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Abstract

The coenzyme A (CoA) transferases are a superfamily of proteins central to

the metabolism of acetyl-CoA and other CoA thioesters. They are diverse

group, catalyzing over a 100 biochemical reactions and spanning all three

domains of life. A deeply rooted idea, proposed two decades ago, is these

enzymes fall into three families (I, II, and III). Here we find they fall into dif-

ferent families, which we achieve by analyzing all CoA transferases character-

ized to date. We manually annotated 94 CoA transferases with functional

information (including rates of catalysis for 208 reactions) from 97 publications.

This represents all enzymes we could find in the primary literature, and it is

double the number annotated in four protein databases (BRENDA, KEGG,

MetaCyc, UniProt). We found family I transferases are not closely related to

each other in terms of sequence, structure, and reactions catalyzed. This family

is not even monophyletic. These problems are solved by regrouping the three

families into six, including one family with many non-CoA transferases. The

problem (and solution) became apparent only by analyzing our large set of

manually annotated proteins. It would have been missed if we had used the

small number of proteins annotated in UniProt and other databases. Our work

is important to understanding the biology of CoA transferases. It also warns

investigators doing phylogenetic analyses of proteins to go beyond information

in databases.
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1 | INTRODUCTION

Acetyl coenzyme A (CoA) and other acyl-CoA com-
pounds are central in metabolism. Reactions that form or
consume these compounds are thus of great interest in
biochemistry. The CoA transferases (EC 2.8.3._) are a
superfamily that catalyze one such set of reactions. Spe-
cifically, they transfer of a CoA group from an acyl-CoA
donor to a carboxylate acceptor.1 In total, they catalyze

Our work is important to one superfamily of proteins, the coenzyme A
transferases. By analyzing nearly 100 experimentally characterized
proteins, it overturns the idea these proteins fall into three families. Our
work is also important to investigators who rely on databases, such as
UniProt, for information on proteins. Half of all proteins in our analysis
had no functional information in databases. Our study shows that the
need to dig into the literature before analyzing protein families.
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over 100 such reactions, each involving a different donor/
acceptor pair.

The diversity of these enzymes and the reactions they
catalyze has led to several ways of classifying them.1–9

One of the first and most enduring ways is now two
decades old. In 2001, Heider1 named three families of
transferases (I, II, and III). Members of family I are classi-
cal CoA transferases and use an acyl-CoA as a substrate.
Members of family II are distinct by being able to use
acyl-[acyl-carrier protein], also. Members of family III
have amino acid sequences that differ from other fami-
lies. Prior to Heider,1 it was thought different families
may exist,3,10 but Heider1 was crucial to naming the dif-
ferences. Heider1 used only 16 named enzymes, which
reflected the amount of evidence then available.

Since that time, investigators have proposed changes
to the three families, but changes have been minor. For
example, investigators have examined family I transfer-
ases and proposed splitting them into different subfam-
ilies.4,8,9 One problem is that rather than analyze all CoA
transferases, investigators have focused on only a few
enzymes, usually those closely related to an enzyme just
discovered.4,6–9 There has been no attempt to go back,
find all CoA transferases, and determine if the original
families are still appropriate.

The situation with CoA transferases represents a com-
mon problem in analyses of protein families. It is labori-
ous to go back to the primary literature and find all
members of a family or superfamily, and so analyses
often rely on a few well-known proteins and sequence
homologs. Another approach is to find proteins through
UniProt11 or other databases.12–14 Databases are popular
because they have large numbers of proteins, and some
proteins are already annotated with functional informa-
tion from the literature. Indeed, several analyses of pro-
tein families have used databases as a major or sole
source of functional information.15–19 However, it is not
clear how complete is information in databases and if it
can substitute for a search of the primary literature.

Here we find, annotate, and analyze nearly 100 experi-
mentally characterized CoA transferases from the pri-
mary literature. This analysis shows the three traditional
families of CoA transferases are not appropriate, and they
need to be regrouped into six to reflect evolutionary rela-
tionships. Importantly, the six families were readily
apparent when only analyzing our large number of man-
ually annotated enzymes. If we used the small numbers
of proteins annotated in UniProt and three other data-
bases, the families were not as apparent. Our study of
CoA transferases serves as a warning and shows phyloge-
netic analyses need to go beyond the small numbers of
proteins in databases.

2 | RESULTS

2.1 | Our analysis involves nearly
100 experimentally characterized enzymes

The CoA transferases have been divided into three fami-
lies, but this classification is based on analyzing few
enzymes.1 We aimed to do an analysis with all experi-
mentally characterized enzymes reported in the litera-
ture. Accordingly, we looked for all enzymes with
(a) experimental evidence for catalyzing at least one reac-
tion and (b) an amino acid sequence. Enzymes with cata-
lytic activity inferred by homology, but with no
experimental evidence, were not considered (except
where noted).

In total, we found 94 enzymes described in 97 publica-
tions (Table 1 and Table S1). These publications mea-
sured rates of 208 CoA transferase reactions (Table S2).
Of these, 105 reactions occurred at rates we considered
biochemically significant and were included subse-
quently in our analysis (see Table S2 and Materials and
Methods). In addition to bona fide CoA transferases, we
included n = 5 enzymes that do not catalyze CoA trans-
ferase reactions but are closely related (indistinguishable
from sequence alone).

The number of enzymes and reactions we found is
double that in UniProt and three other protein databases
(see below). Our search of the literature was thus
exhaustive.

2.2 | Phylogeny of CoA transferases
reveals six, not three, families

With the large number of experimentally characterized
enzymes in hand, we built a phylogenetic of their protein
sequences. We constructed these trees using W-IQ-
TREE111 after aligning sequences with Clustal Omega.112

We also constructed a sequence similarity network,
which is another way to explore how sequences are
related.113 We constructed this network using Cyto-
scape114 after aligning sequences using the Needleman–
Wunsch algorithm.115

The phylogenetic tree revealed problems with divid-
ing the CoA transferases into the three traditional fami-
lies (I, II, and III) (Figure 1a). The sequences of family I
were not closely related, as was apparent in the phyloge-
netic tree. Indeed, some members of family I were more
closely related to members of other families than each
other. Worst of all, family I (or family II) is not even
monophyletic. These problems were most apparent after
including all family II enzymes. Previous analyses either
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TABLE 1 Coenzyme A transferases that have been experimentally characterized in the primary literaturea

Enzyme Organism References Enzyme Organism References

AarC (Aac) Acetobacter aceti [20,21] FldA (Csp) Clostridium sporogenes [22]

AbfT (Cam) Clostridium aminobutyricum [23–25] Frc (Lac) Lactobacillus acidophilus [26]

ACH1 (Sce) Saccharomyces cerevisiae [27] Frc (Ofo) Oxalobacter formigenes [29–31]

Act (Fsp) Firmicutes sp. [32] GctAB (Afe) Acidaminococcus fermentans [33–36]

Act (Vpa) Variovorax paradoxus [37] HadA (Cdi) Clostridium difficile [38]

ActA (Cgl) Corynebacterium glutamicum [39] IaaL (Aar) Aromatoleum aromaticum [7]

AibAB (Mxa) Myxococcus xanthus [40] IctA (Ate) Aspergillus terreus [41]

Asct (Fhe) Fasciola hepatica [42] IpdAB (Mtu) Mycobacterium tuberculosis [43]

AtoDA (Eco) Escherichia coli [44,45] IpdAB (Rjo) Rhodococcus jostii [43]

BaiF (Csc) Clostridium scindens [46] MadA (Mru) Malonomonas rubra [3,28]

BaiK (Csc) Clostridium scindens [46] Mcr (Mtu) Mycobacterium tuberculosis [47]

BbsEF (Tar) Thauera aromatica [48,49] Mct (Cau) Chloroflexus aurantiacus [50]

Bct (Gme) Geobacter metallireducens [51] Mct (Hhi) Haloarcula hispanica [52]

CaiB (Atu) Agrobacterium tumefaciens [53] MdcA (Aca) Acinetobacter calcoaceticus [54]

CaiB (Eco) Escherichia coli [55–57] MdcA (Kpn) Klebsiella pneumoniae [58,59]

CaiB (Psp) Proteus sp. [60] MdcA (Ppu) Pseudomonas putida [61]

CarA (Awo) Acetobacterium woodii [62] OXCT1 (Hsa) Homo sapiens [63,64]

Cat1 (Aba) Acinetobacter baumannii [65] Oxct1 (Mmu) Mus musculus [66]

Cat1 (Aca) Anaerostipes caccae [67] Oxct1 (Rno) Rattus norvegicus [68]

Cat1 (Ace) Acetobacter cerevisiae [65] OXCT1 (Ssc) Sus scrofa [69–72]

Cat1 (Asp) Anaerostipes sp. [30] p49 (Afr) Artemia franciscana [73]

Cat1 (Bfr) Bacteroides fragilis [65] PcaIJ (Aba) Acinetobacter baylyi [74,75]

Cat1 (Bsp) Butyricicoccus sp. [76] PcaIJ (Atu) Agrobacterium tumefaciens [77]

Cat1 (Cdi) Corynebacterium diphtheriae [65] PcaIJ (Ppu) Pseudomonas putida [78]

Cat1 (Ckl) Clostridium kluyveri [79] PcaIJ (Sme) Sinorhizobium meliloti [80]

Cat1 (Ibu) Intesimonas butyriciproducens [76] Pct (Cpr) Clostridium propionicum [8,81]

Cat1 (Mca) Moraxella catarrhalis [65] Pct (Mel) Megasphaera elsdenii [32]

Cat1 (Mel) Megasphaera elsdenii [76] Pct (Reu) Ralstonia eutropha [4]

Cat1 (Pgi) Porphyromonas gingivalis [82] RipA (Ype) Yersinia pestis [83–85]

Cat1 (Psp) Peptoniphilus sp. [76] SCACT (Cgr) Cutibacterium granulosum [86]

Cat1 (Rho) Roseburia hominis [67] ScoAB (Bsu) Bacillus subtilis [87]

Cat1 (Rsp) Roseburia sp. [76] ScoAB (Hpy) Helicobacter pylori [88,89]

Cat1 (Sal) Snodgrassella alvi [65] Scot (Ala) Anaerotignum lactatifermentans [32]

Cat2 (Aca) Anaerostipes caccae [67] SCOT (Dme) Drosophila melanogaster [90]

Cat2 (Asp) Anaerostipes sp. [76] Scot (Msp) Megasphaera sp. [32]

Cat2 (Pgi) Porphyromonas gingivalis [82] ScpC (Eco) Escherichia coli [91]

Cat2 (Rsp) Roseburia sp. [76] Sct (Cau) Chloroflexus aurantiacus [92]

Cat3 (Pgi) Porphyromonas gingivalis [82] SmtAB (Cau) Chloroflexus aurantiacus [93]

CatIJ (Pkn) Pseudomonas knackmussii [94] SptAB (Aar) Aromatoleum aromaticum [95]

CitF (eco) Escherichia coli [96,97] SUGCT (Hsa) Homo sapiens [98]

CitF (Kpn) Klebsiella pneumoniae [10,99] TbASCT (Tbr) Trypanosoma brucei [100]

CoAT (Aac) Acidipropioni. acidipropionici [101] TvASCT (Tva) Trichomonas vaginalis [102]

CoaT (Ani) Aspergillus nidulans [103] UctB (Aac) Acetobacter aceti [104]
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omitted family II enzymes entirely,4,8,9 or they did not
report a phylogenetic tree of their sequences.1,2,5

Some analyses have proposed splitting family I into
different subfamilies.4,8,9 The phylogenetic tree
(Figure 1A) shows one proposed split (according to Ref-
erence [9]), but it does not solve all problems. First, not
all sequences from family I fall into a defined subfamily
(IA, IB, and IC) (see also Figure S1). Second, no matter
how it is split into subfamilies, family I is not
monophyletic.

The tree suggests dividing the CoA transferases into
six, not three, families (Figure 1b). These six families are
monophyletic (Figure 1b), and members within the same
family are more closely related to each other than to
members of other families. This division is also consistent
with other properties, such as reactions catalyzed, type of
catalysis, and crystal structure (see below).

The sequence similarity network also showed that CoA
transferases fall into six or more families (Figure 2). We
constructed the network to show clusters of sequences with
≥25% identity (the minimum value observed for most
homologous sequences).116,117 Sequences fell into six clus-
ters, with one additional sequence not falling into any clus-
ter. This supports the idea that CoA transferases form
more than three and at least six families.

2.3 | The families of CoA transferases
differ in reactions catalyzed

We explored if our six proposed families of enzymes
would differ in the reactions they catalyzed. We created a
heat map of the n = 94 enzymes and n = 105 reactions
we identified earlier, and it revealed members within a
given family generally catalyze similar reactions
(Figure 3).

The Cat1 family catalyzes reactions involving small
acyl-CoA (Figure 3). Acetyl-CoA/butyrate was the most
common pair of substrates and used by 51% of enzymes.
Other common substrates were acetyl-CoA/propionate
(49% enzymes), acetyl-CoA/succinate (46% enzymes),
and propionyl-CoA/succinate (14% enzymes).

The OXCT1 family is different in using oxo and
hydroxy acyl-CoA (Figure 3). The most common sub-
strates were acetyl-CoA/lactate (29% of enzymes),
acetoacetyl-CoA/succinate (29% of enzymes), acetyl-
CoA/acetoacetate (19% of enzymes), and β-ketoadipyl-
CoA/succinate (14% of enzymes).

Half of all members of the Gct family catalyze only
nontransferase reactions (Figure 3). For example, two
members cleave the ring of a cholesterol-CoA deriva-
tive.43 All reactions still involve acyl-CoA as a substrate.

All members of CitF and MdcA families can catalyze
CoA transferase reactions (Figure 3). Specifically, CitF
uses acetyl-CoA/citrate, and MdcA uses acetyl-CoA/
malonate. However, they also catalyze transferase reac-
tions involving acyl-ACP.10,118,119 Acyl-ACP is the likely
substrate in cells, as CitF and MdcA are part of larger
enzymes systems containing ACP.54,97,118–120

The reactions of the Frc family differ from those of
other families, but they otherwise have little in common
(Figure 3). Formyl-CoA/oxalate is used by 21% of
enzymes, but all other pairs of substrates are used by two
or fewer enzymes.

In sum, there are several differences in the reactions
catalyzed by the CoA transferases. These differences pro-
vide further support for dividing the transferases into six
families.

2.4 | The families of CoA transferases
have different amino acid residues in the
active site

In a number of CoA transferases, the residues of the
active site have been identified by mutation or crystallog-
raphy (see Table S1). We wanted to see if one key
residue—that involved in covalent catalysis—and the
surrounding region differed across our proposed families.
We aligned sequences of the enzymes and highlighted
the residue involved in covalent catalysis.

Our analysis showed some similarities across families,
but these are punctuated by clear differences (Figure 4). In
the Cat1 family, the residue involved in covalent catalysis

TABLE 1 (Continued)

Enzyme Organism References Enzyme Organism References

CoaT (Cty) Clostridium tyrobutyricum [105] UctC (Aac) Acetobacter aceti [6]

CoAT (Pfr) Propionibacterium freudenreichii [106] YdiF (Eco) Escherichia coli [107]

CoAT (Rsp) Ruminococcaceae sp. [105] YfdE (Eco) Escherichia coli [6]

CtfAB (Cac) Clostridium acetobutylicum [108,109] YfdW (Eco) Escherichia coli [30,110]

aSee Table S1 for more details.
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was a glutamate (E567). Glutamate served this role in fami-
lies OXCT1 and Gct, also, but the glutamate occupies a
completely different position in the alignment (E582). This
resulted from a number of indels between the glutamate
and a conserved glycine (G584). In the Frc family, the resi-
due involved in covalent catalysis was aspartate (D533). In

CitF and MdcA families, no residues for covalent catalysis
were identified, as covalent catalysis is not thought to
occur.10,121 In the Gct family, some members only catalyze
nontransferase reactions, and for these, no residues for
covalent catalysis were identified. Indeed, these members
are not thought to use covalent catalysis.40,43

• Use oxo & hydroxy acyl-CoA
• Covalent catalysis (E582)
• Extra β layer in structure

• Use cholesterol & oxo acyl-CoA
• Sometimes covalent catalysis

• Extra α/β layers in structure

• Use large & unusual acyl-CoA
• Covalent catalysis (D533)

• One fewer α layer in structure

• Use small acyl-CoA
• Covalent catalysis (E567)

• Use citryl-CoA 
• No covalent catalysis (?)

•Use malonyl-CoA 
•No covalent catalysis (?)

OXCT1

Cat1

Gct

Frc

MdcA

CitF

(a) CoA transferase families (traditional)

(b) CoA transferase families (proposed)

Family I

Family III Family II

1.0

IB

IC

IA

FIGURE 1 Phylogenetic

tree of CoA transferase

sequences shows the

superfamily should be divided

into six, not three families.

(a) The three traditional CoA

transferase families.

Subfamilies of family I also

shown. (b) Our six proposed

families. The proposed families

are consistent with other

properties noted (see Figure 3

for names of enzymes and

branch support values).

Sequences in panel (a) were

assigned to families based on

descriptions in Reference [1]

and to subfamilies based on

Figure S1

868 HACKMANN



This analysis shows our proposed families differ in
residues of the active site. These differences, such as in
the region surrounding the catalytic glutamate, become
clear by analyzing a large number of proteins where the
catalytic residue was annotated.

2.5 | The families of CoA transferases
differ in structure

Our analysis showed families differ by sequence, and we
wanted to see if crystal structures would also differ.
Accordingly, we aligned structures of n = 24 enzymes,
and we made a tree of the alignment.

We found our proposed families have different struc-
tures (Figure 5). In the tree, structures clustered by family.
Differences were also clear by comparing structures visu-
ally. All transferases had two domains, each with several
layers of α helices and β sheets. However, they differed in
the number and arrangement of layers. Domain 1 of Gct,
for example, had a large number of layers, with three layers
of α helices and two β sheets (Figure 5 and Figure S2).

Compared to the phylogenetic tree built with protein
sequences, the tree built with structures differed

somewhat. For example, families CitF and MdcA were
distantly related according to their sequences, but
appeared more closely related from their structures. The
families were still distinct, showing our proposed families
are valid at both sequence and structural levels.

One caveat is there were few structures available for
families CitF and MdcA, and those available are for puta-
tive enzymes (Table S3). As putative enzymes, they have
no experimental evidence of activity, and instead their
catalytic activity is inferred by homology. If we exclude
them, the position of the remaining families in the tree is
not affected (Figure S3). We did not use putative enzymes
elsewhere in our analysis. In sum, despite some caveats,
this analysis agrees with the sequence analysis and sug-
gests dividing the CoA transferases into six families.

2.6 | The structure of CoA transferases
differs around the active site

Having found the CoA transferases differ in overall struc-
ture, we wanted to see if differences extended to the
active site. We were most interested in comparing Cat1,
Gct, and OXCT1 families, given glutamate serves as a
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Enzyme name Reaction ID

AarC (Aac)

AbfT (Cam)
CoaT (Cty)
Cat1 (Aca)
Cat1 (Pgi)
Cat3 (Pgi)
Asct (Fhe)
p49 (Afr)
Bct (Gme)

Cat1 (Asp)
Cat2 (Aca)
Cat2 (Asp)
Cat1 (Psp)

Cat1 (Rho)
Cat2 (Rsp)
Cat1 (Rsp)

Cat1 (Bsp)
Cat1 (Ibu)
CoAT (Rsp)
Cat1 (Mel)
RipA (Ype)

ACH1 (Sce)
CoaT (Ani)
TvASCT (Tva)
Cat1 (Aba)
Cat1 (Bfr)
Cat2 (Pgi)
ScpC (Eco)
Cat1 (Ckl)
Cat1 (Sal)
Cat1 (Mca)

ActA (Cgl)
Cat1 (Cdi)

CoAT (Aac)
SCACT (Cgr)
CoAT (Pfr)

Cat1 (Ace)

Act (Fsp)
Scot (Ala)
Pct (Cpr)
Pct (Mel)
Scot (Msp)
Pct (Reu)
YdiF (Eco)
CarA (Awo)

AtoDA (Eco)
CtfAB (Cac)

OXCT1 (Hsa)

Oxct1 (Mmu)
Oxct1 (Rno)
OXCT1 (Ssc)
SCOT (Dme)
TbASCT (Tbr)
ScoAB (Bsu)
ScoAB (Hpy)
PcaIJ (Aba)
PcaIJ (Ppu)
PcaIJ (Atu)

AibAB (Mxa)

CatIJ (Pkn)
PcaIJ (Sme)
GctAB (Afe)
IpdAB (Mtu)
IpdAB (Rjo)

MadA (Mru)
MdcA (Aca)
MdcA (Kpn)
MdcA (Ppu)

Act (Vpa)
CaiB (Atu)
SUGCT (Hsa)
IaaL (Aar)
IctA (Ate)
UctC (Aac)
YfdE (Eco)

BaiF (Csc)
BaiK (Csc)
CaiB (Eco)
CaiB (Psp)
Sct (Cau)
SmtAB (Cau)
SptAB (Aar)
Mct (Cau)

BbsEF (Tar)
FldA (Csp)
HadA (Cdi)
Mcr (Mtu)

Mct (Hhi)

Frc (Lac)
Frc (Ofo)
UctB (Aac)
YfdW (Eco)

CitF (Eco)
CitF (Kpn)

1 25 50 75 100

1 25 50 75 100

Families Reactions
(+) Catalyzed
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FIGURE 3 Heat map of CoA transferases and reactions catalyzed, affirming division into six families (see Table S1 for information on

these enzymes and Table S2 for their reactions)
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catalytic residue in all three. The crystal structures
showed differences around the catalytic residue (-
Figure S4). In the Cat1 family, the residue was followed
by an alpha helix. In Gct, and OXCT1 families, the helix
was replaced by part of a β sheet. The helix and sheet cor-
respond to a region of indels in the sequence alignment
(from E567 to G584; see Figure 4). These results point to
structural elements gained or lost during the evolution of
the CoA transferases. Despite clear similarities, there are
also differences around the active site for Cat1, Gct, and
OXCT1 families.

2.7 | Enzyme databases are missing half
of all enzymes and reactions

Our analysis used the primary literature as a source for
information on enzymes. Searching for information in
this way is laborious, and many investigators search pro-
tein databases instead. We wanted to see if these data-
bases had comparable information and would have led
us to the same conclusions.

We searched four widely used databases (BRENDA,
KEGG, MetaCyc, UniProt) for CoA transferases.11–14 We
searched for enzymes according to their enzyme commis-
sion (EC) numbers and three other identifiers (Rhea ID,
KEGG REACTION ID, MetaCyc Reaction ID/BioCyc
ID)12,14,122,123 (Table S4). We counted enzymes annotated
with a reaction, amino acid sequence, and literature
reference.

We found information in databases was far from
complete. The four databases we searched had informa-
tion annotated for only n = 48 enzymes (Figure 6a and
Table S5). Half (49%) of the enzymes we found in the
primary literature were thus missing information. The
databases reported the enzymes catalyzed only n = 57
CoA transferase reactions (Figure 6a and Table S6).
About half (46%) of the reactions we found were
missing.

We built a reaction heat map of all enzymes and
reactions available in databases (Figure 6b). The result
looked different from the heat map built using informa-
tion from the primary literature (see Figure 2). When
using information in databases, all families had fewer
members, and the MdcA family was completely miss-
ing. Furthermore, reactions catalyzed by families Cat1
and OXCT1 were no longer clearly different. Conse-
quently, it is not obvious that family I proposed by
Heider1 should be divided into separate families, as it is
when using information from the primary literature.
Without digging into the primary literature, we would
have reached incorrect conclusions about the CoA
transferase superfamily.

2.8 | Additional phylogenetic trees shed
more insight into the CoA transferases

Crystal structures show CoA transferases have two pro-
tein domains. We examined how these domains are orga-
nized within each enzyme, and then we built a
phylogenetic tree to see if the organization differed by
family (Figure S5). We found domains were organized in
different ways (Figure S5a). In some enzymes, domains
were separated (on two polypeptide chains), but in
others, they were fused (on one chain). In rare cases,
domains were fused and duplicated (two polypetide
chains with two domains each). A phylogenetic tree (-
Figure S5b) showed members of Gct had only separated
domains, whereas Cat1, MdcA, and CitF had only fused
domains. OXCT1 had both separated and fused subunits.
Frc had both fused domains and fused domains that had
been duplicated. These differences in organization are
small, but help further define the families of CoA
transferases.

To this point, we have built phylogenetic trees using
one amino acid sequence per enzyme. Alternatively, we
could build trees using two separate sequences per
enzyme, with one sequence per protein domain. Such a
tree would reveal if domains evolved separately from a
common ancestor, as proposed for some CoA transfer-
ases.2,34 We thus built such a tree, and it showed
sequences did not always cluster by domain (Figure S6).
For example, domain 1 of CitF clustered with domain
2 of Gct. If the domains evolved separately, all sequences
for domain 1 should cluster together, and sequences for
domain 2 should cluster apart. This suggests that
domains did not evolve separately, at least for some
families.

We built phylogenetic trees using CoA transferases
and very few (n = 5) additional enzymes. We in fact con-
sidered many more proteins, but they turned out not to
be closely related to CoA transferases. In one phyloge-
netic tree, we included proteins considered by Pfam,124

SCOP,125 and other authorities2 to be related to CoA
transferases (see Table S7). The tree showed these pro-
teins were not as closely related to the CoA transferases
as the CoA transferases were to themselves (Figure S7).
Furthermore, none are known to use acyl-CoA as a sub-
strate or perform transferase reactions. It makes sense to
set the boundaries of the CoA superfamily around the
proteins of our original tree (Figure 1).

3 | DISCUSSION

Our analysis is important to the biology of CoA transfer-
ases and to phylogenetic analyses of proteins. It is
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FIGURE 4 Sequence alignment of the active site of CoA transferases reveals differences among families (see Table S1 for information

on these enzymes, their sequences, and their active site residues)

872 HACKMANN



important to the biology of the CoA transferases because
it uproots the idea that these enzymes fall into three fam-
ilies.1 This idea has stood for two decades, and others
have proposed only minor changes as scores of enzymes
have been discovered.4–9 The strength of our approach is
it uses all experimentally characterized enzymes and
examines several properties (e.g., sequences, reactions,
and structures). It is by using this comprehensive
approach that we can conclude CoA transferases fall into
six families.

Our work is important to the biology of CoA trans-
ferases, also, by shedding insight into their evolutionary
history. Specifically, it suggests that the superfamily
evolved (or lost) the ability to catalyze their reactions
multiple times. Three families (MdcA, CitF, and Gct)
have members that catalyze non-CoA transferase reac-
tions (either alone or in addition to CoA transferase
reactions). The other three families (Frc, Cat1, and
OXCT1) catalyze CoA transferase reactions, and few
others. Given their complex phylogeny, the CoA trans-
ferases must have gained (or lost) the ability to catalyze
CoA reactions at least twice. Reflecting this, the three
families that catalyze mostly CoA transferase reactions
(Frc, Cat1, and OXCT1) show key differences around
the active site. This complex history is apparent only
from analyzing our large set of manually annotated
enzymes and reactions.

Besides its importance to the CoA transferases, our
analysis is important to phylogenetic analyses. Namely, it
shows the importance of conducting phylogenetic ana-
lyses with all proteins reported in the primary literature.
It is convenient to focus on only a few proteins, or to use
proteins with information reported in UniProt or other
databases. Unfortunately, using only databases would
lead to an incomplete picture. It is already known that
databases rely on few publications for most of their infor-
mation.126 For gene ontology annotations in UniProt, the
top 0.14% publications are used as a source of informa-
tion for 25% of the proteins.126 Our study shows that
databases are missing information outright; half of all
enzymes were missing the reaction they catalyze, their
amino acid sequence, or a literature reference. Databases
can be useful for starting a literature search, but they are
not a replacement for one.

In sum, our work is important to the CoA transferase
superfamily and to phylogenetic analyses in general. It
warns investigators doing these analyses to go beyond
proteins annotated in databases. Though our work on
CoA transferases is comprehensive, a phylogenetic analy-
sis is never done—it simply awaits discovery of the next
protein. Digging deep in the literature for proteins
ensures analyses are as accurate as possible until the next
discovery.

4 | MATERIALS AND METHODS

4.1 | Search for CoA transferases in
primary literature

We searched for CoA transferases in the primary literature.
As explained in Results, we considered only enzymes with
(a) experimental evidence for catalyzing at least one reac-
tion and (b) an amino acid sequence. An important
resource was Zhang et al.86 which had manually annotated
information for n = 51 enzyme from Cat1, OXCT1, and
Gct families. We also used databases11–14 as starting points.

We identified reactions as biochemically significant if
they occurred at fast rates. We arbitrarily defined these as
reactions that occur at ≥10% of the fastest CoA transfer-
ase reaction for a given enzyme. If an enzyme catalyzed
only one CoA transferase reaction, the reaction was sig-
nificant by default. This definition is arbitrary, and we
wanted to identify reactions that are statistically different
from 0 instead (p < .05). However, many literature stud-
ies do not report statistical significance.

Some publications did not give report gene or protein
names. We assigned a name in cases where it was missing.
Information is otherwise as reported in the publication.

4.2 | Construction of phylogenetic tree
of sequences

To construct phylogenetic trees of amino acid sequences,
we first performed multiple sequence alignment with
Clustal Omega.112 Following References [127,128], we
ran Clustal Omega using the package msa129 of R130 and
the default parameter values.

With the aligned sequences, we calculated the tree
using maximum-likelihood with W-IQ-TREE111 and
default parameter values. The substitution model used
was LG + F + G4, which gave the lowest AICc value.
Branch support values were calculated using the ultrafast
bootstrap analysis131 with 1,000 maximum iterations.

We visualized the final tree with the package
ggtree132 of R and the Interactive Tree of Life (iTOL).133

We used ggtree for rectangular trees (Figures 3, 4, and 6
and Figures S1, S5, S6, and S7) and the iTOL for equal-
daylight trees (Figures 1 and 5 and S3).

As mentioned, CoA transferases show different orga-
nization of domains (Figure S5), and we had to take this
into account before alignment. For enzymes with fused
domains, we used the amino acid sequence as is. For
enzymes with separated domains, we concatenated the
sequences of the two subunits before alignment. For
enzymes with fused domains that had been duplicated,
we arbitrarily chose the first subunit for alignment and
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FIGURE 5 Phylogenetic tree of CoA transferase structures shows that differences among families extend to the structural level.

Structures were aligned together, colored individually, then overlaid within family (see Table S1 for information on these enzymes and PDB

accession numbers for structures)
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FIGURE 6 Protein databases are missing large numbers of CoA transferases in the primary literature. (a) Venn diagram of CoA

transferases annotated by databases. (b) Heat map of CoA transferases and reactions annotated by databases (see Table S5 for information

on these enzymes and Table S6 for their reactions)
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discarded the second. If we chose the second subunit
instead, the tree was not affected. This procedure ensured
that each domain was represented once and only once in
the alignment.

Protein sequences are available in FASTA format on
Figshare (https://figshare.com/articles/dataset/
Sequences_and_phylogenetic_trees_of_coenzyme_A_
transferases/16617892). Phylogenetic trees are available
in Newick format at the same resource.

4.3 | Construction of sequence similarity
networks

To construct sequence similarity networks, we first per-
formed pairwise sequence alignment using the
Needleman–Wunsch algorithm.115 We ran this algorithm
using the package Biostrings134 in R. We used BLOSUM62
substitution matrix, gap opening penalty of 10, and gap
extension penalty of 0.5. We then calculated pairwise iden-
tity of the sequences.

With the pairwise identity of the aligned sequences,
we constructed the sequence similarity network in Cyto-
scape.114 We filtered out (removed) edges with <25%
identity. We visualized the network using the yFiles
organic layout.

4.4 | Construction of heat map of
reactions

We constructed a heat map of CoA transferase reactions
using data from the primary literature. We took reactions
we found in the literature and ordered them according to
their frequency within family. Following this order, we
assigned reactions IDs, created a heat map using
ggplot2,135 and laid it next to the phylogenetic tree con-
structed with ggtree.

4.5 | Construction of sequence
alignment of active site

We constructed a sequence alignment of the active site
using the same alignment for the phylogenetic trees. The
sequence alignment was visualized using ggplot2.

4.6 | Construction of phylogenetic tree
of crystal structures

To construct the tree of crystal structures, we first aligned
the structures with SALIGN.136 We chose this alignment

tool because it can accommodate proteins with multiple
subunits. For proteins with two subunits (A and B), we
used the command “FIRST:A:LAST:B” to ensure all resi-
dues were included. The tool outputted (a) the aligned
structures in pdb format and (b) pairwise distances
between structures.

With the pairwise distances, we calculated the tree
using the minimum evolution method. We used the
package ape137 of R and default parameter values. The
pairwise distances were from the log file of SALIGN, and
they were for the guide tree during the last alignment
iteration.

We visualized the aligned structures using PyMOL
(v. 2.0, Schrödinger, LLC). We loaded aligned structures
(pdb format) into PyMOL, colored them using palettes
generated by package colorspace138 of R, and then cap-
tured images as ray traces. For best comparison, we cap-
tured all ray traces from the same view for a given figure.

4.7 | Searching for CoA transferases in
databases

To find CoA transferase reactions in databases, we
searched for EC numbers for CoA transferase reactions (-
Table S4). For databases that allowed them, we searched
for additional reaction IDs (Table S4). For UniProt, we also
searched for Rhea IDs. For MetaCyc, we also searched for
Rhea IDs and MetaCyc Reaction IDs/BioCyc IDs. For
KEGG, we also searched for KEGG REACTION IDs.

Our analysis also included n = 5 enzymes that cata-
lyze non-CoA transferase reactions only. For fair compar-
ison, we searched databases for these enzymes, too.

We counted enzymes annotated with a reaction, amino
acid sequence, and literature reference. We did not count
enzymes with partial or incorrect information (see
Table S5). For UniProt, we counted only enzymes with
“Experimental evidence at protein level” (see Table S5).

The Venn diagram of reactions by database was gen-
erated using package venn139 in R. The phylogenetic tree
and heat map were generated as described previously.

4.8 | Prediction of sequence regions of
protein domains

To build a phylogenetic tree of the two different domains of
CoA transferases (Figure S6), we had to predict sequences
regions for each domain. First, we identified sequence
regions in enzymes where they were known (or obvious).
These enzymes included n = 24 with crystal structures and
n = 12 where domains were part of separate subunits. Sec-
ond, we built profile hidden Markov models (pHMMs) of
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these sequence regions. We used the hmmbuild command
of HMMER,140 using the known sequence regions as the
input. Third, we predicted sequence regions of domains in
all remaining CoA transferases. We used the hmmsearch
command of HMMER, using the pHMMs and sequences of
CoA transferases as an input.
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