
UCLA
UCLA Electronic Theses and Dissertations

Title
Bridging the Gap Between Tools for Learning and for Doing Statistics

Permalink
https://escholarship.org/uc/item/1mm9303x

Author
McNamara, Amelia Ahlers

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1mm9303x
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

Bridging the Gap Between Tools for Learning

and for Doing Statistics

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Statistics

by

Amelia Ahlers McNamara

2015



c
 Copyright by

Amelia Ahlers McNamara

2015



Abstract of the Dissertation

Bridging the Gap Between Tools for Learning

and for Doing Statistics

by

Amelia Ahlers McNamara

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2015

Professor Robert L Gould, Co-chair

Professor Fredrick R Paik Schoenberg, Co-chair

Computers have changed the way we think about data and data analysis. While

statistical programming tools have attempted to keep pace with these develop-

ments, there is room for improvement in interactivity, randomization methods,

and reproducible research.

In addition, as in many disciplines, statistical novices tend to have a reduced

experience of the true practice. This dissertation discusses the gap between tools

for teaching statistics (like TinkerPlots, Fathom, and web applets) and tools for

doing statistics (like SAS, SPSS, or R). We posit this gap should not exist, and

provide some suggestions for bridging it. Methods for this bridge can be curricular

or technological, although this work focuses primarily on the technological.

We provide a list of attributes for a modern data analysis tool to support

novices through the entire learning-to-doing trajectory. These attributes include

easy entry for novice users, data as a �rst-order persistent object, support for a

cycle of exploratory and con�rmatory analysis, 
exible plot creation, support for

randomization throughout, interactivity at every level, inherent visual documenta-

tion, simple support for narrative, publishing, and reproducibility, and 
exibility

ii



to build extensions.

While this ideal data analysis tool is still a few years in the future, we describe

several projects attempting to close the gap between tools for learning and tools for

doing statistics. One is curricular, a high school level Introduction to Data Science

curriculum. Others are technological, like the experimental LivelyR interface for

interactive analysis, the MobilizeSimple R package, and Shiny microworlds.

Much of this work was inspired by Biehler (1997), which describes the at-

tributes necessary for a software package for learning statistics. Biehler’s vision

has largely come to light, but advancements in computing and ‘data science’ have

moved the goalposts, and there is more to learning statistics than before. This

work envisions a tool not only encompassing these advancements, but providing

an extensible system capable of growing with the times.

iii



The dissertation of Amelia Ahlers McNamara is approved.

Alan Curtis Kay

Mark Stephen Handcock

Todd D Millstein

Fredrick R Paik Schoenberg, Committee Co-chair

Robert L Gould, Committee Co-chair

University of California, Los Angeles

2015

iv



Table of Contents

1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.1 State of statistics knowledge . . . . . . . . . . . . . . . . . . . . . 3

1.2 Relevancy at a variety of experience levels . . . . . . . . . . . . . 4

1.3 Technology as a component in the educational ecosystem . . . . . 5

1.4 What is a tool? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 The di�erence between users and creators . . . . . . . . . . . . . 7

1.6 Overview of the rest of the dissertation . . . . . . . . . . . . . . . 8

2 The gap between tools for learning and for doing statistics : : 10

2.1 History of tools for doing statistics . . . . . . . . . . . . . . . . . 10

2.2 History of tools for learning statistics . . . . . . . . . . . . . . . . 11

2.3 The gap between tools for learning and doing . . . . . . . . . . . 13

2.4 Removing the gap . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 The current landscape of statistical tools : : : : : : : : : : : : : : 21

3.1 Spreadsheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Interactive data visualizations . . . . . . . . . . . . . . . . . . . . 25

3.3 iPython notebook/Project Jupyter . . . . . . . . . . . . . . . . . 29

3.4 TinkerPlots and Fathom . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Applets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 StatCrunch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 DataDesk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

v



3.8.1 R syntaxes . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8.2 R packages . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.8.3 knitr/RMarkdown . . . . . . . . . . . . . . . . . . . . . . 53

3.8.4 Tools for learning R . . . . . . . . . . . . . . . . . . . . . 57

3.8.5 GUIs and IDEs for R . . . . . . . . . . . . . . . . . . . . . 61

3.9 Stata, SAS, and SPSS . . . . . . . . . . . . . . . . . . . . . . . . 72

3.10 Bespoke tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.11 Summary of currently available tools . . . . . . . . . . . . . . . . 82

4 Attributes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 84

4.1 Easy entry for novice users . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Data as a �rst-order persistent object . . . . . . . . . . . . . . . . 87

4.3 Support for a cycle of exploratory and con�rmatory analysis . . . 92

4.4 Flexible plot creation . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Support for randomization throughout . . . . . . . . . . . . . . . 101

4.6 Interactivity at every level . . . . . . . . . . . . . . . . . . . . . . 104

4.7 Inherent visual documentation . . . . . . . . . . . . . . . . . . . . 107

4.8 Simple support for narrative, publishing, and reproducibility . . . 108

4.8.1 Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.8.2 Publishing . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.8.3 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . 110

4.9 Flexibility to build extensions . . . . . . . . . . . . . . . . . . . . 113

4.10 Summary of attributes . . . . . . . . . . . . . . . . . . . . . . . . 114

5 First forays : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 116

vi



5.1 Mobilize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1.1 Participatory sensing . . . . . . . . . . . . . . . . . . . . . 118

5.1.2 Computational and statistical thinking . . . . . . . . . . . 124

5.1.3 Curriculum . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1.4 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2 LivelyR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2.1 Histogram cloud . . . . . . . . . . . . . . . . . . . . . . . 141

5.2.2 Regression guess line . . . . . . . . . . . . . . . . . . . . . 145

5.2.3 Small multiple callout plots . . . . . . . . . . . . . . . . . 147

5.2.4 Documentation of interaction history . . . . . . . . . . . . 148

5.3 Additional Shiny experiments . . . . . . . . . . . . . . . . . . . . 149

5.3.1 Conditional visualizations . . . . . . . . . . . . . . . . . . 150

5.3.2 Interaction plot with manipulable data cut point . . . . . 152

5.4 Discussion of �rst forays . . . . . . . . . . . . . . . . . . . . . . . 153

6 Conclusions, recommendations, and future work : : : : : : : : : 155

6.1 Current best practices . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.3 Final words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

vii



List of Figures

2.1 The spectrum of learning to doing . . . . . . . . . . . . . . . . . . 14

3.1 Microsoft Excel for Mac 2011 . . . . . . . . . . . . . . . . . . . . 23

3.2 \Is it better to rent or buy?" from The Upshot . . . . . . . . . . 26

3.3 IEEE Spectrum ranking of programming languages . . . . . . . . 28

3.4 iPython notebook . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Fathom version 2.13 . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 TinkerPlots version 2.0 . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 A Rossman Chance applet demonstrating randomization . . . . . 37

3.8 StatKey applet demonstrating a bootstrap con�dence interval . . 38

3.9 StatCrunch instructions for creating a bar plot . . . . . . . . . . . 39

3.10 DataDesk version 7 . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.11 R at the command line . . . . . . . . . . . . . . . . . . . . . . . . 43

3.12 Regular R graphical user interface . . . . . . . . . . . . . . . . . . 44

3.13 Plot using dollar sign syntax . . . . . . . . . . . . . . . . . . . . . 48

3.14 Plot using formula syntax . . . . . . . . . . . . . . . . . . . . . . 49

3.15 Code and associated output from RMarkdown . . . . . . . . . . . 54

3.16 New RMarkdown document with template . . . . . . . . . . . . . 56

3.17 swirl introducing R . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.18 DataCamp introducingR . . . . . . . . . . . . . . . . . . . . . . . 60

3.19 R Commander GUI . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.20 The initial Deducer screen . . . . . . . . . . . . . . . . . . . . . . 65

3.21 Deducer data preview . . . . . . . . . . . . . . . . . . . . . . . . . 66

viii



3.22 Panes in RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.23 Preview pane, showing data and �les . . . . . . . . . . . . . . . . 69

3.24 Second pane in RStudio: environment and history . . . . . . . . . 69

3.25 Third pane in RStudio: �le viewing, plots, packages, and help . . 71

3.26 Tab completion in RStudio . . . . . . . . . . . . . . . . . . . . . . 71

3.27 Stata interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.28 SAS 9.4 interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.29 JMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.30 SPSS Standard Edition . . . . . . . . . . . . . . . . . . . . . . . . 77

3.31 Data Wrangler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.32 Open Re�ne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.33 Tableau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.34 Lyra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 Rectangular data . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Hierarchical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 `CSV Fingerprint' dataset visualization by Victor Powell . . . . . 91

5.1 IDS lab in Viewer pane of RStudio . . . . . . . . . . . . . . . . . 130

5.2 ohmage in-browser data visualization engine . . . . . . . . . . . . 134

5.3 Standalone data visualization tool . . . . . . . . . . . . . . . . . . 135

5.4 Output from tm code . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5 LivelyR interface showing a histogram cloud of miles per gallon . 143

5.6 Regression guess functionality in LivelyR . . . . . . . . . . . . . . 147

5.7 Small multiples in LivelyR . . . . . . . . . . . . . . . . . . . . . . 148

ix



5.8 History transcript in LivelyR . . . . . . . . . . . . . . . . . . . . . 149

5.9 Conditional percentages . . . . . . . . . . . . . . . . . . . . . . . 151

5.10 Shiny app demonstrating fragility of interaction based on cutpoint 153

x



List of Tables

4.1 Typical default plots for common data types . . . . . . . . . . . . 97

4.2 Levels of abstraction in standard statistical plots . . . . . . . . . . 100

xi



Acknowledgments

This work owes a debt of gratitude to Rolf Biehler. I have been wrestling with

these issues for several years, and after coming across Biehler's 1997 paper \Soft-

ware for Learning and for Doing Statistics," things started to click into place.

I need to acknowledge all the people who have helped and supported me

throughout this process. First, none of this would have been possible without

the incomparable Glenda Jones, whose salary should be at least doubled.

Of course, my committee helped me frame and work through my dissertation.

In particular, Mark Hansen, Rob Gould, and Alan Kay discussed this work with

me repeatedly over the course of years.

Also instrumental was my family, Kathy Ahlers, Curt McNamara, Alena

McNamara, and Mitch Halverson. They taught me math, encouraged me to

change paths to follow my heart, o�ered countless words of advice, and cooked

me dinner when I really needed it.

I wouldn't have made it through without my friends and colleagues at UCLA,

particularly Terri Johnson, LeeAnn Trusela, James Molyneux, and Josh EmBree.

And, from the Macalester math department, my friend and mentor Chad

Higdon-Topaz. Chad was with me through college, during my graduate school

applications and decision making, and has continued to be available to me at the

drop of a hat. He has given me his opinion on everything from the direction my

research might go to the appropriate out�t to wear to an interview.

It takes a village to get through graduate school. I am very grateful to my

village.

xii



Some of the material in Chapter 5 is based on work presented or published

elsewhere:

Gould, R., Johnson, T., McNamara, A., Molyneux, J., and Moncada-Machado,
S. (2015). Introduction to Data Science. Mobilize: Mobilizing for Innovative
Computer Science Teaching and Learning

Lunzer, A. and McNamara, A. (2014). It ain't necessarily so: Checking charts for
robustness. InIEEE Vis 2014

Lunzer, A., McNamara, A., and Krahn, R. (2014). LivelyR: Making R charts
livelier. In useR! Conference

McNamara, A. (2013a). Mobilize wiki: RStudio. http://wiki.mobilizingcs.
org/rstudio

McNamara, A. and Hansen, M. (2014). Teaching data science to teenagers. In
ICOTS-9

McNamara, A. and Molyneux, J. (2014). Teaching R to high school students. In
useR! Conference

This material is also based upon work supported by the National Science

Foundation Grant No. DRL-0962919.

The LivelyR work was done jointly with Aran Lunzer, who deserves most of

the credit. Both Lunzer and I are associated with the Communications Design

Group.

The bibliography is formatted in APA-like format, and programming languages

and Rpackages are denoted using the styles prescribed by the Journal of Statistical

Software.

xiii



Vita

2010 B.A. Mathematics and English, Macalester College

2013-2015 Teaching Assistant/Teaching Fellow, Statistics Department,

University of California, Los Angeles

2011-2014 Graduate Student Researcher, Mobilize Project

2013-2015 Graduate Intern, Communications Design Group

xiv



The sexy job in the next 10 years will be statisticians.

Hal Varian, 2009

CHAPTER 1

Introduction

We live in a world where the term \Big Data" is splashed across every media

outlet. From the Large Hadron Collider to Twitter and Google Maps, we and

our built world are creating data constantly. This data deluge has expanded

society's view of data. No longer are we limited to spreadsheets �lled with num-

bers, now almost anything can become data in statistical applications. Photos,

maps, the text of books { the �eld is limitless. While there is no accepted def-

inition of Big Data, it is often spoken of in terms of volume, velocity, and vari-

ety (Dumbill, 2012). That is, big data isn't just big in terms of storage space.

It can also be big because it is streaming in at high velocity (as Twitter data

does), or because of the extreme variety of data types (as in the use of photos

and text as data). All of these features require new computational methods to

address, and they can lead to new ethical issues as well (Crawford et al., 2013).

Because of the volume and variety of data now available, it is even easier

to mash up or de-anonymize data. The vast majority of personal data can be

uniquely identi�ed using just zip code, gender, and date of birth, which has

prompted work on new methods to keep data truly private (Sweeney, 2002).

Having the power to merge data across many sources can expose facts about the

world, create targeted advertisements, or provide arguments for new legislation.

1



`Power' is a crucial word here. For those with access to the data and tools to

analyze it (corporations, newspapers, policy makers, scientists), data are power.

Data and data products, such as statistics, models, and visualization, are

used to convey information, to argue, and to tell stories. Hal Varian thinks

that being a statistician is a sexy job because Google has built their company

on data { optimizing search results, doing machine translation, developing self-

driving cars. Gone are the days where statisticians were only employed as aca-

demics or insurance agents. Today, every major corporation keeps data scien-

tists on sta�.

Outside of the corporate world, every scienti�c domain has recognized the

value of data, and the humanities are not far behind. Whether it is a compu-

tational biologist sequencing genes or an English professor doing `far reading'

analysis on a corpus of text, practitioners have begun incorporating data every-

where. For the informed consumer of data, statistics and statistical graphics are

as susceptible to biases and inaccuracies as journalistic accounts. But, without

at least some statistical knowledge, citizens are highly unlikely to critique what

they read and thus accept it as fact. So the ability to unpack data analysis and

statistics is crucial to the informed citizen today.

This explosion of data and data analysis was wrought by computers. The

volume, velocity, and variety of data are all made possible by computerized sen-

sors, massive server space, the internet, and digital technologies of all kinds.

Statistical methods to deal with these data have lagged behind, but data sci-

entists are learning to compute on the data explosion and are gleaning insights

that allow them to predict behavior, recommend movies, tailor advertisements,

and uncover corruption in government.

Yet the average citizen does not have the opportunity to experience this

type of data analysis. The current conception of statistics still echoes that of

the 1970s { performing computations like mean and standard deviation on small,

2



lifeless data sets presented in a textbook. However, with access to statistical

software packages, computing summary statistics can become a small part of a

much deeper analysis.

The word `access' is crucial. Given the current state of computing, the prac-

tical reality is most citizens do not have access to statistical computing tools.

They are either prohibitively expensive or prohibitively di�cult to learn, and

those tools that might be considered accessible to a large audience have not

been kept up to date with the methods necessary for modern data analysis.

These and other issues will be discussed in more detail in this dissertation, which

identi�es and begins to develop the most important aspects of software to pro-

mote statistical analysis and `data science' as broadly as possible.

While the explosion of data and its accompanying challenges may sound like

young problems, they are not. Much of the inspiration for this project has come

from decades ago. John Tukey argued for more 
exible tools for statistical pro-

gramming in 1965, Jacques Bertin was developing matrix manipulation tech-

niques by hand in 1967, and Seymour Papert was creating computer tools to

better support users and learners in 1967. In other words, most of these ideas

are almost 50 years old, and we are still struggling to see them implemented.

1.1 State of statistics knowledge

While statisticians have a vested interest in improving the statistical under-

standing of our society (Wild et al., 2011) and it is clear data skills are becom-

ing more necessary and relevant, many people still �nd statistics boring, hard,

or downright impossible (Gal et al., 1997).

Even teachers of statistics often have major misconceptions about statisti-

cal concepts or are unable to explain the reasoning behind them (Thompson

et al., 2007; Hammerman and Rubin, 2004; Kennedy, 2001). So it is no surprise

3



students often struggle to understand proportional groups (Rubin and Ham-

merman, 2006), use aggregates (Hancock et al., 1992), or �nd information from

graphs (Vellom and Pape, 2000).

While some argue that attempting to incorporate computational methods

into introductory statistics courses will only make this worse, research suggests

the opposite. For example, teachers in professional development (even with a

low baseline of knowledge) have more success when the training incorporates

innovative practices and technology (Hall, 2008). Research shows similar �nd-

ings among students, as active learning and exploratory analysis helps users

integrate their knowledge (Gar�eld and Ben-Zvi, 2007). This suggests courses

integrating computer technology into data analysis topics { even outside the

statistics classroom { could be more successful in both engaging students and in

teaching the material.

However, there is an important distinction to be made between statistical

computation and computational statistics (Horton et al., 2014b). Statistical

computation is using a computer to remove the need for pencil-and-paper cal-

culations, while computational statistics takes the computer into the practice.

This work discusses the development of computational statistics.

1.2 Relevancy at a variety of experience levels

Much of the research cited here refers speci�cally to high school education, but

the problems discussed are more general. Introducing novices to new computer

tools is a general problem in many disciplines (Deek and McHugh, 1998; Muller

and Kidd, 2014), and when the tool requires broader contextual knowledge, the

challenge can be even more complex. While secondary school students conform

to standard ideas about what a novice looks like, there are novices at many ages

and education levels. For example, masters students in data journalism are typ-

4



ically novices when it comes to statistical analysis and programming. Given the

current state of statistics education at the secondary school level, most adults

who have not specialized in statistics are also novices. Ideally, the statistical

programming tools of the future will be useful to a broad variety of novices, re-

gardless of age.

However, this work does not try to consider students below secondary school.

At the primary school level, the necessity of a computational tool is less obvi-

ous, and students' reasoning is typically not to the level of abstract thinking

required to grasp concepts like variation at a deep level. The Guidelines for

Assessment and Instruction in Statistics Education (GAISE) outline three lev-

els of statistical reasoning, A, B, and C, which build on one another (Franklin

et al., 2005). The authors of the guidelines suggest pre-secondary school stu-

dents should be exposed to levels A and B so they are prepared for level C (in-

cluding randomization, comparing groups using measures of variability, and con-

sidering model �tting, including variability in model �tting) when they arrive

in high school. The �nal reason for excluding younger students from this work

is existing tools for teaching statistics seem to work well at this level (Biehler

et al., 2013).

Going forward, the term `novice' is used to refer to someone at the secondary

school level or above, who does not have statistical or programming skills.

1.3 Technology as a component in the educational ecosystem

The problems and opportunities in statistics and statistics education are wide

reaching. Certainly, access to statistics and data analysis will continue to broaden

as material trickles down from innovations in academia and industry. However,

for novices to learn statistics, there is a need for much more than technology. As

has been the case in the evolution of all technology (e.g., moving pictures, radio,

5



television, computers, and now hand-held devices like smartphones and tablets),

just having the technology does not improve education.

The most crucial educational need is for good instructors. At the secondary

school level, this appears to be particularly hard (the politics of education in

the United States still have not resolved to a state where teachers are paid like

other professionals) but even at the post-secondary level practitioners are valued

more highly than educators.

However, simply having quali�ed teachers is still not enough. Teachers need

training and curriculum in order to sca�old the material they are teaching.

While modern statistical methods have begun to permeate courses at the college

level, there has been limited trickledown to the high school level. The Introduc-

tion to Data Science course discussed in Section 5.1.3.3 is the only curriculum

we are aware of focusing on computational statistics and data analysis at the

high school level.

It is possible new methods of educational publishing will help remedy some

of these problems. For example, Massive Open Online Courses (MOOCs) have

been gaining traction, and Johns Hopkins University has developed a data sci-

ence sequence on the Coursera platform, which introduces students to exploratory

data analysis,R, reproducible research, statistical inference, and modeling, from

simple linear modeling to machine learning (Ca�o et al., 2015). Perhaps the

availability of good computational statistics instruction on the web will reduce

the need for teachers in other contexts, but it is likely to be an incremental shift

rather than a large one.

The problems of good teachers, curriculum, and teacher training are all di�-

cult. This work only touches on these problems brie
y, although I acknowledge

they are equally if not more important than the technological tool used. How-

ever, in the context of statistics and data analysis, a computational tool is nec-

essary. There is simply no way to do data analysis without a computer, and the

6



current tools leave a lot to be desired.

1.4 What is a tool?

One question I am often asked when discussing this work is why I use the term

`tool' to mean computer software or a programming language. Essentially, I am

looking forward to a future where computers do more than just amplify human

abilities { they enhance them (Pea, 1985). In the same way things we tradition-

ally think of as tools (like hammers, levers, and sewing machines) allow us to do

much more than we can do on our own, I believe computers are going to give us

superpowers. Particularly in the context of data, where so much of it is high-

dimensional, humans need some assistance `seeing' the existing patterns.

1.5 The di�erence between users and creators

Throughout this work, I often reference the di�erence between being a `user' of

a tool and being a `creator' of statistics. My use of these terms comes from the

literature on equity in computer science education.

In her 2001 book \Unlocking the Clubhouse," Jane Margolis describes the

di�erence between being a user of technology, which might include learning

word processing software and typing skills, and being a creator of technology

(Margolis and Fisher, 2001). In her book, she found women were less likely to

be creators of technology than their male counterparts. Margolis followed this

book by another, called \Stuck in the Shallow End," which presented similar

results for minority students { minorities were less likely to have access to high

school courses focused on creation (e.g., AP Computer Science) and more likely

to take classes labeled as computer science but focused on using software (Mar-

golis et al., 2008).

7



This distinction has continued to be forefronted in discussions of computer

science education. In a 2014 article in Mother Jones, a National Science Foun-

dation representative was quoted lamenting, \We teach our kids how to be con-

sumers of technology, not creators of technology" (Raja, 2014).

In the realm of statistics education, there has been less explicit discussion of

the di�erence between using statistics and statistical tools, and being a creator

of statistical products. However, this distinction is crucial. Students are often

taught statistics as a static set of formulas to be applied in particular situations.

They may have a formal de�nition of a standard deviation memorized, and be

able to apply a hypothesis test to some data, but they do not have deeper con-

ceptual knowledge. With the recent focus on p-hacking (Head et al., 2015) and

at least one journal banning the use of p-values (Tra�mow and Marks, 2015), it

is clear that even within the `client disciplines' there is need for richer statistical

understanding.

Being a `creator' of statistics and statistical products requires a person to

think creatively with data and to move through a cycle of exploration and con-

�rmation with their data. In the context of a statistical tool, a creator of statis-

tics should be able to build new methods and data visualizations based on exist-

ing functionality within the system.

1.6 Overview of the rest of the dissertation

This dissertation is a mash-up of case study, opinion piece, and provocative

technology experiment.

Chapter 2 outlines the history of statistical programming, both for practi-

tioners of statistics as well as for learners of statistics. Then it calls attention to

the gap between tools for doing statistics and tools for learning statistics. The

chapter ends with a call to action to close this gap by developing tools that can

8



support a learning-to-doing trajectory.

Chapter 3 discusses existing tools and their success at spanning the gap, in-

cluding Excel,R, TinkerPlots and Fathom, SAS, SPSS and STATA, as well as a

number of bespoke data visualization tools.

Chapter 4 outlines requirements for future statistical programming tools,

including the need for easy entry for novice users, interactivity at every level,

and simple support for narrative, reproducibility, and publishing.

Chapter 5 discusses work I have done to close the gap between tools for

teaching and learning statistics, and those for doing statistics. This chapter in-

cludes my work on the Mobilize project (the initial inspiration for this work),

my joint work with Aran Lunzer of the Communications Design Group, called

LivelyR, and two illustrative Shiny widgets I created to augment my teaching.

Chapter 6 brings these thoughts together, and outlines my vision for the fu-

ture of this work. However, understanding this vision will take years to come

to fruition, I also provide recommendations for best practices using currently-

available tools.

9



We will be remiss in our duty to our students if we do not see that they learn

to use the computer more easily, 
exibly, and thoroughly than we ever have;

we will be remiss in our duties to ourselves if we do not try to improve and

broaden our own uses.

John Tukey, 1965

CHAPTER 2

The gap between tools for learning and for

doing statistics

This chapter sets up the gap between tools for learning and tools for doing statis-

tics. The current qualities of both types of tools were highly in
uenced by the

time of their development and the speci�c goals the developers were consider-

ing. We begin by considering the history of tools for doing statistics, and follow

with the history of tools for learning statistics. Looking at the diverging history

makes it clear there is a gap between the two types of tools, so we consider the

reasons (both educational and political) for the gap. Finally, I argue the gap

should be eliminated in future tools.

2.1 History of tools for doing statistics

Many tools have been used for statistical computing over the years. It is not

within the scope of this work to capture every one of them, but some of the

largest stepping stones can be noted.

According to Jan De Leeuw, the history of statistical software packages be-

gan at UCLA in 1957 with the development ofBMDP (De Leeuw, 2009).BDMP

was part of the �rst generation of statistical software packages, the others being

10



SPSSand SAS, both introduced in 1968. The second generation includes Data

Desk, JMP and STATA, all of which were developed in the 1980s (De Leeuw,

2009).

The next generation were the Lisp-inspired languages,S, LISP-STAT, and

R (De Leeuw, 2009). BothS and LISP-STATcould be extended using Lisp, and

R was based onScheme, a dialect of Lisp. S was written by John Chambers

in the 1970s when he grew frustrated withFortranand developedS to provide

more statistical power and 
exibility (Becker, 1994).

The versions ofS are often spoken of in terms of `books' { the `brown book'

`blue book' and `white book' correspond with versions ofS. The goal of S was

initially to create an interactive functional programming language with a strong

sense of data format (Becker, 1994). Initially,S was free to academics, but it

was eventually sold to the Insightful corporation (De Leeuw, 2009) and now ex-

ists in the form of S-PLUS, sold by TIBCO Software, Inc.

However,R has essentially captured the former market ofS and XLISP-

STAT, at least in academia (De Leeuw, 2004).R was developed by Ross Ihaka

and Robert Gentleman at the University of Auckland to provide an open-source

alternative to S, incorporating features from bothS and Scheme(De Leeuw,

2009; Ihaka and Gentleman, 1996).R is discussed in more detail in Section 3.8.

2.2 History of tools for learning statistics

Running parallel to the history of statistical programming tools is a trajectory

of tools for making statistics easier for novices to understand. The history of

tools for learning statistics is shorter than that of tools for doing statistics, in

part because learning tools require more developed computer graphics, and also

because there has been a long debate about whether computer tools are neces-

sary for statistics education at all.

11



In 1997, Rolf Biehler described what he saw as the di�erence between tools

for doing statistics and those for learning statistics (Biehler, 1997). Biehler dis-

tinguishes between tools (used for real statistical analysis), microworlds (inter-

active systems encouraging play), resources (including data and data documen-

tation) and tutorial shells (he mentions Hypercard being used to create tutorial

shells to interface with other software) (Biehler, 1997).

In the late 1990s,Minitab and Spluscould provide functionality for creating

microworlds, and were therefore commonly used in teaching. The other inter-

faces Bielher mentions are tutorial shells, including SUCROS, StatView, and

Data Desk (Biehler, 1997). Interestingly, Data Desk is the one tool covered by

both De Leeuw as a tool for statistical computing and by Biehler as a tool for

teaching and learning statistics. It was developed in 1985, and has been main-

tained by its software publisher to this day (currently, the software is on version

7). The functionality is very inspiring in the context of the bridging I am con-

sidering, but the user interface looks antiquated compared to current tools.

In the context of the tools that existed in 1997, Biehler was arguing for a

new type of software. He wanted a tool which would solve three problems: the

complexity of tools for doing statistics, the challenge of closed microworlds, and

the necessity of using many tools in order to cover a particular curricular trajec-

tory (Biehler, 1997).

Biehler's paper expanded on the capabilities he believed were necessary for

such a system, and his guidelines were used to develop TinkerPlots and Fathom

in the early 2000s (Konold and Miller, 2005; Finzer, 2002a). Both tools are still

in use today, and are discussed at more length in Section 3.4.

Since their development, TinkerPlots and Fathom have become extremely

popular for teaching statistics in the K-12 context (Lehrer, 2007; Gar�eld and

Ben-Zvi, 2008; Konold and Kazak, 2008; Watson and Fitzallen, 2010; Biehler

et al., 2013; Finzer, 2013; Fitzallen, 2013; Mathews et al., 2013), at the intro-

12



ductory college level (Ben-Zvi, 2000; Gar�eld et al., 2002; Everson et al., 2008)

and in training for teachers (Rubin, 2002; Biehler, 2003; Gould and Peck, 2004;

Hammerman and Rubin, 2004; Rubin et al., 2006; Hall, 2008; Pfannkuch and

Ben-Zvi, 2011).

The main alternatives to TinkerPlots and Fathom are browser applets (what

Biehler might call microwords) like those by the �ve Locks (Morgan et al., 2014)

or by Rossman and Chance (Chance and Rossman, 2006). Applets are described

more fully in Section 3.5. In general, tools for learning statistics have not moved

forward since the early 2000s, and have not kept up with modern statistical

practice.

2.3 The gap between tools for learning and doing

Even the distinctions in the histories given by De Leeuw and Biehler suggest

a dichotomy between tools for teaching and learning statistics, and those for

legitimately doing statistics. De Leeuw explicitly states he is not concerned

with \software for statistics"(De Leeuw, 2009) while Biehler is only interested in

novices' ability to grasp a tool with minimal instruction (Biehler, 1997). What-

ever your perspective, it is clear there is gap between these two types of tools.

There are two main approaches taken with regard to the gap { either basing

techniques for learning statistics on techniques for doing professional statis-

tics, or using technology simply to illustrate statistical concepts (Biehler et al.,

2013).

In fact, there are such distinct perspectives on this issue it is useful to have

a visualization of their relationship, as seen in Figure 2.1. This �gure shows

the spectrum of opinions on the use of computers in education, from learning

without a computer to learning with a tool speci�cally designed for students, to

learning on a professional tool used by practitioners.

13



No computer Tool for learning Professional tool

Figure 2.1: The spectrum of learning to doing

Interestingly, this spectrum is paralleled almost completely in the computer

science education community, which has been studying novices' use of comput-

ers much longer than statisticians have. The question in computer science has

been whether it is better for learners to begin on a simpler programming lan-

guage or to start directly in a language used by experts.

In statistics, there are some educators who believe the mathematical un-

derpinnings of statistics are su�cient to provide novices with an intuitive un-

derstanding of the discipline. Because of this, they do not �nd it imperative

statistics education be accompanied by computation. In this paradigm, stu-

dents learn basic concepts about sampling, distributions, and variability, and

work through formulas by hand. At most, they use the computer to assist with

their arithmetic calculations (statistical computation). This argument has two

roots: one is some statisticians do not believe computers are necessary to do

statistics, and the other is that even if doing real statistics requires a computer,

students do not need to use one when they are �rst starting out. However, this

is an unfortunate line of reasoning, because it prevents students from seeing real

applications of statistics (i.e., the interesting stu�) until they have progressed to

a second or third course.

One example to consider is the Advanced Placement Statistics course and

associated exam. The AP Statistics teacher guide states \students are expected

to use technological tools throughout the course," but goes on to say techno-

logical tools in this context are primarily graphing calculators (Legacy, 2008).

Instead of building in computer work, the guide suggests exposing students to

computer output so they can learn to interpret it.

Paralleling this argument in computer science, some experts believe stu-

14



dents should begin learning about programming without a computer. For ex-

ample, the website \CS Unplugged," promises \computer science ... without

a computer!" (Bell et al., 2010). It provides lessons to get students working

with physical materials to understand concepts of data representations, algo-

rithms (e.g., sorting, ranking), and other basic topics. Even at more advanced

levels there is argument for beginning programming projects outside the com-

puter (Rongas et al., 2004). Computing great Edsger Dijkstra argues we should

not teach students how to program in the current language de jour. Instead, we

should require novices to write formal proofs of their programs so they under-

stand the logic underpinning the computation (Dijkstra, 1989).

On the other side of the spectrum, much of the research on computer science

education (particularly in the context of language acquisition) has been done on

Java(Fincher and Utting, 2010; K•olling, 2010; Utting et al., 2010; Storey et al.,

2003; Hsia et al., 2005). This is due toJavabeing the language of choice in AP

Computer Science since 2003. The use ofJavaon the AP CS exam followsPas-

cal and C++ , which were used previously. The choice to move fromC++ to

Javafor the AP exam was based on the popularity of object-oriented languages

(which both C++ and Javaare) and the fact that Javais simpler to learn than

C++ .

All three of the languages that have been used for the AP exam are com-

piled, which means programmers write code and pass it through a `compiler' to

get a packaged piece of code that can be run by the computer. In contrast, `in-

terpreted' or `scripting' languages allow dynamic work, typing code and running

it piece-by-piece to see smaller results. These two paradigms (compiled and in-

terpreted) can be used to describe nearly any programming language, and they

are di�erent in approach.

While both compiled and interpreted languages are `real' programming lan-

guages, and the use of any real programming language in introductory computer

15



science classes can be seen as an argument for the right end of the spectrum,

compiled languages are generally considered to be tougher. So, it is interesting

Javais used in AP Computer Science, while AP Statistics shies away from using

a computer tool at all.

Additionally, recent e�orts to increase diversity in computer science have

found interpreted languages can be more accessible because they allow novices

to get results more quickly (Alvarado et al., 2012). Almost all languages used

for statistical computing are interpreted, which suggests they may be more ac-

cessible for learners than the alternative, but also makes it hard to apply the

body of computer science education research (generally on compiled languages)

to the problem.

The argument for teaching students a real programming language is that

they will have a skill they can apply in the workforce or in college. This echoes

the argument that students should learn to use statistical programming tools

used by professionals.

Over time, there has been a movement toward students as true `creators' of

computational statistical work. Deb Nolan and Duncan Temple Lang argue well

for this in their paper, \Computing in the statistics curriculum," where they

suggest students should \compute with data in the practice of statistics" (Nolan

and Temple Lang, 2010). They are promotingR, which is discussed in more de-

tail in Section 3.8. Many universities and colleges are modifying their statistics

courses to fall in line with Nolan and Temple Lang's recommendations, but to

date, modi�cations have happened primarily at the graduate level and are still

trickling down to the undergraduate level or below.

However, both in statistics and computer science, there is a middling per-

spective on the spectrum. This perspective holds students should be using com-

puters to learn, but specialized tools should be developed speci�cally for learn-

ers.

16



In computer science, there is a �eld of programming languages developed

particularly for novices. One of the earliest and most famous examples is Sey-

mour Papert's LOGOlanguage (Papert, 1979). Papert was a student of Piaget,

the psychologist responsible for most current theories of childhood develop-

ment. Using his knowledge of how children learn, Papert developedLOGOin

the 1970s. It used `turtle graphics,' so called because an icon of a turtle served

as the cursor on the screen, and some implementations used a robotic turtle on

the classroom 
oor. This was to allow students to `see' themselves in the cur-

sor, and all the directionality was in relation to the turtle (meaning `up' wasn't

necessarily the top of the screen, rather in the direction the turtle was pointed).

This and many other features were carefully constructed based on child psychol-

ogy.

More accessible and modern,Scratchhas often been used as a �rst foray into

programming (Resnick et al., 2009). It was implemented inSqueak, which is a

dialect of Smalltalk. It is a blocks programming environment where students

drag and drop elements together to create games, animations, or simple draw-

ings. In the Exploring Computer Science curriculum (Section 5.1.3),Scratchis

the most `programming-like' element remaining.

After working with the language for a period of time, students will often

�nd tasks they want to do that are not possible inScratch. This realization

can prompt them to dig further into the implementation in Squeakto modify

things about the Scratchinterface. However, this is not a natural transition,

and something like the gap between tools for doing and teaching statistics can

be seen here. TheScratchteam is not interested in raising the ceiling of the

tool. Instead, they are focused on lowering the threshold (making it easier to

get started) and \widening the walls," providing more broad applications within

the same simple framework (Resnick et al., 2009).

Another middling approach from computer science is the concept of lan-

17



guage levels. In this paradigm, experts identify pieces of a programming lan-

guage most crucial for beginners to understand, and fence o� just those parts of

the language. One version of this is called DrJava, and includes three levels (El-

ementary, Intermediate, Advanced) mimicking the Dreyfus and Dreyfus hierar-

chy of programming ability (novice, advanced beginner, competence, pro�ciency,

expert) (Hsia et al., 2005). Students can move from one level to the next, learn-

ing additional features and concepts of the language. Usually, these levels are

nested, meaning all the features learned in level one are also available in level

two, and so on.

In the context of tools for learning statistics, a distinction is made between

route-type and landscape-type tools (Bakker, 2002). Route-type tools drive

the trajectory of learning, determining the tools available to students and the

skills they should be using. Most applets are route-type tools, because they only

allow for one concept to be explored. Landscape-type tools are less directive,

and allow users to explore the �eld of possibilities themselves. TinkerPlots and

Fathom are both landscape-type tools.

The route/landscape dichotomy is not paralleled well in computer science, as

most programming tools are, by nature, landscape-type tools. However, while

programming languages can be used to accomplish many tasks, they tend to

obscure the range of tasks possible. Instead, users only consider the functions to

which they have been exposed. Fathom and TinkerPlots make the landscape of

possibilities more visible by arranging them in a palette of tools. While route-

type tools for learning feel more restrictive, they can be appealing to teachers

because they make it clear what students should be doing at any time, and limit

the prior knowledge the teacher must bring to the classroom.

Novices who begin with a tool designed for learning { whether it is an applet

or a full software package { encounter a lower barrier to entry, but there is still

a cognitive task associated with learning how to use the interface. When they

18



move on to additional statistical tasks, either in higher-level coursework or in

the corporate world, they need more complex tools, and are forced to learn yet

another interface. Unfortunately, because researchers have not studied this tran-

sition, at least in the context of statistics, there is little sca�olding to make the

transition easier.

Instead, users are essentially returned to the novice state. Their experience

with the learning tool presumably does not transfer well to their use of the tool

for truly doing statistics. So in a sense, the e�ort to learn that initial tool is

wasted. Alternatively, novices could be started immediately with a tool for do-

ing statistics, which would allow them to skip the `wasted' e�ort of learning to

use an introductory tool, but would still incur the high startup costs of learning

the tool. Whether beginning with a professional tool immediately or transition-

ing to it after a learning tool, the threshold for entry can be so high as to make

users believe they are not capable of learning it.

There are many approaches that could be used to close this gap. For exam-

ple, explicit curricular resources making reference to the prior tool and couching

tasks in terminology from the previous system might make the transition eas-

ier. Likewise, providing some sort of `ramping up' as users reach the end of the

abilities of the learning tool and `ramping down' at the beginning of the tool for

doing could make the gap feel less abrupt.

2.4 Removing the gap

My argument is the gap between learning and doing statistics should be re-

moved entirely by creating a new type of tool, bridging from a supportive tool

for learning to an expressive tool for doing.

The belief there should be no gap between tools for learning and tools for

doing statistics is not shared by everyone. In particular, Biehler's 1997 paper

19



urges statisticians to take responsibility for developing appropriate tools for use

in education, and Cli� Konold argues for the need for separate tools for these

two cognitive tasks (Biehler, 1997; Konold, 2007). These arguments are summa-

rized and expanded on by Susan Friel, who also believes students should not be

using industry-standard tools (Friel, 2008). Instead, all three authors contend

separate computer tools should be created with the speci�c goal of teaching stu-

dents statistics.

I take issue with the idea of separate tools for teaching, as it removes novices

from the experience of being true `creators' of statistical products. As we will

see in the more detailed analysis of tools, products like Fathom and Tinker-

Plots only allow users to work with data up to a certain size, and do not pro-

vide methods for sharing the results of analysis.

There are some aspects of the philosophies espoused by Biehler, Konold, and

Friel I agree with. In particular, Konold says tools for learning statistics should

not be stripped down versions of professional tools for doing statistics. Instead,

they should be developed with a bottom-up perspective, thinking about what

features novices need to build their understandings (Konold, 2007). In consid-

ering how to close the gap, it is important to keep in mind how tools can build

novices' understanding from the ground up. Konold also emphasizes the impor-

tance of creating software that can grow beyond its initial static state (Konold,

2007). A tool that grows with users as they move from learning to doing is a

large proposition, but I believe this goal can (and should) be met with a tool

spanning the entire trajectory of experiences.

The rest of this work is concerned with methods for closing the gap. Next,

we consider the existing tools on the market and how well they succeed at sup-

porting the learning-to-doing trajectory.

20



Professional statistical systems are very complex and call for high cognitive

entry cost. They are often not adequate for novices who need a tool that is

designed from their bottom-up perspective of statistical novices and can

develop in various ways into a full professional tool (not vice versa).

Rolf Biehler, 1997

CHAPTER 3

The current landscape of statistical tools

This chapter describes the landscape of currently-available statistical tools, from

the prosaic (Excel) to the bespoke (Wrangler, Lyra). Keeping in mind the gap

between tools for learning and tools for doing statistics, we consider the features

of each tool most relevant to closing the gap. Many positive examples are shown

(the bespoke tools provide particular inspiration) but negative examples are also

examined.

The tools currently available for learning and doing statistics generally break

along that particular divide: those good for an introductory learner are gener-

ally not good for actually performing data analysis, and vice versa. However,

since any user of software for doing statistics must necessarily begin as a novice,

it is logical there should be a coherent trajectory for learners to take.

My interest in the gap between tools for learning statistics and those for do-

ing statistics grew out of my experience with the Mobilize project (Section 5.1)

where we have iterated through a variety of tools over the years. The experience

of trying many statistical programming tools with learners led me to research

21



others that were available, in search of the ideal tool.

While there is rarely an ideal tool for anything, through examining the avail-

able software, programming languages, and packages, I began to see ways in

which the gap could be �lled.

3.1 Spreadsheets

Spreadsheet tools like Excel are probably the most commonly used to do data

analysis by people across a broad swath of use-cases (see Figure 3.1 for a screen-

shot of Microsoft Excel for Mac 2011). Because of their common use, and the

free availability of spreadsheet tools like Google Spreadsheets and the Open Of-

�ce analogue of Excel, Sheets, they can be considered an accessible and equi-

table tool.

However, spreadsheets lack the functionality to be a true tool for statisti-

cal programming. They typically allow for only limited scripting, which means

their capabilities are limited to those built in by the development company.

The locked-in nature of the functionality means they are only able to provide

a limited number of analysis and visualization methods, and cannot be 
exible

enough to allow for true creativity. The toolbar in Figure 3.1 shows the possible

visualization methods available in this version of Excel. The categories can be

counted on one hand, although each category does have further modi�cations

that can be expanded using the disclosure widget located on the button.

Beyond this, several high pro�le cases of scienti�c paper retraction have

been based on internal errors within Excel. Because the underlying code is closed-

source, Excel does not allow users to view how methods are implemented, which

means it is very di�cult for an individual to assess the validity of the internal

code. Some dedicated researchers have tested Excel's statistical validity over ev-

ery software version Microsoft has released. Not only is every version 
awed,

22



Figure 3.1: Microsoft Excel for Mac 2011

23



but even with speci�c attention shed on the problem, Microsoft often either

fails to repair the problem, or makes a change to another 
awed version (Mc-

Cullough and Heiser, 2008).

Additionally, spreadsheets tend not to privilege data as a complete object.

Once a data �le is open, modi�cation or deletion of data values is just a click

away. In this paradigm, the sanctity of data is not preserved and original data

can be lost forever. In contrast, most statistical tools discourage direct manip-

ulation of original data. In tools used by practitioners to do statistical analysis

(e.g., R, SAS), data is an almost sacred object, and users are only given a copy

of the data to work with.

Data does not have structural integrity in a spreadsheet. Data values sit

next to blocks of text and plots produced by data cover up data cells. Every-

thing is included on one canvas. These pieces may be linked together, but there

is no explicit visual connection. In a true statistical tool, results from the anal-

ysis are clearly separated from the data from which they were derived, and any

data cleaning tasks performed in these tools can be easily documented.

This leads to the largest challenge with spreadsheets: their results are not

reproducible. Data journalists have historically done analysis using tools like

Excel (Plaue and Cook, 2015). Journalists must be careful about the analysis

they publish, as it it must to be as veri�ed as any other `source' they might

interview. Spreadsheets do not o�er any inherent documentation. As a result,

journalists developed their own reproducibility documentation, typically in the

form of a document written in parallel with the analysis describing all the steps

taken. This supplementary document is done separately, either by hand or in

word processing software like Microsoft Word.

Because each stage of analysis in a spreadsheet is done by clicking and drag-

ging, there is no way to fully record all the actions taken. Reproducibility is

discussed more fully in Section 4.8, but one of its central tenets is it should be

24



possible to perform the same analysis on slightly di�erent data (e.g., from a dif-

ferent year). Spreadsheets do not make this possible, so they are not e�ective

tools for data analysis.

However, the spreadsheet paradigm is not inherently troublesome. In fact,

Alan Kay believes computer operating systems should essentially be spread-

sheets, all the way down (Kay, 1984). The distinction is when Kay references

spreadsheets, he is thinking of a reactive programming environment that can

be built up into responsive tools to perform a wide variety of tasks. In this

paradigm, objects can be linked together in a dependent structure, and when-

ever an input is changed, all the downstream elements are updated accordingly.

Of course, the reactive possibilities in spreadsheets can also lead to unin-

tended consequences. In a study of spreadsheets used by Enron, researchers

found 24% of spreadsheets with a formula included an error (Hermans and Murphy-

Hill, 2015). This is likely because while spreadsheets allow for reactive linking

of cells, they do not visualize the reactive connections, and it can be easy to

double a formula or include unintended cells. The reactive programming en-

vironment Shiny (Section 3.8.2.3) showcases some of the capabilities of this

paradigm in a more reproducible data analysis environment.

3.2 Interactive data visualizations

If the average person has interacted with interesting data sets, it was likely in

the context of an interactive data visualization. The New York Times produces

some especially salient examples. The Times makes a point to create visualiza-

tions for the web that are much more than electronic versions of print graphics.

Instead of static graphics, their visualizations allow readers to manipulate rep-

resentations of data themselves. For example, the Times has produced graphics

allowing readers to balance the federal budget, predict which way states will

25



vote in the presidential election, or assess whether they would save more money

by buying or renting their housing (Carter et al., 2010; New York Times, 2012;

Bostock et al., 2014). The graphic companion to the article on buying versus

renting, Figure 3.2, allows users to drag sliders on a variety of graphs to deter-

mine whether it is better for them to rent or buy, given the particular set of pa-

rameters.

Figure 3.2: \Is it better to rent or buy?" from The Upshot

The paradigm of interactive data visualizations on the web is beginning to

approach the concept of the \active essay" (Yamamiya et al., 2009). Like ac-

tive essays, interactive articles on the web can be updated dynamically depend-

ing on parameter manipulations, and some news outlets have begun including

26



contextual information in their articles. Rather than hyperlinks taking the user

away from the page they were reading, New York Magazine includes ephemeral

popovers, and Medium has instituted in-context comments linked to a particu-

lar paragraph or sentence.

Interactive data visualizations of the type done by the Times are helping us

move toward broader statistical literacy, but they are lacking on a number of

levels. First, many people do not have the quantitative skills to interpret statis-

tical graphics, despite this literacy becoming more crucial (Meirelles, 2011).

Then, even if a reader is able to interpret the graphics, visualizations tend

to be highly scripted. This scripted quality is actually valued in data visualiza-

tion, because visualizations should provide some context and storytelling for the

data, rather than simply leaving users to explore (Cairo, 2013). But the script

can also be limiting. If a reader is looking at a graphic about renting and buy-

ing in the United States, she cannot easily compare the data in other countries.

She also cannot access the demographic data to determine how many people

fell into her particular demographic category. And there is no way to explicitly

validate the authors' analysis, other than completely reproducing it. In short, a

reader is limited to exploring the story the journalists have provided. For true

democratic data access, citizens need to be able to analyze raw data sources.

Some interactive data visualizations have been opening the hood on the

analysis process, allowing readers to critique the creation process or algorith-

mic decisions. One notable example is the 2014 IEEE Spectrum rating of pro-

gramming languages, shown in Figure 3.3. The article provides a default rank-

ing (shown in Figure 3.3a), but it allows readers to create a custom ranking by

adjusting the weights of all the data inputs (Figure 3.3b) (Cass et al., 2014).

It is possible to imagine a future where all journalistic products based on data

are accompanied by this type of auditable representation of the process used to

create them.

27



(a) Default ranking

(b) Ranking editor

Figure 3.3: IEEE Spectrum ranking of programming languages

28



3.3 iPython notebook/Project Jupyter

The iPython notebook is a movement toward both more reproducible research

and interactive analysis output. The iPython notebook environment (Figure

3.4) allows a user to combine text andPythoncode, and to immediately see the

output from the code chunks (P�erez and Granger, 2007).

Figure 3.4: iPython notebook

When authoring an iPython notebook, it is possible to execute each of the

code chunks separately, allowing the author to perform interactive manipulation

during the creation process. The system also provides the capability to create

29



interactive graphics, so if the author has decided to include them readers can

interact with selected graphics.

However, once the notebook is published or shared, the ability to execute

code is removed, and the only interactive elements are those programmed in

by the author. Instead, all code and output is presented as a static �le, which

prevents readers from manipulating it. If a reader wants to modify the code,

they must download the source code, edit it, and then re-share the results.

The iPython notebook project is currently under transition to become part

of Project Jupyter, a larger umbrella project focused on scienti�c computation

more generally. Just recently, GitHub1 announced that Jupyter notebooks will

render directly on their site. This frees notebook authors from the necessity of

hosting their notebooks elsewhere in order to share them.

The iPython notebook and Project Jupyter represent some movement to-

ward the goals of interactive and reproducible analysis (like the scenarios dis-

cussed in Sections 3.2 and 4.8), but will require more work toward fully interac-

tive notebooks that can be manipulated by readers.

3.4 TinkerPlots and Fathom

Speci�cally designed for learning statistics, TinkerPlots and Fathom are essen-

tially sibling software packages. The two have similar functionality and slightly

di�erent intended users. TinkerPlots is described as being appropriate for stu-

dents from 4th grade up to university, and Fathom is directed at secondary

school and introductory college levels.

Both TinkerPlots and Fathom are excellent tools for novices to use when

learning statistics. They comply with nearly all the speci�cations outlined by

1A code sharing website supporting collaborative coding projects and the version control
software git.

30



Biehler (1997), allowing for 
exible plotting, providing a low threshold, and en-

couraging play and re-randomization. They allow students to jump right in, to

perform exploratory data analysis and to move through a data analytic cycle

(e.g., asking questions, trying to answer them, re-forming questions), and have

been shown to enhance student understanding (Watson and Donne, 2009).

TinkerPlots and Fathom are both standalone software, which means they

must be installed directly on a user's computer. They both o�er versions for

Macintosh and Windows computers. Clicking on the application icon will launch

a blank canvas, with buttons and menus to support loading data, plotting, re-

sampling, and more.

Fathom (Figure 3.5) was developed by William Finzer as tool for learning

statistics (Finzer, 2002a). It was based on principles from Biehler (1997), and

intended to allow students play with statistical concepts in a more creative way.

Like Seymour Papert and hisLOGOlanguage, discussed in Section 2.3, the au-

thors of Fathom and TinkerPlots wanted to design tools relevant to the way

students think. Because Fathom is intended for slightly older users, it includes

more features than TinkerPlots does.

Finzer was working from the perspective of a designer of education software

rather than an education researcher. Therefore, he was solving a design problem

rather than a research problem (Finzer, 2002b). He notes the development pro-

cess could have bene�ted from more input from education researchers, but the

resulting software has been reasonably useful regardless (Finzer, 2002b). He also

mentions one of the largest challenges with developing education software (or

software in general){ how to know if it `works' (Finzer, 2002b).

The design specs upon which Fathom is based include a focus on resampling,

a belief there should be no modal dialog boxes, the location of controls outside

the document proper, and animations to illustrate what is happening (Finzer,

2002b). Many of these ideas are also brought forward in Chapter 4.

31




	Introduction
	State of statistics knowledge
	Relevancy at a variety of experience levels
	Technology as a component in the educational ecosystem
	What is a tool?
	The difference between users and creators
	Overview of the rest of the dissertation

	The gap between tools for learning and for doing statistics
	History of tools for doing statistics
	History of tools for learning statistics
	The gap between tools for learning and doing
	Removing the gap

	The current landscape of statistical tools
	Spreadsheets
	Interactive data visualizations
	iPython notebook/Project Jupyter
	TinkerPlots and Fathom
	Applets
	StatCrunch
	DataDesk
	R
	R syntaxes
	R packages
	knitr/RMarkdown
	Tools for learning R
	GUIs and IDEs for R

	Stata, SAS, and SPSS
	Bespoke tools
	Summary of currently available tools

	Attributes
	Easy entry for novice users
	Data as a first-order persistent object
	Support for a cycle of exploratory and confirmatory analysis
	Flexible plot creation
	Support for randomization throughout
	Interactivity at every level
	Inherent visual documentation
	Simple support for narrative, publishing, and reproducibility
	Narrative
	Publishing
	Reproducibility

	Flexibility to build extensions
	Summary of attributes

	First forays
	Mobilize
	Participatory sensing
	Computational and statistical thinking
	Curriculum
	Technology

	LivelyR
	Histogram cloud
	Regression guess line
	Small multiple callout plots
	Documentation of interaction history

	Additional Shiny experiments
	Conditional visualizations
	Interaction plot with manipulable data cut point

	Discussion of first forays

	Conclusions, recommendations, and future work
	Current best practices
	Future work
	Final words




