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Abstract: Background: Women represent the majority of Alzheimer’s disease patients and show
typical symptoms. Genetic, hormonal, and behavioral mechanisms have been proposed to explain
sex differences in dementia prevalence. However, whether sex differences exist in the epigenetic
landscape of neuronal tissue during the progression of the disease is still unknown. Methods: To
investigate the differences of histone H3 modifications involved in transcription, we determined
the genome-wide profiles of H3K4me3, H3K27ac, and H3K27me3 in brain cortexes of an Alzheimer
mouse model (PSAPP). Gastrocnemius muscles were also tested since they are known to be different
in the two sexes and are affected during the disease progression. Results: Correlation analysis
distinguished the samples based on sex for H3K4me3 and H3K27me3 but not for H3K27ac. The
analysis of transcription starting sites (TSS) signal distribution, and analysis of bounding sites
revealed that gastrocnemius is more influenced than brain by sex for the three histone modifications
considered, exception made for H3K27me3 distribution on the X chromosome which showed sex-
related differences in promoters belonging to behavior and cellular or neuronal spheres in mice
cortexes. Conclusions: H3K4me3, H3K27ac, and H3K27me3 signals are slightly affected by sex
in brain, with the exception of H3K27me3, while a higher number of differences can be found
in gastrocnemius.

Keywords: Alzheimer’s disease; sex differences; PSAPP mice; histone marks

1. Introduction

According to the last World Alzheimer Report and most USA and EU statements, there
are more than 55 million people living with dementia worldwide in 2021, with two-thirds
of the clinically diagnosed cases in women [1–3]. The most common type of dementia is
Alzheimer’s disease (AD) whose prevalence is found to be higher in females than males
according to several studies [3,4]. Women also show a wider spectrum of AD symptoms [5]
and a faster consequent cognitive decline [6].

AD is characterized by extracellular deposition of the amyloid β (Aβ) peptide, a prod-
uct of amyloid precursor protein (APP) processing, and by intraneuronal neurofibrillary
tangles of hyperphosphorylated tau protein. In non-pathological conditions, APP is cleaved
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by α-secretase and consequently by the γ-secretases (PSEN), while in the amyloidogenic
pathway, the β-secretase enzyme cleaves APP to produce a soluble fragment which is
then cleaved by γ-secretase to release the Aβ peptide [7]. Consistently, mice expressing
the mutated human γ-secretases 1 and the mutant chimeric mouse/human mutant APP
(Mo/HuAPP695swe) (PSAPP mice) accumulate Aβ toxic plaques in the brain cortex and
develop behavioral hallmarks of AD patients [8].

AD is a complex disease with a multiorgan involvement. Slow gait speed and de-
creased grip strength are associated with cognitive decline [9], and muscle is known to be
one of the tissues with the most sex-differentially expressed genes in humans [10].

In a 3xTg-AD mouse model, which contains three gene mutations, namely APPSwe,
PS1M146V, and tauP301L, it has been reported that disfunctions in skeletal muscle occur
at different levels. For example, they showed that skeletal muscle functionality is already
affected in 3-month-old 3xTg-AD mice with an age-dependent accumulation of amyloid-β1-
40 peptide [11]. Furthermore, in a double transgenic mouse model expressing a chimeric
mouse/human amyloid precursor protein (APP) with the Swedish mutation (APPswe)
and a mutant human presenilin 1 (PS1) with the delta E9 (PS1∆E9), it has been shown
that skeletal muscle cells have a significantly decreased maximal mitochondrial oxygen
consumption capacity compared to non-transgenic, age-matched mice, with similar deficits
to those previously described in brain [12].

In the last years, multiple studies have shown the involvement of epigenetic regulation
in the progression of AD. For example, it was found that some cytosines, particularly
those at -207 to approximately -182 in the promoter region of the APP gene, are mostly
methylated and their demethylation with age may lead to Aβ deposition in the aged
brain [13]. Moreover, different studies in mouse models of AD have shown an involvement
of histone deacetylases in speeding up the progression of the disease [13].

Emerging evidence from animals and humans suggests that epigenetic mechanisms or
environmental factors are likely to also play a role in the different incidence and progression
of the disease in the two sexes [14].

A good example of sex-specific epigenetic regulation is X chromosome inactivation
in females, a process which occurs largely due to a combination of DNA methylation and
histone modifications [15].

Recently, it has been proposed that histone modifications may be involved in the
different responses to stress between males and females [16]. For example, Ramzan et al.
have shown that the expression of histone variant H2A.Z has context-specific effects on
the regulation of fear memory and related disorders, so higher levels of H2A.Z in female
mice may represent a risk factor for PTSD and associated increased pain sensitivity [17].
Furthermore, analysis of the bed nucleus of the stria terminalis and preoptic area in adult
male and female mice revealed 248 regions differently enriched in H3K4me3 in the two
groups [18].

Here, we explore the landscape of three well characterized transcription-associated
histone modifications, both in brain cortexes and gastrocnemius muscle in a PSAPP mouse
model of AD. In particular, H3K4me3 and HK27ac are associated with gene activation,
while H3K27me3 is correlated with repression and especially with the inactivation of
one copy of the X chromosome in females [19]. Multiple studies correlate alterations in
the signal of those histone marks with the aging process. For example, high levels of
H3K27me3 were observed in the brain of mice with an accelerated aging phenotype [20],
while global histone acetylation was found regulated in aged mice brain [21]. Alterations
in H3K4me3 signal was observed in different aged tissues of mouse models [22,23]. In
humans, H3K4me3 distribution in prefrontal neurons from 11 individuals resulted to
decrease in 600 loci in early life and to increase in other 100 loci of aged adults [24].

Chromatin immunoprecipitations, followed by Illumina sequencing, were conducted
for these modifications and bioinformatics analyses results are here presented.
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2. Materials and Methods
2.1. Mice

Five female and five male PSAPP mice were generated at the mouse facility of the
University of California (Davis, CA, USA) and housed in polycarbonate cages on racks
in a room with controlled temperature (22–24 ◦C) and humidity (40–60%). Mice were
individually housed in a HEPA filtered room maintained on a 12-hr light–dark cycle.
Health checks were conducted on all mice at least once a day. Sentinel mice were housed
in the same room and exposed to bedding from the study mice on a weekly basis. Health
screens were completed on sentinel mice every three months. Serology tests included MHV,
Sendai, PVM, MPV, MVM, M.pul and arth, TMEV (GDVII), Ectro, EDIM, MAD1 and 2,
LCM, Reo-3, and MNV. All tests were negative throughout the study. All animal protocols
were approved by the UC Davis Institutional Animal Care and Use Committee and were
in accordance with the NIH guidelines for the Care and Use of Laboratory Animals.

Mice were multi-housed and provided ad libitum access to a chow diet LabDiet 5001
(LabDiet, Saint Louis, MO, USA) prior to the start of the study. At 6 months of age, mice
were singly housed and placed on a modified AIN-93 diet (Table S12). Food intake was set
at 11.2 kcal/day, which was fed ~1 h prior to lights out, and water was provided ad lib.

Brain cortexes and gastroectonemius muscles were collected from sacrificed mice
following standard procedures [25,26].

2.2. ChIPSeq

Brain cortexes and gastrocnemius muscle chromatins were obtained from five male
(n = 4 for male cortex) and five female PSAPP-mice sacrificed at the age of 13 months when
these animals begin to show symptoms of cognitive decline and immediately snap frozen
in liquid nitrogen.

Chromatin extraction was performed on 10-mg tissues following the chromatin im-
munoprecipitation (ChIP) standard procedure [27].

Extracted chromatin was immunoselected with anti-H3K4me3 (#39159, Lot 22119006,
Active Motif, Carlsbad, CA, USA), anti-H3K27ac (ab4729, Lot. GR3231887-1; Abcam,
Cambridge, UK) and H3K27me3 (07-449, Lot. 3091919; Millipore, Temecula, CA, USA) anti-
bodies following the procedure already described without limited reversal of crosslinking
(LRC) step [28].

The bound fractions were de-crosslinked, and purified DNA was used for library
preparation. Libraries were then sequenced in 51 bp paired-end read mode on a NovaSeq
2000 sequencer (Illumina, San Diego, CA, USA).

Sample c05 was excluded from the analysis due to problems during the preparation.

2.3. Computational Pipeline

Reads were aligned to mm10 using “bwa” (v0.7.17), a software package for mapping
low-divergent sequences against a large reference genome [29]. Unmapped reads, reads
with a mapping quality (MAPQ) value smaller than 1, duplicate reads, and those that
mapped outside of chr 1–19 and Chr X were removed using SAMtools. Resulting alignment
reads (stored in a standard BAM format, which is the compressed binary version of a SAM
file that is used to represent aligned sequences up to 128 Mb) were converted into a bedpe
format (browser extensible data paired-end format, which helps to concisely describe
disjoint genome features, such as structural variations or paired-end sequence alignments)
using the “bamTobed” script of bedtools (v2.30.0) [30]. Peak detection was performed with
epic2 software using the following parameters: fragment size = 200; window size = 200;
g = 2 for H3K4me3 and H3K27ac; g = 3 for H3K27me3; FDR < 0.05; and e = 100 [31].
Bedtools was also used to merge the peak files of each group prior to annotating them.

Differential binding analysis was performed by the Diffbind R package (v3.2.6) and
differentially bound sites were identified among different conditions. Stringency in the
analysis was obtained by creating a consensus dataset for each condition, including peaks
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that were present in at least three samples of the considered group. Only different bound
(DB) sites with an FDR (false discovery rate) of <0.1 were considered [32].

The ChIPseeker R package (v1.28.3) was applied to annotate peak files and DB sites
using the curated RefSeq set version 130306 [33].

Pathway analysis was conducted using the ingenuity pathway analysis (IPA) software
from QIAGEN (version September 2021). Pathways with an absolute z-score of >2 were
considered significant.

For some analyses, BAM files of replicates from each group were merged using
BAMtools and indexed using SAMtools. Merged bam files were then used to generate
a bigwig (a file format for display of dense, continuous data in a genome browser track)
using deepTools bamCoverage (v3.5.1) with a bin size of 10 bp (size of the bins, in bases),
bins per million (BPM) mapped reads, normalization (ChrX was ignored for normalization),
and reads extended to 200 bp.

The signal around the TSSs was calculated for 23,359 genes. The signal, calculated
using deepTools computeMatrix, was reported as a mean signal in bins of 10 bp, with a
range of ±3 kB around the TSSs. Missing data were treated as zero. The output was then
plotted using plotHeatmap and plotProfile (deepTools) [34].

3. Results
3.1. H3K4 and H3K27 me3 Analysis on X Chromosome Distinguishes Males and Females

We first checked the quality of sequencing results and no significant variability in the
number of reads related to sex was revealed (Figure S1).

To estimate differences in the distribution of the analyzed histone’s marks between
females and males, we performed a correlation analysis, including all the aligned reads
in autosomes (chromosomes, chr 1-19) and X. According to Spearman correlation anal-
ysis, males and females formed distinguishable clusters for H3K4me3 (Figure 1a,b) and
for H3K27me3 (Figure 1e,f), which is known to be involved in the X chromosome inac-
tivation [35]. In contrast, H3K27ac showed higher correlation coefficients (above 0.9),
indicating a greater similarity among all the analyzed samples (Figure 1c,d). As expected,
the H3K4me3 and H3K27me3 sex-related correlation was lost if only autosome chromo-
somes are considered, underlining the contribution of the X chromosome in generating
this phenomenon (Figure S2).

3.2. Brain Cortex Shows a Signal around the Transcription Starting Sites (TSS) That Is More
Homogenous Than Gastrocnemius

Since histone modifications play a critical role in transcription control, we investigated
the signal around (−2.5 kb + 2.5 kb) the TSS present in all the chromosomes (n = 23,359 sites).
The comparison of the average signal from all the TSS revealed a substantial difference
between the two sexes only for H3K27me3 (Figure 2m,p), and not for H3K4me3 and
H3K27ac (Figure 2a,d,g,j).

Focusing on the analysis of the average signals on TSS separating autosomes and
the X chromosome, the intensity of the H3K27me3 signal on the X chromosome scored
almost double in females than males in both cortex and gastrocnemius (Figure 2o,r). In
the gastrocnemius, a slight difference in the H3K27me3 signal on TSS was also found if
considering only the autosomes. Differences in the H3K27ac signal on TSS also appeared
on the X chromosome of gastrocnemius.

These results indicate that sex differences of histone modifications distribution in the
cortex of PSAPP mice occur to a lesser extent in comparison to the gastrocnemius, whose
fiber composition and gene expression is influenced by sex [36,37].
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Figure 1. Spearman correlation including autosomes and X chromosome. Spearman correlation heatmap including
chromosomes 1-19 and X for H3K4me3 (a), H3K27ac (c), and H3K27me3 (e) from cortexes are represented in the graphs on
the left side. Corresponding graphs from gastrocnemius, for H3K4me3 (b), H3K27ac (d), and H3K27me3 (f), are reported on
the right side. Male IDs are indicated in blue, female IDs are in pink. The color within each cell represents the Spearman
coefficient which ranges from 0.68 to 1 (maximal correlation).
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Figure 2. Signal around TSS of H3K4me3, H3K27ac, and H3K27me3 in cortex and gastrocnemius tissues. H3K4me3 (a–f),
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3.3. Binding Sites Are Differently Affected by Sex in Cortex and Gastrocnemius

The position of the marked H3 histones was investigated genome-wide using the epic2
tool to identify enriched peaks. Overall, the number of peaks detected in the two sexes
appeared to be comparable (Figure S3), except for the H3K4me3 in the female cortex, whose
number was higher in three out of five samples. The analysis of peak distribution within
the different genes features revealed that most H3K4me3 peaks were found in promoters
(Figure 3a,b), although distal intergenic regions were more represented in female cortexes
(Figure 3a). H3K27ac peaks were more uniformly distributed among the different features
(Figure 3c,d), whereas the majority of the H3K27me3-enriched regions were identified in
distal intergenic areas (Figure 3e,f).

Epigenomes 2021, 5, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 3. Feature distribution of called peaks for H3K4me3, H3K27ac, and H3K27me3 in cortex and gastrocnemius tissues. 
Feature distribution of the identified peaks for H3K4me3 (a), H3K27ac (c), and H3K27me3 (e) in cortexes are reported on 
the left. Feature distribution of H3K4me3 (b), H3K27ac (d), and H3K27me3 (f) peaks found in the gastrocnemius are re-
ported in the plots on the right. Males are in blue, females in pink. The color code indicating each genomic feature is 
shown. 

Then, we identified the sites that showed different intensity of histone marks signals 
between the sexes (Diffbind analysis). To avoid an excess of false positive results due to 
the unspecific binding of the antibody during the ChIP, we generated a consensus dataset 
of peaks for each group (Table S1), as reported in the methods section, and we separately 
analyzed autosomes and X chromosome. 

To investigate the heterogeneity in these sets of peaks among samples, principal com-
ponent analyses (PCA) were performed. Results revealed that females and males separate 
only if considering the X chromosome (Figure 4d–f,j–l), with the principal component 1 
showing the maximum variance for H3K27me3 (96% for both tissues) (Figure 4f,l) and the 
minimum for H3K27ac (around 55/59%) (Figure 4e,k). PCA for the H3K4me3 X chromo-
some resulted in a more variable component 1 between the two sexes, with a higher vari-
ance shown by cortexes (78%) (Figure 4d,j). Taking in account autosomes, male and female 
H3K4me3 and H3K27ac differentially marked peaks appeared and merged for both tis-
sues (Figure 4a,b,g,h). 

GastrocnemiusCortex

H3
K4

m
e3

H3
K2

7a
c

a b

c

f

d

H3
K2

7m
e3

e
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Then, we identified the sites that showed different intensity of histone marks signals
between the sexes (Diffbind analysis). To avoid an excess of false positive results due to
the unspecific binding of the antibody during the ChIP, we generated a consensus dataset
of peaks for each group (Table S1), as reported in the methods section, and we separately
analyzed autosomes and X chromosome.

To investigate the heterogeneity in these sets of peaks among samples, principal com-
ponent analyses (PCA) were performed. Results revealed that females and males separate
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only if considering the X chromosome (Figure 4d–f,j–l), with the principal component 1
showing the maximum variance for H3K27me3 (96% for both tissues) (Figure 4f,l) and
the minimum for H3K27ac (around 55/59%) (Figure 4e,k). PCA for the H3K4me3 X chro-
mosome resulted in a more variable component 1 between the two sexes, with a higher
variance shown by cortexes (78%) (Figure 4d,j). Taking in account autosomes, male and
female H3K4me3 and H3K27ac differentially marked peaks appeared and merged for both
tissues (Figure 4a,b,g,h).
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analyzed on the right part of the figure.
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The figure can be divided in two parts: the upper part presents the results related
to the cortex for autosomes (a–c) and the X chromosome (d–f) for all the histone marks
analyzed, while the lower part shows the principal component analyses of autosomal (g–i)
and X (j–l) chromosomes in muscle.

Considering autosomes, the Diffbinding analysis between males and females iden-
tified only two sites for H3K4Me3 and H3K27ac and five for H3K27me3 in the cortex,
whereas 139 H3K4me3, 206 H3K27me3, and 781 H3K27ac sites were discovered in the
gastrocnemius (Table 1).

Table 1. Differentially bound sites of H3K4me3, H3K27ac, and H3K27me3 in cortex and gastrocnemius tissues. The number
of the differentially bound sites (FDR < 0.1) found in each comparison is reported.

Histone Modification Chromosomes N◦ of db Sites in Cortex N◦ db Sites in Gastrocnemius

Autosomes 2 139
H3K4me3 X chromosome 65 102

Autosomes 2 781
H3K27ac X chromosome 56 69

H3K27me3 Autosomes 5 206
X chromosome 2783 855

Regarding the X chromosome, Diffbind identified 65 H3K4me3, 56 H3K27ac, and
2782 H3K27me3 sex differential sites in the cortex, while 102 H3K4me3, 69 H3K27ac,
and H3K27me3 sex differential sites in the gastrocnemius (Table 1). The investigation of
the location of these sites (Tables S2–S7) revealed that a larger number of sex differential
promoters involves the H3K27me3 in the X chromosome and the H3K27ac in the autosomes.

3.4. Genes Involved in Cognitive Functions Show Different H3K27me3 Signal between Sex

To disclose the function of the genes, whose promoters were differently histone-
marked by sex, ingenuity pathway analysis (IPA) was performed on the different lists of
the identified genes. IPA is a web-based software application for the analysis, integration,
and interpretation of data derived from OMICS experiments, and it is able not only to
categorize genes in pathways and biological functions, but it can give an idea of the
direction of the regulation (expressed by a positive or negative z-score) [38]. Due to the
low number of genes differentially marked between the sexes in the cases of H3K4me3
and H3K27ac, few terms for biological processes were recognized (Tables S8–S11). For IPA
analysis on the genes whose promoters showed different sex-related H3K27me3 peaks
(n = 488), the majority of these genes were classified as involved in processes linked to
neuronal cell functions and several to behavioral functions (Table 2). Notably, among the
genes assigned with these pathways, eight (HSD17B10, GATA1, HTR2C, OGT, AGTR2,
CYBB, GRIA3, MAOA) were reported to be associated to AD according to the GeneCards
database (https://www.genecards.org/, accessed on 27 September 2021) with a relevance
score superior to two [39–46].

In the gastrocnemius, the sex-dependent H3K27ac-marked promoters (n = 123) showed
higher signals in females on genes related to inflammation and lower signals on those
related to apoptosis (Table S10). Genes assigned with these terms are the brain-derived
neurotrophic factor (BDNF), the histamine N-methyltransferase (HNMT), and the insulin
receptor factor 1 (IRS1), which are all associated with AD (with a relevance score of 14.34,
76, and 3.65, respectively) [47–49].

Finally, the cortex shares with gastrocnemius sex differences in H3K27me3 promoters
of genes involved in cytoskeleton organization (Tables 2 and 3).

https://www.genecards.org/
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Table 2. Biological signatures associated to H3K27me3-regulated promoters on the X chromosome in cortex. Results of an ingenuity pathway analysis for promoters differentially marked
by H3K27me3 in X chromosome from PSAPP cortex are reported. Only terms with an activation z-score above |2| are considered. All the results are presented as increased/decreased in
females with respect to males.

Cortex Diseases or Functions
(H3K27me3 X) p-Value Predicted Activation State Activation Z-Score Molecules N◦ of Molecules

Spatial learning 2.70 × 10−5 Increased 2.646 AP1S2, ARHGEF9, CYBB, DLG3, Gprasp2, GRIPAP1, HTR2C,
KDM5C, MECP2, OPHN1, PHF8, SLC6A8, UBE2A, ZDHHC9 14

Growth of neurites 4.98 × 10−3 Increased 2.138
AR, ARX, CCDC120, CDKL5, DCX, EFNB1, ELK1, FRMD7, GJB1,
MAO, MID1, OGT, PLXNA3, RAB33A, SLC25A5, SNX12, SYN1,

TLR7, TRPC5
19

Organization of cytoskeleton 1.17 × 10−7 Increased 2.074

AGTR2, AMOT, AR, ARHGAP4, ARHGAP6, ARHGEF9, ATP7A,
BRWD3, CAPN6, CDK16, CDKL5, CETN2, CUL4B, CXCR3, CYBB,

DCX, DGKK, DLG3, DOCK11, EFNB1, ELK1, F8A1 (includes
others), FGD1, FLNA, FRMD7, GATA1, GDI1, GJB1, GPM6B,

Gprasp2, HDAC6, HDAC8, HPRT1, IL1RAPL1, KDM5C, MAOA,
MECP2, MID1, MID1IP1, mir-384, MPP1, MTM1, NR0B1, OFD1,
OGT, OPHN1, PAK3, PCYT1B, PLS3, PLXNA3, PLXNB3, POF1B,

PQBP1, RAB33A, RPGR, RPS6KA3, SH3KBP1, SHROOM2,
SHROOM4, SLITRK2, SYN1, TLR7, Tmsb4x (includes others),

TRPC5, USP9X

65

Organization of cytoplasm 8.76 × 10−7 Increased 2.074

AGTR2, AMOT, AR, ARHGAP4, ARHGAP6, ARHGEF9, ATP7A,
BRWD3, CAPN6, CDK16, CDKL5, CETN2, CUL4B, CXCR3, CYBB,

DCX, DGKK, DLG3, DOCK11, EFNB1, ELK1, F8A1(includes
others), FGD1, FLNA, FRMD7, GATA1, GDI1, GJB1, GPM6B,

Gprasp2, HCFC1, HDAC6, HDAC8, HPRT1, HSD17B10, IL1RAPL1,
KDM5C, MAOA, MECP2, MID1, MID1IP1, mir-384, MPP1, MTM1,

NR0B1, OFD1, OGT, OPHN1, PAK3, PCYT1B, PLS3, PLXNA3,
PLXNB3, POF1B, PQBP1, RAB33A, RPGR, RPS6KA3, SH3KBP1,

SHROOM2, SHROOM4, SLITRK, SYN1, TLR7, Tmsb4x (includes
others), TRPC5, USP9X

67

Tremor 1.14 × 10−3 Decreased −2.011 ARAF, CA5B, GABRQ, GJB1, GPM6B, GRIA3, IKBKG, MECP2,
PLP1, TIMP1 10

Differentiation of Th2 cells 1.09 × 10−2 Decreased −2.236 FOXP3, GATA1, IL13RA2, let-7, TLR7 5

Movement Disorders 2.29 × 10−3 Decreased −2.242

ABCB7, AIFM1, AMER1, AP1S2, AR, ARAF, ARHGEF9, ARMCX2,
AR, ATP6AP2, BCAP31, CA5B, CDKL5, CETN2, CXCR3, F8A1

(includes others), GABRQ, GJB1, GPM6B, GRIA3, GRPR, HPRT1,
HTR2C, IDS, IGSF1, IKBKG, KCND1, MAOA, MECP2, OGT, PDK3,
PGK1, PGRMC1, PLP1, PRKX, PTCHD1, RGN, RS1, SRPX, SRPX2,

SYN1, SYTL4, TIMP1, Tmsb4x (includes others), XIAP

45

Motor dysfunction or movement
disorder 1.72 × 10−3 Decreased −2.666

ABCB7, AIFM1, AMER1, AP1S2, AR, ARAF, ARHGEF9, ARMCX2,
AR, ATP6AP2, BCAP31, CA5B, CDKL5, CETN2, CXCR3, F8A1

(includes others), GABRQ, GJB1, GPM6B, GRIA3, GRPR, HPRT1,
HTR2C, IDS, IGSF1, IKBKG, KCND1, MAOA, MECP2, MTM1,

OGT, PDK3, PGK1, PGRMC1, PLP1, PRKX, PTCHD1, RGN, RS1,
SRPX, SRPX2, SYN1, SYTL4, TIMP1, Tmsb4x (includes others),

XIAP

46
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Table 3. Biological signatures associated to H3K27me3-regulated promoters on gastrocnemius X chromosome. Results of an ingenuity pathway analysis for promoters differentially
marked by H3K27me3 in X chromosome from PSAPP gastrocnemius are reported. Only terms with an activation z-score above |2| are taken in consideration. All the results are presented
as regulated (increased/decreased) in females with respect to males.

Gastrocnemius Diseases or
Functions (H3K27me3 X) p-Value Predicted Activation State Activation Z-Score Molecules N◦ of Molecules

Organization of actin cytoskeleton 27.23 × 10−3 Increased 2.000 ARHGAP4, EFNB1, FGD1, GPM6B, MSN, OPHN1, PAK3, PLS3,
Tmsb4x (includes others) 9

Abdominal cancer 1.41 × 10−5 Decreased −2.000

ABCB7, ACE2, AIFM1, AMER1, ARHGAP36, ARHGAP4,
ARHGEF9, ARMCX1, ARMCX2, ARMCX3, ARMCX4, ARMCX5,

ARX, ASB9, ATP2B3, AVPR2, AWAT2, BCOR, BCORL1, BEX1, BGN,
BMX, BRS3, BTK, CA5B, CACNA1F, CCDC160, CD40LG, CDX4,

CHRDL1, CLDN2, CNGA2, CNKSR2, COL4A5, DACH2,
DCAF12L2, DGAT2L6, DOCK11, DUSP9, EFNB1, EGFL6, ELF4,
ERCC6L, FAM155B, FGD1, FOXO4, FOXR2, FRMD7, FRMPD3,
GABRA3, GABRQ, GATA1, GDPD2, GJB1, GPC3, GPC4, GPM6,

GPR101, GPR143, GPR50, GRIA3, GRPR, GSPT2, GUCY2F, HCFC1,
HDAC8, HPRT1, HSD17B1, HTR2C, IDH3G, IGSF1, IL13RA1,

IL1RAPL1, IL1RAPL2, IQSEC2, IRAK1, KCND1, KCNE5, KLF8,
KLHL15, L1CAM, LANCL3, LHFPL1, LONRF3, MAGEA10,

MAGEA11, MAGED1, MAGEE1, MAGEE2, MAP7D2, MBNL3,
mir-452, MSN, NAA10, NAP1L2, NEXMIF, NONO, NRK, NYX,
OGT, OPHN1, OPN1LW, OTUD6A, PAK3, PCDH11X, PCDH19,

PDK3, PDZD4, PHF6, PHKA1, PLAC1, PLS3, PLXNA3, PLXNB3,
PNMA3, PNMA5, PRKX, PRPS1, PRPS2, PTCHD1, RAB33A, RAI2,
RAP2C, RBM41, RNF128, RPS4Y1, RRAGB, SLC16A2, SLC25A43,
SLC38A5, SLC6A8, SLC7A3, SLITRK4, SOWAHD, SOX3, SRPX,
STARD8, SYN1, SYTL4, TAB3, TAF1, TBX22, TCEANC, THOC2,

TMEM164, TMEM255A, TMEM47, TREX2, TRPC5, TSC22D3,
TSPYL2, UPF3B, USP51, UTP14A, VGLL1, YIPF6, ZC4H2,

ZCCHC12, ZDHHC9, ZFX, ZIC3, ZMYM3

162



Epigenomes 2021, 5, 26 12 of 15

4. Discussion

As observed in patients and in animal models of AD, the disease progresses differently
in the two sexes. The brains of PSAPP female mice accumulate significantly more amyloid
plaques than male mice [50] and show more severe angiopathy and inflammation [51] from
6 months of age. Consistently, PSAPP female mice show lower cognitive abilities than
PSAPP male mice [52]. Indeed, neurodegeneration and cognitive decline are worse among
females from different models of mice with dementia [53]. Because of this difference in
susceptibility to the disease, the question arises as to whether epigenetic signal may be
involved in the different prevalence of the diseases between sexes.

In the present study, we determined the H3K4me3, H3K27ac, and H3K27me3 genome-
wide profiles of cortexes from 13-month-old PSAPP male and female mice. The comparison
of the global distribution of H3K4 and H3K27me3 signals revealed differences in the X
chromosome capable to distinguish males and females, whereas the H3K27ac distribution
was more homogenous between sexes. As expected, this sex-dependent regulation was
particularly evident for the H3K27me3 signal around the TSS of genes localized on the
X chromosome, since the inactivation process of genome portions of one of the two X
chromosomes present in females.

Searching for differently bound sites also confirmed that the epigenetic landscape
for the three considered histone modifications in the PSAPP mice is less influenced by
sex in the brain than in muscle, whose transcriptomic profile is known to be particularly
different between sexes [54]. However, a significantly different level of H3K27me3 on the X
chromosome was observed in the cortex of male and female PSAPP mice. Interestingly,
several of these X chromosome sites are involved in the regulation of neuronal functions,
such as spatial learning, cellular organization, and development, and some of them are
reported to be associated with AD [39–46].

Autosomes and the sex chromosomes differ in their evolutionary origins and in their
involvement in cognitive functions. Despite many similarities between females and males,
sex differences are present in learning and memory [55]. Notably, in humans, 3.75% of
all genes are located on the X chromosome [56] and almost one third of these genes are
involved in cognitive functions [57]. In females, one of the copies of the X chromosome is
silenced. This process of X-chromosome inactivation evolved as a mechanism to regulate
gene dosage. However, it does not affect all genes equally and those genes that are
differently regulated, particularly under stress conditions, such as the appearance of
amyloid plaques in the brain, may impact on the progression of neuronal disease.

Histone modifications are reported to be involved in the genome remodeling during
learning and memory [58]. In particular, an increase in H3K4me3 in the mouse hip-
pocampus has been related to long-term memory [59]. Numerous studies indicate that
hippocampus-dependent memory and synaptic plasticity may rely on histone acetyltrans-
ferases and histone deacetylases activity [16]. However, similar to histone acetylation, the
majority of studies on histone methylation have exclusively used males [16]. Thus, the
impact of histone methylation in mediating sex- dependent memory processes are not well
understood. Some evidence suggests that the activity of histone methyltransferases and
demethylases may be influenced by sex. For example, the histone demethylase KDM5C
and UTX are coded by X-linked genes and escape X-inactivation in females, and may
mediate sex differences in brain development, memory, and behavior [60,61].

In conclusion, this study reveals that the chromatin of brain cortex from PSAPP mice
shows a sex-dependent signature of histone modifications distinct from other tissues,
such as the gastrocnemius. Epigenetic signals have been suggested to be involved in
sex-dependent cognitive decline even if, so far, no epigenomes of male and female cortexes
of AD models are available. The results presented here show that important sex differences
exist in the distribution of histone modifications in transcription control regions of several
genes involved in neuronal functions that may be involved in the cognitive decline in
AD patients.
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