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OPEN CHANNEL PROJECTORS FOR REARRANGEMENT 

PROCESSES IN MOLECULAR COLLISIONS 

Thomas F. George and William H. Millert 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory 
and Department of Chemistry; University of California, 

Berkeley, California 94720 

ABSTRACT 

A general form for the projector onto open channels for electronically 

adiabatic rearrangement processes in molecular collisions is given. This 

form is investigated for two special cases of the three-atom process 

A + BC ~ AB + c: a) the rearrangement to and from the ground vibrational 

and rotational states of BC and AB for arbitrary total angular momentum 

and b) the semiclassical limit of this form. The projector for special 

case a) can be found exactly under either of two limiting conditions, and 

for case b) we find the projector to be a local operator, such that in the 

semiclassical limit the process A + BC ~ AB + C occurs only when the 

distance from A to the center of mass of BC equals the distance of C from 

the center of mass AB. 
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I. INTRODUCTION 

1 The unified reaction theory of Feshbach has been applied extensively 

to problems in nuclear and molecular collisions. The general expressions • 

include an operator P, the projector onto some or all of the open channels 6 
and its orthogonal complement .Q = 1-P. Explicit expressions for P can be 

written formally in a straightforward manner if the collision system 

involves only elastic or ineiastic transitions. For instance, for the 

inelastic collision of molecules A and B, P can be written as 

p =I: ~. > < ~. 
]. ]. ' 

(I.l) 
i 

where ~. is a product of the internal state wavefUnctions for each A and 
]. 

B, and the summation runs over all energetically allowed states~ .• Pis 
]. 

uniquely defined in this manher to project onto all open channels (corres-

ponding to the states of the system A + B at infinite separation). Q is 

thus uniquely defined to project onto all closed channels2• 

The definitions of P and Q for rearrangement collisions in a time-

independent theory has presented somewhat of a problem in the past ten 

years. This problem results from the fact that the basis set in one 

arrangement is not orthogonal to the basis set in another arrangement3• 

A P for rearrangement collisions was first derived by Mittleman4 and 

modified by Coz5. The complexity of this derivation led Chen and. Mittleman
6 

to derive simpler expressions for P which, however, did not account in 

general for possible recoil of the target. Starting with the procedure 

of Reference 6, Chen7 was able to derive explicit expressions for P for 

general three-body rearrangement collisions, which allowed for recoil of 

the target. 

' 
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A general construction of P for rearrangements was given by Hahn8 in 

a multidimensional formulation of Feshbach's unified reaction theory that 

could in principle be applied to any rearrangement collision involving 

three or more bodies. In this paper we shall present a general construction 

of P for electronically adiabatic molecular rearrangements which does not 

require a multicomponent form. In Section II we shall summarize the multi-

component formulation of Hahn and present the general single component 

formulation of P. In Section III we shall a) consider a special case for 

three-body rearrangements, namely the 0 ~ 0 rotatione.l 0 ~ 0 vibrational 

state rearrangement process for arbitrary total angular momentum and b) 

look at the semiclassical limit of the projector P. In Section IV we shall 

discuss other possible single component formulations of P along with a summary 

of the paper. 

II. GENERAL SINGLE COMPONENT P FOR REARRANGEMENTS. 

The formulation of Hahn
8 

begins with the matrix projector E defined 
"' 

as 

0 
• 

p = 
"' 

·. •• 
••• 

0 • p 

(II.l) 

a..' •p 
N 

where P is defined by Equation (I.l), and N is the number of arrangements. 
a. 

S is defined as S = 1 - ~· the total wave fUnction is generalized in a 
"" "" "' 

fashion similar to the Faddeev formulation of the three-body problem9 as 

(II.2) 

, 



where ~ is defined such that 
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(II. 3) 

_o ~ 

as the system goes asymptotically to arrangement a,. Defining the N x N 

matrix H - E as 
"' rv 
"' rv 

H E = (H-E) 

1 1 1 

1 1 1 

1 l 1 

1 

1 

1 

(II.4) 

' 

where H is the total Hamiltonian and E is the total energy, we can then 

write with the help of the Schrodinger equation, (H - E)~ = 0 , the matrix 
A.l A,! rv 

analogue of the Feshbach equations 

P[H 
A,! A,! ' (II. 5) 

Equation (II.l) does represent a general form of P for rearrangement 

collisions, but it requires a matrix formulation of Feshbach's equations. 

We present in this paper a general formulation of P in a single component 

form. To motivate our derivation, we consider the projector onto the 

monorthogonal basis { ui} • <liven some arbitrary function X,> we know that 

PX= L u.c. 
J_ J_ ' 

(II.6) 
i 

where c. is some coefficient. Multiplying both sides by < u. I we have the 
J_ J 

equation 
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< u.ju. >c. 
J J. l. ' 

(II. 7) 

where we used the fact that 

< u . l PX > = < u .j X > • 
J J 

(II.8) 

Multiplying both sides of Equation (II.7) by < ~luj >-l and summing over 

j, we firid ck to be 

E < u.. ju. >-1 < u.j X >, 
.K J J 

(II.9) 
j 

so that P is 

p = L I -1 u. <u. u. > <u. 
l. l. J J 

(II.lO) 

i,j 

We see that P, depending on the inverse of the overlap < u. lu. >, is given 
l. J 

in a single component form by Equation (II.lO). 

To proceed in a similar fashion for rearrangement collisions, where 

we have nonorthogonal channel states, we let r designate the internal 
a, • 

coordinates of two molecules in channel a,, and let R designate the radial 
a, 

coordinate between the centers of mass of the two molecules. Designating 

an internal state in channel a, as~ .(r ), then for an arbitrary function 
CX,l. a, 

X we write in analogous fashion to Equation (II.6) 

PX = L q, .(r )C .(:R) 
a,l a, a,l. a, 

,. (II.ll) 

a,,i 

where the coefficient C .(R) depends on X and is constructed such that 
CX,l. a, 

there is no multiple counting of internal degrees of freedom. Multiplying 

both sides of Equation (II.ll) by Jdr~~~j*(r~) we obtain 
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= L (dr0 c[>et.*(r,Jcp_ .(r )c .(R) . J c 1-' ,... J ,... a,l a, a,l a, 
a., l 

where we have used the fact that 

j(dr~c[>~j*(r~)PX = ~dr~c[>pj*(r~)x 
Defining the overlap kerne110 

.6~ .. (R ,R,) = fi'(a$)cf>et.*(r~)cp .(r) )i?J ,a.l a, ,... ,...J "' a,l a, ' 

(II.l2) 

(II.l3) 

where j(d'(~) indicates integration over all variables except Ra, and R~, 
we rewrite Equation (II.l2) as 

"fdR .6... . . (R ,RI'l )C . (R ) L.J a, 13 J ,a.l a, ,... a,l a, 

The inverse of the kernel,~: .(R ,Ra), satisfies the equation 
13 J ,a.l a, I" 

""" (dR .6. k(R ,R ).6-kl " .. (R ,Rf,l) = o (,to .. :)(R -R0 ), L...J J u y a, l' y a, y y '1-' J y p a.,., lJ a, ,... 
y,k 

so that the coefficients from Equation (II.l4) can be written as 

ca.i(Ra.) = L ficr~Rf3).6~i,rsj(Ra.,R~)cf>~j*(r~)x , 
~,j 

11 and the projector P assumes the form 

p = L: cp .(r ) ~(rARA).6-~ r.J .(R ,R0 )cf>12 .*(r
12

) a,l a, }c ,_. ,_. a,l,,_.J a, ,... ,.,J ,... 
a.,i,~,j 

(II.l4) 

( II.l5) 

(II.l6) 

(II.l7) 

Equation (II.l7) is a single component expression for the projector 

onto all open channels for a general rearrangement molecular collision. 

Such a projector can be defined uniquely, however, only in the asymptotic region 

fl j 

i ,. 

• 
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( II.l8) 

due to the vanishing of the overlap kernel between'states of different 

arrangements. In this region P is identical to Equation (I.l) defining 

P for inelastic collisions, ahd is thus uniquely defined. 

III. THE INVERSE KERNEL 

A. Special Case.- In general, the inverse kernel as defined by 

Equation (II.l5) is difficult to calculate, since it involves the solution 

12 of an integral equation whose kernel is not of finite rank • We shall 

indicate how to find the inverse kernel for a special case of atom-diatom 

rearrangement: the case where only two arrangements are open, say A + BC 

and AB + c, and where BC and AB are in their ground vibrational and rota-

tional states. The procedure we follow can, however, be generalized in a 

straightforward manner to the case where all three arrangements are open, 

but for simplicity we shall restrict ourselves to two open arrangements. 

For our special case we can write Equation (II.l5) as 

where K .. := .D.:~ (the subscripts signify arrangements), and R1 and R.2 are 
lJ lJ 

the radial coordinates of arrangements A + BC and AB + C, respectively. 

Writing the four equations resulting from Equation (III.l) and making the 

appropriate substitutions of these equations into each other, we arrive 

at the following four coupled equations 
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(III. 2) 

(III.J) 

(III.4) 

Let us concentrate on Equation (III.2). Both matrices on the LHS o~ 

Equation (III.l) are symmetric, so that ~2 = 621• Dispensing with the 

subscripts on ~2, we can write Kl1 (R1,R2) as 

(III-7) 

Using harmonic oscillator vibrational wave ~nctions ~or AB and BC, we 

~ind the kernel ~or our special case, with total angular momentum J, to be13 

(III. B) 

where y is the angle between the R1 and R2 vectors, and r 1 and r 2 are the vibra-

tional coordinates o~ BC and AB with ~orce constants~ and~-

10 equations ~om R1, R2 to r 1, r 2 are 

' 

The trans~ormation 

(III.9) 

• •. 
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' 
(III.lO) 

where ~ is the reduced mass, df BC, m2 is the reduced mass of AB, M2 is the 

mass of B, and ~l and ~2 are the reduced channel masses of arrangements 

A + BC and AB + c, respectively. With Equations (III.9) and (III.lO) we 

can write the kernel as 

l 

f C4R1R2cosy 
d( cosy) e P J( cosy) , 

- 1 (III.11) 

where PJ(cosy) = d J(cosy), and the constants C. are defined as 
00 1 

2 2 132 2 

c2 
CL ~1 

+ 
J.l2 

= 
2M2 2m2 ' 

2 1 

2 2 2 2 

c3 
CL ~2 CL ~1 

= 
2M2 

+ 
2m2 ' 

2 2 

2 2 2 2 

c4 
CL ~1 

+ 
13 ~2 

= 
M~1 ~ 

14 The exponential :function can be expanded as 

(III.12) 

I 1 (c4R1R2)] PJ,(cosy) 
J'~ 

2 

(III.13) 
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where iJ(z), defined as 

' 
(III.l4) 

is a Modified Spherical Bessel function of the first kind and is defined 

in terms of J 1 (z) for our case as 
J+2 

Using the orthogonality relation 

1 

J d(cosy)PJ 1 (cosy)PJ(co::iy) = 28JJJ(2J +l) 

-1 
' 

the kernel in Equation (III.ll) is thus found to be 

(III.l5) 

(III.l6) 

To calculate ~ as given by Equation (III.6), we begin by calculating 

~2 in Equation (III.7), 

(III.l8) 

Rewriting ~2 (R1,R2 ) with the help of Equation (III.l5) as 

' '"".• 
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' 
(III.l9) 

we can write the result directly from integral table~ as15 

. c ~ . - fc - . c4 ] R 2 
~2(R ,R ) = R R l 3 e-2Jnl e [2 4(C2+C3) l 

1 2 1 2 4(c +C )2 
2 3 

(III.20) 

This result is most interesting, for ~2 has the same form as ~. We can 

therefore write the general expression for ~m 

C (m) 
4 = 

constants C. (m) (C. (l) being 
~ ~ 
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2 If 6 (R
1

,R
2

) is small, say less than unity for all R1 and R2, then 

Equation (III.21) is quite usefUl, for we can write Kl1 (R1,R2) through 

Equation (III.6), retaining only a small number of terms which we can write 

down immediately from Equation (III.21). We know K22 since K22 = K11, and 

the off-diagonal terms of the inverse kernel matrix are 

IS_2(Rl,R2) = 1<21 (Rl,R2) = 6(Rl,R2) + 63(Rl,R2) + 65 (Rl,R2) + • • • 

(III.23) 

We can therefore write P if the kernel is less than unity for all R1 and R2, 

which is indicated by the shady area in the Figure below the horizontal 

line at unity. 

t 
A 

1 

On the other hand, if the kernel goes to zero quickly as R1 or R2 ~ oo, 

as shown, for example, by the shaded area under the "Gaussia:nu in the Figure, 

then we can use the fact that the kernel can be made separable in this case 

to solve for K .. exactly. 
l.J 

14 We can expand iJ(z) in a series as 

IS_1 (R1,R2 ) is written from Equation (III.6) as 

(III.2)) 



.. 
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00 

62(Rl,R3) = ~ ~(Rl)~(R3) (III. 26) 

n=l 

I:f 6 behaves as the "Gaussian" in the Figure (i.e., it approaches zero 

quickly as R
1 

or R2 ~ oo), then we need only a :few terms in the summation 

in Equation (III.26), which we can identify immediately :from Equation (III.24), 

De:fining An(R2) as 

' 

K11 then is written as 

Kll (Rl,R2) = S(Rl-R2) + L gn(Rl)An(R2) 
n 

(III.27) 

(III.28) 

Substituting Equation (III.27) into Equation (III.28), we arrive at the 

:following set o:f equations :for Am(R2) 

L (S - ~ )A (R2) = h (R2) nrn nm m n ' 
(III.29) 

m=l 

where 

(III.30) 

For example, i:f we need only' one term o:f the series :for i J( z), then 

K11(R1,R2) is (:for J = 0) 

-C (2)R 2_C (2)R 2 
C (2 )R R e 2 2 3 3 

+ 1 I 2 

0 ( )3/2 
1-C (2)fil4 C (2 )+C (2 ) 

1 2 3 I 

(III-31) 
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If the kernel falls anywhere in the shaded area in the Figure, we are 

able to calculate K .. , and thus P, exactly. Let us consider an example, 
J.J 

such as the rearrangement H + H2 -+ H2 + H on the lowest adiabatic electronic 

surface and with J = 0. The constant y in the Morse potential for H2 in 
2 

the singlet state, V(r) = ne{1-exp(-y(r-re))} , where De is the well-depth 

andre is the equilibrium disiance, is given as 1.04 a.u. 17 We have used 

the ground harmonic oscillator wave functions for the vibrational state of 

H2 in our expression for 6, so we expand V(r) to second order, equate it 

to the harmonic oscillator potential, and find that y and a. are related in 

this approximation by the equation a./2 = y~ • We thus estimate a. to be e 

near .38 a.u. and list in Table I the values of C.(n) for a,=~= .48, .38, 
J. 

and .28 a.u. (see Equation III.22). The odd values of n appear in the 

series expression for ~2, ~l (Equation III. 23) and the even values 

appear in the series expression for K
11

, K22 (Equation III.6). As we see 

from Table I, we need retain only a few terms in the series expressions for 

K .. due to their rapid convergence. The kernel falls into the shaded area 
J.J 

beneath the horizontal line at unity in the Figure. 

As a. and f3 are decreased, the Gaussian wave functions for the internal 

vibrational states of the two arrangements broaden, so that the amount of 

overlap between them increases. In Table II we see for the system of 

masses H + H2 -+ H2 + H that when the value of a. goes from .130 to .129, 

cl(n) no longer decreases as n increases. c2(n) and c3 (n) decrease as a, 

and~ decrease, which we expect from the form of 62 in Equation (III.20), 

i.~., smaller c
2

(n) and c
3

(n) mean larger 6 2• The value of a,=~= .130 

for the mass combination H + H2 seems to be critical as far as the rapid 

convergence of the series in Equation (III.6), so that the results of 

•-"' . i 
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Equations (III.7) and (III.20) are useful only for~ and~ above that 

critical value. 6(n)(R
1

,R2), of course, goes to zero as R
1

, R2 ~ oo for 

~,13 below,. as well as above, .130 since c
2 

(n) and c
3 

(n) are positive. 

B. Semiclassical Form~§ Designating the initial scattering state 

by its momentum P
1 

and the final scattering state. by its momentum P2, the 

matrix element < P2 jP1 > is given in the classical limit as 

(III. 32) 

(III. 33) 

Since< p2 jp1 >is the Fourier transform of the kernel, we can Fourier 

transform < p2 j P1 > to obtain 

. -lfi fi i(R2P2-R1Pl)/-h if4(P2,Pl)/1'1 
6(R1,R2) = (21R1) dP1 dP2 Je e ' 

(III-34) 

Kll(Rl,R2) = 8(Rl-R2) + ~dR3~dR4~(Rl,R3)6(R3,R4)Kil(R4,R2)., 

(III-35) 

and when we perform the integrations over coordinates and momenta by 

stationary phase, we find Ki/R1,R2) to be a local operator. This means 

that in the classical limit the contribution to exchange occurs only when 
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IV. DISCUSSION 

We have shown how one can construct the inverse kernel, and thus P, 

for the special case of the rearrangement collision of an atom with a 

diatomic molecule A + BC ~ AB + c, restricting ourselves to the ground 

vibrational and rotational states of BC and AB but allowing the total 

angular momentum to be arbitrary. We were able to do this by considering 

the general form of P in Equation (II.l7). The construction of the inverse 

kernel is very difficult except for special cases, such as the one we 

considered. Our construction was made particularly easy by the use· of 

Gaussian wave functions for the vibrational states of BC and AB. 

Although the form of P in Equation (II.l7) is the most general that 

we know of for molecular rearrangements, it is by no means unique. P is 

unique only in the asymptotic channels, and as long as P is correct 

asymptotically, we are free to construct it in the way most suitable for 

the system of interest. One possible construction is to avoid the non-

orthogonality problem by choosing wave functions of the same zeroth order 

Hamiltonian to describe reactant and product statesl9, 20• We consider, for 

example, the three-body rearrangement A + BC ~ AB + C with the channel 

AC + B closed. The Hamiltonian for the system can be written as H = 

K + VAB + VBC + VAC + VABC' where K is the kinetic energy, VAB is the 

potential interaction between A and B/and VABC is the three-body potential 

interaction. We designate '1/Ja_i as the eigenfunction of H
0 

= K + VAB + VBC' 

which goes asymptotica~ly to internal state i of arrangement a_(A + BC), 

and~~· as the eigenfunction of H going asymptotically to internal state j 
pJ 0 

of arrangement ~(AB + C). Then the rearrangement, which is a transition 

from ~a_i to ~~j' can occur oply through the residual interaction VAC + VABC" 

.. 
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The projector onto open channels can then be written as 

p 
' 

(IV.l) 

i j 

where the summation runs over all energetically accessible states. One 

must use caution, however, in choosing P in this manner. For example, in 

a coupled channel calculation on the equation 

' 
(IV.2) 

where ~ is the total wave fUnction, the above choice of P is most likely 

20 poor if there are significant long-range forces present , 

The procedure of choosing some zeroth-order Hamiltonian H
0 

is a 

familiar one in collision theory. In nuclear physics H could be the 
0 

shell-model Hamiltonian
21

• In molecular rearrangements H could be chosen 
0 

to be the Hartree-Fock Hamiltonian, in which case the P, constructed as in 

Equation (IV.l), can be a projector onto the electronic space only. If P 

is defined more generally as in Equation (II.l7), then it does not 

necessarily 

in Equation 

commute with a chosen H • However, the construction of P as 
0 

(IV.l) can prove convenient since it commutes with H 19. 
0 

As a final comment, P is not always needed explicitly. For example, 

the coupled equations for open channels for rearrangements can be con­

structed without P22
, but the solution of the coupled equations can be 

facilitated with an explicit form for P. 

ACKNOWLEDGMENTS.- One of us (TFG) acknowledges helpful discussions with 

Professor Y. Hahn. This work was supported under the auspices of the 

U. s. Atomic Energy Commission. 



n 

1 

2 

3 
a,=r; =.48 

4 

5 

6 

1 

2 

3 
a,=~= ·38 4 

5 

6 

1 

2 

=.28 3 

4 

5 

6 

c (n) 
1 

4 -2 •31 X 10 

2.25 X 10-3 

1.09 X 10-5 

3.05 X 10-10 

2.42 X 10-19 

l. 53 X 10-37 

4 -2 3• 1 X 10 

2.84 X 10-3 

3.50 X 10- 5 

6-36 X 10-9 

2.12 X 10-16 

2.36 X 10-31 

2.51 X 10 -2 

3.85 X 10-3 

6 -4 1. 1 X 10 

3·37 X 10-7 

1.49 X 10-
12 

2.90 X 10-23 
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TABLE I 

6 -.l 2. 5 X 10 · 
4 -1 1.7 X 10 

1.55 X 10 
-1 

1.54 :k 10-1 

1.54 X 10-1 

4 -1 1.5 ·x 10 

6 -1 1. 0 X 10 

1.09 X 10 -1 

9.70 X 10 
-2 

6 -2 9• 3 X 10 
6 -2 9• 3 X 10 

9.63 X 10-2 

8 -2 .71 X 10 

5.92 X 10 -2 

. -2 
5.27 X 10 

. -2 
5.23 X 10 

5.23 X 10 
-2 

5.23 X 10 
-2 

C· (n) 
3 

2.56 X 10-.l 

4 -1 1. 7 X 10 . 

l. 55 X 10 -1 

4 -1 l. 5 X 10 
4 -1 1.5 X 10 
4 -1 l. 5 X 10 

6 -1 1. 0 X 10 

1.09 X 10 -1 

9.70 X 10 
-2 

6 -2 9• 3 X 10 
6 -2 9• 3 X 10 
6 -2 9• 3 X 10 

8 -2 • 71 X 10 

5.92 X 10 
-2 

5.27 X 10 
-2 

5.23 X 10 
-2 

5.23 X 10 
-2 

5.23 X 10 -2 

C (n) 
4 

4.10 X 10-.L 

64 - 1 1. ·X 10 

3.86 X 10-2 

2.40 X 10-3 

8 -6 9·3 X 10 

1.43 X 10-10 

2.57 X 10 -1 

1.03 X 10 -1 

4 -2 2. 2 X 10 

l. 50 X 10- 3 

5.88 X 10-6 

8.97 X 10-ll 

1.39 X 10 
-1 

8 -2 5·5 X 10 

1.31 X 10 
-2 

8 -4 .17 X 10 

3.19 X 10 
-6 

4.87 X 10-11 

. ' 

• i 
I 

;. i 



n 

1 

2 

3 

4 

5 

6 

a.==f3 =.1 30 7 

8 

9 

10 

11 

12 

13 

14 

1 

2 

3 

4 

5 

6 

7 
a.=j3 =.1 29 

8 

9 
10 

11 

12 

13 

14 

1 

2 

3 
1 

4 

5 

6 

C (n) 
1 

1.17 X 10 -2 

8.30 X 10-3 

7•47 X 10-3 

7-23 X 10-3 

6.85 X 10-3 

6.15 X 10-3 

4.95 X 10-3 

3.21 X 10-3 

1.35 X 10-3 

8 -4 2. 3 X .10 
4 -6 7• 0 X 10 

7.18 X 10-9 

6.75 X 10-l5 

5.96 X l0-27 

6 -2 1.1 X 10 

8.36 X 10-3 

7•77 X 10-3 

7•99 X 10-3 

8.57 X 10-3 

9.84 X 10-3 

1.30 X 10 -2 

6 -2 2.2 X 10 

6.86 X 10-2 

6 -1 .31 X 10 

5.34 X 10 
+1 

3.82 X 10+5 

1.96 X 10+l3 

5.15 X 10+28 

8.98 X 10-4-
. 8 -1 1.0 X 10 

2.77 X 10+3 

2.19 X 10+l2 

1.38 X 10+30 

5.48 X 10+65 

•. ' 
~) 0 \j 
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TABLE II 

C (n) 
2 

1.88 X 10-2 

8 -2 1.2 X 10 
4 -2 lol X 10 

1•13 X 10 
-2 

1•13 X 10 
-2 

1.13. X 10 
-2 

1•13 X 10 -2 

' -2 1.13 X 10 
. -2 
1413 X 10 
. -2 
1.13 X 10 

1.13 X 10 -2 

1.13 X 10 -2 

1•13 X 10 
-2 

1<13 X 10 -2 

lo 85 X 10-2 

6 -2 1.2 X 10 

1.12 X 10 -2 

1.11 X 10 -2 

1.11 X 10 -2 

1.11 X 10 -2 

1.11 X 10 -2 

1.11 X 10 -2 

1.11 X 10 -2 

1.11 X 10 -2 

1.11 X 10 -2 

1.11 X 10 -2 

1.11 X 10 -2 

1 -2 • 11 X 10 

i.11 X 10-4-

'7.56 X 10- 5 

6.72 X 10-5 

6.67 X 10-5 

6.67 X 10-5 

6.67 X 10-5 

1.88 X 10-2. 
8 -2 1.2 X 10 
4 -2 1.1 X 10 

1.13 X 10 -2 

1.13 X 10 -2 

1.13 X 10 -2 

1.13 X 10 -2 

1.13 X 10 -2 

. -2 
1.13 X 10 

1.13 X 10 -2 

1.13 X 10 -2 

1.13 X 10 -2 

1.13 X 10 -2 

1.13 X 10 -2 

1.85 X 10-2 

6 -2 1.2 X 10 

1.12 X 10 -2 

1.11 X 10 -2 

1.11 X 10 -2 

1.11 X 10 -2 

1.11 X 10 -2 

. -2 1.11 X 10 

1.11 x 10-2 

loll X 10 -2 

1.11 X 10 -2 

1.11 X 10 -2 

1.11 X 10 -2 

loll X 10 -2 

1.11 X 10-4 

7.56 X 10-5 

6.72 X 10-5 

6.67 X 10- 5 

6.67 X 10- 5 

6.67x 10-5 

C (n) 
4 

3-00 X 10-2 

1. 20 X 10 -2 

2.83 X 10-3 

6 -4 1.7 X 10 

6.88 X 10-7 

1.05 X 10-11 

2.44 X 10-21 

1. 32 X 10-40 

3.89 X 10-79 

3~36 X l0-156 

o. 

o. 

o. 

o. 

2.96 X 10-c 
8 -2 1.1 X 10 

2.78 X 10-3 

1.73 X 10 -4 

6.77 X 10-7 

1.03 X 10-ll 

2.41 X 10-2.l 

1.30 X 10-40 

3.83 X 10-79 

3·31 X l0-156 

o. 

o. 

o. 

o • 

1.78 x lo-4 

7.11 X 10-5 

1.67 X 10- 5 

4 -6 1.0 X 10 

4.07 X 10-9 

6.21 X 10-l4 
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CAPI'ION FOR FIGlJRE 

The range is the overlap kernel 6 = 6(R
1

,R2) for a three-atom 

rearrangement process and the abscissa is either R1 or R2• For the special 

case considered, i.e., the ground to ground vibrational and rotational state 

transition, the inverse kernel can be found exactly if 6 falls in the 

shaded area. See the text for an explanation of the two overlapping 

parts of the shaded area. 

·' 
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CAPI'IONS FOR TABLES 

TABLE I 

Table I lists C. (n) (Equation (III.22)) for the rearrangement 
~ 

process H + H2 ~ H2 + H to and from the ground vibrational and 

rotational states of H2 for J = 0. Different sets of C. (n) are 
~ 

shown for the values of the force constant (a,) of H2 set equal 

to .48, .38, and .28 a.u. (in comparison with the results of 

Reference 17 for the potential energy curve of H2, .38 a.u. 

appears to be the most reasonable choice). It is seen that the 

convergence of the series for K .. (Equations (III.6) and (III.22)) 
~J 

is quite rapid for all R
1 

and R2 for the above values of a,. 

TABLE II 

Table II lists Ci (n) for H + H2 ~ H
2 

+ H under the same 

conditions as Table I, where it is seen that as a, is changed 

from .130 to .129 a.u. the series for K .. no longer converges. 
~J 
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