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Abstract

Decoding the Rhythms of Avian Auditory LFP

by

Mike J. Schachter

Doctor of Philosophy in Biophysics

University of California, Berkeley

Dr. Frederic Theunissen, Chair

We undertook a detailed analysis of population spike rate and LFP power in the Ze-
bra finch auditory system. Utilizing the full range of Zebra finch vocalizations and dual-
hemisphere multielectrode recordings from auditory neurons, we used encoder models to
show how intuitive acoustic features such as amplitude, spectral shape and pitch drive the
spike rate of individual neurons and LFP power on electrodes. Using ensemble decoding
approaches, we show that these acoustic features can be successfully decoded from the pop-
ulation spike rate vector and the power spectra of the multielectrode LFP with comparable
performance. In addition we found that adding pairwise spike synchrony to the spike rate
decoder boosts performance above that of the population spike rate alone, or LFP power
spectra. We also found that decoder performance grows quickly with the addition of more
neurons, but there is notable redundancy in the population code. Finally, we demonstrate
that LFP power on an electrode can be well predicted by population spike rate and spike
synchrony. High frequency LFP power (80-190Hz) integrates neural activity spatially over
a distance of up to 250µm, while low frequency LFP power (0-30Hz) can integrate neural
activity originating up to 800µm away from the recording electrode.

To understand how an auditory system processes complex sounds, it is essential to un-
derstand how the temporal envelope of sounds, i.e. the time-varying amplitude, is encoded
by neural activity. We studied the temporal envelope of Zebra finch vocalizations, and show
that it exhibits modulations in the 0-30Hz range, similar to human speech. We then built
linear filter models to predict 0-30Hz LFP activity from the temporal envelopes of vocal-
izations, achieving surprisingly high performance for electrodes near thalamorecipient areas
of Zebra finch auditory cortex. We then show that there are two spatially-distinct sub-
networks that resonate at different frequency bands, one subnetwork that resonates around
19Hz, and another subnetwork that resonates at 14Hz. These two subnetworks are present
in every anatomical region. Finally we show that we can improve predictive performance
with recurrent neural network models.
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secondary auditory areas CM and NCM. Also pictured is the auditory thalamus
Ovoidalis (OV), and brainstem area MLd, which is homologous to mammalian
Inferior Colliculus. (d) Example spectrograms of syllables from the full Zebra
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Chapter 1

Decoding the Rhythms of Avian
Auditory LFP

1.1 Abstract

We undertook a detailed analysis of population spike rate and LFP power in the Zebra finch
auditory system. Utilizing the full range of Zebra finch vocalizations and dual-hemisphere
multielectrode recordings from auditory neurons, we used encoder models to show how in-
tuitive acoustic features such as amplitude, spectral shape and pitch drive the spike rate
of individual neurons and LFP power on electrodes. Using ensemble decoding approaches,
we show that these acoustic features can be successfully decoded from the population spike
rate vector and the power spectra of the multielectrode LFP with comparable performance.
In addition we found that adding pairwise spike synchrony to the spike rate decoder boosts
performance above that of the population spike rate alone, or LFP power spectra. We also
found that decoder performance grows quickly with the addition of more neurons, but there
is notable redundancy in the population code. Finally, we demonstrate that LFP power
on an electrode can be well predicted by population spike rate and spike synchrony. High
frequency LFP power (80-190Hz) integrates neural activity spatially over a distance of up
to 250µm, while low frequency LFP power (0-30Hz) can integrate neural activity originating
up to 800µm away from the recording electrode.

1.2 Introduction

The nature of information encoded by auditory networks in the brain has been described by
a variety of experimental approaches that vary in their choice of stimuli, stimulus represen-
tation, and predictive modeling approach. Neurons in the auditory system have been probed
with simple stimuli such as tones, but it is known that neural responses to complex acoustic
sound cannot be understood as the linear combination of responses to the individual tones
[1]. One difficulty then is to find the set of acoustic features (e.g. mean frequency, amplitude,
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spectral shape) that best describes these acoustically complex communication sounds. The
chosen acoustic parameters are then used to represent the vocalizations in the analysis so
the acoustic dimensions to which auditory neurons are sensitive can be identified. There
is a spectrum of stimulus paradigms and stimulus-response models that can be constructed
to better understand the relationship between the properties of sound and the spiking of
auditory neurons. These models depend in large part on the richness of the stimulus and
the numerical representation used to describe it. At the simple end of the spectrum are
artificial pure tones, which can be quantified completely by their amplitude and frequency.
Neuron response properties have been described using tuning curves that predict spike rate
from the amplitude and frequency of simple tone stimuli. These models have been used with
some success to describe neuronal response properties in early auditory areas, and even to
describe tonotopy in human auditory cortex [2].

However, most communication sounds are not fully described by their amplitude and
frequency. Human speech, for instance, is a variable and complex sequence of smoothly
changing harmonic stacks and noisy bursts. Some bird vocalizations share a similar com-
plexity; Zebra Finch songs are complex but rigid sequence of harmonic stacks, noise bursts,
and chirps [3]. The need to utilize natural sound stimuli to more effectively probe neuron re-
sponses necessitates a stimulus representation more complex than amplitude and frequency
alone. Complete information about the time-varying acoustic features of a sound can be
quantified using a spectrogram. Spectrograms represent the sound as a set of frequencies
that vary over time, and can be inverted to produce the original sound pressure waveform
[4]. The model that corresponds to the spectrogram representation is a spatio-temporal re-
ceptive fields (STRF). A STRF predicts neuronal responses as a weighted sum of the recent
spectrogram history. STRFs have been used with much success to describe auditory neurons
both in mammals and birds [1]. Notably, tonotopy has not been observed in higher Avian
auditory areas; in its place is a STRFotopy, where temporal memory and spectral bandwidth
of neuronal responses vary over anatomical space [5]. Although STRFs can thoroughly ex-
plore the respones to all possible spectro-temporal representations of sound, they can be
difficult to interpret and don’t offer a description of neural tuning in acoustic dimensions
that are close to perception. At an intermediate level of representation, communication calls
that are short and isolated in time can be represented by a small set of summary statistics
that intuitively describe how they vary spectrally, temporally, and spectro-temporally. This
approach has been utilized to successfully identify the distinctive acoustic properties of Zebra
finch vocalizations [3]. Here, we leverage the same set of acoustic feature to represent Zebra
finch vocalizations, and describe the relationship between these acoustic features and neuron
activity. These stimulus-response models describe neuronal activity as a function not just of
amplitude and frequency, but a richer set of features closer to perceptual properties such as
pitch and spectral or temporal noisiness.

While the perception of auditory stimuli is the result of activity in a large population of
neurons, past research mainly focused on the description of the response properties of sin-
gle auditory neurons. By utilizing data from ensembles of auditory neurons presented with
natural sounds, we can develop insight into how neurons work together as a population to
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represent stimulus information. A core observation that sets the context for understanding
population coding is that neurons integrate input from many other neurons, and temporally
coincident input from multiple input neurons drives stronger spiking activity than non-
coincident input. This implies that stimulus information may be encoded and transmitted
not only by the idiosyncratic firing of individual neurons, but in addition by the temporal
correlations of network firing patterns. Approaches to understand the population code at
this level have utilized Information Theory to quantify the amount of stimulus information
contained in an ensemble of neurons, as well as Machine Learning approaches to directly de-
code stimulus features [6]. There is evidence that neurons in the visual and auditory system
exhibit robust spatial correlations in their spike patterns. Significant pairwise correlations
between spike trains have been observed in retinal ganglion cells ([7], [8]), and V1 ([9]). In
the auditory system, [10] showed pairwise connectivity between neurons in mouse auditory
cortex could be modulated by optogenetic activation of inhibitory interneurons. However,
the existence of correlated activity does not imply that correlations actually carry stimulus
information. Information theoretic frameworks have been constructed to analyze the stim-
ulus information carried by ensembles of neurons independently by their spike rates, and
in addition their correlations ([11], [12], [13]). Complementary decoding approaches can be
used measure the contribution of correlation activities to information already existing in their
independent spike rates. Using a decoding approach, [14] show in monkey auditory cortex
that the ensemble spike rates of neurons contain non-redundant information about sound
stimuli, and decoding performance increases with the number of neurons considered. They
found that there is a small group of neurons that contain most of the stimulus information.
Following up with an information theoretic approach, they found that correlations in neural
activity do not contain additional stimulus information. In this work we show that including
correlated spiking activity in addition to population spike rate improves the performance of
decoders trained to predict acoustic features.

We investigated the population code for zebra finch vocalizations in auditory cortex using
both spikes and the local field potential (LFP) as measures of neural activity. The LFP is
an aggregate signal comprised of synaptic and transmembrane currents elicited by sodium
and calcium spikes [15], and the biophysical origin of LFP power may vary by frequency
[16]. Many studies show that the mammalian LFP oscillates at several different frequency
bands. Very low frequency (< 2Hz) slow oscillations, observed during sleep and some types
of anesthesia, may originate from the interplay of bursting neurons in the Thalamic Retic-
ular Nucleus and cortex [17]. Oscillations in the range of 30-80Hz are typically labeled as
Gamma oscillations. The neural mechanism of Gamma oscillations is thought to involve the
spatial and temporal interplay between excitatory and inhibitory networks [18]. Activity in
different frequency bands is not mutually exclusive; lower frequency Theta oscillations ( 7Hz)
can modulate higher frequency Gamma oscillations in the Hippocampus in a manner that
may help encode ordered sequence of items [19]. A nested hierarchy of frequency bands has
been identified in auditory cortex of monkey that controls the excitability of neural activity
and may optimize the auditory system for the processing of rhythmic vocalizations [20]. In
contrast to the well studied oscillations of mammalian cortex, there have not been many
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Figure 1.1: Neurophysiology and stimuli: (a) Six Zebra Finches were used for the
experiment, 4 male, 2 female. (b) An 8x2 16 electrode array was placed in each hemisphere
over the auditory area of the bird. Local Field Potentials (LFPs) and spikes were recorded
simultaneously from the 32 electrodes. Electrodes are portrayed larger in the picture and
their placement is not accurate. (c) A schematic of anatomical regions in the Zebra Finch
auditory system. Recordings were made from thalamorecipient area L2, adjacent processing
areas L1 and L3, as well as secondary auditory areas CM and NCM. Also pictured is the
auditory thalamus Ovoidalis (OV), and brainstem area MLd, which is homologous to mam-
malian Inferior Colliculus. (d) Example spectrograms of syllables from the full Zebra Finch
vocal repertoire.

studies of LFP oscillations in the Avian brain. Analysis of multielectrode LFP was used by
[21] to show three dimensional propagation of slow wave oscillations (0-5Hz) in Zebra finch
forebrain, but higher frequencies were not studied, and they did not link this activity to
sensory stimuli. In this work, we study LFP power in the 0-190Hz range in the Zebra finch
auditory system, and show that the LFP power spectrum can be used to decode acoustic
features from the full repertoire of natural Zebra finch vocalizations. We also directly inves-
tigate how much of the LFP for a given frequency band can be predicted by the spike rate
and spike synchrony of simultaneously recorded neurons.
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1.3 Results

Acoustic Features Covary and Cluster

Our goal is to describe how key features that characterize Zebra finch vocalizations are
represented in neuronal spiking, and the LFP, as well as the relationship between neural
spiking and the LFP. We segmented Zebra finch vocalizations and quantified their acoustic
properties using a rich set of 20 acoustic features that characterized the syllables power
spectrum, amplitude envelope, and the time-varying fundamental (see Methods - Acoustic
Features). With the exception of temporal standard deviation (Std T), none of our features
were dependent on the duration of syllables, that ranged in duration from 40ms to 400ms.
Std T was linearly proportional to syllable duration (corrcoef=0.99). This produced a unique
20 dimensional feature vector for each syllable. It will be specifically noted when Std T is
utilized in later analysis.

In Figure 2, we show an example of the acoustic feature characterization for a single
syllable, as well as examples of syllables that span the range of maximum amplitudes (Max
A), mean spectral frequencies (Mean S) and pitch saliencies (Saliency). Saliency is a measure
of syllable pitchiness, low for noisy syllables and high for harmonic-stack-like syllables. These
features have been shown to be vital for determining the behavioral context, and hence
semantic meaning, of Zebra finch vocalizations. Moreover, this set of features can be used in
supervised classifiers to obtain identical discriminability performance of call types than the
one obtained from a complete representation of the sound [3].

Acoustic features are intuitive quantities for describing syllables, but are not completely
independent of each other. By construction, they naturally fall into three groups - those that
describe the spectral distribution, the temporal distribution, and the time-varying funda-
mental frequency. Figure 3a shows a matrix of correlation coefficients between each acoustic
feature. The features are ordered according to constructed group, but also naturally fall into
several groups given the block-diagonal structure of the correlation matrix. Figure 3b shows
a manually organized graphical representation of acoustic feature relationships. Edge thick-
ness depicts the absolute value of the correlation coefficient, and coefficients less than 0.20
are not shown. Taken together, the correlation matrix and graph show that acoustic features
cluster into several groups. The time-varying fundamental features form one group (green in
Figure 3b), with the two parameters that describe the presence of a second voice (Pk 2 and
2nd V) forming a distinct subgroup. Features that describe fundamental frequency over time,
the mean (Mean F0), max (Max F0), min (Min F0), and coefficient of variation (CV F0)
are strongly correlated with each other. Purely spectral features, statistics computed from
the power spectrum of the syllable, form another group (orange in Figure 3b). The mean
spectral frequency (Mean S), 25th, 50th, and 75th percentiles of the spectral distribution
(Q1, Q2, Q3, respectively), and the spectral skew formed a strongly correlated subgroup.
We note also that these spectral frequency parameters are only weakly correlated with the
mean fundamental; in other words, birds can increase their fundamental frequencies while
not changing the spectral envelope of the sound and vice-versa [3]. The spectral kurtosis
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a) b)

Figure 1.2: Syllables quantified by acoustic features: (a) an illustration of the acous-
tic features quantified for one syllable. The top plot shows the sound pressure waveform of
a single syllable, with the amplitude envelope outlined in red. To the right in text are the
temporal features quantified from the amplitude envelope and used in the study. The middle
plot shows the power spectrum of the same syllable. Gray dotted lines indicate the first,
second, and third quartiles of the spectral distribution (Q1, Q2, and Q3, respectively). Q2 is
the spectral median. Text to the right shows the values for the spectral features computed.
The bottom plot of the left column shows a spectrogram of the syllable. The black dotted
line indicates the mean fundamental frequency (Mean F0) computed from the time-varying
fundamental. The text to the right shows the variety of features computed for the time-
varying fundamental frequency. (b) Examples showing syllable variety along each acoustic
feature axis. The top plot shows syllables ordered in increasing maximum amplitude, middle
plot shows increasing mean spectral frequency, and bottom shows increasing saliency.

(Kurt S) was correlated to spectral standard deviation (Std S). The spectral entropy Ent
S, a measure of inharmonicity, was strongly negatively correlated with Saliency - harmonic
stack like syllables have low spectral entropies and high saliency, while noisy syllables have
high entropies and low saliency. Both saliency and spectral entropy were correlated with
spectral standard deviation and kurtosis. Quantities that describe purely temporal features
were computed from the amplitude envelope and formed the last group (blue in Figure 3b).
The mean and standard deviation of the amplitude envelope (not shown), were linearly pro-
portional to syllable duration. The entropy of the amplitude envelope, temporal entropy
(Ent T), was strongly negatively correlated with maximum amplitude (Max A) - syllables
with amplitude envelopes with high variation, such as Begging and Nest calls, also tended
to have lower maximum amplitudes. Temporal skew (Skew T) and kurtosis (Kurt T) were
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Figure 1.3: Acoustic features cluster into groups: (a) We performed a correlation
analysis to show how the acoustic features were related to each other. The correlation matrix
shows that the features fall into several clustered groups - spectrotemporal features involving
fundamental frequency (Mean F0 to CV F0), two clusters of spectral distribution features
(Std S to Ent S and Mean S to Skew S), and temporal features (Skew T to Max A). (b) A
graph of these features is shown, the width of the edge is proportional to the absolute value
of the correlation coefficient between two features, and edges with magnitude less than 0.20
were discarded. The features are colored by their grouping (green = spectrotemporal, orange
= spectral distribution, blue = temporal). Within-group edges are thicker than between-
group edges. Not pictured, but utilized in the analysis, is the temporal standard deviation
(Std T), which was linearly proportional to syllable duration, and uncorrelated to the other
acoustic features.

correlated with each other but not much with other features.

How Spikes and LFP are Driven by Amplitude, Mean Spectral
Frequency, Saliency

We used an encoder analysis to understand how acoustic features drive spike rate and LFP
power. Figure 4 shows the isolation and extraction of features for syllables and the LFP. A
syllable was isolated (Figure 4a), and the multi-electrode spike trains and LFP were taken for
each of the ten trials the syllable was presented for (Figure 4c). The spike rate was computed
for each trial, and averaged across trials. The power spectrum was computed from the LFP
on each electrode for each trial, and the power spectra were averaged across trials to produce
multi-electrode power spectra (Figure 4d). Performance of encoders and decoders for the
LFP, described shortly, were contingent on first taking the log of the power spectra, and
then z-scoring within electrode and frequency. The frequencies were then summed in three
bins - 0-30Hz, 30-80Hz, and 80-190Hz.
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a) b)

c) d)

Figure 1.4: Preprocessing of syllables and LFP: An illustration of the methods used
to transform the sound stimulus, multi-electrode local field potential, and spike trains. (a)
A spectrogram of the vocalization, a male distance call (DC) which was emitted three times
in a row. Dashed lines indicate the syllable chosen for visualization. The sequence of three
call syllables was randomly repeated 10 times over the course of the recording session, along
with other types of calls and songs that comprise the full vocal repertoire. (b) Acoustic
features were computed for the syllable and z-scored across acoustic features for all syllables.
The plot shows these properties for the selected syllable. (c) One trial of raw local field
potential (LFP) recorded from a 8x2 multi-electrode array in the Zebra Finch auditory
system, shown here for one trial. Electrodes are ordered rostral-caudal. (d) The z-scored
multi-electrode LFP log power spectra, computed per trial and then averaged across trials.
Each row corresponds to an electrode, and electrodes are ordered rostral-caudal, in the same
order as (c). Frequency varies along the x-axis.

We used a stagewise procedure to build the encoder, meaning acoustic features were
included in the encoder only if they boosted generalization performance, measured by the
cross-validated R2 (see Methods - Encoder to Predict Spikes and LFP from Acoustic Fea-
tures). However, because some of the acoustic features were highly correlated, we first chose
a set of baseline features that were always included in the regression - maximum amplitude
(Max A), mean spectral frequency (Mean S), and pitch saliency (Saliency). We used a non-
linear spline basis that allowed us to simultaneously fit nonlinear tuning curves between the
neural response (spike rate or log power), and each acoustic feature (see Methods - Spline
Basis Representation of Acoustic Features and Methods - Tuning Curves).

Figure 5a shows example tuning curves for several acoustic features, and the top row
shows the curves for maximum amplitude (Max A). Strikingly, the neural response to am-
plitude is bimodal, some neurons respond to increases in amplitude by increasing their spike
rate, while others decrease their spike rate (not shown). We quantified the tuning curves by
computing their linear slope, ignoring slopes from models that had a cross-validated R2 of
less than 0.05. Of the spike rate tuning curves for maximum amplitude (n=590), 62% had
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N % Negative
Slope

# Central
Peaked
Tuning
Curves

Median
Center
Frequency
(Hz)

Center
Frequency
SD

Spike Rate 652 79% 378 3155 746
LFP Power
(0-30Hz)

310 96% 68 3236 1082

LFP Power
(30-80Hz)

425 96% 138 3351 1147

LFP Power
(80-190Hz)

421 78% 193 3351 886

Table 1.1: Tuning Curve Statistics for Mean Spectral Frequency

negative slope (decreased with increasing amplitude). For 0-30Hz LFP (n=302), 85% had a
negative slope, while for 30-80Hz (n=396), 50% of the tuning curves had negative slope, and
for 80-190Hz (n=404), 47% of the tuning curves had negative slope. No significant relation-
ship was found between the anatomical corrdinates of a neuron or electrode, and the slope
of the maximum amplitude tuning curve. Thus there are neurons that respond to increases
in amplitude with increasing spike rate, and neurons that respond to increases in amplitude
with a decreasing spike rate, and the same properties are reflected in tuning curves for the
LFP.

The second row of Figure 5a illustrates that the relationship between spike rate or LFP
power and mean spectral frequency is multimodal and nonlinear. Most spike rate tuning
curves for mean spectral frequency had a negative slope (80%, n=652), meaning spike rate
decreased as mean spectral frequency increased. Some spike rate tuning curves had a local
maximum peak (also called a best frequency) near 3kHz. Examining only the tuning curves
that had an identifiable local maximum (not at the endpoints) in the 2-4kHz range, we
found that 58% (n=378) had an identifiable center frequency. The median center frequency
of these tuning curves was 3.1kHz, with a standard deviation of 0.7kHz. The spike rate tuning
curves were most similar to the 80-190Hz LFP band (Table 1). Tuning curves for 0-30Hz
and 30-80Hz LFP were predominantly negative sloped, and had central peaks less often. No
significant spatial relationship, i.e. tonotopy, was found between anatomical location and
center frequency. To summarize, increases in mean spectral frequency most often decreased
neural activity when measured by spike rate or LFP power. When tuning curves had a
central peak, it was most often around 3kHz.

In the third row of Figure 5a we show example tuning curves for saliency. The curves
exhibit some bimodality (positive and negative slopes). For spike rate tuning curves (n=620),
44% had a negative slope, while for 0-30Hz LFP (n=301) and 30-80Hz LFP (n=344), only
20% and 30% of the tuning curves had negative slopes, respectively. For the 80-190Hz
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a) b)

c)

Figure 1.5: How spikes and LFP power are driven by amplitude, spectral mean,
saliency: We built encoders to predict spikes or LFP power from nonlinearly mapped
acoustic features. The encoder fit tuning curves simultaneously across acoustic features, and
a weighted combination of tuning curve outputs were used to predict neural activity. (a)
Tuning curves across sites for a subset of neurons, relating spike rate to acoustic features
(first column). The subsequent columns show the mapping between LFP power in three
different frequency bands (0-30Hz, second column, 30-80Hz third column, 80-190Hz fourth
column). Tuning curves are shown for maximum amplitude (Max A, first row), mean spectral
frequency (Mean S, second row), saliency (third row), and temporal skew (Skew T, fourth
row). (b) In addition to the baseline features Max A, Mean S, and Saliency, other acoustic
features were included using a stagewise regression if they improved encoder performance
above baseline. The plot shows the fraction of times an acoustic feature was included in
the regression, when predicting spike rate (first column), or one of the LFP power frequency
bands (next three columns). (c) A boxplot of encoder performance for neurons (first box,
red) and LFP power by frequency bands (subsequent columns, blue).

frequency band, 40% (n=355) of the tuning curves had a negative slope, similar to spike rate
tuning curves. The tuning curves for temporal skew (Skew T) overwhelmingly exhibited
negative slopes, the percentage of negative-sloped tuning curves was greater than 95% for
spike rate, and all LFP frequency bands.

The stagewise approach we utilized to fit our encoder allowed us to determine how impor-
tant non-baseline acoustic features were in predicting neural activity. Figure 5b shows the
fraction of times that a non-baseline acoustic feature was included in the analysis (“Feature
Importance”). It is important to note that we allowed temporal standard deviation (Std T)
to be a feature. Std T is linearly proportional to syllable duration, and was included in a
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significant fraction (> 90%) of encoders for the 0-30Hz and 30-80Hz frequency bands, though
it is not displayed in Figure 5b. The temporal skew (Skew T) and temporal entropy (Ent
T) were the top non-baseline features utilized by the encoders, with the rest of the acoustic
features being rarely included.

The overall performance for the encoders, quantified by the cross-validated R2, is shown
in Figure 5c for all LFP frequency bands spike rate. There was a significant effect of neu-
ral signal representation on encoder performance (ANOVA, F(3, 1631)=164, p<0.01), with
the encoder models performing best for high frequency LFP (80-190Hz). There was also a
significant, albeit smaller effect of region on encoder performance (ANOVA, F(5, 1629)=9,
p<0.01); the encoders performed best for neurons/electrodes in region CM, and worst for
region NCM. To summarize the results in this section, we successfully predicted spike rates
for most neurons, and LFP power for most electrodes, with our encoder models. Neural
responses were found to covary with amplitude (Max A) and saliency (Saliency) in a bi-
modal fashion, with some neurons/electrodes decreasing their response to increases in those
variables, and others decreasing their response. Neural activity typically decreased with
increasing mean spectral frequency (Mean S) or temporal skew (Skew T).

Regional Specificity in Single Electrode Decoding Performance

We built decoders to predict individual acoustic features from multi-band LFP power on
individual electrodes to investigate whether there is regional specificity in decoding perfor-
mance, before exploring ensemble decoding. The panels in Figure 6a show single electrode
decoder performance across space, for all electrodes across recording sites, with electrodes
from the two hemispheres plotted together as a function of their distance from the midline
along the medial-lateral axis, and their rostral-caudal distance from region L2A. Figure 6b
shows the regions that correspond to the plotted electrode locations. Figure 6c shows sin-
gle electrode decoder performance (cross-validated R2) averaged within acoustic feature and
anatomical region. Regional specificity in decoding performance was tested for the represen-
tative features shown in Figure 6a. Maximum amplitude (Max A) was best decoded from
regions L2 and L1 (ANOVA, F(4, 302)=9.1, p<0.01), while mean spectral frequency (Mean
S) was best decoded from regions L2 and L3 (ANOVA, F(4, 309)=9.1, p<0.01). Saliency
had less regional specificity, but was best decoded from region CM (ANOVA, F(4, 311)=7.5,
p<0.01). Temporal skew (Skew T) had very little regional specificity, but was best decoded
from L3 (ANOVA, F(4, 286)=3.2, p=0.01). These results show that amplitude and frequency
can be best decoded from electrodes in regions CM and L1, L2, L3.

Acoustic Features Decoded from Ensemble Activity

Our encoder analysis demonstrated that neuronal spike rates and LFP power are driven by
maximum amplitude (Max A), mean spectral frequency (Mean S), pitch saliency (Saliency),
and temporal skew (Skew T), and our single electrode decoding analysis showed that these
features can be decoded, with some regional specificity. Training decoders to predict indi-
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Figure 1.6: Regional specificity of single electrode decoder performance: Decoders
were trained to predict acoustic feature values from the full LFP power spectrum of single
electrodes. (a) Maps of single electrode decoder performance by anatomical location. Elec-
trodes on left and right hemisphere are plotted together, with the left hemisphere points
mirrored to correspond to the right hemisphere anatomical coordinates. (b) The anatomical
region that corresponds to each electrode. (c) The R2 across electrodes, averaged within
acoustic property and region.

vidual acoustic features from ensemble activity allows us to explore how much information
is contained in the population code and whether pairwise correlations improve decoder per-
formance. So we built ensemble decoders to predict each individual acoustic feature from
ensemble activity, represented by the population spike rate vector, LFP power spectra, or
pairwise spike synchrony (Methods - Encoder and Decoder Dataset Construction). We uti-
lized a simple measure of zero-lag pairwise synchrony, equal to the normalized dot product
between two binary spike trains, and included synchrony terms for all pairs of neurons in an
ensemble as input features to the decoder.

Figure 7a shows the mean performance by neural response type and acoustic feature.
First, we found that including pairwise spike synchrony improved decoder performance for
maximum amplitude (Max A) and spectral shape features (Mean S, Q2, Q3, Skew S, paired
t-test, p<0.01 for all comparisons). No significant difference in performance was found
between the population spike rate vector and multi-electrode LFP power spectra for those
features (paired t-test, p>0.01 for all comparisons). Saliency and spectral entropy (Ent
S) were best encoded by spike rate, which outperformed the multi-electrode LFP power
spectra. LFP spectra outperformed spike rate and synchrony for temporal entropy (Ent T)
and temporal skew (Skew T), implying that the power spectra representation contains more
information about temporal properties than spike rate. To summarize, syllable amplitude
and spectral shape are best decoded from population activity, and pairwise synchrony terms
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Max A Mean S Saliency Skew S Skew T
Pop. Spike
Rate

30 +/- 2 24 +/- 1 34 +/- 3 28 +/- 2 24 +/- 3

Multi-
electrode
LFP

18 +/- 1 15 +/- 1 20 +/- 1 21 +/- 1 21 +/- 2

Table 1.2: Average number of neurons electrodes needed to decode acoustic features to 90%
of peak ensemble decoding performance. Average was taken over dual-hemisphere recording
sites, numbers listed are mean +/- stderr.

contain information about acoustic features that is not captured by the population spike
rate vector.

We further investigated how decoder performance increased as a function of number of
electrodes. To do this, we first merged electrodes from each hemisphere for each recording
site, providing up to 32 electrodes which we utilized to decode individual acoustic features.
Through spike sorting we obtained 1-3 cells per electrode, and utilized up to 60 neurons. For
the population spike rate vector and multi-electrode LFP spectra, we ran a decoder for a
variety of combinations of electrodes for a fixed number of electrodes (Methods - Ensemble
Decoding Analysis). The results are shown in Figure 7b and 7c. Each curve within a
plot shows the average cross-validation R2 for a fixed number of electrodes/neurons, from
a dual-hemisphere recording site. We quantified the number of neurons necessary to reach
90% peak decoder performance, across recording sites. We found that, when decoding from
population spike rate, 25-30 neurons were needed to reach the 90% peak decoder performance,
while decoding from LFP power spectra, 15-20 electrodes were required (Table 2). Given
that ensemble decoding performance greatly outperforms single electrode performance, we
conclude that the neural representation of these key acoustical features in the avian auditory
system is based on a distributed ensemble code. Also, given that only up to half of the number
of electrodes/neurons were needed to reach near-peak performance, we conclude that there
is redundancy in that code.

LFP Power is a Mix of Local Population Spike Rate and
Synchrony

The relationship between population spike activity and LFP power has not been directly
quantified, so we built encoder models to predict LFP power in a given frequency band
directly from population spike rate. In addition, we explored if spike synchrony better pre-
dicted LFP power (see Methods - Population Spike Rate and Spike Synchrony and Methods
- Spike Rate to LFP Power Encoder). Figure 8a shows that LFP power can be predicted
robustly by population spike rate. Adding spike synchrony terms improves predictive perfor-
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a)

b)

c)

Figure 1.7: Ensemble decoding boosts performance: (a) Decoders were trained on
individual electrode arrays from each hemisphere (16 electrodes) to predict each acoustic
feature, from the population spike rate vector (red), LFP power spectra (blue), and pairwise
spike synchrony (brown). Adding pairwise synchrony terms to population spike rate vector
typically boosted neuron decoding performance to that of spikes and LFP power. (b) Av-
erage spike rate decoder performance was estimated as a function of the number of neurons
from combined dual-hemisphere recordings. (c) Average LFP PSD decoder performance was
estimated as a function of number of electrodes for combined dual-hemisphere recordings (32
electrodes total) at each site.

mance for the 30-80Hz and 80-190Hz bands (paired t-test, p<0.01 for all comparisons). For
spike rate alone, performance increased with increasing frequency (ANOVA, F(2, 875)=62.5,
p<0.01). The same was true for spike rate combined with spike synchrony (ANOVA, F(2,
880)=281.8, p<0.01). To summarize, the results in Figure 8a demonstrate that the LFP can
be predicted best at high frequencies, by a combination of population spike rate and spike
synchrony.

The LFP is typically described as the summed local electrical activity near a recording
electrode [15]. On the one hand, it is therefore a good measure of the population response.
On the other hand, by averaging local activity it could also eliminated ensemble codes
occurring at that scale. It is important therefore to assess the size of the local area that
is recorded in the LFP obtained from a single electrode. To investigate how much of an
effect neurons had on LFP power as a function of distance from the electrode, we utilized
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Figure 1.8: LFP power is a mix of local spike rate and synchrony: An encoder was
trained to predict LFP power on a given electrode and frequency band from the population
spike rate vector (“Rate”), and another encoder was trained that predicted LFP power from
population spike rate combined with spike synchrony (“Rate+Sync”). (a) A boxplot of
encoder performance for each frequency frequency, when predicting LFP power from rate
alone (“Rate”, red), and rate + spike synchrony (“Rate+Sync”, brown). Adding synchrony
terms improves predictive performance for the 30-80Hz and 80-190Hz frequency bands. (b)
To determine the spatial spread of neuronal contribution to LFP power, we fit exponential
curves for each frequency band that mapped distance from the electrode whose LFP power is
being predicted (x-axis) to the squared-weight of a neuron in the encoder model. The length
constants of the curves decrease as function of frequency bands, from 770um (0-30Hz, black),
237um (30-80Hz, red), to 212um (80-190Hz, blue). Inset: The average squared-weight for
neurons on the same electrode as the LFP being predicted (Same Electrode), and neurons
on a different electrode, for the three frequency bands.

the weights of the encoder trained to predict LFP power from spike rate. Each neuron,
with its associated encoder weight, was a given distance from the electrode whose LFP
was being predicted. We fit an exponential curve that mapped distance from predicted
electrode to the squared-weight from the encoder for each neuron. For each curve we fit
several parameters, and one was a space constant that showed how quickly squared-weight
decayed to 36.8% of the maximum. The space constants were 770µm for 0-30Hz (R2=0.02),
237µm for 30-80Hz (R2=0.05), and 212µm for 80-190Hz (R2=0.08). These results show
that for higher frequencies, the contribution to LFP power is primarily local (< 300µm),
while low frequency LFP power integrates over a longer distance (< 800µm). The inset of
Figure 8b shows the average encoder weights-squared for neurons on the same electrode, vs
neurons on a different electrode. Neurons on the same electrode contribute much more to
LFP power, an order of magnitude more, than neurons on other electrodes (paired t-test,
p <0.01 for all comparisons). To summarize, we have shown that LFP power is predicted
from predominantly local spike rates.
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1.4 Discussion

In this work we have shown that Zebra finch syllables can be quantified by their acoustic
features in a duration-independent fashion, that some of these acoustic features, mainly
amplitude, spectral distribution statistics, pitch saliency, and temporal skew, can be used to
predict both spike rate and LFP power. We showed that these features can be decoded from
the spike rate vector of a population of neurons, and that the decoding performance grows as
more neurons are utilized. We showed that the power spectrum of the LFP in the Zebra finch
auditory system contains a significant amount of information about the acoustic features of
vocalizations, and that regional differences exist in the type of information decoded.

Training encoders enabled us to say what causally drove spike rate or LFP power on
individual neurons or electrodes [22], while decoders enabled us to determine the nature of
ensemble encoding by population activity (Figure 7). The acoustic features that drove neu-
rons the most, such as maximum amplitude and spectral shape, were also acoustic features
that were well decoded. We found that decoding from multi-electrode LFP power spectra
gave performance on par with that of the population spike rate. This is an important find-
ing for brain-machine interfaces, which could potentially forgo the computationally expensive
step of spike identification and sorting for the cheaper alternative of simply computing the
power spectra of the LFP.

We found that decoding from population spike rate plus pairwise spike synchrony out-
performed decoding from LFP power spectra or spike rate alone. This lends support to the
idea that stimulus information can be carried by the pairwise activity of neurons, and is
in potential conflict with findings by [14], who show that pairwise correlations do not con-
tain additional stimulus information. Our approach differs from that research in that they
broke their stimuli into categorical tokens prior to using an information theoretic approach
to quantify the importance of correlations, which effectively determines whether pairwise
correlations contain information about stimulus identity. In contrast, we used a decoding
approach to show that acoustic features of stimuli were better decoded when pairwise terms
were introduced. [14] are effectively showing that pairwise correlations dont contain informa-
tion about stimulus identity. We are showing that pairwise correlations contain information
about specific acoustic features. Because acoustic features can be similar between stimuli,
a pairwise correlation code that carries information about acoustic features, will be simi-
lar for two acoustically similar but distinct stimuli, decreasing the ability of a decoder to
discriminate stimulus identity but maintaining information about the relevant features.

The Zebra finch auditory system is not a homogenous structure. There is some evidence
that it is anatomically layered in a way homologous to mammalian cortex [23]. A detailed
analysis of regional specificity by [24] showed that regions L2 and L1 were the least selective
and tolerant, responding to most acoustic stimuli in a way that is not invariant to slight
changes in acoustic features, while regions NCM and L3 were the most selective and tolerant.
[25] analyzed the decoding performance of call type using the same dataset analyzed in this
work, and found regional differences as well. They found that regions L3 and CM were
the best at classifying Distance Calls and Field L were the best at classifying song. They
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also found that regions L3 and CMM was the most invariant (or tolerant) of variation in
Distance calls. In our work, we found regions L2, L1, and CM were most effective for decoding
maximum amplitude and mean spectral frequency, while region NCM was the least effective.
We interpret this as showing NCM to be more invariant to amplitude and mean spectral
frequency than other regions. We also found region L3 to less predicted by amplitude, which
could contribute to its tolerance to acoustic perturbations in vocalizations found in other
work.

Finally, we demonstrated a concrete relationship between the local spike rate and spike
synchrony, and LFP power that the population produces. If the LFP is comprised predom-
inantly of synaptic currents, then we are showing that those synaptic currents are directly
translated into the average spike rates of neurons, and enabled us to predict the LFP power
from spike rate. We found that the addition of spike synchrony boosted our predictive
power for the 30-80Hz and 80-190Hz frequency bands. The exponential curve fits shown in
Figure 8b did not fit the data perfectly; there was much noise in the relationship between
distance from predicted electrode and squared-weight. This noise could be due to differences
in neuron density and electrical properties over space.

1.5 Methods

Electrophysiological methods and acoustic analyses are fully described in [25] and [3] respec-
tively and are summarized here below. We then describe in detail the computational methods
processing and representing local field potentials (LFPs), and the encoding and decoding
analyses. All animal procedures were approved by the Animal Care and Use Committee
of the University of California Berkeley, and were in accordance with the NIH guidelines
regarding the care and use of animals for experimental procedures.

Animals

The animal subjects studied were adult and juvenile zebra finches (Taeniopygia guttata)
from the colonies of the Theunissen and Bentley labs (University of California, Berkeley,
USA) (Figure 1a). The electrophysiology experiments were performed on four male and
two female adults from the Theunissen lab colony. The acoustic recordings described in the
next subsection involved twenty-three birds (eight adult males, seven adult females, four
female chicks, four male chicks). Six adults (three males, three females) were borrowed from
the Bentley lab. The electrophysiology subjects were housed in unisex cages and allowed
to interact freely with their cagemates. All subjects were in the same room and were could
interact visually acoustically. The acoustic recordings were performed on pair-bonded adults
housed in groups of 2-3 pairs. Chicks were housed with their parents and siblings.
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Zebra Finch Vocalization Types

Zebra finches communicate using a repertoire of vocalizations that are dependent on be-
havioral context. Following [26], acoustic signatures and behavioral contexts were used to
classify vocalizations into nine different categories (Figure 1d). A detailed description of call
categories can be found [25]. We provide here, a very succinct summary of that characteriza-
tion for a subset of the calls analyzed here and used in the neurophysiological experiments.

Song is a multi-syllable vocalization emitted only by males. Songs are comprised of
repeating motifs of syllables, and in the dataset, have a duration of 1424 +/- 983ms. Song
in zebra finches are used in pair bonding and mating behavior. The repertoire contains
monosyllabic affiliative calls used to maintain contact. Distance calls are loud, used when
not in visual contact, and longer in duration (169 +/- 49ms) than Tet calls, emitted when in
visual contact during hopping movements, with a duration of 81 +/- 16ms. Zebra finch also
produce software calls used principally in the initial stages of pair bonding. Nest calls are
soft monosyllabic vocalizations emitted by zebra finches looking for a nest or constructing a
nest. With a duration of 95 +/- 75ms, they are similar to Tets.

Zebra finches emit two types of calls when they are acting out aggressively or being
attacked. Wsst calls are noisy (broadband) and often long (503 +/- 499ms) calls emitted
by a zebra finch when it is being aggressive. Distress calls are long (452 +/- 377ms), loud,
and high-pitched vocalizations emitted by a zebra finch when escaping from an aggressive
cage-mate. Both types of vocalizations can be mono or polysyllabic.

Two calls are emitted by juveniles only. Long tonal calls are the precursor to the adult
distance calls; they are loud, long (durations of 184 +/- 63ms) and monosyllabic, emitted
when the chick is separated from its siblings or parents. Begging calls are emitted when a
juvenile zebra finch is begging for food from a parent, it is loud, long (duration of 382 +/-
289ms), and monosyllabic.

Electrophysiology and Histology

Twenty-four hours before recording, the subject was deeply anaesthetized with isoflurane and
injected topically with lidocaine in order to remove a patch of skin over the skull and cement
a head-holding fixture. On recording day, the subject was fasted for one hour, anaesthetized
with urethane, head-fixed in a stereotaxic device, and two small rectangular openings were
made over the auditory area of each hemisphere. An electrode array with two columns
of eight tungsten electrodes was lowered into each hemisphere (Figure 1b,c). Electrodes
were coated in DiI powder so that their path through the tissue could be analyzed post-
experiment. The electrodes ran rostral-caudal lengthwise in eight rows, with two columns
that ran medial-lateral.

During the experiment, the subject was placed in a soundproof chamber and electrode
arrays were independently lowered. Probe stimuli were used to determine visually whether
the areas were auditory. Once a reliable site was found, a stimulus protocol was played over
speakers within the chamber (described in next subsection). When the stimulus protocol was
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complete, the electrodes were lowered deeper by at least 100µm before playing the protocol
again at the next site. Once the recordings were finished, typically after 4-5 recording sites,
the subject was killed with an overdose of isoflurane, the brain was removed and fixed with
paraformaldehyde. Coronal slices of 20µm were made with a cryostat and Nissl stained.
The slices were examined under a microscope and the DiI tracts were used to determine
electrode penetration through anatomical regions. Six auditory areas were differentiated:
three regions of field L (L1, L2, L3), caudomedial and caudolateral mesopallium (CMM and
CML), and caudomedial nidopallium (NCM).

Stimulus Protocol

The vocalizations of ten individuals (three adult females, three adult males, four chicks)
were used in the stimulus protocol. The vocalizations of four of the individuals (one male
adult, one female adult, one male chick, one female chick) were played at each recording
site, and three of each vocalization type were randomly selected from the other birds to be
played. Each vocalization was played on average 10 times, randomly interleaved with other
vocalizations. The protocol lasted an average of one hour. Monosyllabic vocalizations such
as Distance and Tet calls were played with 3-4 different renditions in series with inter-syllable
intervals chosen to match what was observed naturally.

Syllable Segmentation

For this work we segmented all call types into syllables including Songs and Begging calls.
The amplitude envelope of the series of call syllables was used for the segmentation. First
the spectrogram was computed, and then the standard deviation of power across frequencies
was computed at each time point to produce a time-varying amplitude envelope. Syllables
began when the amplitude envelope exceeded a threshold value set to the 2nd percentile of
the amplitude envelope distribution for all syllables. The syllable was marked as completed
when the amplitude envelope subsequently dropped below this threshold. Syllables separated
by 20ms or less were considered as one event.

Acoustic Features

We used a classic bio-acoustical approach to estimate a complete set of acoustic features
of each syllable, referred to as Predefined Acoustical Features described extensively in the
Methods of [3] and summarized here. The 20 acoustic features fall into three different cat-
egories - temporal, spectral, and fundamental features. Temporal features were computed
from the temporal envelope of the syllable. The temporal envelope was computed by rectify-
ing the syllables raw sound pressure waveform and low-pass filtering with a cutoff frequency
of 20 Hz. The temporal envelope was normalized by its sum, turning it into a probability
distribution. The mean (Mean T), standard deviation (Std T), skew (Skew T), kurtosis
(Kurt T), and entropy (Ent T) were computed and used as features. The peak amplitude of
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the syllable was computed as the peak of the non-normalized temporal envelope, and labeled
as Max A.

Spectral features were computed from the spectral envelope, which is the power spectrum
computed from the raw syllable sound pressure waveform. As was done for the temporal
envelope, the spectral envelope was normalized by its sum, and the mean (Mean S), standard
deviation (Std S), skew (Skew S), kurtosis (Kurt S) and entropy (Ent S) were computed. In
addition, the 25th, 50th, and 75th percentile of the distribution were computed, and labeled
as Q1, Q2, and Q3, respectively.

Time-varying fundamental features were computed from the spectrogram of the syllable
and other properties. A feature was computed to quantify the degree of periodicity or pitch
saliency of the syllable. To compute this feature, first the auto-correlation of the raw sound
pressure waveform was computed. The peak in the auto-covariance at non-zero lag was
found, and the saliency was then computed as the ratio between that peak value and the
value of the auto-correlation at lag zero. The saliency feature was labeled as Saliency.

The pitch for all time windows where the saliency was greater than 0.5 was computed
by fitting the power spectrum at a time point with that of an idealized harmonic stack.
Deviations from this idealized harmonic stack were used to quantify inharmonic properties,
such as the presence of a second peak in the spectrum not explained by the stack. This
“double voice phenomenon” was the result of the two independently driven vocal folds found
in the syrinxes of songbirds [27]. Songs birds are capable of producing two independent
voices although this is relatively rare in the zebra finch where the two folds are typically
synchronized. The second fundamental frequency in this situations was computed as the
acoustic feature Pk 2, and the acoustic feature 2nd V was defined as the percent of time a
second voice was found. Other acoustic features describing the time-varying fundamental are
the maximum, minimum, mean, and coefficient of variation in the fundamental frequency
over time, labeled Max F0, Min F0, Mean F0, CV F0, respectively.

LFP Power Spectrum Calculation

The local field potential was recorded with a sample rate of 381 Hz, limiting the maximum
frequency of analysis to 190 Hz. The LFP on each electrode was z-scored across time for the
duration of a stimulus protocol. The LFP was analyzed starting from the onset of a syllable,
and the window of analysis was extended to 30ms following the syllable offset. Syllables of
duration less than 40ms or more than 400ms were excluded from analysis.

We will denote the z-scored LFP conditioned on a stimulus s, for trial m, electrode k as
umk (t, s). We computed the LFP power spectrum from the Gaussian-windowed short-time
Fourier Transform (STFT). The time points in the spectrogram were spaced by an increment
of ∆τ = 5ms. The window size was W=0.060. The frequency spacing was constant across
stimuli due to the fixed window size, equal to f = 9.78 Hz, and ranged from 0 to 190 Hz.
The value of the STFT, centered at time and frequency f was computed as:

zmk (τ, f, s) =
∑T
t=1 exp(−

(t−τ)2
2σW

) exp(i2πft) umk (t, s)
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where i=
√
−1, T is the duration of the stimulus in number of time points at sample rate

fs = 381 Hz, and W was chosen such that 95% of the mass of the Gaussian was contained
in the window:

σW = W
6

From the complex-valued STFT, we averaged power across windowed segments, of which
there were TW = floor( T

W
), to get the power spectrum for electrode k, trial m, stimulus s:

xmk (f, s) = 1
TW

∑TW
τ=1 |zmk (τ, f, s)|2

Once the power spectra were computed for each trial, they were averaged across trials to
produce an average power spectrum for stimulus s. Finally, the power spectra were binned
into three bins: 0-30Hz, 30-80Hz, 80-190Hz. Power within a band was the sum of values for
xmk (f, s) within that bands frequencies.

Population Spike Rate and Spike Synchrony

The spike rate for cell i, trial m, stimulus s, was computed as the number of spikes divided by
the duration of the stimulus. Let Nm

i (s) be the number of spikes that occur during stimulus
s, trial m, for cell i. Then the spike rate is given as:

rmi (s) =
Nm

i (s)

duration of s

The spike rate for cell i was averaged across trials to produce an average spike rate ri(s),
and the the population spike rate vector for stimulus s was defined as the vector of average
spike rates for Q cells recorded at a given site:

r(s) = [r1(s) ... rQ(s)]

To compute spike rate synchrony for stimulus s, trial m, between cells i and j, we first
binned the spike trains for i and j using a bin size of 3ms. Spike synchrony was computed
as:

γmij (s) = # bins where i and j spiked√
Nm

i (s)Nm
j (s)

Spike synchrony was then averaged across trials to produce an average synchrony γij(s).
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Encoder and Decoder Dataset Construction

We used an encoding approach to determine what acoustic features drove individual neural
responses, and a decoding approach to determine how much information about acoustic
features was contained in ensemble activity. We defined the vector y(s) to be a collection of
neural states, associated with stimulus s. y(s) was comprised of one or more of the following
neural states: the multi-electrode LFP power spectra, (“LFP PSD”), the population spike
rate vector (“Spike Rate”), or the pairwise synchrony for all pairs of neurons (“Spike Sync”).
We defined a vector x(s) to be a collection of acoustic features associated with stimulus s.
The encoder attempts to predict a single scalar neural feature yi(s) from the vector of
acoustic features x(s). The decoder attempts to predict a single acoustic feature xj(s) from
the neural feature vector y(s).

The dataset was constructed from one run of a stimulus protocol on a recording site.
Each stimulus protocol typically contained around 130 vocalizations randomly presented 10
times each. After segmentation and trial averaging, there were roughly D=600 samples.
Each protocol contained vocalizations from eleven different birds - seven adults and four
chicks.

Acoustic Feature Decoder Optimization and Cross Validation

The decoder tries to predict a single acoustic feature xj(s) from a vector of neural responses
y(s). We define the matrix Y to be of size DxM , where D is the number of syllables in the
dataset, and M is the number of neural features for a given representation. We define the
matrix X to contain D rows and 1 column, each row contains value of the acoustic feature
xj(s) for a different syllable s. For the LFP PSD neural features, M=48 (16 electrodes x 3
frequency bands). For the Spike Rate neural features, there were typically 25-35 cells per
site, so M ranged from 25-35, while for the spike synchrony features, M ranged from 300 to
595. The vector y was always z-scored prior to fitting, as was each column of X. Regression
finds optimal linear model weights w and scalar intercept b that minimize the sum of squares
error between the model prediction and the actual data:

L(X, y, w) = ‖(Xw + b)− y‖2

Given the high dimensionality of some of our feature spaces, it was important to regularize
values of w, so that we did not overfit the data. We utilized Ridge regression with scikits.learn
to do this regularization. Ridge regression computes the optimal weight vector w as:

w = (XTX − αI)−1XTy

the value α is a user-defined hyperparameter, high values α of force weights towards zero.
The value of the hyperparameter α is found using a cross-validated approach. Our goal was
to find a value for α that maximized generalization performance. We tested 50 values of α,
chosen from a logarithmically spaced set that ranged from 10−2 to 106. For each candidate
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value of α, we divided the data into a training and validation set 50 different times, and
trained the model on the training set to find a set of weights w, evaluating the performance
on the test set. The value of α that had the best average performance on the 50 test sets was
chosen as the optimal α. We trained a final model on the entire dataset using the optimal
α, to produce a final set of weights used for analysis.

Vocalizations within the same call category for the same bird can be highly correlated, and
may produce very similar neural responses. This could artificially inflate the performance.
To control for this, the validation set was comprised of the vocalizations of two randomly
chosen adults and two randomly chosen juveniles from the 11 birds in the dataset. The
validation set always had at least one example of each call type.

We used the R2 averaged across validation sets, the “cross-validated R2”, as a perfor-
mance measure for our data. The formula for R2 is given as:

R2 = Lnull−L
Lnull

where Lnull is the sum of squares error for a model that only tries to predict y with the
intercept term b. It is well known that the R2 increases when the number of features M
increases, but this does not apply to the R2 computed on validation sets, which enabled us
to compare model performance between models with different numbers of parameters.

Ensemble Decoding Analysis

We computed the decoder performance for each acoustic feature as a function of the number
of electrodes. To do this, we combined data for each site across hemispheres, giving a total
of 32 electrodes per recording site. For each site, a number of electrodes was selected ranging
from 1, 4, 8, up to 32 in increments of 4. Once the number of electrodes was selected, up
to fifty different combinations of that number of electrodes were selected from the site data.
A decoder was trained on each combination, using cross validated Ridge regression decoder
methods described in previous sections. The validation R2 was computed for each electrode
combination, and the mean R2 across combinations was reported as the performance for
that site given the number of electrodes specified.

Spline Basis Representation of Acoustic Features

We assumed that the relationship between acoustic features and neural activity was poten-
tially nonlinear by transforming each acoustic feature into a cubic spline basis [28]. A scalar
acoustic feature xj(s) was replaced by a five dimensional projection into the following basis:

bj(s) = [xj x2j [x3j − k1]+ [x3j − k2]+ [x3j − k3]+]

Where the [...]+ operator is rectification, values less than zero are set to zero. The values
for ki are called the knots and were chosen as the 25th, 50th, and 75th percentile of the
distribution of values for acoustic feature j.
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Encoder to Predict Spikes and LFP from Acoustic Features

The encoder tried to predict a single scalar neural output, in the form of a spike rate or
power at a given frequency band, from a set of acoustic features. Each acoustic feature was
z-scored and then projected into a spline basis, as described above. The spline basis values
were accumulated into a vector and used as the regressors in an optimization procedure
described above for the decoder, but in addition a stagewise procedure was used to select
the smallest predictive subset of acoustic features. To accomplish this, a baseline regression
was run with the basis functions of maximum amplitude, mean spectral frequency, and
saliency as regressors, and the cross-validation R2 was recorded on this baseline “active set”.
In the next step, the improvement in R2 was computed for the addition of each remaining
acoustic feature. The acoustic feature that produced the largest performance increase was
added to the active set, and the process was repeated until no acoustic features were left that
improved encoder performance. The algorithm completed by recording the acoustic features
in the active set and their incremental improvements to R2.

Tuning Curves

To compute a tuning curve for an acoustic feature, the weights of a trained encoder model
that corresponded to that feature were dot multiplied by the spline basis representation of
that feature, producing a value representing the contribution to neural response by that
acoustic feature. To produce the points that comprised the tuning curve, a spline basis
matrix was computed for 20 regularly spaced points across the acoustic feature range, and
this 20x5 matrix multiplied the 5 weights corresponding to that acoustic feature, to produce
20 values of neural response contribution (spike rate, LFP power) on the interval.

Predicting LFP Power from Population Spike Rate

In addition to trying to predict neural features from acoustic features, we also build an
encoder that attempted to predict LFP power for a given frequency and electrode from the
population spike rate vector and spike synchrony features. The dataset construction was
the same as described for the relationship between neural and acoustic features, but each
row of the data matrix X was comprised of the population spike rate vector for a given
stimulus, or in addition, the spike synchrony between each pair of cells. Each element of
the dependent variable vector y was comprised of the LFP power for a given frequency
and electrode. A separate encoder was trained for each frequency/electrode combination.
Once the encoders were trained, we fit exponential curves to the scatter data that mapped
distance from predicted electrode to neuron squared-weight, for the encoder that predicted
LFP power from the population spike rate. The form of the exponential function was:

f(x) = A exp(−x
λ
) +B
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The function was fit using the curvefit routine of scipy, and we reported the space constant
as λ a measure of spatial extent.
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Chapter 2

Distinct Oscillatory Subnetworks in
the Zebra Finch Auditory System

2.1 Abstract

To understand how an auditory system processes complex sounds, it is essential to under-
stand how the temporal envelope of sounds, i.e. the time-varying amplitude, is encoded by
neural activity. We studied the temporal envelope of Zebra finch vocalizations, and show
that it exhibits modulations in the 0-30Hz range, similar to human speech. We then built
linear filter models to predict 0-30Hz LFP activity from the temporal envelopes of vocal-
izations, achieving surprisingly high performance for electrodes near thalamorecipient areas
of Zebra finch auditory cortex. We then show that there are two spatially-distinct sub-
networks that resonate at different frequency bands, one subnetwork that resonates around
19Hz, and another subnetwork that resonates at 14Hz. These two subnetworks are present
in every anatomical region. Finally we show that we can improve predictive performance
with recurrent neural network models.

2.2 Introduction

Many animals use vocalizations to bond with each other, declare territory, signify the pres-
ence of predators, to beg for food, and other essential functions that enable their survival as a
species. Human beings arguably have the most sophisticated vocalizations, our acoustically
and temporally complex speech, comprised of a highly variable sequence of harmonic stacks
and explosive bursts. Songbirds also have a sophisticated vocal repertoire, are capable of
learning vocalizations through mimicry, and have auditory systems with a comparable com-
plexity to that of mammals [29]. The study of Avian auditory systems can lead to a better
understanding of the auditory systems of their mammalian counterparts.

A fundamental component to both human speech and Avian vocalizations is the temporal
envelope, which is low-passed and slowly changing (< 30Hz). The temporal envelope of
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human speech, ranging in frequency to 2-20Hz, is well represented in human auditory cortex
[30]. The temporal modulation spectrum of speech, which is the spectrum of frequencies
present in the temporal envelope, was found to have consistent peaks at 2Hz and 5Hz across
multiple languages [31]. [32] explored the joint spectro-temporal modulation spectra of Zebra
finch song, and found temporal modulation frequencies to be necessarily low (< 50Hz).

Modulations of the temporal envelope have been shown to influence neural activity in
Zebra finch auditory cortex [33]. In the work the researchers identified neurons that adapted
their temporal integration timescale to the overall temporal envelope magnitude, integrating
over shorter timescales for louder stimuli. Linear filter models were used in [34] to decode
the temporal envelope of speech from human auditory areas. Taken together, these separate
tracts of research show that temporal envelopes of vocalizations are encoded by both Zebra
finch and human auditory neurons.

For our study we focused on 5-30Hz activity of the multi-electrode local field potential
(LFP), in Zebra finch auditory cortex. The local field potential is a complex mixture of
membrane currents from both synapses and voltage-gated ion channels [15]. There is evidence
in mammals that the auditory LFP is comprised of a nested hierarchy of timescales [20].
Temporal envelope modulations occur in the 0-30Hz frequency band, and neural activity has
been shown to follow the temporal envelope, but it is unknown in Avian auditory systems
whether there are other frequencies of oscillation in the 0-30Hz band that coexist with the
encoding of the temporal envelope, originated from independent processes. Our work first
explores the temporal modulation spectra of vocalizations across the repertoire of the Zebra
finch. Then we explore the 5-30Hz LFP, using linear and nonlinear models to predict multi-
electrode LFP from the stimulus amplitude envelope.

2.3 Results

The Temporal Modulation Spectrum of Zebra Finch Vocalizations

The temporal modulation spectrum for a set of vocalizations is the set of frequencies for
which the amplitude envelope oscillates. Figure 1 shows the approach we used to quantify
the modulation spectrum of different types of vocalizations used in the experiment. Figure 1a
shows examples of several vocalizations and their amplitude envelopes. Sequences of distance
calls and tets comprise a category of “affiliative calls”, and were repeated up to three times
over two seconds, with random inter-call intervals ranging from 200-500ms. Figure 1b shows
the average temporal modulation spectrum for affiliative calls (purple), which exhibit most
power in the 2-5Hz range. Song, an example shown in the middle row of Figure 1a, had
many fast syllable transitions and the average temporal modulation spectrum exhibited a
peak from 6-10Hz. Begging calls, a fast repeating vocalization emitted only by juveniles,
also exhibited higher temporal modulation frequencies. Modulation-limited noise (ML-noise)
is a sound generated by noise that is constrained to have the same spectral and temporal
modulations as Zebra finch song [35]. The bottom row shows an example of an ML-noise



CHAPTER 2. DISTINCT OSCILLATORY SUBNETWORKS IN THE ZEBRA FINCH
AUDITORY SYSTEM 28

Figure 2.1: Temporal Modulation Frequencies of Vocalizations We computed the
temporal envelopes of Zebra finch vocalizations and their power spectra. (a) Three exam-
ples of Zebra finch vocalizations, shown by their spectrograms, and their temporal envelopes,
shown in black. The top row is a Tet, a prolific affiliative communication call. The middle
plot is a Zebra finch song, which was comprised of many closely spaced syllables. The bot-
tom plot is modulation-limited (ML) noise, which had a highly variable temporal envelope.
(b) The average temporal modulation spectra (the power spectra computed from temporal
envelopes) for several vocalization categories.

stimulus and its amplitude envelope. The temporal modulation spectrum of ML-noise has a
large DC component but very little power in the 5-30Hz range.

Linear Filter Encoders Predict LFP from Amplitude Envelope

The temporal modulation of sound through the amplitude envelope is vital for speech per-
ception, and has be successfully decoded from multi-electrode activity in human auditory
cortex [34]. We showed that temporal modulations varied for different types of Zebra finch
vocalizations, and that these modulations occur primarily in frequencies that are less than
30Hz. Our next goal was to investigate whether temporal modulations in this range were
represented by neural activity in the Zebra finch auditory system. We trained linear filter
encoder models to predict 5-30Hz LFP activity from the stimulus amplitude envelope (see
Methods - Linear Encoder Fitting). In this setting, the linear filter encoder is equivalent to a
“temporal receptive field”, that maps the recent history for the stimulus amplitude envelope
to the bandpassed voltage recorded as the LFP, similar to a STRF with only one frequency
band [1].

Figure 2 shows encoder predictions for an example song vocalization. Figure 2a shows
the song vocalization as a spectrogram, along with the amplitude envelope. Figure 2b
shows the multi-electrode LFP in black, and the linear encoder predictions in red. For
many electrodes, the LFP responded to high amplitude, temporally sharp, and pitch-salient
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a)

b)

Figure 2.2: Linear Encoder Predictions for 5-30Hz LFP We trained linear filter
models to predict 5-30Hz LFP activity on a single electrode from the temporal envelope of
Zebra finch vocalizations. (a) The spectrogram and temporal envelope (black) of a Zebra
finch song. (b) The raw 5-30Hz LFP (black) and linear filter encoder prediction (red) for
16 electrodes simultaneously recorded during the song presentation. Electrodes are ordered
rostral-caudal from top to bottom.

syllable onsets with sharp downward deflections. The linear model matches some of the
stronger downward deflections. Sharp signals such those downward deflections are high
amplitude and high-bandwidth, and predicting such a signal requires a filter with a sharp
onset response. Following the sharp negative deflections in the LFP, a complex series of lower
amplitude, lower bandwidth, more oscillatory upward and downward deflections occur. The
linear model can be seen to match some of this activity as well, implying, perhaps surprisingly,
that it may be operate on two different time-frequency scales.

We trained our linear encoders using a cross-validation approach (see Methods - Lin-
ear Encoder Fitting) and report the average cross-validation correlation coefficient between
the model prediction on the holdout set and the actual LFP. Figure 3a shows performance
for each electrode plotted by recording location. Electrodes rostral to the thalamorecip-
ient region L2A had higher performances than electrodes caudal to L2A (ANOVA, F(1,
307)=16.4, p < 0.01). Lateral distance from the midline was not a significant predictor of
encoder performance (ANOVA, F(1, 307)=0.32, p=0.57). The Zebra finch auditory system
is not a homogeneous structure, it is broken into regions with differing neuron densities and
functional encoding properties. Figure 3b breaks down decoder performance by anatomical
region. Encoder performance was significantly related to anatomical region (ANOVA, F(4,
317)=13.5, p < 0.01). Performance was highest for regions in Field L, and lowest for region
NCM.
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a) b)

Figure 2.3: Linear Encoder Performance for 5-30Hz LFP (a) A map in anatomical
coordinates of linear filter encoder performance, for electrodes across the dataset. Text anno-
tations denote the anatomical region of the electrode. Electrodes on the left hemisphere were
mirrored and superimposed with electrodes on the right hemisphere. (b) A boxplot of linear
filter encoder performance by anatomical region. Performance was best in thalamorecipient
region L2 and worst in secondary auditory region NCM.

Two Resonating Subnetworks

We observed in Figure 2 that the 5-30Hz LFP exhibited activity at two different time-
frequency scales. The first timescale was a high amplitude, high bandwidth negative de-
flection that responded to syllable onsets, while the second was a lower bandwidth, lower
amplitude, oscillating response. We analyzed the structure of the linear filters, plotted by
region in Figure 4a. The filters had two major components, an initial sharp downward de-
flection, responsible for the onset response, and a slower oscillatory component that helped
predict the resonant properties of the LFP. We quantified this oscillatory component by
fitting it with a sine curve (see Methods - Linear Filter Frequency Fitting). In figure 4b we
report the center frequencies of the resonating components. Surprisingly, the center frequen-
cies fall into a bimodal distribution, one in the 10-15Hz band, and another sharply peaked
around 20Hz. To quantify this, we pooled data across regions and fit a bimodal Gaussian
Mixture Model to the data. The bimodal GMM outperformed a unimodal model (Likelihood
Ratio Test, deviance=6.9, p < 0.01), and best fit the data with two Gaussian distributions,
one centered at 16Hz with a standard deviation of 3Hz, and another centered at 19Hz with
a standard deviation of 4Hz. The analysis was re-run within each anatomical region wtih
similar results. To summarize, our linear encoder analysis and investigation of the filters
revealed two subpopulations in the auditory network that resonate at different frequencies,
found in every anatomical region.



CHAPTER 2. DISTINCT OSCILLATORY SUBNETWORKS IN THE ZEBRA FINCH
AUDITORY SYSTEM 31

a) b)

Figure 2.4: Distinct resonating subnetworks We analyzed the linear filters of the
encoder models to determine how they mapped the temporal envelope to the LFP. (a) Filters
across anatomical regions had a common theme, a sharp response to amplitude envelope in
the first 5ms, followed by a slower oscillatory component. (b) We quantified the oscillatory
component for each filter by its best fit frequency, and here report the distribution of filter
frequencies by anatomical region.

Recurrent Neural Networks Outperform Linear Models

Although linear models performed very well for some regions, the predictions shown in Figure
2 are far from perfect. They miss many of the essential modulations that occur throughout
the stimulus. In an attempt to fit the more nonlinear aspects between the temporal envelope
and LFP, we trained recurrent neural networks (RNNs) to predict 5-30Hz activity from the
stimulus amplitude envelope. A recurrent network is a trainable nonlinear filter, and we
utilized the commonly used backpropagation through time algorithm to fit networks to the
data (see Methods - Training Recurrent Neural Networks). Our RNN models outperform
linear models on virtually every electrode, as shown in Figure 5, providing an average boost
in correlation coefficient of 0.08 (paired t-test, t=-28.9, N=447, p<0.01).

2.4 Discussion

We first showed that the temporal modulations of the stimuli we utilized for the experiment
fell in the 0-30Hz range, a range similar to the temporal modulations of human speech ([30],
[31]). Notably, song stimuli had significant power in their temporal modulation spectra from
6-10Hz, which may be the “natural” frequencies of Zebra finch song. Begging calls, emitted
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Figure 2.5: Performance enhancements from using RNNs We fit recurrent neural
networks to the data to predict the multi-electrode 0-30Hz LFP from the temporal envelope.
We compared performance of linear encoders on the x-axis, with the performance of the
RNN encoders on the y-axis. Nearly all the points lie above the unity line y=x, indicating
that RNNs outperform linear models.

by juveniles, occupied a similar range of frequencies as song, suggesting perhaps that Zebra
finch brains are tuned to resonate at these frequencies, and juveniles take advantage of these
natural frequencies to manipulate their parents.

Through linear modeling, we showed that the local field potential can be successfully
predicted from the temporal envelope of our stimuli. The reverse direction, predicting the
temporal envelope from multi-electrode LFP, was accomplished in human auditory cortex by
[34]. We found encoder performance to be region-specific, with encoders performing the best
in thalamorecipient regions, and the worst in secondary auditory region NCM. This could
be due to differences in NCM activity for awake vs anesthetized subjects, or perhaps the
function of neurons in NCM does not require the close following of the temporal envelope.
There is evidence that neurons in NCM serve to “de-noise” stimuli and are more invariant
to changes in background noise and amplitude ([36], [37]).

We were surprised to find two distinct resonating subnetworks in the Avian auditory
system, consistent across every anatomical region. This complements the hypothesis of
mammalian-like columnar microcircuitry suggested by [23] and [38], who proposed the canon-
ical microcircuit connects auditory thalamus to L2, then L2 to L1, then L1 to region CM. Its
possible that in order to communicate with each other, these regions must match resonating
frequencies in order to synchronize information transfer, a method of neural computation
termed communication by coherence proposed by [39]. It will be important in future work
to study whether these resonating frequencies change on a per-stimulus basis.

Finally, we showed that we could boost encoder performance by utilizing recurrent neural
networks. In Figure 6 we show the predictions of the RNNs vs predictions of linear models.
The RNN does a better job at fitting downward deflections that occur at stimulus onsets,
but, disappointingly, does not do much better at capturing the non-onset oscillatory activity.
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Figure 2.6: Linear vs RNN predictions: (a) A spectrogram of a Zebra finch song. (b)
A comparison of encoder performance for linear filter encoders (red) with RNN encoders
(blue), superimposed on the raw 5-30Hz LFP (black). Performance is similar between the
two models, with RNNs doing a better job on some of the downward deflections of LFP
during stimulus onsets.

We are actively engaged in work to improve both the performance and interpretability of
these models. On the performance front, we had temporal limitations that prevented us from
testing a fuller set of hyperparameters, and only utilized up to 100 neurons in the RNN. The
LFP exhibits a significant amount spontaneous activity during silent periods, and there are
RNN constraints that have been developed to ensure that population activity stays fixed at a
baseline level throughout its lifetime [40]. Also, given that gamma oscillations originate from
the interplay of excitatory and inhibitory neurons [18], we could constrain our network to
be topologically organized and also enforce neurons to be either excitatory or inhibitory, as
was done in [41]. Building multi-input, multi-output MIMO encoders with recurrent neural
networks constrained to be more biologically plausible will allow us to “peek in the black
box” of neural activity to further our understanding of neural dynamics.

2.5 Methods

Electrophysiological methods are fully described in [25] and [3] respectively and summarized
here below. We then describe the methods used to preprocess the LFP, fit and analyze linear
filter encoders to predict the 5-30Hz LFP, and train recurrent neural networks (RNNs) to
predict the multi-variate 5-30Hz LFP waveforms. All animal procedures were approved by
the Animal Care and Use Committee of the University of California Berkeley, and were in
accordance with the NIH guidelines regarding the care and use of animals for experimental
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procedures.

Animals

The animal subjects studied were adult and juvenile zebra finches (Taeniopygia guttata)
from the colonies of the Theunissen and Bentley labs (University of California, Berkeley,
USA). The electrophysiology experiments were performed on four male and two female adults
from the Theunissen lab colony. The acoustic recordings described in the next subsection
involved twenty-three birds (eight adult males, seven adult females, four female chicks, four
male chicks). Six adults (three males, three females) were borrowed from the Bentley lab.

The electrophysiology subjects were housed in unisex cages and allowed to interact freely
with their cagemates. All subjects were in the same room and were could interact visually
acoustically. The acoustic recordings were performed on pair-bonded adults housed in groups
of 2-3 pairs. Chicks were housed with their parents and siblings.

Zebra Finch Vocalization Types

Zebra finches communicate using a repertoire of vocalizations that are dependent on be-
havioral context. Following [26], acoustic signatures and behavioral contexts were used to
classify vocalizations into nine different categories. A detailed description of call categories
can be found [25]. We provide here, a very succinct summary of that characterization for a
subset of the calls analyzed here and used in the neurophysiological experiments.

Song is a multi-syllable vocalization emitted only by males. Songs are comprised of
repeating motifs of syllables, and in the dataset, have a duration of 1424 +/- 983ms. Song
in zebra finches are used in pair bonding and mating behavior. The repertoire contains
monosyllabic affiliative calls used to maintain contact. Distance calls are loud, used when
not in visual contact, and longer in duration (169 +/- 49ms) than Tet calls, emitted when in
visual contact during hopping movements, with a duration of 81 +/- 16ms. Zebra finch also
produce software calls used principally in the initial stages of pair bonding. Nest calls are
soft monosyllabic vocalizations emitted by zebra finches looking for a nest or constructing a
nest. With a duration of 95 +/- 75ms, they are similar to Tets.

Zebra finches emit two types of calls when they are acting out aggressively or being
attacked. Wsst calls are noisy (broadband) and often long (503 +/- 499ms) calls emitted
by a zebra finch when it is being aggressive. Distress calls are long (452 +/- 377ms), loud,
and high-pitched vocalizations emitted by a zebra finch when escaping from an aggressive
cage-mate. Both types of vocalizations can be mono or polysyllabic.

Two calls are emitted by juveniles only. Long tonal calls are the precursor to the adult
distance calls; they are loud, long (durations of 184 +/- 63ms) and monosyllabic, emitted
when the chick is separated from its siblings or parents. Begging calls are emitted when a
juvenile zebra finch is begging for food from a parent, it is loud, long (duration of 382 +/-
289ms), and monosyllabic.
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Electrophysiology and Histology

Twenty-four hours before recording, the subject was deeply anaesthetized with isoflurane and
injected topically with lidocaine in order to remove a patch of skin over the skull and cement
a head-holding fixture. On recording day, the subject was fasted for one hour, anaesthetized
with urethane, head-fixed in a stereotaxic device, and two small rectangular openings were
made over the auditory area of each hemisphere. An electrode array with two columns
of eight tungsten electrodes was lowered into each hemisphere. Electrodes were coated in
DiI powder so that their path through the tissue could be analyzed post-experiment. The
electrodes ran rostral-caudal lengthwise in eight rows, with two columns that ran medial-
lateral.

During the experiment, the subject was placed in a soundproof chamber and electrode
arrays were independently lowered. Probe stimuli were used to determine visually whether
the areas were auditory. Once a reliable site was found, a stimulus protocol was played over
speakers within the chamber (described in next subsection). When the stimulus protocol
was complete, the electrodes were lowered deeper by at least 100 microns before playing
the protocol again at the next site. Once the recordings were finished, typically after 4-5
recording sites, the subject was killed with an overdose of isoflurane, the brain was removed
and fixed with paraformaldehyde. Coronal slices of 20 microns were made with a cryostat
and Nissl stained. The slices were examined under a microscope and the DiI tracts were
used to determine electrode penetration through anatomical regions. Six auditory areas
were differentiated: three regions of field L (L1, L2, L3), caudomedial and caudolateral
mesopallium (CMM and CML), and caudomedial nidopallium (NCM).

Stimulus Protocol

The vocalizations of ten individuals (three adult females, three adult males, four chicks)
were used in the stimulus protocol. The vocalizations of four of the individuals (one male
adult, one female adult, one male chick, one female chick) were played at each recording
site, and three of each vocalization type were randomly selected from the other birds to be
played. Each vocalization was played on average 10 times, randomly interleaved with other
vocalizations. The protocol lasted an average of one hour. Monosyllabic vocalizations such
as Distance and Tet calls were played with 3-4 different renditions in series with inter-syllable
intervals chosen to match what was observed naturally.

Sound Preprocessing

Vocalizations used in the experiment were transformed into a spectrogram using custom
python software. The spectrogram was computed by first applying a short-time Fourier
transform (STFT) to the raw sound pressure waveform. The waveform was broken into
overlapping segments of length 7ms, spaced apart by a sample interval of 1/381Hz, and
segments were multiplied by a Gaussian window of length 6 standard deviations. The Fourier
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transform was then computed, the absolute value was taken, and squared, to produce the
power spectrum corresponding to that segment. The log of the spectrogram was then taken.

To compute the stimulus amplitude envelope, the spectrogram was summed across fre-
quencies at each time point. To compute the temporal modulation frequencies, each stimulus
amplitude envelope was isolated, and a spectrogram was computed using a Gaussian window
of length of 1s, with increments of 200ms. The windowed segments were averaged to produce
the final temporal modulation spectrum.

LFP Preprocessing

The local field potential was recorded with a sample rate of 381 Hz. The LFP on each
electrode was z-scored across time for the duration of a stimulus protocol. The LFP was
then bandpassed with a pass band of 5-30Hz using a 5th order Butterworth filter implemented
in Scipy.

Linear Encoder Fitting

We denote the value of the sound amplitude, for time t during the stimulus protocol played
at a site, as x(t). We denote the value of the LFP on electrode k, at time t during the
stimulus protocol, as uk(t). Our goal was to build a linear filter model that predicted the
LFP at a given time from the recent history of sound amplitude. To fit a filter using linear
regression, we first created a feature vectors comprised of value of the stimulus amplitude
envelope at time t, as well as D lags into the past:

xt = [x(t) ... x(t−D)]

D was chosen so that 500ms of recent stimulus history were taken into account. We then
constructed a data matrix X comprised of the feature vectors:

X = [x1 ... xN ]T

where N is the length of the stimulus protocol, with silent periods excluded. 500ms of
zeros were inserted between stimuli so that they did not interfere with each other during
fitting. N was typically around 106. The dependent variable was then the bandpassed LFP
time series:

y = [uk(1) ... uk(N)]

A linear filter was found that optimally mapped the stimulus history vector to the band-
passed LFP by minimizing the sum of squares error in prediction:

L(X,y,w) = ||(Xw + b)− y||2
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We utilized Ridge regression with scikits.learn to do this regularization. Ridge regression
computes the optimal linear filter w as:

w = (XTX − λI)−1 XTy

the value λ is a user-defined hyperparameter, high values of λ force weights towards zero.
The value of the hyperparameter λ was fixed to 1.0, because observations from several

electrodes demonstrated very similar results for many different values of λ. 10-fold cross
validation was used to compute the cross-validated correlation coefficient. The N samples
were split into 10 partitions. For each partition, the rest of the data was trained on, and the
correlation coefficient was computed between the prediction on the partition and the actual
time series. We report here the correlation coefficients averaged across the ten partitions of
data.

Linear Filter Frequency Fitting

To determine the frequency of the oscillatory component of a linear filter, we first isolated the
filter between 5ms and 80ms lags, and normalized it by dividing by the absolute maximum.
We then fit a sine curve sin(2πtf +φ), where f was the center frequency and φ was a phase
offset, both free variables. We utilized the Scipy curvefit function to fit the curves.

Training Recurrent Neural Networks

We utilized a recurrent neural network (RNN) architecture to predict multi-electrode LFP
activity in the 5-30Hz range from the time-varying stimulus amplitude envelope x(t). Let
u(t) be the time-varying multi-electrode LFP:

u(t) = [u1(t) ... uM(t)]

where M is the number of electrodes. Our recurrent neural network architecture uses re-
currently connected hidden units to nonlinearly filter the time-varying input x(t). A weighted
combination of hidden unit activity is used to make a prediction of the multivariate LFP
at time t. Let z(t) be a vector of hidden unit states at time t for a recurrent network of D
neurons:

z(t) = [z1(t) ... zD(t)]

The dynamics of our recurrent networks are given by:

z(t+ 1) = σ (Rz(t) +Wx(t) + b)

where σ is the logistic sigmoid function, R is a DxD matrix of recurrent weights, W is
a Dx1 matrix of input weights, and b is a vector of D bias weights. The prediction of the
LFP at time t is given as a weighted combination of hidden states:
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û(t) = Woutz(t)

where Wout is a MxD matrix of output weights.
We used a truncated backpropagation through time algorithm (BPTT) [42] to simulta-

neously fit R, W , b, and Wout. The data was broken into segments of length τmem=50 time
points. The cost function that was minimized for each segment was specified as:

L(x(t),u(t), R,W,b,Wout) =
∑τf
τ=τi
||û(τ)− u(τ)||2 + λ2

∑
ij R

2
ij + λ1

∑
ij |Rij|

where λ1 and λ2 are hyperparameters for L1 and L2 regularization, and τi and τf are the
start and end times of the segment, respectively. It should be noted that the cost function
requires the value of z(τi − 1) to be specified. We trained segments sequentially, so that the
hidden state corresponding to the end of the previously segment was used as the initial state
for the next segment. This provided the network the opportunity to extend memory well
past the segment size τmem.



39

Bibliography

[1] Theunissen F. E., Sen K., and Doupe A. J. “Spectral-temporal receptive fields of
nonlinear auditory neurons obtained using natural sounds”. In: The Journal of Neu-
roscience, 20(6), 2315-2331 (2000).

[2] Formisano E., Kim D. S., Di Salle F., et al. “Mirror-symmetric tonotopic maps in
human primary auditory cortex.” In: Neuron, 40(4), 859-869. (2003).

[3] Elie J. E. and Theunissen F. E. “The vocal repertoire of the domesticated zebra finch:
a data-driven approach to decipher the information-bearing acoustic features of com-
munication signals”. In: Animal Cognition, 1-31 (2015).

[4] L. Cohen. Time-frequency Analysis. Prentice-Hall, 1995.

[5] Kim G. and Doupe A. “Organized representation of spectrotemporal features in song-
bird auditory forebrain.” In: The Journal of Neuroscience, 31(47), 16977-16990 (2011).

[6] Quiroga R. Q. and Panzeri S. “Extracting information from neuronal populations:
information theory and decoding approaches”. In: Nature Reviews Neuroscience, 10(3),
173-185 (2009).

[7] Shlens J., Field G. D., Gauthier J. L., et al. “The structure of multi-neuron firing
patterns in primate retina”. In: The Journal of neuroscience, 26(32), 8254-8266 (2006).

[8] Schneidman E., Berry M. J., Segev R., et al. “Weak pairwise correlations imply strongly
correlated network states in a neural population”. In: Nature, 440(7087), 1007-1012
(2006).

[9] Denman D. J. and Contreras D. “The structure of pairwise correlation in mouse pri-
mary visual cortex reveals functional organization in the absence of an orientation
map.” In: Cerebral Cortex, 24(10), 2707-2720 (2014).

[10] Hamilton L. S., Sohl-Dickstein J., Huth A. G., et al. “Optogenetic activation of an
inhibitory network enhances feedforward functional connectivity in auditory cortex”.
In: Neuron, 80(4), 1066-1076 (2013).

[11] Panzeri S. and Schultz S. R. “A unified approach to the study of temporal, correlational,
and rate coding”. In: Neural Computation, 13(6), 1311-1349 (2001).

[12] Schneidman E., Bialek W., and Berry M. J. “Synergy, redundancy, and independence
in population codes”. In: Journal of Neuroscience, 23(37), 11539-11553 (2003).



BIBLIOGRAPHY 40

[13] Nirenberg S. and Latham P. E. “Decoding neuronal spike trains: how important are
correlations?” In: Proceedings of the National Academy of Sciences, 100(12), 7348-7353
(2003).

[14] Ince R. A., Panzeri S., and Kayser C. “Neural codes formed by small and tempo-
rally precise populations in auditory cortex.” In: The Journal of Neuroscience, 33(46),
18277-18287 (2013).

[15] Buzsaki G., Anastassiou C. A., and Koch C. “The origin of extracellular fields nad
currents-EEG, ECoG, LFP and spikes”. In: Nature Reviews Neuroscience, 13(6), 407-
420 (2012).

[16] Reimann M. W., Anastassiou C. A., Perin R., et al. “A biophysically detailed model of
neocortical local field potentials predicts the critical role of active membrane currents”.
In: Neuron,79(2), 375-390 (2013).

[17] Lewis L. D., Voigts J., Flores F. J., et al. “Thalamic reticular nucleus induces fast and
local modulation of arousal state”. In: Elife, 4, e08760 (2015).

[18] Buzsaki G. and Wang X. J. “Mechanisms of Gamma Oscillations”. In: Annual Review
of Neuroscience, 35, 203 (2012).

[19] Lisman J. E. and Jensen O. “The theta-gamma neural code”. In: Neuron, 77(6), 1002-
1016 (2013).

[20] Lakatos P., Shah A. S., Knuth K. H., et al. “An oscillatory hierarchy controlling neu-
ronal excitability and stimulus processing in the auditory cortex”. In: Journal of neu-
rophysiology, 94(3), 1904-1911 (2005).

[21] Beckers G. J., van der Meij J., Lesku J. A., et al. “Plumes of neuronal activity propagate
in three dimensions through the nuclear avian brain.” In: BMC Biology 12(1) (2014).

[22] Weichwald S., Meyer T., Ozdenizci O., et al. “Causal interpretation rules for encoding
and decoding models in neuroimaging”. In: NeuroImage, 110, 48-59 (2015).

[23] Wang Y., Brzozowska-Prechtl A., and Karten H. J. “Laminar and columnar auditory
cortex in avian brain”. In: Proceedings of the National Academy of Sciences, 107(28),
12676-12681 (2010).

[24] Meliza C. D. and Margoliash D. “Emergence of selectivity and tolerance in the avian
auditory cortex”. In: The Journal of Neuroscience, 32(43), 15158-15168 (2012).

[25] Elie J. E. and Theunissen F. E. “Meaning in the avian auditory cortex: neural repre-
sentation of communication calls”. In: European Journal of Neuroscience 41.5: 546-567
(2015).

[26] R. A. Zann. The zebra finch: a synthesis of field and laboratory studies. Oxford Uni-
versity Press, 1996.

[27] Suthers R. A., Goller F., and Hartley R. S. “Motor dynamics of song production by
mimic thrushes”. In: Journal of neurobiology, 25(8), 917-936 (1994).



BIBLIOGRAPHY 41

[28] Friedman J., Hastie T., and Tibshirani R. Elements of Statistical Learning, 2nd Edition.
Springer, Berlin: Springer series in statistics, 2009.

[29] Brainard M. S. and Doupe A. J. “Translating birdsong: songbirds as a model for basic
and applied medical research.” In: Annual review of neuroscience, 36, 489. (2013).

[30] Aiken S. J. and Picton T. W. “Human cortical responses to the speech envelope.” In:
Ear and hearing, 29(2), 139-157 (2008).

[31] Ding N., Patel A., Chen L., et al. “Temporal Modulations Reveal Distinct Rhythmic
Properties of Speech and Music.” In: bioRxiv, 059683. (2016).

[32] Singh N. C. and Theunissen F. E. “Modulation spectra of natural sounds and etho-
logical theories of auditory processing.” In: The Journal of the Acoustical Society of
America, 114(6), 3394-3411. (2003).

[33] Nagel K. I. and Doupe A. J. “Temporal processing and adaptation in the songbird
auditory forebrain.” In: Neuron, 51(6), 845-859. (2006).

[34] Pasley B. N., David S. V., Mesgarani N., et al. “Reconstructing speech from human
auditory cortex.” In: PLoS Biol, 10(1), e1001251 (2012).

[35] Hsu A., Woolley S. M., Fremouw T. E., et al. “Modulation power and phase spectrum
of natural sounds enhance neural encoding performed by single auditory neurons.” In:
The Journal of neuroscience, 24(41), 9201-9211 (2004).

[36] Schneider D. M. and Woolley S. M. “Sparse and background-invariant coding of vo-
calizations in auditory scenes.” In: Neuron, 79(1), 141-152. (2013).

[37] Moore R. C., Lee T., and Theunissen F. E. “Noise-invariant neurons in the avian
auditory cortex: hearing the song in noise.” In: PLoS Comput Biol, 9(3), e1002942.
(2013).

[38] Calabrese A. and Woolley S. M. “Coding principles of the canonical cortical microcir-
cuit in the avian brain.” In: Proceedings of the National Academy of Sciences, 112(11),
3517-3522 (2015).

[39] P. Fries. “A mechanism for cognitive dynamics: neuronal communication through neu-
ronal coherence.” In: Trends in cognitive sciences, 9(10), 474-480. (2005).

[40] Krueger D. and Memisevic R. “Regularizing RNNs by stabilizing activations.” In:
arXiv preprint arXiv:1511.08400. (2015).

[41] Song H. F., Yang G. R., and X. J. Wang. “Training Excitatory-Inhibitory Recurrent
Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.” In: PLoS
Comput Biol, 12(2), e1004792. (2016).

[42] Werbos PJ. “Backpropagation through time: what it does and how to do it.” In:
Proceedings of the IEEE, 78(10), 1550-1560 (1990).


	Contents
	List of Figures
	List of Tables
	Decoding the Rhythms of Avian Auditory LFP
	Abstract
	Introduction
	Results
	Discussion
	Methods

	Distinct Oscillatory Subnetworks in the Zebra Finch Auditory System
	Abstract
	Introduction
	Results
	Discussion
	Methods

	Bibliography



