107190
1| s3wx100tt n11x10® 111x10° o
12 3.82 x 10" 1.11 x 1072 1.11 x 1072 0.
13 1.96 x 1013 111 x 1007 111 x 107° 0.
1k 5.15 x 10" 1,11 x 1072 1.11 x 1072 0.
1 8.98 x 107 i.11 x_lof4 1.11 x 107* 1.78 x 10}
2 1.08 x 107 7.56 x 1077 7.56 xle—s 7.11 x 1077
o1 3 2.77 x 107 6.72 x 1077 6.72_x'1o‘5 1.67 x 1077
o L 2.19 x 10™2  6.67x 107 6.67 x 107 1.04 x 1070
5 1.38 x 10"3°  6.67 x 1077 6.67 x 10°° 4.07 x 1072
6 5.48 x 10Y°°  6.67 x 1077 107 6.21 x 107
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CAPTION FOR FIGURE

The range 1s the overlap kernel A = A(Rl’RQ) for a three-atom
rearrangement process and the abscisga is either Rl or R2. For the special
case considered, i.e., the ground to ground vibrational and rotational state
transition, the inverse kernel can be found exactly if A falls in the

shaded area. See the text for an explanation of the two overlapping

parts of the shaded area.
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CAPTIONS FOR TABLES

TABLE T
Table'I.lists-Ci(n) (Equation (III.22)) for the rearrangement
process H + H2-+ H2 + H to and from the groﬁnd vibrational and
rotationalvstatés of H2 for J = O.. Different sets of Ci(n) are
shown for the values of the force constant () of H2 set equal
to .48, .38, and .28 a.u. (in comparison with the results of
Reference 17 for the potential energy curﬁe bf Hé, .38 a.u.
appears to be the most reasonable choice). It is seen that the
convgrgence of the series for Kﬁj (Equations (III.6) and (III.22))

is quite rapid for all R. and R2 for the asbove values of a.

1

TABLE IT
(n)

for H + H2-+ H2 + H under the same

conditions as Table I, where it is seen that as o is changed

Table II lists c,

from .130 to .129 a.u. the series for Kij noflonger converges.
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