UCLA

Posters

Title

Matching Data Dissemination Algorithms to Application Requirements

Permalink

https://escholarship.org/uc/item/1mn1f2tw

Authors

Fabio Silva John Heidemann Deborah Estrin

Publication Date

2003

Center for Embedded Networked Sensing

Matching Data Dissemination Algorithms to Application Requirements

John Heidemann, Fabio Silva and Deborah Estrin ISI Laboratory for Embedded Networked Sensor Experimentation - http://www.isi.edu/ilense/

Introduction: Sensor network applications have many different traffic patterns

Sensor Network Applications

- - James Reserve: habitat monitoring many-to-one
 - Twentynine palms: vehicle tracking -
- PARC IDSQ: vehicle tracking Actuation
- Traffic Monitoring and Control
- Different traffic patterns

 - many-to-many → – one-to-many

parc

Problem Description: How can diffusion address application-specific requirements?

Application Requirements

- Sensor network application have different needs
 - Different traffic patterns (one-to-many, many-to-one, many-to-many)
 - Different data rates (fixed and variable, frequent and infrequent)

Robustness Requirements

- Applications must be robust to change:
 - Wireless "links" come and go
 - Nodes fail or move

Ouestion: How can communication be *robust* but also *efficient* for many different applications?

Multiple Diffusion Routing Algorithms

- Two-Phase Pull Diffusion [Intanagowiwat et al, 2000]
 - Initial diffusion implementation
 - Periodically floods interests and exploratory data
- One-Phase Pull Diffusion [Heidemann et al, 2003]
 - Only floods interests
- Push Diffusion [Heidemann et al, 2003]
 - Reverses the roles in the publish/subscribe API
 - Floods only exploratory data messages
- GEAR [Yu et al, 2001]
 - Adds support for geographically-scoped queries

Proposed Solution: Match routing algorithms to application requirements

Approach

- Support multiple routing algorithms in filter framework
- Describe performance differences for application designers

Evaluation Methodology

- Identify test application classes from experience
 - BAE tracking
 - many-to-many→ benefits from push
 - PARC IDSO
 - one-to-many, one-to-one → benefits from GEAR and push
 - James Reserve Data Collection
 - many-to-one → benefits from one-phase-pull
- Describe performance differences for application designers
 - Use systematic emulation and simulation studies to explore design space:
 - Use different diffusion algorithms
 - Vary number of sources and sinks
 - Vary topologies (clustered vs. unclustered)

Sample Applications

GEAR reduces message count by ~40% (for 17-node IDSQ with similar target movement; expect another 40% reduction when GEAR supports points Diffusion here is push.)

Systematic Evaluation

One-phase pull is best with many sources, few sinks

Push works best with many sinks and few sources

Conclusions

- Push works best with many sinks and few active sources
- One-Phase Pull works best with many sources and
- The break even point between the two algorithms depends upon specific control message frequency (such as interest send rate and exploratory data rate), as well as application data rates
- For networks with more than a few dozen nodes, the benefits of geographically-scoped queries can outweigh other algorithmic choices.
 - Algorithm selection still matters (e.g. one and two-phase pull diffusion will still incur gradient maintenance overhead by periodic interests even when sources have no data to send

Bibliography

Heidemann, Silva, Estrin, "Matching Data Dissemination Algorithms to Application Requirements", ACM Sensys 2003: to appear.

Intanagonwiwat Govindan Estrin "Directed Diffusion: A scalable and robust communication paradigm for sensor networks", ACM/IEEE Mobicom 2000

Yu, Govindan, Estrin, "Geographical and energy aware routing: A networks". Tech. Report TR-01-0023, Computer Science Dept, UCLA, 2001