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ORIGINAL ARTICLE

MicroRNA-30a-5p in the prefrontal cortex controls
the transition from moderate to excessive alcohol
consumption
E Darcq1, V Warnault1, K Phamluong, GM Besserer, F Liu and D Ron

MicroRNAs (miRNAs) induce messenger RNA (mRNA) degradation and repress mRNA translation. Several miRNAs control the
expression of the brain-derived neurotrophic factor (BDNF) in the prefrontal cortex (PFC). The BDNF signaling pathway is activated
by moderate intake of alcohol to prevent escalation to excessive drinking. Here, we present data to suggest that the transition
from moderate to uncontrolled alcohol intake occurs, in part, upon a breakdown of this endogenous protective pathway via a
miRNA-dependent mechanism. Specifically, a mouse paradigm that mimics binge alcohol drinking in humans produced a robust
reduction in BDNF mRNA levels in the medial PFC (mPFC), which was associated with increased expression of several miRNAs
including miR-30a-5p. We show that miR-30a-5p binds the 3′ untranslated region of BDNF, and that overexpression of miR-30a-5p
in the mPFC decreased BDNF expression. Importantly, overexpression of miR-30a-5p in the mPFC produced an escalation of alcohol
intake and a preference over water. Conversely, inhibition of miR-30a-5p in the mPFC using a Locked Nucleic Acid sequence that
targets miR-30a-5p restored BDNF levels and decreased excessive alcohol intake. Together, our results indicate that miR-30a-5p
plays a key role in the transition from moderate to excessive alcohol intake.

Molecular Psychiatry advance online publication, 21 October 2014; doi:10.1038/mp.2014.120

INTRODUCTION
MicroRNAs (miRNAs) are small non coding RNAs of ~ 20
nucleotides derived from longer precursor molecules that induce
messenger RNA (mRNA) degradation and repression of mRNA to
protein translation.1 In the brain, miRNAs contribute to number of
functions such as dendritic spine development2 as well as
plasticity,3 learning and memory,3 and malfunction of miRNAs
have been reported to contribute to numerous psychiatric
disorders4 including addiction.5 Several studies suggested a link
between several miRNAs and alcohol’s actions in the central
nervous system. For example, experiments conducted in striatal
neuronal cultures revealed that the expression of miR-9 was
increased in response to alcohol exposure, which was associated
with a decreased mRNA expression of the alpha subunit of the
big potassium (BK) channel, and with the development
of tolerance to alcohol,6 and systemic administration of alcohol
(1 g kg− 1, intraperitoneal) was shown to reduce the expression of
miR-382 in the nucleus accumbens of rats.7 Furthermore, alcohol
was shown to induce changes in the expression of miRNAs during
brain development,8 and the expression of 35 miRNAs were found
to be increased in the prefrontal cortex (PFC) of postmortem
human alcoholics.9

One of the genes whose expression is controlled by miRNAs is
the brain-derived neurotrophic factor (BDNF) in cultured cells10,11

and in the brain.12–14 BDNF is an essential growth factor that
promotes neuronal proliferation, differentiation and survival,15 as
well as synaptic plasticity, and learning and memory.16 Previously,
we identified BDNF as an endogenous factor that reduces the
development of adverse behaviors associated with alcohol

exposure including consumption.17–20 Specifically, we found
that BDNF expression is increased in the dorsal striatum of
rodents that consume moderate levels of alcohol,17,19 which is
comparable to humans that consume alcohol socially. Further-
more, we showed that increasing BDNF levels in the dorsal
striatum of mice17 or rats,18 or the activation of the BDNF receptor
TrkB in the dorsolateral striatum of rats,19,20 attenuated self-
administration of moderate levels of alcohol. Conversely, a global
reduction of the BDNF gene17 or small-interfering RNA-mediated
knockdown of BDNF expression in the dorsolateral striatum19

produced an increase in mice and rats self-administration of
moderate levels of alcohol. In addition, we observed that
prolonged exposure of mice to alcohol led to a dysregulation of
BDNF expression in cortico–striatal regions including the PFC.21

PFC hypofunction contributes to the development of compulsive
and excessive drug intake,22 and more specifically, the medial PFC
(mPFC) was shown to have a major role in the transition from a
moderate to excessive alcohol intake.23 As miRNAs in the PFC
control BDNF levels,12,13 we tested the possibility that miRNA-
dependent reduction of BDNF expression in the mPFC has a role in
the development of excessive and uncontrolled alcohol intake.

MATERIALS AND METHODS
Reagents
Reverse Transcription System and PCR master mix were purchased from
Promega Corporation (Madison, WI, USA). DNase and the mouse anti-GFAP
antibodies were obtained from Sigma-Aldrich (St Louis, MO, USA). All
miRNA reagents, including miRCURY LNA Universal RT miRNA PCR,
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SybrGreen master mix and the miRCURY LNA miRNA inhibitors were
obtained from Exiqon (Vedbaek, Denmark). The Q5 Site-Directed
Mutagenesis Kit and rabbit anti-maltose binding protein (MBP) antibodies
were purchased from New England Biolabs (Ipswich, MA, USA). pRNAT-
H1.1/Shuttle was purchased from GenScript (Piscataway, NJ, USA). The
adenoviral vector Adeno-X, the Adeno-X Virus Purification Kit and the
Adeno-X Rapid Titer Kit were purchased from Clontech (Mountain View,
CA, USA). pUSEamp(+) vector and mouse anti-NeuN antibodies were
purchased from Millipore (Billerica, MA, USA). All real-time PCR reagents
(including TaqMan Gene Expression Assays), secondary antibodies Alexa
Fluor 488-labeled donkey anti-rabbit and Alexa Fluor 594-labeled donkey
anti-mouse, the Lipofectamine 2000 and ProLong Gold medium were
obtained from Life Technologies (Carlsbad, CA, USA). Rabbit anti-green
fluorescent protein (anti-GFP) antibodies for immunohistochemical detec-
tion were purchased from Abcam (Cambridge, MA, USA). Mouse anti-Flag
antibodies were obtained from Cell Signaling Technology (Beverly, MA,
USA) and goat anti-Actin and mouse anti-GFP antibodies purchased from
Santa Cruz Biotechnology (Santa Cruz, CA, USA). The mirVana miRNA
Isolation Kit was purchased from Ambion (Austin, TX, USA). Horseradish
peroxidase-conjugated secondary antibodies were obtained from Jackson
ImmunoResearch (West Grove, PA, USA). Enhanced Chemiluminescence
was acquired from GE Healthcare Life Sciences (Piscataway, NJ, USA).

Animals
Male C57BL/6J mice were obtained at 8 weeks of age from the Jackson
Laboratory (Bar Harbor, ME, USA). Animals were housed under a reverse
12 h light/dark cycle, with lights off at 10:00 hours and lights on at
22:00 hours, and were provided with continuous ad libitum access to food
and water. Because of the reversal of normal light/dark cycle, animals were
given 2 weeks to adjust to the new housing conditions prior to the
beginning of the procedures. All animal procedures were approved by the
Gallo Center and the University of California San Francisco (UCSF)
Institutional Animal Care and Use Committee (IACUC) and were conducted
in agreement with the Guide for the Care and Use of Laboratory Animals
(Gallo Center), National Research Council (1996) and the Association for
Assessment and Accreditation of Laboratory Animal Care (AAALAC, UCSF).

mRNA and miRNAs extraction and purification
Mice were killed immediately or 24 h after the final alcohol access session;
brain regions were isolated by microdissection and snap frozen to
minimize RNA degradation. Areas designated for microdissection were
defined according to coordinates from ‘the mouse brain in stereotaxic
coordinates’.24 The mPFC and hippocampus were removed, and total RNA
fraction and a fraction enriched in miRNAs were extracted using the
mirVana miRNA Isolation kit according to the manufacturer’s instructions.
RNA yield and purity were evaluated using a NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies/Thermo Scientific, Waltham,
MA, USA).

Reverse transcriptase-PCR
Total RNAs were reverse transcribed using a Reverse Transcription System
kit at 42 °C for 30min. BDNF, nerve growth factor (NGF) and GFP
expressions were analyzed by PCR as previously described17 and with
temperature cycling parameters consisting of initial denaturation at 94 °C
for 2 min followed by 32 cycles of denaturation at 94 °C for 30 s, annealing
at 58 °C for 30 s, extension at 72 °C for 1 min, and a final incubation at 72 °C
for 7 min. Glyceraldehyde-3-phosphatedehydrogenase (GAPDH) and β-actin
expression were analyzed using the same cycling parameters for 27 cycles
and postsynaptic density protein 95 for 30 cycles. The following primers
were used: mouse BDNF, upstream: 5′-TTGAGCACGTGATCGAAGAGC-3′
and downstream: 5′-GTTCGGCATTGCGAGTTCCAG-3′; mouse GAPDH,
upstream: 5′-TGAAGGTCGGTGTGAACGGATTTGGC-3′ and downstream:
5′-CATGTAGGCCATGAGGTCCACCAC-3′; GFP, upstream: 5′-CACATGAAGCA
GCACGACTT-3′and downstream: 5′-CATTGTGGGCGTTGTAGTTG-3′; mouse
postsynaptic density protein 95, upstream: 5′-GACTGCGGTTTCTTGAGC-3′
and downstream: 5′-GTTGGCACGGTCTTTGGT-3′; mouse β-actin, upstream:
5′-CACTGTGCCCATCTACGA-3′ and downstream: 5′-CAGGATTCCATACCCAA
G-3′; mouse NGF, up stream: 5′-ACACTCTGGATCTAGACTTCCAGG-3′ and
downstream: 5′-AGGCAAGTCAGCCTCTTCTTGTAG-3′. PCR products were
separated as we described17 and photographed by ChemiDoc XRS+ (BioRad,
CA, USA). The signals of the PCR products were quantified by densitometry
using the NIH ImageJ 1.61 program (National Institutes of Health, Bethesda,
MD, USA). The intensities of signals were normalized to GAPDH.

Real-time quantitative reverse transcriptase PCR (qRT-PCR)
qRT-PCR for miRNA detection was performed using the miRCURY LNA
Universal RT miRNA PCR system according to the manufacturer’s
instructions. An RNA spike-in (internal control) was added to the RNA
just before the complementary DNA synthesis to control the quality of the
RT reaction for each sample. Each data point, derived from qRT-PCR assays,
represents an average of three replicates and data were normalized using
small nuclear U6 RNA. Relative miRNA expression was determined by
calculating the mean difference between the cycle threshold (CT) of the
miRNA of interest and the U6 small nuclear RNA normalization control
for each sample (ΔCT). Data (ΔCT) were averaged over independently repli-
cated experiments and expressed as the mean fold change over the
mean of the control group (2− ΔΔCT

) ± s.e.m. Experiments were run on an
Applied Biosystems 7900HT real-time PCR instrument using the SYBR
green-based real-time PCR reaction kit with specific miRNA primer sets
(mmu-miR-1: MIMAT0000123, targeted sequence: 5′-UGGAAUGUAAAGAA
GUAUGUAU-3′; mmu-miR-30a-5p: MIMAT0000128, targeted sequence:
5′-UGUAAACAUCCUCGACUGGAAG-3′; mmu-miR-195: MIMAT0000225, tar-
geted sequence: 5′-UAGCAGCACAGAAAUAUUGGC-3′; mmu-miR-124:
MIMAT0004527, targeted sequence: 5′-CGUGUUCACAGCGGACCUUG
AU-3′). Primer sets for 5s ribosomal RNA (rRNA) and an internal control
were used as controls.
qRT-PCR for BDNF RNA samples were treated with DNase prior to RT

using the Reverse Transcription System. The resulting complementary DNA
samples were amplified by TaqMan quantitative PCR using commercially
available primer/probe kits from Applied Biosystems for BDNF (Gene
Expression Assay Mm00432069_m1) and GAPDH Gene Expression Assay
(Mm99999915_g1) was used as an internal control as described in ref. 21.

Generation of wild type untranslated region (Wt-3′UTR)(BDNF) and
mutant (Mut)-3′UTR(BDNF) plasmids
Wt-3′UTR(BDNF) RNA was isolated and reverse transcribed to comple-
mentary DNA. The PCR product of 976 bp contained a putative miR-30a-5p
binding site (1824-GTTTACA-1832).

Site directed mutagenesis. Site-Directed mutagenesis of 1824-GTTTACA-
1832 (Wt-3′UTR(BDNF)) to 1824-ACATTTC-1832 (Mut-3′UTR(BDNF) was
conducted using Q5 Site-Directed Mutagenesis Kit. The following primers
were used for the mutagenesis: 5′-ACATTTCTTTTAGACACTAAGTATCTTC-3′
and 5′-GGA ATG TTT TGG TTC AAA T-3′. The generation of Wt-3′UTR(BDNF)
and Mut-3′UTR(BDNF) was confirmed by sequencing.

Preparation of reporter plasmids. MBP-Flag-GFP sequence used as
reporter detection method was inserted into NheI and KpnI sites of
pUSEamp(+) vector, downstream of the cytomegalovirus promoter of the
vector. Wt-3′UTR(BDNF) and Mut-3′UTR(BDNF) were then PCR cloned into
pUSE-MBP-Flag-GFP at the KpnI sites to generate pUSE-MBP-Flag-GFP-Wt-
3'UTR(BDNF) and pUSE-MBP-Flag-GFP-Mut-3'UTR(BDNF).

Generation of plasmids for miR-30a-5p and scrambled (SCR)
sequence expression
miR-30a-5p MIMAT0000128, (sense, 5′-GATCCCGCGACTGTAAACATCCTCG
ACTGGAAGCTGTGAAGCCACAGATGGGCTTTCAGTCGGATGTTTGCAGCTGCT
TTTTTCCAAA-3′; antisense 5′-AGCTTTTGGAAAAAAGCAGCTGCAAACAT
CCGACTGAAAGCCCATCTGTGGCTTCACAGCTTCCAGTCGAGGATGTTTACAGT
CGCGG-3′), and a SCR sequence (sense, 5′-GATCCCGCGACGAAGGTCA
GCTCCTACAAATGTCTGTGAAGCCACAGATGGGCGACGTTTGTAGGCTGACTTT
CTGCTTTTTTCCAAA-3′; antisense, 5′-AGCTTTTGGAAAAAAGCAGAAAGTCA
GCCTACAAACGTCGCCCATCTGTGGCTTCACAGACATTTGTAGGAGCTGACCTT
CGTCGCGG-3′) with overhangs of BamHI and HindIII restriction sites
were synthesized and cloned into a small RNA expression vector, pRNAT-
H1.1/Shuttle, downstream of an H1 promoter. The plasmid
cassette containing the miR-30a-5p (pRNAT-H1.1-miR-30a-5p) or SCR
sequence (pRNAT-H1.1-SCR) also includes GFP for detection.

Construction of the adenovirus (Adv)
The miR-30a-5p or SCR sequences were subcloned into the Adv back-
bone vector pAdeno-X using the I-Ceu I and PI-Sce I restriction sites.
AdV-miR-30a-5p and Adv-SCR were prepared and purified using the
Adeno-X Virus Purification Kit and titered using the Adeno-X Rapid Titer Kit.

miRNA-30a-5p, BDNF and alcohol
E Darcq et al

2

Molecular Psychiatry (2014), 1 – 11 © 2014 Macmillan Publishers Limited



Cell culture
HEK 293FT cells (Life Technologies) were plated at a density of 2 × 105

cells per well (six-well plates) in Dulbecco’s Modified Eagle Medium
supplemented with fetal bovine serum (10%), penicillin/streptomycin,
and non-essential amino acids. Cells were co-transfected with either
pRNAT-H1.1-miR-30a-5p or pRNAT-H1.1-SCR (4 μg per well) and pUSE-
MBP-Flag-GFP-Wt-3′UTR(BDNF) or pUSE-MBP-Flag-GFP-Mut-3′UTR(BDNF)
(2 μg per well). Cells were harvested 24 h after transfection and the levels
of Wt-3′UTR(BDNF) and Mut-3′UTR(BDNF) were analyzed by western blot.

Western blot analysis
HEK 293FT cells were harvested in radio-immunoprecipitation assay buffer
(50mM Tris-HCl, pH 7.4, 5 mM EDTA, 120mM NaCl, 1% NP-40, 0.1%
deoxycolate and 0.5% SDS) at 4 °C. Thirty μg of HEK 293FT homogenates
were resolved on a NuPAGE 10% Bis-Tris gel and transferred onto
nitrocellulose membranes. Blots were blocked with 5% milk-phosphate
buffered saline with tween 20, and then incubated overnight at 4 °C in the
blocking solution including mouse anti-Flag (1:2000), rabbit anti-MPB
(1:1000), mouse anti-GFP (1:2000) or goat anti-Actin (1:2000) antibodies.
Membranes were then washed and probed with the appropriate Horse-
radish peroxidase-conjugated secondary antibodies for 1 h at room
temperature. Membranes were visualized using Enhanced Chemilumines-
cence. Band intensities were quantified by ImageJ program (National
Institutes of Health).

Immunochemistry
Five days after viral infusion, mice were deeply anesthetized with
pentobarbital and perfused with 0.9% NaCl, followed by 4% paraformal-
dehyde in phosphate buffer, pH 7.4. Brains were removed, fixed in the
same fixative for 2 h, and transferred to PBS at 4 °C. The following day,
brains were transferred into 30% sucrose and stored at 4 °C until the brain
sank to the bottom of the tube. Frozen 50 μm thick coronal sections were
cut on a cryostat (Microm; Thermo Scientific, Wilmington, DE, USA) and
collected into 24-well dishes. Free-floating sections containing the
injection site in the mPFC were selected. Coronal sections were blocked
with 5% normal donkey serum in PBS for 1 h and then incubated for 24 h
at 4 °C on an orbital shaker with antibodies for either a neuronal marker
(anti-NeuN antibody, 1:500) or a glial marker (anti-GFAP antibody, 1:1000)
in combination with the anti-GFP antibody (1:5,000) and diluted in PBS
plus 3% BSA and 0.05% Triton X-100. The sections were then washed three
times for 5 min each in PBS followed by incubation for 4 h with the
following secondary antibodies: Alexa Fluor 488-labeled donkey anti-rabbit
and Alexa Fluor 594-labeled donkey anti-mouse (both at 1:500). After
staining, the sections were washed three times for 5 min each in PBS, and
mounted in ProLong Gold mounting medium. Images were acquired using
Zeiss LSM 510 META laser confocal microscope (Zeiss, Jena, Germany).

Adenoviral infection of the mPFC
Mice were anesthetized using a mixture of ketamine (120mg kg− 1) and
xylazine (8 mg kg− 1). Bilateral microinfusions were made using stainless-
steel injectors (33 gauge, Small Parts) into the mice mPFC (the stereotaxic
coordinates were anteroposterior +2.4 mm from bregma; mediolateral
± 0.35mm from bregma and dorsoventral − 2.25 mm from the skull
surface). Animals were infused with AdVs miR-30a-5p and AdV-SCR (1.0 μl
per injection) at a concentration of 1 × 108 infectious units (ifu) per ml and
at an injection rate of 0.1 μl min− 1. After each infusion, the injectors were
left in place for an additional 10 min to allow the virus to diffuse. Mice
recovered for 5 days before experiments were initiated. For each subject,
the infected area was verified in 50 μm coronal sections using Zeiss LSM
510 META laser confocal microscope (Zeiss). Animals showing localized
infections in the mPFC were included in the studies.

Locked Nucleic Acid (LNA)-miRNA administration
Fluorescently-labeled in vivo LNA targeting miRNA-30a-5p (MIMAT0000128,
LNA-miR-30a-5p, sequence: 5′-GTC GAG GAT GTT TAC-3′) and SCR (LNA-
SCR, sequence: 5′-ACG TCT ATA CGC CCA-3′) were synthesized. LNA-
miR-30a-5p and LNA-SCR were dissolved in PBS at a concentration of
25mM.25 Guide cannulae were placed in the mPFC and cemented into place
(anteroposterior +2.4mm from bregma; mediolateral ± 0.4mm from
bregma and dorsoventral − 2.25mm from the skull surface) and 7 days
after recovery the in vivo LNA miRNA inhibitor and SCR were infused 2 h
before access to alcohol. LNA sequences (1ul) were infused over 2 min and
the injectors remained in position for an additional 2min. At the end of the

procedure, the site of cannulae implantation was verified by histology
(Supplementary Figure 6). Animals showing correct cannulae placements in
the mPFC were included in the studies.

Preparation of solutions
Alcohol solution was prepared from ethyl alcohol absolute anhydrous (190
proof) diluted to 10 or 20% (v/v) in tap water. Saccharin (Sigma-Aldrich)
was dissolved in tap water.

Drinking paradigms
Intermittent access (IA) to 20% alcohol, two bottle choice paradigm
(2-BC). Mice had access to one bottle of 20% alcohol (v/v) and one
bottle of water for 24 h, starting at 1200 hours (that is, 2 h after the lights
turn off). Bottles were available on Mondays, Wednesdays and Fridays for
21 sessions over a total of 49 days.26 Alcohol and water intake were
recorded immediately after the first 4 h of access (to assess binge-like
drinking) and at the end of the 24 h of access to alcohol.

Continuous access of 10% alcohol. Mice had continuous access to
one bottle of 10% alcohol (v/v) and one bottle of water in their home
cage for 21 consecutive days.17 Alcohol and water consumption were
recorded daily.

Saccharin consumption. Mice were tested for saccharin intake using a
2-BC paradigm. The procedure was similar to the 20% alcohol IA described
above, except that saccharin (0.01%) solution was used instead of alcohol.

Histology
Mice with implanted cannulae received an intraperitoneal injection of
pentobarbital followed by transcardial perfusion with 4% paraformalde-
hyde. Cannula placement was verified using a classic Bright Field
microscope.

Statistical analyses
Statistical analyses were performed using SIGMASTAT statistical software
(Systat, San Jose, CA, USA). Gene expression and miRNA data were
analyzed by unpaired two-tailed t-test. Correlations were analyzed by
linear regression, and the effect size (R2 value) was calculated. Western blot
analysis data were analyzed by two-way analysis of variance. Behavioral
experiments were analyzed by two-way analysis of variance with repeated
measures. All post-hoc analyses were performed using the Student–
Newman–Keuls test.

RESULTS
Excessive consumption of alcohol decreases BDNF mRNA and
increases miRNA levels in the mPFC
As the mPFC has a major role in the transition from a moderate to
an excessive alcohol intake,23 we focused our studies on this
cortical region and first tested whether repeated cycles of binge
drinking and abstinence alter BDNF expression in the mPFC. Mice
underwent IA to 20% alcohol for 7 weeks, a total of 21 sessions of
24 h access (Supplementary Figure 1A). This procedure generates
an escalation in voluntary alcohol consumption that models
episodic heavy drinking in humans.27 Specifically, repeated cycles
of alcohol intake and abstinence produced over time a high level of
intake in a 24-h session, and a binge-like alcohol drinking pattern
during the first 4 h of alcohol access (Supplementary Table 1).
Binge-like alcohol drinking in mice produces blood alcohol con-
centration of ~ 100mg%,28 that corresponds to binge drinking in
humans.29 As shown in Figures 1a and b and Supplementary
Figure 2A, repeated cycles of excessive alcohol intake and absti-
nence produced a robust reduction in BDNF expression in the
mPFC, which was tightly correlated with levels of alcohol intake
(Supplementary Figure 2B). Alcohol-mediated reduction of BDNF
levels in the mPFC was specific as the expression of Actin and
postsynaptic density protein 95 were unaltered (Figures 1a and b).
Next, we tested whether the levels of miRNAs were altered in the

mPFC in response to excessive alcohol intake using the same
samples used to generate the data shown in Figures 1a and b.
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We focused our analysis on miR-30a-5p and miR-195, that were
shown to negatively regulate BDNF levels in the cortex,12,13 and
miR-124 and miR-1 that were reported to reduce the expression of
BDNF in NG108-15 cells and HEK293 cells, respectively.10,11 As
shown in Figures 1c and d, binge-like alcohol drinking and
abstinence increased the levels of miR-30a-5p, miR-195 whereas
miR-1 levels were increased only in response to a binge drinking
session and miR-124 only during abstinence. In contrast, the
expression of BDNF (Supplementary Figures 3A and B) and the
miRNAs (Supplementary Figures 3C and D) were unaltered in the

hippocampus of mice consuming high levels of alcohol. Further-
more, the expression of the endogenous control (5srRNA) and the
internal control (an RNA spike-in that was added to the sample just
before the complementary DNA synthesis to control the quality of
the reverse transcription) were unaltered in response to alcohol
intake in both regions (Figures 1c and d and Supplementary Figures
3C and D). Together, these results show that binge drinking and
abstinence reduced BDNF expression in the mPFC, which was
associated with elevated levels of miR-30a-5p and miR-195.
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Figure 1. Excessive alcohol drinking decreases brain-derived neurotrophic factor (BDNF) expression and increases microRNA (miRNA)
expression in the mPFC. (a–d) Mice underwent IA to 20% alcohol using a 2-BC procedure for a total of 21 drinking sessions while a
second group consumed water only. The medial PFC (mPFC) was collected 4 h after the beginning of the last alcohol drinking session
(a and c, Binge) or 24 h after the end of the last alcohol drinking session (b and d, Abstinence). (a and b) BDNF, PSD95, β-actin and GAPDH
messenger RNA (mRNA) were measured by reverse transcriptase PCR (RT-PCR). Left, BDNF mRNA data are expressed as a mean ration of BDNF/
GAPDH and plotted as percentage of water control± s.e.m. Right, representative images of the RT-PCR results. (c and d) miRNAs expression
were measured by qRT-PCR. Data are expressed as mean± s.e.m. fold change (2−ΔΔCt), normalized to control U6 small nuclear RNA
(snRNA) levels. ***Po0.001, **Po0.01 and *Po0.05, two-tailed unpaired t-test. (a) BDNF (t(6)= 7.32, Po0.001), (b) BDNF (t(6)= 6.65, Po0.001),
(c) miR-30a-5p (t(15)= 4.27, Po0.001), miR-195 (t(15)= 3.37, P= 0.004), miR-1 (t(15)= 2.46, P= 0.03), miR-124 (t(15)= 0.94, P= 0.37),
5srRNA, (t(15)= 0.05, P= 0.79), Internal Control (t(15)= 0.06, P= 0.82), (d) miR-30a-5p (t(10)= 2.14, P= 0.007), miR-195 (t(10)= 3.80, P= 0.003),
miR-1 (t(10)= 0.13, P= 0.90), miR-124 (t(10)= 2.60, P= 0.03), 5srRNA (t(10)= 1.72, P= 0.12) and Internal Control (t(10)= 0.54, P= 0.60). (a, b) n= 4
(c) n = 7–10 and (d) n= 5–7.
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Moderate consumption of alcohol does not alter BDNF or miRNAs
levels in the mPFC
Next, we used a model in which mice had continuous access to
10% alcohol and water for 21 days (Supplementary Figure 1A).
This paradigm leads to a moderate level of alcohol intake
(Supplementary Table 1). We measured BDNF mRNA and miRNAs
targeting BDNF in the mPFC at the end of the final alcohol
drinking session and found that the expression of BDNF (Figure 2a)
or the tested miRNAs (Figure 2b) were unaltered in response to
consumption of moderate levels of alcohol. Similarly, BDNF mRNA
expression (Supplementary Figure 3E) and the levels of miRNAs
(Supplementary Figure 3F) were also unchanged in the hippo-
campus. Together, these results suggest that miR-30a-5p, miR-195,
miR-1 and miR-124 in the mPFC are elevated only in response to
excessive but not moderate alcohol drinking, and are tightly
correlated with BDNF expression.

miR-30a-5p targets the 3′UTR of BDNF and downregulates BDNF
expression in the mPFC
We next sought to determine whether the increases of miRNA
levels, and the consequent decreases in BDNF expression in the
mPFC have a role in the development of excessive alcohol
drinking. We focused our analysis on miR-30a-5p, a miRNA is
enriched in layer III pyramidal neurons, that inversely associated
with BDNF protein levels in human PFC12,13 and in mouse
cortex.13 Furthermore, this miRNA was increased in response to
both binge drinking of alcohol (Figure 1c) and after a period of

24 h of abstinence (Figure 1d). First, we verified that miR-30a-5p
is indeed targeting BDNF by conducting an in silico analysis to
identify a putative miR-30a-5p binding site within the mouse
BDNF gene (NM_007540). Using microRNA.org30 we discovered a
potential mi-R30a-5p binding site (1824-GTTTACA-1832) within
the 3′UTR region of BDNF. Next, we designed plasmids that
express the Wt form of 3′UTR(BDNF) (Wt-3′UTR(BDNF) or a
mutated form of the 3′UTR(BDNF) in which the putative mi-R30a-
5p binding site was mutated (Mut-3′UTR(BDNF)) (Figure 3a).
We then co-transfected HEK293 cells with plasmids express-
ing miR-30a-5p or a scramble sequence of miR-30a-5p (SCR)
(Figure 3b), and plasmids expressing Wt-3′UTR(BDNF) or Mut-3′
UTR(BDNF). 3′UTR(BDNF) expression was tested by the use of
MBP (Figure 3c) and Flag (Supplementary Figure 4) as surrogate
detection tags. As shown in Figure 3c and Supplementary Figure
4, overexpression of miR-30a-5p but not SCR produced a
reduction in Wt-3′UTR(BDNF) expression (lanes 1 versus 2), which
was abolished upon co-transfection of miR-30a-5p with Mut-3′
UTR(BDNF) (lanes 2 versus 4). Together, these results show the
miR-30a-5p targets BDNF for degradation by binding to its 3′-UTR
sequence.
Next, we generated an adenovirus expressing miR-30a-5p

(AdV-miR-30a-5p) or the SCR sequence of miR-30a-5p (AdV-SCR).
AdV-miR-30a-5p or AdV-SCR was stereotaxically infused into the
mPFC and molecular measurements were performed 5 days later
(Supplementary Figure 1B). AdV-miR-30a-5p selectively infected
mPFC neurons but not glia (Supplementary Figure 5A) and
produced a significant and specific increase in the level of
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Figure 2. Moderate alcohol intake does not alter brain-derived neurotrophic factor (BDNF) and MicroRNA (miRNA) expression in the medial
PFC (mPFC). Mice underwent a procedure of continuous access to alcohol 10% or water only for 21 days and mPFC was collected 6 h after the
beginning of the dark cycle of the last drinking session (a) BDNFmRNA in the mPFC was measured by reverse transcriptase PCR (RT-PCR). Data
are expressed as a mean ratio of BDNF/GAPDH and plotted as percentage of water control± s.e.m. Right, representative image of the RT-PCR
results. (b) miRNAs expression were measured by quantitative RT-PCR. Data are expressed as mean± s.e.m. fold change (2−ΔΔCt), normalized
to control U6 small nuclear RNA (snRNA) levels. (a) BDNF (t(5)= 0.78, P= 0.47) (b) miR-30a-5p (t(6)=− 0.17, P= 0.87), miR-195 (t(6)=− 0.56,
P= 0.60), miR-1 (t(6)=− 0.42, P= 0.69), miR-124 (t(6)=− 0.828, P= 0.44), 5srRNA (t(6)=− 0.33, P= 0.75) and Internal Control (t(6)=− 1.615,
P= 0.20), (a) n= 3–4 and (b) n= 4.
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Figure 3. miR-30a-5p downregulates brain-derived neurotrophic factor (BDNF) expression by binding to the 3′UTR of BDNF (a) Structure of
plasmids for expression of wild-type (Wt) or mutated (Mut) form 3′ UTR sequence of the mouse BDNF gene. (b) Structure of plasmids for
expression of miR-30a-5p or a scramble (SCR) sequences. (c) miRNA-30a-5p directly targets the 3′UTR(BDNF) for messenger RNA degradation.
HEK 293FT cells were transfected with pUSE-MBP-Flag-GFP-Wt-3′UTR(BDNF) and pRNAT-H1.1-SCR (1), pUSE-MBP-Flag-GFP-Wt-3′UTR(BDNF)
and pRNAT-H1.1-miR-30a-5p (2), pUSE-MBP-Flag-GFP-Mut-3′UTR(BDNF) and pRNAT-H1.1-SCR (3), pUSE-MBP-Flag-GFP-Mut-3′UTR(BDNF) and
pRNAT-H1.1-miR-30a-5p (4). Confirmation of equal transfection levels of pUSE-MBP-Flag-GFP-Wt-3′UTR(BDNF) (5) and pUSE-MBP-Flag-GFP-
Mut-3′UTR(BDNF) (6). Cells were harvested 24 h after transfection and western blot analysis was used for detection. Anti-MBP antibodies were
used to detect the levels of Wt-3′UTR(BDNF) and Mut-3′UTR(BDNF), anti-actin antibodies were used as a loading control and anti-GFP
antibodies were used to confirm equal levels of transfection of miR-30a-5p and SRC. Data are expressed as a mean ratio of MBP/Actin and
plotted as percentage of control (Wt-3′UTR(BDNF) and SCR)± s.e.m. Two-way RM-ANOVA revealed a significant interaction between Wt-3′UTR
(BDNF) or Mut-3′UTR(BDNF) and SCR or miR-30a-5p (F(1,20)= 15.5, Po0.001). SNK post-hoc test: ***Po0.001. n= 6.
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miR-30a-5p as the levels of miR-195, 5srRNA as well as the internal
control were unaltered (Figure 4a). As shown in Figure 4b and
Supplementary Figure 5B, overexpression of AdV-miR-30a-5p but
not AdV-SCR led to a significant decrease in BDNF expression in

naïve mice. To test the specificity of miR-30a-5p in targeting BDNF,
we examined the mRNA levels of the NGF, a member of the BDNF
neurotrophin family15 whose expression is not predicted to be
targeted by miR-30a-5p (miRWalk online database31). As shown in
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Figure 4. Overexpression of miR-30a-5p in the medial PFC (mPFC) decreases brain-derived neurotrophic factor messenger RNA (BDNF mRNA)
and enhances the development of excessive alcohol drinking without altering saccharin intake. Five days after the infusion of AdV-SCR or
AdV-miR-30a-5p, the mPFCs were collected and analyzed by quantitative reverse transcriptase PCR (qRT-PCR) for micro RNA (miRNA) analysis
(a) and RT-PCR for mRNA analysis (b). (a) Data are expressed as mean± s.e.m. fold change (2−ΔΔCt), normalized to control U6 small nuclear
RNA (snRNA) levels (miR-30a-5p (t(8)=− 3.29, P= 0.01), miR-195(t(8)=− 1.63, P= 0.14), 5srRNA (t(8)=− 0.74, P= 0.47) and Internal Control
(t(8)=− 0.14, P= 0.90), *Po0.05, two-tailed t-test). (b) Data are expressed as mean a mean ratio of GENE/GAPDH and plotted as percentage of
Adv-SCR (control)± s.e.m. (BDNF (t(8)= 2.85, P= 0.02), NGF (t(8)= 0.48, P= 0.64) and GFP (t(8)= 0.18, P= 0.86)), *Po0.05, two-tailed t-test. (c–h)
After 5 days of recovery from the surgery, mice were tested in the IA to 20% alcohol procedure (c–e) or consumption of 0.01% saccharin (f–h).
Amount of alcohol (g kg− 1) (c) or saccharin (ml kg− 1) (f) consumed during the first 4 h of 20% alcohol access. Amount of alcohol (g kg− 1)
(d) or saccharin (ml kg− 1) (g) consumed during the 24 h of 20% alcohol access. Alcohol (e) or saccharin (h) preference was calculated as the
percentage of alcohol or saccharin solution consumed relative to total fluid intake (alcohol or saccharin+water). Results are expressed as
mean± s.e.m. Two-way analysis of variance with repeated measures (RM-ANOVA) with Student–Newman–Keuls post-hoc tests. (c) Two-way
RM-ANOVA, revealed a main effect of the overexpression of miR-30a-5p in the mPFC (F(1,24)= 13.9, P= 0.001) and a main effect of the session
(F(5,120)= 8.7, Po0.001), but no interaction between infusion and session (F(5,120)= 0.90, P= 0.48). (d) Two-way RM-ANOVA revealed a main
effect of the miR-30a-5p overexpression (F(1,24)= 9.44, Po0.01), a main effect of the session (F(5,120)= 31.21, Po0.001), and an interaction
between miR-30a-5p overexpression and session (F(5,120)= 4.64, Po0.001). (e) Two-way RM-ANOVA revealed a main effect of the
overexpression of miR-30a-5p (F(1,24)= 4.13, P= 0.05) and a main effect of the session (F(5,120)= 12.06, Po0.001, but no significant interaction
between miR-30a-5p overexpression and session (F(5,120)= 0.64, P= 0.67), (f) (F(1,14)= 0.001, P= 0.97), (g) (F(1,14)= 0.04, P= 0.84) and
(h) (F(1,14)= 0.06, P= 0.81), *Po0.05, **Po0.01, ***Po0.001 compared with SCR. (a, b) n= 5. (c–e) n= 12–14, (f–h) n= 8.
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Figure 5. Inhibition of miR-30a-5p in the medial PFC (mPFC) restores brain-derived neurotrophic factor (BDNF) expression and reduces alcohol
intake and preference. Mice were trained to consume alcohol using the Intermittent access (IA) to 20% alcohol procedure for 21 sessions
before they were implanted with a cannula guide in the mPFC. Seven days later, mice were microinjected with Locked Nucleic Acid (LNA)-
miR-30a-5p or LNA-SCR in the mPFC. (a, b) Inhibition of miR-30a-5p in the mPFC restores BDNF mRNA expression in response to excessive
alcohol intake. LNA-SCR or LNA miR-30a-5p (25mM) was infused into the mPFC after 22 h of abstinence, and the mPFC was removed 2 h after
the infusion. Data are expressed as a mean ratio of BDNF/GAPDH and plotted as percentage of mice consuming water and infused with LNA-
SCR± s.e.m. (b) Two-way analysis of variance (ANOVA) revealed a significant main effect of alcohol (F(1,11)= 4.43, Po0.05), and a significant
main effect of the LNA-miR-30a-5p (F(1,11)= 5.40, Po0.05); n= 3–4. (c–e) Mice undergoing intermittent IA to 20% alcohol were infused with
LNA-SCR or LNA-miR-30a-5p (25mM) into the mPFC after 22 h of abstinence. (c) Amount of alcohol (g kg− 1) consumed during the first 4 h of
alcohol access. (d) Amount of alcohol (g kg− 1) consumed during 24 h of alcohol access. (e) Preference for alcohol was calculated as the ratio of
the volume of alcohol solution intake/volume of total fluid intake during a 24 h session. (f–h) After 1 week of abstinence from alcohol, mice
underwent intermittent access to 0.01% saccharin 2-bottle choice for 24 h and were then infused with LNA-SCR or LNA miR-30a-5p (25mM)
into the mPFC 2 h before the beginning of the drinking session. (f) Amount of saccharin (ml kg− 1) consumed during the first 4 h of access. (g)
Amount of saccharin (ml kg− 1) consumed during the 24 h of access. (h) Preference for saccharin solution was calculated as described in e. (c–
h) Results are expressed as mean± s.e.m., Two-way ANOVA with repeated measures (RM-ANOVA) with Student–Newman–Keuls post-hoc tests,
(c) Two-way RM-ANOVA showed a main effect of LNA-miR-30a-5p treatment (F(1,14)= 19.1, Po0.001), and a main effect of session (F(2,28)= 81.7,
Po0.001) and a significant interaction between LNA-miR-30a-5p treatment and session (F(2,28)= 89.8, Po0.001). (d) Two-way RM-ANOVA
revealed a main effect of LNA-miR-30a-5p treatment (F(1,14)= 13.1, Po0.01), a main effect of the session (F(2,28)= 16.3, Po0.001), and a
significant interaction between LNA-miR-30a-5p treatment and session (F(2,28)= 9.2, Po0.001), (e) Two-way RM-ANOVA showed a main effect
of LNA-miR-30a-5p treatment (F(1,14)= 9.3, Po0.01), a significant main effect of the session (F(2,28)= 10.3, Po0.001) and a significant
interaction LNA-miR-30a-5p treatment and session (F(2,28)= 4.5, Po0.05). (f) (F(1,14)= 0.001, P= 0.97). (g) (F(1,14)= 0.39, P= 0.54) and (h)
(F(1,14)= 0.003, P= 0.96). *Po0.05, *Po0.01 and ***Po0.001 compared with mice infused with LNA-SCR the same day. n= 8.
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Figure 4b and Supplementary Figure 5B, NGF expression was
unaltered in response to the overexpression of miR-30a-5p.

Overexpression of miR-30a-5p in the mPFC increases alcohol
consumption
To test the effect of overexpression of miR-30a-5p in mPFC on
alcohol drinking, mice received a stereotaxic infusion of AdV-
miR-30a-5p or AdV-SCR into the mPFC. After 5 days of recovery
from surgery, mice underwent an IA to 20% alcohol 2-BC
procedure (Supplementary Figure 1B). As shown in Figure 4c,
overexpression of miR-30a-5p in the mPFC increased alcohol
intake during the first 4 h of alcohol access, which was also
detected during the whole session (Figure 4d). Alcohol preference
was also increased as a consequence of the overexpression of
miR-30a-5p in the mPFC (Figure 4e), however, total fluid intake
was unaltered (data not shown, two-way RM-ANOVA (F(1,24) = 0.57,
P= 0.46)). We then assessed whether miR-30a-5p alters the
propensity to consume another rewarding solution, saccharin
(Supplementary Figure 1B), and as shown in Figures 4f–h,
saccharin drinking and preference or total body fluid (data not
shown, two-way RM-ANOVA, (F(1,24) = 0.07, P= 0.80) were unal-
tered in response to overexpression of miR-30a-5p in the mPFC.
Together, these results suggest that an increase of miR-30a-5p, a
miRNA that decreases BDNF mRNA expression in mPFC,
leads to an escalation from moderate to excessive alcohol
consumption.

Inhibition of miR-30a-5p levels in the mPFC adjusts the level of
alcohol drinking
Since overexpression of miR-30a-5p in the mPFC led to a decrease
in BDNF levels and increased alcohol drinking, inhibiting the
action of miR-30a-5p should result in the opposite effects. To
address this prediction, we used the LNA approach, in which a
complementary sequence is designed to bind a specific miRNA
with high specificity and inhibit its function.3,25 After 21 sessions
of IA to 20% alcohol, mice were implanted with bilateral guide
cannulae in the mPFC, and after 7 days of recovery, LNA-miR-30a-
5p or its control LNA-SCR (1 μl per injection site, 25 mM of LNA in
PBS) was infused into the mPFC 22 h after the last drinking
session, and BDNF expression was measured at the end of the 24 h
abstinence session (Supplementary Figures 1C and 6). As shown
in Figure 5a left panel and Figure 5b, repeated cycles of exces-
sive alcohol drinking produced a reduction in BDNF expression
in the mPFC of mice infused with LNA-SCR. A similar reduction
in BDNF levels was observed in naïve mice that underwent
the same drinking paradigm (Figure 1b). Importantly, alcohol-
mediated reduction in BDNF levels was abolished following
intra-mPFC infusion of LNA-miR-30a-5p (Figures 5a and b).
We then examined the possibility that reducing miR-30a-5p

function and the corresponding restoration of BDNF levels would
then result in a decrease in alcohol drinking. To do so, mice
underwent 21 sessions of IA to 20% alcohol, LNA-miR-30a-5p or
LNA-SCR was then infused into the mPFC 2 h before the beginning
of the drinking session (Supplementary Figure 1C). As shown in
Figures 5c and d, intra-mPFC infusion of LNA-miR-30a-5p but not
LNA-SCR reduced alcohol drinking during the first 4 h of alcohol
access and over the whole 24-h drinking session, which
corresponded with a decrease in preference for alcohol
(Figure 5e). Interestingly, LNA-miR-30a-5p-mediated decrease in
alcohol drinking and preference was still observed 48 h after LNA-
miR-30a-5p administration (Figures 5c and e). Saccharin intake
was unaltered in response to intra-mPFC infusion of LNA-miR-30a-
5p (Figures 5f and h), and similar levels of total fluid intake were
obtained for alcohol and water (two-way RM-ANOVA, (F(1,14) = 0.27,
P= 0.61)) or saccharin and water (two-way RM-ANOVA,
(F(1,14) = 0.40, P= 0.53)). Together, these results suggest that

inhibiting miR-30a-5p function in the mPFC and restoring BDNF
levels decreases the development of excessive alcohol intake.

DISCUSSION
In this study we provide evidence to suggest that excessive but
not moderate intake of alcohol produces a reduction in BDNF
expression in the mPFC of mice, which correlates with increased
levels of several miRNAs including miR-30a-5p. We further suggest
miR-30a-5p has an important role in the development of excessive
alcohol drinking. Specifically, we show that the expression of
miR-30a-5p was increased, whereas BDNF expression was
decreased in the mPFC of mice that consumed large but not
moderate amounts of alcohol. We show that miR-30a-5p binds a
sequence within the 3′-UTR of BDNF targeting the gene for
degradation. Importantly, we report that overexpression of
miR-30a-5p in the mPFC increased, whereas the inhibition of the
miR-30a-5p attenuated excessive alcohol drinking without altering
the consumption of saccharin solution. The mPFC has been
implicated in the transition from a moderate to an excessive
alcohol intake in rats that consumed 20% alcohol in an IA 2-BC
paradigm,23 and more recently, in vivo optogenetic excitation of
the mPFC was shown to reduce compulsive cocaine seeking in
rats.32 Thus, our results suggest that cortical miR-30a-5p
represents an example of a pro-alcohol addiction response
element that facilitates the emergence of an alcohol abuse
phenotype by inhibiting cortical BDNF mRNA expression.
We show that miR-30a-5p binds to the 3′UTR of BDNF. The

3′UTR(BDNF) is found in two forms, a long and a short form,33

and our results suggest that the miR-30a-5p binding site is
located within the long form of 3′UTR(BDNF), and that removing
this binding site is sufficient to abolish the reduction of
BDNF expression induced by miR-30a-5p. The majority of the
long form of 3′UTR(BDNF) is localized in dendrites,33,34 whereas
the short form is localized in soma.34 Dendritic BDNF modulates
neuronal morphology,33,34 whereas BDNF localized in the
soma is important for neuronal survival.34 Thus, it is plausible
that miR-30a-5p targets dendritic BDNF mRNA, which in turn,
may lead to alterations in synaptic structures after excessive
alcohol drinking. This intriguing possibility merits further
investigation.
We also report that repeated cycles of excessive alcohol intake

and abstinence produce an increase in the levels of other miRNAs
(miR-195, miR-124 and miR-1) which have been reported to, or
predicted to, target BDNF mRNA, suggesting that these miRNAs
may also have a role in regulating alcohol intake. Interestingly, high
levels of miR-195 coupled with low levels of BDNF have been found
in the PFC of human with schizophrenia,13,35 suggesting that
alterations in miR-195-dependent regulation of BDNF expression
may have a role in psychiatric disorders including addiction. We
found that miR-124 expression is increased in mPFC; however, the
increase was detected only after 24 h of abstinence. Interestingly,
Bahi and Dreyer36 showed that 2 weeks of continuous access to a
low concentration of alcohol (5%) led to a decrease in miR-124 in
dorsolateral striatum of rats. In addition, overexpression or
silencing of miR-124 in the nucleus accumbens of rats was shown
to reduce or promote, respectively, place preference and
reinstatement to cocaine.37 These results indicate that miR-124
and its targets, such as BDNF, may have a role in the regulation of
drug-related behaviors. We also detected an increase in miR-1
levels but only after a binge drinking session and interestingly this
miRNA was shown to be increased in the PFC of human alcoholics.9

Further studies are needed to determine if these miRNAs also
contribute to mechanisms underlying uncontrolled alcohol drink-
ing. Interestingly, Tapocik et al.14 recently reported that another
miRNA which targets BDNF, miR-206, is increased in the mPFC of
rats that were physically dependent on alcohol. The authors further
report that overexpression of miR-206 in the mPFC of rats
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increased operant lever presses for alcohol in non-dependent
animals.14 It is of interest to compare and contrast the interaction
between miRNA levels in the mPFC and BDNF expression in
paradigms that model ‘problem drinkers’ used herein and in
models of physical dependence.
The mechanism by which alcohol modulates miRNAs levels will

require further investigation. Interestingly, miRNAs expression has
been associated with increased neuronal excitability.38 Alcohol
withdrawal results in increased neuronal activity.39–41 Thus, it is
plausible that microRNAs including miR-30a-5p are increased
in response to enhanced neuronal excitability that occurs during
periods of abstinence. Another possibility is the potential
contribution of chromatin remodeling in response to alcohol to
changes in the expression of miRNAs. We, and others, previously
showed that voluntary alcohol drinking induces posttranslational
modifications on DNA and histones, resulting in alterations in
chromatin structure.26,42–45 A recent study suggested that the
expression of some miRNAs is associated with Histone
methylation,46 thus it is possible that changes in chromatin
structure by alcohol is upstream of the alterations in miRNAs
expression. These possibilities should be further explored.
Drug addiction is a psychiatric disorder characterized by chronic

episodes of relapse that results from alterations in signaling,
synaptic plasticity and neuronal connectivity.47,48 These adapta-
tions are orchestrated in part by persistent changes in gene
expression,49 which in turn contribute to the maintenance,
development and relapse of drug-taking behaviors.48 Our results
suggest that alcohol’s actions in the brain may be controlled by
miRNAs. Each miRNA can potentially target numerous genes,1,4

and therefore it is reasonable to assume that the alterations in
miRNAs levels in the mPFC affect the expression of genes other
than BDNF. The possibility that miRNAs are the master keys of
alterations in gene expression in response to alcohol is intriguing
and should also be further explored.
The drinking paradigm presented here models ‘problem

drinkers’, people who engage in harmful excessive alcohol use
but do not meet all criteria for alcohol use disorders,50 and our
study is the first to implicate altered levels of specific miRNA in
mechanisms underlying the transition from moderate to uncon-
trolled excessive alcohol drinking. Excessive use of alcohol results
in health, economical and societal burden.51–53 Thus, the
identification of biomarkers and new therapeutic targets to treat
this disorder is of great importance. Recently, a miRNA expression
profile was suggested as a peripheral biomarker for cancer and
central nervous system disorders such as schizophrenia.54,55

Therefore, our findings may lead to the identification of potential
new biomarkers that could be useful for the identification of
people with increased vulnerability to develop alcohol abuse
disorders. Furthermore, antisense inhibition of human miRNAs is
in early stages of development for cancer therapy.56 Thus, it is
plausible that miR-30a-5p represents a new and promising target
for the development of therapeutic strategies for the treatment of
alcohol abuse disorders.
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