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Robust 4D Flow Denoising Using Divergence-Free Wavelet 
Transform

Frank Ong1, Martin Uecker1, Umar Tariq2, Albert Hsiao2, Marcus T Alley2, Shreyas S. 
Vasanawala2, and Michael Lustig1,*

1Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, 
California, USA

2Department of Radiology, Stanford University, Stanford, California, USA

Abstract
Purpose—To investigate four-dimensional flow denoising using the divergence-free wavelet 
(DFW) transform and compare its performance with existing techniques.

Theory and Methods—DFW is a vector-wavelet that provides a sparse representation of flow 
in a generally divergence-free field and can be used to enforce “soft” divergence-free conditions 
when discretization and partial voluming result in numerical nondivergence-free components. 
Efficient denoising is achieved by appropriate shrinkage of divergence-free wavelet and 
nondivergence-free coefficients. SureShrink and cycle spinning are investigated to further improve 
denoising performance.

Results—DFW denoising was compared with existing methods on simulated and phantom data 
and was shown to yield better noise reduction overall while being robust to segmentation errors. 
The processing was applied to in vivo data and was demonstrated to improve visualization while 
preserving quantifications of flow data.

Conclusion—DFW denoising of four-dimensional flow data was shown to reduce noise levels in 
flow data both quantitatively and visually.

Keywords
four-dimensional flow; wavelet denoising; divergence-free

Introduction
Time-resolved three-dimensional phase-contrast MRI [four-dimensional (4D) flow] is a 
promising imaging technique that can provide both cardiac anatomy and function in a single 
acquisition (1). Potential clinical applications of 4D flow were shown in many areas 
including evaluation of valve-related disease, analysis of dynamic blood flow in the aorta, 
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and quantification of cardiac flow using derived parameters such as pressure difference 
maps and wall sheer stress (2). Although it is now possible to get acquisition times below 5 
min, clinical acceptance is limited by its vulnerability to phase errors and issues associated 
with the interpretation of the vast amount of generated data. In this work, we focus on 
reducing noise-like phase errors in 4D flow data.

Noise-like phase error in flow data can arise from body noise or hardware imperfection and 
may be further amplified by high velocity encodes (VENCs) to avoid velocity aliasing when 
the dynamic range is high. Low velocity-to-noise ratio in 4D flow data often reduces 
confidence in visualization and lowers the quantification accuracy. Moreover, a common 
research approach to accelerate 4D flow scan time is to use undersampling methods, such as 
k-t GRAPPA (3), k-t BLAST, k-t SENSE (4), k-t PCA (5), k-t SPARSE (6), L1-SPIRiT (7), 
or other parallel imaging and compressed sensing techniques. Although these techniques 
reduce scan time, this reduction is usually associated with lower signal-to-noise ratio and 
hence velocity-to-noise ratio. In the case of nonuniform subsampling, artifacts may also 
appear as noise in velocity data, which can persist in reconstructed data. Hence, an effective 
noise reduction processing is highly desired for 4D flow data.

To reduce noise or artifacts, several authors have proposed incorporating physical conditions 
of blood flow in flow data processing (8–11). As blood flow is incompressible and hence 
divergence-free, noise-like errors can be reduced by suppressing divergent components in 
flow data. In particular, Song et al. (8) proposed denoising MR flow field by projecting the 
data onto divergence-free vector fields using the finite difference method (FDM). The 
projection operation was reduced to an inverse 7-point Laplacian problem, which was solved 
by a fast Poisson solver using the Fast Fourier Transform. Another recent work by Busch et 
al. (9) constructed divergence-free flow field by projecting the noisy flow field onto 
divergence-free radial basis functions (RBF) using iterative least squares. Normalized 
convolution with an uncertainty map was used to incorporate boundary conditions in the 
flow field. Both FDM and RBF were shown to be effective as a denoising process for flow 
imaging (12).

However, one issue with existing projection methods is that they enforce the flow field to be 
strictly divergence-free, which require accurate segmentation to prevent unwanted boundary 
effects near edges. In practice, discrete approximation and partial voluming of flow cannot 
be fully captured by a strict divergence-free representation. This situation often occurs in 
places near edges of flow, static tissue, or turbulent flow, where discrete representation of 
flow consists of discontinuities. Strict divergence-free enforcement across these 
discontinuities may result in significant error propagation throughout the flow field. 
Although segmentation of flow data can help preventing these effects, accurate 
segmentations are often hard to obtain in low signal-to-noise ratio data. Errors from 
segmentation can also contribute to significant divergent components. Hence, a “softer” 
divergence-free enforcement of flow data is needed to enforce appropriate constraints on 
different flow regions.

In this work, we present a robust and effective noise reduction processing using the 
divergence-free wavelet (DFW) transform (13). DFWs were first introduced by Lemarié-
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Rieusset (14) to the computational fluid dynamics (CFD) community in the 1980s. Since 
then, DFWs were investigated in several CFD applications for simulations and flow data 
compression (15–18). In particular, DFWs were shown to provide a sparse representation for 
simulated flow data in (17) and were used to separate random flow from actual flow field in 
(18). These two properties encourage us to apply DFW denoising in the context of 4D flow 
MRI.

The purpose of this work is to demonstrate the effectiveness and robustness of DFW 
denoising on flow data through soft-thresholding (19). To further improve denoising 
performance, we investigate SureShrink (20) for selecting appropriate thresholds and cycle-
spinning (21) for removing blocking artifacts from wavelet transform.

Theory
Divergence-Free Wavelets

DFWs are vector-wavelets that can separate flow data into divergence-free wavelet and non-
divergence-free wavelet (DFW) coefficients. Despite its name, DFW coefficients span both 
components and hence the entire space of vector fields. By separating flow field into 
divergence-free and nondivergence-free components, DFW transform offers better 
decorrelation of flow data than standard separate wavelet transforms and thereby provides 
better energy compactness or sparsity of flow data (17). Efficient denoising can be achieved 
by appropriate shrinkage of divergence-free and nondivergence-free coefficients. As the 
processing is essentially wavelet denoising, DFW denoising inherits advantages of wavelet 
denoising, including efficient multiscale decompositions, edge preserving transforms, and 
sparse representation of signals, while amounting to only linear computational complexity.

The construction of DFWs relies on the following proposition that relates two different 
wavelet functions by differentiation (17):

Proposition—Let ϕ1(x) and ψ1(x) be a one-dimensional differentiable scaling function and 
wavelet function, respectively. Then, we can build another one-dimensional scaling function 
ϕ0(x) and wavelet function ψ0(x) such that

ϕ1′ (�) = ϕ0(�) − ϕ0(� − 1) ψ1′ (�) = 4ψ0(�) [1]

One set of wavelets that satisfies the above proposition is the linear spline wavelet and the 
quadratic spline wavelet shown in Figure 1a. Using the above proposition, DFWs can then 
be explicitly constructed by combining tensor products of the one-dimensional wavelet 
functions. Specifically, consider the case of two-dimensional for simplicity and let the 
following functions be a subset of the scaling and wavelet basis functions when applying 
standard wavelet transform with filters ϕ0, ψ0, ϕ1, and ψ1 on vx and vy separately:
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Φ��(�, �) = ϕ1(�)ϕ0(�)0 , Ψ��(�, �) = ψ1(�)ψ0(�)0Φ��(�, �) = 0ϕ0(�)ϕ1(�) , Ψ��(�, �) = 0ψ0(�)ψ1(�) [2]

Then using the above functions, we can construct two-dimensional divergence-free scaling 
and wavelet functions of the following form:

Φdivfree (�, �) = ϕ1(�)[ϕ0(�) − ϕ0(� − 1)]−[ϕ0(�) − ϕ0(� − 1)]ϕ1(�) = [Φ��(�, �) − Φ��(�, � − 1)] − [Φ��(�, �) − Φ��(� − 1, �)]
Ψdivfree (�, �) = ψ1(�)ψ0(�)−ψ0(�)ψ1(�) = Ψ��(�, �) − Ψ��(�, �) [3]

which can be verified to have zero divergence:

∇ ⋅ Φdivfree = [ϕ0(�) − ϕ0(� − 1)][ϕ0(�) − ϕ0(� − 1)] − [ϕ0(�) − ϕ0(� − 1)][ϕ0(�) − ϕ0(� − 1)] = 0∇ ⋅ Ψdivfree = 4ψ0(�)ψ0(�) − 4ψ0(�)ψ0(�) = 0 [4]

As each DFW basis function can be expressed in terms of separate wavelet basis functions 
Φvx, Φvy, Ψvx, and Ψvy, computation of DFW coefficients is reduced to a simple linear 
combination of wavelet coefficients generated by separate wavelet transforms on each 
velocity component. Nonisotropic resolutions along directions can be compensated by 
scaling the wavelet coefficients for each direction by its relative resolution (see Appendix). 
Thus, the procedure for DFW denoising is only different from standard wavelet denoising in 
that we have to linearly combine wavelet coefficients before and after soft-thresholding. 
Similar procedure can be extended to the case of three-dimensional and used to generate a 
complete set of 21 DFW functions. The complete set of linear combination equations is 
provided in Appendix. Detailed derivation can be found in (17) under the name “isotropic 
DFW transform.” Examples of two-dimensional slices of DFW basis functions are shown in 
Figure 1b,c. The entire denoising flow diagram is shown in Figure 1d and achieves linear 
computational complexity.

With the DFWs, we obtain a sparse representation of flow data. Hence, to effectively 
denoise flow data, we propose soft-thresholding (19) the wavelet coefficients to promote 
sparsity in the divergence-free components and enforce “soft” divergence-free constraints in 
the nondivergence-free components. Instead of eliminating nondivergence-free coefficients, 
soft-thresholding nondivergence-free coefficients allows the flexibility to adjust the cutoff so 
that important components, such as those arising near edges, can be captured. This operation 
is essentially an approximation to an l1-penalized least squares, which was shown to be more 
robust to errors near boundaries (22). As wavelet coefficients are separated into divergence-
free and nondivergence-free coefficients, two separate thresholds can be chosen for 
divergence-free and nondivergence-free components, thereby allowing better denoising 
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performance. Moreover, standard wavelet denoising techniques, such as Stein’s Unbiased 
Risk Estimator (SURE)-based threshold selector (20) and cycle spinning (21), can also be 
used to optimize the performance.

Threshold Selection and Cycle Spinning

To select an appropriate threshold for a given noise level, we consider SureShrink (20) as an 
optimal scheme for minimizing mean square error in the wavelet domain. SureShrink was 
proposed by Donoho and Johnstone as a hybrid scheme that chooses between a SURE-based 
threshold and a minimax optimal threshold. As minimax threshold tends to oversmooth 
when applied on image data (23), we use only the SURE-based threshold in SureShrink for 
denoising flow data. Since SURE-based methods assumes white Gaussian noise, flow data is 
first segmented to remove flow regions with low image magnitude. Noise in the resulting 
flow data can then be approximated as Gaussian noise with standard deviation VENC/SNR 
(24). In practice, this mask can be conservatively chosen as DFW thresholding is robust to 
segmentation errors, which we demonstrate in Results section.

Formally, for each wavelet subband j, let Ij be the index set of subband coefficients 
corresponding to the segmented data, Nj be the length of the index set Ij, xi,j be the ith 
subband coefficients in Ij, and σ be the noise standard deviation, SureShrink chooses the 

subband dependent threshold ��∗ as follows (25):

��∗ = min� σ2 − 1��(2σ2 # {�: |��, � | ≤ �} − ∑� = 1�� min ( |��, � | , �)2) [5]

Thresholds for SureShrink can be computed with complexity N log N. Detailed derivation 
can be found in (20) and (25). To robustly estimate σ, median absolute deviation (MAD) can 
be used, which is given by the formula: σ = 1.4826 median (|xi – median (x)|).

As with standard biorthogonal wavelet denoising, DFW denoising is not translation 
invariant and suffers from blocking artifacts. To reduce these artifacts, we consider cycle 
spinning (21) to improve denoising performance.

Methods
The proposed methods were implemented in the programming language C and CUDA (26) 
with MATLAB (The MathWorks, Natick, MA) MEX wrappers. FDM and RBF were 
implemented in MATLAB for comparison. For the construction of DFW, linear spline 
wavelet (Cohen-Daubechies-Feauveau 2.2) was used for ϕ0 and ψ0, and quadratic spline 
wavelet (Cohen-Daubechies-Feauveau 3.1) were used for ϕ1 and ψ1, all of which with 
symmetric boundary extensions. Unless specified, two levels of wavelet decompositions 
were used for CFD simulation and three levels of wavelet decompositions were used for 
other experiments. Instead of applying the full cycle spinning, partial cycle spinning was 
used to reduce complexity. This procedure shifts the input data randomly, applies DFW 
denoising and averages the results for a few iterations. In all experiments, eight random 
shifts were used for partial cycle spinning. In the soft-thresholding operation, wavelet 
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coefficients in the coarsest level were left untouched as they were not sparse. SureShrink and 
MAD were used for threshold selection unless specified. For SureShrink, MAD was applied 
on the highest frequency subband of nondivergence-free component to estimate the noise 
standard deviation because the estimation is more accurate when applied on a sparser 
subband. In the current implementation of DFW transform, wavelet filters along with the 
linear combination step for each subband are not normalized. To compensate for the scaling, 
the normalization factors for each subband were precomputed by applying DFW transform 
on white Gaussian noise and averaging over each subband. For FDM, first-order finite 
difference and periodic boundary conditions were used. Velocity data was masked by an 
image magnitude mask for both DFW and FDM. For RBF, the support of the basis functions 
was set to be 19 × 19 × 19 for CFD simulation and 9 × 9 × 9 for phantom experiments as 
they produced low errors. A binary certainty function with a uniform nonzero weight for 
flow regions was used for normalized convolution for RBF. Iterative least squares in RBF 
was implemented with LSQR (27) in MATLAB with maximum number of iterations set to 
30. All methods and simulations were implemented on a workstation that has dual-socket 
with six-core Intel Westmere CPUs at 2.67 GHz with 64 GB of system DRAM and an 
Nvidia GTX580 GPU with 3 GB of high-speed Graphics DRAM.

In the spirit of reproducible research, we provide a software package to reproduce some of 
the results described in this article. The software can be downloaded from: http://
www.eecs.berkeley.edu/∼mlustig/Software.html.

CFD Simulation: Comparison with Existing Methods

To compare denoising performances with existing methods, a three-dimensional steady-state 
flow through a stenosis was simulated using OpenFOAM (28), an open source CFD 
software package. The tube had an opening of 2-cm diameter with a narrowing of 0.5-cm 
diameter. Kinematic viscosity was set to be 3.33 × 10−6 m2/s. A constant flow of 15 cm/s 
was applied from the top of the tube and gridded flow data with matrix size 480 × 80 × 80 
was collected after 100 time-steps (time-step = 1 μs). This particular geometry and time 
point were chosen because of the resulting detailed flow field. MR data with five-point 
balanced phase-contrast method (29) was simulated by setting the phase to be linear 
combinations of flow data following (29). VENC was set to be 239 cm/s. The complex data 
magnitude in image domain was set to one wherever the velocity field was nonzero. The 
reference phase was set to be zero.

Different levels of complex Gaussian noise were added to the complex data. RBF, FDM, and 
DFW without cycle spinning and DFW with partial and full cycle spinning were applied on 
the noisy data for comparison. Resulting errors before and after processing were averaged 
over 30 iterations for each noise standard deviation.

Flow Phantom Experiment: Effects of Segmentation Errors

To test the denoising performances on MR flow phantom data and the effect of using an 
incorrect segmentation of the flow field, a fully sampled 4D flow data was acquired from a 
pulsatile flow phantom on a 3T GE Scanner with a 32 channel Torso array. The 4D flow 
acquisition was performed using a spoiled gradient-echo-based sequence with tetrahedral 
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flow encoding. The spatial resolution was 0.86 × 0.86 × 1.30 mm3. The flip angle was 15° 
and TR/TE was 3.52/1.37 ms. VENC was set to be 150 cm/s. The flow data was corrected for 
Maxwell phase effects (30), gradient nonlinearity distortions (31), and eddy-current (32). 
The entire flow data had a matrix size of 134 × 192 × 64 and featured a tube with stenosis on 
the left and a static flow phantom in the middle. The static region was used to correct for 
effects from eddy currents. Only the tube with stenosis is shown in most of the following 
figures. The entire flow phantom is shown in Figure 7.

Complex Gaussian noise was retrospectively added to the acquired data to generate a noisy 
flow data with peak velocity-to-noise ratio (PVNR) of 33.5 dB. Image magnitude 
segmentation was obtained by setting an appropriate threshold on the magnitude image. An 
incorrect image magnitude segmentation was obtained by lowering the threshold. RBF, 
FDM, and DFW with and without partial cycle spinning were applied on the noisy data with 
the correct segmentation to test for noise reduction performance and with the incorrect 
segmentation to test for robustness to boundary errors.

Flow Phantom Experiment: Reduction of Incoherent Artifacts

Reduction of incoherent artifacts from undersampling (33) using DFW was also 
investigated. k-space data of the flow phantom was first coil-compressed (34) into eight 
virtual channels. The phase encodes were retrospectively subsampled by 5.4 using a 
Poisson-disk sampling mask [Fig. 7; (35)]. The same sampling mask was applied on each 
VENC. ESPIRiT (36) was used to extract sensitivity maps from the calibration region and 
SENSE (37) was used to reconstruct the flow data. DFW with partial cycle spinning, 
SureShrink, and MAD were applied on the reconstructed flow data. As coherent artifacts in 
the undersampled data can overwhelm the SURE risk minimizer, DFW denoising with 
manually tuned thresholds was also applied and compared. For ease of usage, only two 
global thresholds for divergence-free and nondivergence-free components were manually 
specified. Flow data reconstructed by ESPIRiT with l1 regularization was generated for 
comparison.

In Vivo Data: Visual Improvement and Effect on Quantification

To investigate the effect on flow quantifications, DFW was applied on eight in vivo datasets. 
In vivo 4D cardiac flow data were acquired in eight pediatric patients with 20 cardiac 
phases, 122–144 slices and an average spatial resolution of 0.99 × 0.99 × 1.12 mm3. Four 
patient data had regurgitant fractions (RF) less than 5% and the other four had RFs greater 
than 30%. The flow data were acquired on a 1.5T GE Signa Scanner with an eight channel 
cardiac array. The 4D flow acquisition was performed using a spoiled gradient-echo-based 
sequence with tetrahedral flow encoding and variable density Poisson-disk under-sampling. 
The flip angle was 15° and the average TR/TE was 4.94/1.91 ms. VENCs for the studies 
ranged from 150 to 300 cm/s. The acquisitions were undersampled by about 4 and was 
reconstructed using L1-SPIRiT, a compressed sensing and parallel imaging reconstruction 
algorithm (7). Volumetric eddy-current correction was performed on velocity data following 
(32). Segmentations for flow calculations were done manually on the aorta and pulmonary 
trunk. Net flow rate(volume/time) and RF(%) were calculated for each segmentation. DFW 
was applied on reconstructed flow data from each cardiac phase.
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Besides SureShrink, results from manually chosen thresholds for DFW were also analyzed 
with two global thresholds on the divergence-free and non-DFW coefficients. DFW was 
implemented in JCUDA and incorporated into a custom built Java-based flow visualization 
software package (38). The computation time of DFW denoising with no cycle spinning on a 
single cardiac phase was less than 1 s. This enabled real-time interactive control of the 
denoising parameters to improve visual quality and minimize the flow inconsistency 
between the aorta and pulmonary trunk. Once the thresholds were set, DFW denoisings with 
partial cycle spinning were applied on all cardiac phases.

The quantifications measured were net flow rate, RFs, and the deviations between 
systematic and pulmonary flow. Because RFs and net flow rate were measured over 
segmentations and over time, they were relatively robust to noise and artifacts even before 
processing and were shown to agree with gold standards. Hence, change in RF and flow 
rates after denoising were expected to be small to preserve flow quantifications. Deviations 
between systematic and pulmonary flow were also expected to be small.

In addition, streamline quantification on a particular study was generated using Ensight 
(CEI, Apex, NC). For qualitative assessment, streamlines were released from a plane placed 
at the ascending aorta for L1-SPIRiT reconstructed data and the subsequent DFW denoised 
data. For quantitative streamline metric, particles were emitted from a plane placed at the 
upper part of the descending aorta and an analysis plane was placed at the lower part of the 
descending aorta. As most of the flow from the emitter plane should pass through the 
analysis plane, the percentage of streamlines reaching the analysis plane was used as a 
metric to quantify the improvement after denoising.

Error Analysis

To quantify errors in experiments, different error metrics were used. PVNR was used to 
quantify the initial noise level in simulations. Denoising performance was quantified with 
regard to normalized-root-mean-squared-error (NRMSE) in velocity and in speed, as defined 
in the standard convention. Average direction error was also considered, which was bounded 
by 1. All error calculations shown in Result section were done on the entire (correctly) 
segmented regions.

Formally, let N be the number of segmented voxels and vi,ref and vi,denoised be the reference 
and denoised velocity vectors, respectively, at the ith segmented voxel, we define the error 
metrics as the following:
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PVNR = 20 log10 1Velocity NRMSE dB
Velocity NRMSE = 1max� |��, ref | ) 1� ∑� = 0� |��, ref − ��, denoised|2

Speed NRMSE = 1max� ( |��, ref | 1� ∑� = 0� ( |��, ref | − |��, denoised | )2
Direction Error = 1� ∑� = 0� 1 − |��, ref ⋅ ��, denoised||��, ref | |��, denoised|

[6]

Results
CFD Simulation: Comparison with Existing Methods

Figure 2 presents the simulation results on a noisy CFD data with 22-dB PVNR. Visually, 
both DFW and RBF show significant noise reduction in velocity magnitude, whereas FDM 
shows little improvement over the noisy flow field. Comparing to DFW without cycle 
spinning, DFW with partial cycle spinning reduces blocking artifacts and improves 
denoising performance. DFW with two wavelet level decomposition also suppresses more 
noise in general than DFW with one wavelet level decomposition, but may lose some details 
as pointed by the white arrows. RBF also loses some details as pointed and has difficulty 
representing discontinuities in the velocity field near the stenosis. The red arrow points to 
artifacts produced by RBF. These artifacts persist even when a smaller kernel for RBF is 
used.

Vector visualization of the same experiment is shown in Figure 3. As in velocity magnitude, 
both DFW and RBF show significant noise reduction in vector visualization. Visually, their 
vector representations look very similar to the original flow field. Although FDM shows less 
improvement than other methods, some noise suppression can still be observed especially 
near the vortices on both sides.

Figure 4 shows the velocity profiles of different slices before and after DFW denoising with 
partial cycle spinning. Velocity profiles after DFW processing closely resemble the original 
velocity field. Discontinuities in velocity data, such as those in slice 2 and 3, can still be 
captured with DFW even when DFW was applied on the entire flow field. DFW suppresses 
most of the noise while preserving the shape of each individual velocity direction. For 
example, in slice 3, DFW preserves small variation in vy even when the variation in vx is 
large.

Quantitative error plots over a range of PVNRs for CFD simulations are also shown in 
Figure 4. DFW with full cycle spinning outperforms other methods in all three error criteria. 
DFW with partial cycle spinning comes close as second. RBF is third in most PVNRs but 
loses to DFW without cycle spinning in both velocity and speed NRMSE for high PVNRs. 
FDM is consistently behind other methods, but has lower errors than noisy data. As 
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expected, at PVNR equals 22 dB, the quantitative errors for each method match their visual 
quality in Figures 2 and 3.

Flow Phantom Experiment: Effects of Segmentation Errors

Figure 5 shows the results of denoising a noisy flow phantom with PVNR of 33.5 dB. 
Similar to the CFD simulations, both DFW and RBF show significant noise reduction in 
velocity magnitude, whereas FDM shows only small improvement over noisy data. DFW is 
shown to reduce noise in the static flow regions while preserving details in velocity 
magnitude. In general, RBF provides a smoother representation of velocity magnitude and 
may present a better performance visually compared to DFW. However, the error maps show 
that some details in the original flow field are blurred after RBF processing. In addition, 
while artifacts in RBF are not as prominent as in the CFD simulation, some ringing artifacts 
still show up near the stenosis as pointed by the white arrow.

Quantitatively, velocity NRMSE, speed NRMSE, and direction error for the noisy flow 
phantom are 2.12%, 1.23%, and 0.00807, respectively. For DFW without cycle spinning, 
they are 1.69%, 1.02%, and 0.00598, respectively. For DFW with cycle spinning, they are 
1.50%, 0.907%, and 0.00481, respectively. For FDM, they are 3.37%, 1.97%, and 0.0207, 
respectively. For RBF, they are 1.60%, 1.03%, and 0.00727, respectively. DFW with cycle 
spinning achieves the lowest errors in all three error criteria, with DFW without cycle 
spinning and RBF competing for second. FDM has higher errors than the noisy flow field 
has, which may due to errors in the acquired flow data.

To test for the robustness of denoising methods, an incorrect segmentation mask was chosen 
by lowering the threshold on image magnitude. Because of partial voluming, regions outside 
the actual flow region can be included and result in significant discontinuities near edges. 
Figure 6 shows the results of denoising the same noisy flow phantom with the incorrectly 
chosen segmentation. Visually, DFW is largely unaffected by the change in segmentation 
and produces similar results as before. RBF shows significant distortions near edges and 
errors propagating throughout the field. FDM shows less distortions, but they can still be 
observed in the zoomed in portion.

Quantitatively, velocity NRMSE, speed NRMSE, and direction error for the noisy flow 
phantom within the correctly masked data are 2.12%, 1.23%, and 0.00807, respectively. For 
DFW without cycle spinning, they are 1.72%, 1.03%, and 0.00691, respectively. For DFW 
with cycle spinning, they are 1.39%, 0.849%, and 0.00470, respectively. For FDM, they are 
3.80%, 2.21%, and 0.0262, respectively. For RBF, they are 3.17%, 1.89%, and 0.00214, 
respectively. Compared to the results with the correct segmentation, errors for all methods, 
except for DFW with cycle spinning, go up. Errors for RBF and FDM increase significantly, 
which confirms with the visual quality. Both the visual quality and error quantities show that 
DFW is robust to segmentation errors. However, with the coarsely chosen mask, errors near 
edges for DFW increase slightly compared to the correct mask, indicating that a better mask 
still leads to better performance in general.
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Flow Phantom Experiment: Reduction of Incoherent Artifacts

To test for the artifact reduction performance for DFW, k-space data was retrospectively 
undersampled using a 5.4-fold Poisson-disk sampling mask on Figure 7. The figure presents 
the result of denoising reconstructed velocity field using DFW with SureShrink and 
manually chosen threshold. Visually, DFW with SureShrink reduces some artifacts, but is 
overly conservative as some of the incoherent artifacts can still be observed. With more 
aggressively chosen thresholds, DFW suppresses most of the artifacts and improves the 
performance significantly. Quantitatively, velocity NRMSE, speed NRMSE, and direction 
error for the reconstructed flow phantom are 3.36%, 1.94%, and 0.0249, respectively. For 
DFW with SureShrink, they are 2.99%, 1.75%, and 0.0215, respectively. For DFW with 
manually chosen thresholds, they are 2.35%, 1.59%, and 0.0154, respectively. The errors for 
DFW with SureShrink decrease slightly compared to the noisy data while DFW with 
manually chosen thresholds further suppresses the errors. In comparison, ESPIRiT with 
spatial wavelet l1 regularization is also shown in Figure 7 and recovers almost exactly the 
original flow field, showing that denoising by itself cannot replace the entire compressed 
sensing reconstruction.

In Vivo Data: Visual Improvement and Effects on Quantification

Table 1 shows the quantitative results before and after applying DFW with SureShrink and 
manually chosen thresholds. For DFW with SureShrink, the mean percentage change in flow 
rate and mean change in RF after denoising were small for both groups with RF < 5% and 
RF > 30%. The minor change in quantifications suggests that SureShrink does not distort 
flow quantifications. After applying DFW with SureShrink, mean of (Qp − Qs) stays close to 
zero, indicating that the bias is small. Standard deviation of (Qp − Qs) is observed to 
decrease after DFW denoising, suggesting that DFW with SureShrink improves flow 
consistency across patient data.

Thresholds that were manually chosen based on visual quality were compared to SureShrink. 
In general, the manually chosen thresholds were greater than the SureShrink thresholds. One 
of the patient data with RF > 30% near the aorta is shown in Figure 8. Visually, SureShrink 
thresholding reduces the noise level slightly when compared to the original data. For 
manually chosen thresholds, three levels of thresholds and their corresponding positions on 
the L-curve are shown in the same figure to demonstrate the tradeoffs of choosing the 
thresholds. White arrows point to details that are lost when a high threshold was applied 
during denoising.

Vector visualization and streamline visualization of DFW denoising are shown in Figure 9. 
In the vector visualization panel, results from thresholding only the non-DFW coefficients 
and thresholding both divergence-free wavelet and non-DFW coefficients are compared. 
With only non-DFW coefficients thresholded, the flow vectors are more aligned and the 
global noise level decreases slightly. With both divergence-free wavelet and non-DFW 
coefficients thresholded, the global noise level is significantly reduced and flow patterns 
become cleaner. In streamline visualization, the DFW denoised flow shows more coherent 
streamlines when compared to the original streamlines. Red arrows point to streamlines that 
flow outside of the anatomy for the L1-SPIRiT reconstructed data but remains inside of the 
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anatomy for DFW. Quantitatively, for the streamlines released from the descending aorta, 
21.9% of the particles emitted from the emitter plane reach the analysis plane for the L1-
SPIRiT data, whereas 33.6% of them reach the analysis plane for the DFW denoised data, 
showing that DFW can improve streamline lengths.

Computation Time

All simulations were run on the same workstation with configuration described in Methods 
section. In the MATLAB implementation on the CFD data (matrix size 480 × 80 × 80), 
DFW (1 cycle) took 20–40 s, RBF took 10–15 min, and FDM took about 1 s. In general, as 
FDM and DFW are both noniterative, they are significantly faster than RBF. In C 
implementation with no parallelization, DFW (1 cycle) took about 10 s and in CUDA 
implementation, it took less than 1 s and was dominated by memory transfer from CPU to 
GPU.

Discussion
Performance of DFW Denoising and Existing Methods

In our simulations and experiments, we have shown that soft divergence-free enforcement 
through DFW transform leads to a better denoising performance. Although enforcing 
divergence-free conditions on flow can suppress noise in general, eliminating 
nondivergence-free components in the flow field can contribute to significant error 
propagating throughout the field. In particular, we have shown that in two experiments, 
sharp transition near stenosis (Fig. 2) or segmentation errors (Fig. 6) can result in prominent 
nondivergence-free components in flow field. Both strict divergence-free enforcements 
using FDM or RBF generated artifacts. Since DFW denoising enforces divergence-free 
constraints through the soft-thresholding operation, significant nondivergence-free 
components were preserved and hence did not distort the flow field in those experiments.

RBF, in general, performs exceptionally well when the flow field is smooth and the 
uncertainty map is correctly chosen. However, compared to FDM, RBF is more sensitive to 
nondivergence-free components and creates more prominent artifacts. This is due to the 
larger kernel size of RBF. Although such artifacts can be reduced when a smaller kernel size 
is chosen, they can never be eliminated as they also appear in FDM, which has kernel size 3 
× 3 × 3 for the Laplacian operator. Because a larger kernel size results in smaller errors in 
our simulations, the current kernel sizes are used instead. Conversely, because FDM has the 
smallest kernel size, FDM consistently performed the worst out of the three denoising 
schemes implemented. Although using a higher order finite difference and incorporating a 
smoothness penalty can improve its denoising performance (11), the inherent problem of 
imposing strict divergence-free conditions is not solved.

Although soft-thresholding allows DFW denoising to impose soft divergence-free 
constraints, it can also result in blocking artifacts and lead to a worse reconstruction as 
shown in Figure 2. Hence, with cycle spinning, DFW has consistently shown to improve 
denoising performance. As doing full cycle spinning often requires 64 or more wavelet 
transforms, we opt for partial cycle spinning with eight random shifts and have shown in the 
CFD simulation that its performance is close to the performance of full cycle spinning. 
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Together with partial cycle spinning, DFW denoising outperforms other denoising schemes 
overall both quantitatively and visually.

In our experiments with retrospectively added Gaussian noise, SureShrink in general has 
picked appropriate thresholds that produce data with good visual quality. Its denoising 
performance was verified by the CFD simulation and flow phantom experiment. However, 
with undersampled data, we have shown that SureShrink can be overly conservative and 
hence manually tuned thresholds may be required. This underperformance of SureShrink on 
undersampled data may be caused by the coherent artifacts in the flow field, which can 
overwhelm the SURE risk minimizer. However, we emphasize that when underperforming, 
SureShrink is often overly conservative and hence can be acted as a baseline for fine tuning 
the thresholds. In vivo studies have also indicated that SureShrink does not distort flow 
quantifications as the net flow rate and RF did not change drastically. Although the changes 
were not large, the decreased deviation between Qp and Qs suggests that DFW with 
SureShrink improves the flow consistency across the field.

Applicability of Divergence-Free Denoising

We also highlight the flexibility of DFW denoising, offering both high-level automated 
denoising and low level manual adjustments. At a high level, MAD and SureShrink simplify 
the denoising process and effectively reduce the input parameters to be the number of 
wavelet levels and the image mask. Since DFW denoising is robust toward segmentation 
errors, both parameters can be easily obtained and provide good denoising performance in 
general.

Conversely, as SureShrink only minimizes the mean squared error, a better threshold can be 
fine-tuned for specific needs. For example, a smaller threshold may be chosen to preserve 
the details in the CFD experiment (Fig. 2) or a higher threshold may be chosen for denoising 
undersampled data with non-Gaussian artifacts (Fig. 7). Since the fast computation of DFW 
transform allows users to pick a threshold with instant feedback, it enables fine tuning of the 
parameters. The robustness of DFW transform and the ability to fine tune parameters 
suggest that DFW denoising can be safely applied to clinical data.

Further Improvement

Although SureShrink produces thresholds that have small mean squared errors in 
simulations, it can be suboptimal as compactly supported DFWs are biorthogonal (15). 
Biorthogonality of DFWs implies that the transform does not preserve noise statistics, so 
minimizing errors in the wavelet domain does not minimize errors in the image domain 
directly. However, spline wavelets are nearly orthogonal and the constructed DFWs are also 
close to orthogonal as shown in (18). When choosing the optimal threshold for SureShrink, 
we make the approximation that the DFWs are approximately orthogonal for computational 
efficiency. For true optimal selection of thresholds, the minimization for SureShrink should 
be solved in the image domain instead, which involves multiple wavelet transforms (23). 
Moreover, more advanced threshold selectors, such as SURE-LET (23), can be used instead 
of SureShrink and may offer a better performance. Jointly estimating thresholds from 
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different shifts or undecimated wavelet transform can also improve the denoising 
performance (23) but can increase the computation substantially.

Conclusions
In this article, 4D flow denoising using DFW is shown to be effective, while being robust to 
discontinuities in flow. We have shown that combining DFW transform with SureShrink and 
partial cycle spinning results in better denoising performance in general. Our in vivo 
experiments also suggest that DFW denoising can be safe for quantification purposes, 
especially when fast computation of DFW denoising allows the user fine tuning the level of 
denoising interactively. When compared to existing methods, DFW enables “softer” 
enforcement of divergence-free constraints, thereby providing a more robust denoising 
performance overall.

Acknowledgments
NIH; Grant number: P41RR09784, R01EB009690; Grant sponsor: American Heart Association; Grant number: 
12BGIA9660006; Grant sponsor: The Sloan Research Fellowship.

Appendix: Construction of DFW Coefficients
The following describes the construction of all DFW coefficients following (17). For each 
wavelet decomposition level, we define:

• (ϕ1(x), Ψ1(x)) and (ϕ0(x), Ψ0(x)) be the scaling and wavelet function pairs described 
in Theory section.

• s = (i, j, k) be the indices for each subband in a three-dimensional wavelet 
transform, with i, j, and k equal to 1 when the subband is projected on ψ along x, y, 
and z directions, respectively, and 0 when the subband is projected on ϕ along x, y, 
and z directions, respectively.

• ����  be the wavelet coefficients of vx with ϕ1/ψ1 applied along the x direction and 

ϕ0/ψ0 applied along the y and z directions on subband s. For example, ���(0, 1, 0)
corresponds to the wavelet coefficients of vx with ϕ1 applied along x direction, ψ0 
applied along y direction, and ϕ0 applied along z direction.

• ����  be the wavelet coefficients of vy with ϕ1/ψ1 applied along the y direction and 

ϕ0/ψ0 applied along x and z directions on subband s.

• ����  be the wavelet coefficients of vz with ϕ1/ψ1 applied along z direction and ϕ0/ψ0 

applied along x and y directions on subband s

• �df1�  and �df2�  be the divergence-free component of DFW coefficients and �n�  be the 

nondivergence-free component of DFW coefficients.

• Then, the construction of DFW coefficients are given by:
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�df1(1, 0, 0)(�, �, �) = ���(1, 0, 0)(�, �, �)�df2(1, 0, 0)(�, �, �) = ���(1, 0, 0)(�, �, �)�n(1, 0, 0)(�, �, �) = ���(1, 0, 0)(�, �, �) + 14 (���(1, 0, 0)(�, �, �) − ���(1, 0, 0)(�, � − 1, �)) + 14 (���(1, 0, 0)(�, �, �) − ���(1, 0, 0)(�, �, � − 1))�df1(0, 1, 0)(�, �, �) = ���(0, 1, 0)(�, �, �)�df2(0, 1, 0)(�, �, �) = ���(0, 1, 0)(�, �, �)�n(0, 1, 0)(�, �, �) = ���(0, 1, 0)(�, �, �) + 14 (���(0, 1, 0)(�, �, �) − ���(0, 1, 0)(� − 1, �, �)) + 14 (���(0, 1, 0)(�, �, �) − ���(0, 1, 0)(�, �, � − 1))�df1(0, 0, 1)(�, �, �) = ���(0, 0, 1)(�, �, �)�df2(0, 0, 1)(�, �, �) = ���(0, 0, 1)(�, �, �)�n(0, 0, 1)(�, �, �) = ���(0, 0, 1)(�, �, �) + 14 (���(0, 0, 1)(�, �, �) − ���(0, 0, 1)(� − 1, �, �)) + 14 (���(0, 0, 1)(�, �, �) − ���(0, 1, 0)(�, � − 1, �))�df1(1, 1, 0)(�, �, �) = 12 (���(1, 1, 0)(�, �, �) − ���(1, 1, 0)(�, �, �))�df2(1, 1, 0)(�, �, �) = ���(1, 1, 0)(�, �, �)�n(1, 1, 0)(�, �, �) = 12(���(1, 1, 0)(�, �, �) + ���(1, 1, 0)(�, �, �)) + 18 (���(1, 1, 0)(�, �, �) − ���(1, 1, 0)(�, �, � − 1))�df1(1, 0, 1)(�, �, �) = 12 (���(1, 0, 1)(�, �, �) − ���(1, 0, 1)(�, �, �))�df2(1, 0, 1)(�, �, �) = ���(1, 0, 1)(�, �, �)�n(1, 0, 1)(�, �, �) = 12(���(1, 0, 1)(�, �, �) + ���(1, 0, 1)(�, �, �)) + 18 (���(1, 0, 1)(�, �, �) − ���(1, 0, 1)(�, � − 1, �))�df1(0, 1, 1)(�, �, �) = 12 (���(0, 1, 1)(�, �, �) − ���(0, 1, 1)(�, �, �))�df2(0, 1, 1)(�, �, �) = ���(0, 1, 1)(�, �, �)�n(0, 1, 1)(�, �, �) = 12(���(0, 1, 1)(�, �, �) + ���(0, 1, 1)(�, �, �)) + 18 (���(0, 1, 1)(�, �, �) − ���(0, 1, 1)(� − 1, �, �))�df1(1, 1, 1)(�, �, �) = 13 ( − 2���(1, 1, 1)(�, �, �) + ���(1, 1, 1)(�, �, �) + ���(1, 1, 1)(�, �, �))�df2(1, 1, 1)(�, �, �) = 13 ( − ���(1, 1, 1)(�, �, �) + 2���(1, 1, 1)(�, �, �) − ���(1, 1, 1)(�, �, �))�n(1, 1, 1)(�, �, �) = 13 (���(1, 1, 1)(�, �, �) + ���(1, 1, 1)(�, �, �) + ���(1, 1, 1)(�, �, �))

[A1]

And, the inverse transform of the DFW coefficients are given by:
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���(1, 0, 0)(�, �, �) = �n(1, 0, 0)(�, �, �) − 14 (�df1(1, 0, 0)(�, �, �) − �df1(1, 0, 0)(�, � − 1, �)) − 14 (�df2(1, 0, 0)(�, �, �) − �df2(1, 0, 0)(�, �, � − 1))���(1, 0, 0)(�, �, �) = �df1(1, 0, 0)(�, �, �)���(1, 0, 0)(�, �, �) = �df2(1, 0, 0)(�, �, �)���(0, 1, 0)(�, �, �) = �df1(0, 1, 0)(�, �, �)���(0, 1, 0)(�, �, �) = �n(0, 1, 0)(�, �, �) − 14 (�df1(0, 1, 0)(�, �, �) − �df1(0, 1, 0)(� − 1, �, �)) − 14 (�df2(0, 1, 0)(�, �, �) − �df2(0, 1, 0)(�, �, � − 1))���(0, 1, 0)(�, �, �) = ���(0, 1, 0)(�, �, �)���(0, 0, 1)(�, �, �) = �df1(0, 0, 1)(�, �, �)���(0, 0, 1)(�, �, �) = �df2(0, 0, 1)(�, �, �)���(0, 0, 1)(�, �, �) = �n(1, 0, 0)(�, �, �) − 14 (�df1(0, 0, 1)(�, �, �) − �df1(0, 0, 1)(� − 1, �, �)) − 14 (�df2(0, 0, 1)(�, �, �) − �df2(0, 1, 0)(�, � − 1, �))���(1, 1, 0)(�, �, �) = �df1(1, 1, 0)(�, �, �) + �n(1, 1, 0)(�, �, �) − 18 (�df2(1, 1, 0)(�, �, �) − �df2(1, 1, 0)(�, �, � − 1))���(1, 1, 0)(�, �, �) = − �df1(1, 1, 0)(�, �, �) + �n(1, 1, 0)(�, �, �) − 18 (�df2(1, 1, 0)(�, �, �) − �df2(1, 1, 0)(�, �, � − 1))���(1, 1, 0)(�, �, �) = �df2(1, 1, 0)(�, �, �)���(1, 0, 1)(�, �, �) = �df1(1, 0, 1)(�, �, �) + �n(1, 0, 1)(�, �, �) − 18 (�df2(1, 0, 1)(�, �, �) − �df2(1, 0, 1)(�, � − 1, �))���(1, 0, 1)(�, �, �) = �df2(1, 0, 1)(�, �, �)���(1, 0, 1)(�, �, �) = − �df1(1, 0, 1)(�, �, �) + �n(1, 0, 1)(�, �, �) − 18 (�df2(1, 0, 1)(�, �, �) − �df2(1, 0, 1)(�, � − 1, �))���(0, 1, 1)(�, �, �) = �df2(0, 1, 1)(�, �, �)���(0, 1, 1)(�, �, �) = �df1(0, 1, 1)(�, �, �) + �n(0, 1, 1)(�, �, �) − 18 (�df2(0, 1, 1)(�, �, �) − �df2(0, 1, 1)(� − 1, �, �))���(0, 1, 1)(�, �, �) = − �df1(0, 1, 1)(�, �, �) + �n(0, 1, 1)(�, �, �) − 18 (�df2(0, 1, 1)(�, �, �) − �df2(0, 1, 1)(� − 1, �, �))���(1, 1, 1)(�, �, �) = − �df1(1, 1, 1)(�, �, �) + �n(1, 1, 1)(�, �, �)���(1, 1, 1)(�, �, �) = �df2(1, 1, 1)(�, �, �) + �n(1, 1, 1)(�, �, �)���(1, 1, 1)(�, �, �) = (�df1(1, 1, 1)(�, �, �) − �df2(1, 1, 1)(�, �, �) + �n(1, 1, 1)(�, �, �))

[A2]

To compensate for nonisotropic resolutions, the wavelet coefficients ���� , ���� , and ����  are 

scaled by 1/rx, 1/ry, and 1/rz, respectively, before the linear combination stage, where rx, ry, 
and rz are the relative resolutions along each direction. The inverse is simply scaling the 
wavelet coefficients by rx, ry, and rz.
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Fig. 1. 
Visualization of DFW basis functions. a: Linear and quadratic spline scaling function ϕ(x) 
and wavelet function ψ(x) that are used to construct DFWs. ϕ0, ψ0 and ϕ1, ψ1 are related by 
differentiation, thereby enabling the construction of DFWs. b: Examples of divergence-free 
components of DFW basis functions. c: Examples of nondivergence-free components of 
DFW basis functions. d: Flow diagram of DFW denoising. The entire procedure consists of 
applying separate wavelet transforms on each velocity component and linearly combine the 
coefficients, which achieves linear computational complexity overall. (FWT: forward 
wavelet transform, IWT: inverse wavelet transform, wc: wavelet coefficient, df: divergence-
free, n: nondivergence-free). [Color figure can be viewed in the online issue, which is 
available at wileyonlinelibrary.com.]
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Fig. 2. 
Velocity magnitude of simulation results on noisy CFD data with PVNR = 22 dB along with 
error magnitude maps. From left to right: original CFD data, noisy CFD data, DFW with 
two wavelet level decomposition, DFW with two wavelet level decomposition and partial 
cycle spinning, DFW with one wavelet level decomposition and partial cycle spinning, FDM 
and RBF. Both DFW and RBF show significant noise reduction in velocity magnitude, 
whereas FDM shows only marginal improvement. White arrows point to details that may be 
lost during denoising. Red arrow points to artifacts created by RBF. [Color figure can be 
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Fig. 3. 
Vector visualization of simulation results on noisy CFD data with PVNR = 22 dB. Top row: 
Original CFD data, noisy CFD data, and DFW. Bottom row: DFW with partial cycle 
spinning, FDM and RBF. As in velocity magnitude, both DFW and RBF show significant 
noise reduction in vector visualization. Although FDM shows less improvement than other 
methods, it shows some noise suppression especially near the vortices on both sides. [Color 
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Fig. 4. 
Top row: Velocity profiles for original, noisy, and DFW with partial cycle-spinning at three 
different slices for CFD data with PVNR = 22 dB. Bottom row: Simulation error statistics 
over a range of PVNRs of noisy CFD data. Comparisons are made between noisy CFD data, 
DFW, DFW with partial cycle spinning, DFW with full cycle spinning, FDM, and RBF. 
[Color figure can be viewed in the online issue, which is available at 
wileyonlinelibrary.com.]
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Fig. 5. 
Velocity magnitude of results on phantom data with PVNR = 33.5 dB along with error 
magnitude maps. From left to right: original phantom data, noisy phantom data, DFW with 
partial cycle spinning, FDM, and RBF. White arrow points to artifact created in RBF 
denoising. [Color figure can be viewed in the online issue, which is available at 
wileyonlinelibrary.com.]
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Fig. 6. 
Velocity magnitude of denoising results on phantom data with a coarsely chosen 
segmentation with PVNR = 33.5 dB along with error magnitude maps calculated within the 
correct segmentation. From left to right: Original phantom data, noisy phantom data, DFW, 
DFW with partial cycle spinning, FDM, and RBF. Both FDM and RBF show distortion, 
whereas DFW is largely unaffected by the change in segmentation. [Color figure can be 
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Fig. 7. 
Velocity magnitude of DFW denoising on reconstructed undersampled data. From left to 
right: Original flow data, ESPIRiT reconstructed flow data, DFW with SureShrink, DFW 
with manually chosen thresholds, ESPIRiT with l1 spatial wavelet regularization and the 
5.4-fold Poisson-disk sampling mask used in simulation. The flow phantom k-space was 
retrospectively subsampled by 5.4 using the same sampling mask for each VENC. ESPIRiT 
with and without l1 regularization were used afterward. Applying DFW with SureShrink 
reduces some incoherent artifacts in the reconstructed data, but is overly conservative. DFW 
with more aggressively chosen thresholds improves the performance significantly. [Color 
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Fig. 8. 
Velocity magnitude of DFW denoising results on L1-SPIRiT reconstructed in vivo data. Top 
row: SPIRiT reconstructed data with l1 spatial wavelet regularization, DFW denoising with 
SureShrink on the reconstructed data and L-curve for DFW with manually specified 
thresholds. Bottom row: Results from DFW with low, medium, and high manual thresholds. 
White arrows point to details that are lost when a high threshold is applied. [Color figure can 
be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Fig. 9. 
Left: Vector visualization of DFW denoising with manually chosen threshold on L1-SPIRiT 
reconstructed in vivo data. Thresholding only the non-DFW coefficients results in a more 
aligned flow field, while thresholding both divergence-free and non-DFW coefficients 
results in a cleaner flow field. Right: The top row shows streamlines released from the 
ascending aorta, whereas the bottom row shows streamlines released from the descending 
aorta, both comparing between L1-SPIRiT reconstructed data and DFW denoising with 
manually chosen thresholds. Red arrows point to streamlines that flow outside of the 
anatomy for the L1-SPIRiT reconstructed data but remains inside of the anatomy for DFW.
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Table 1
Quantitative Results Across Eight Patient Data (Four with Regurgitant Fraction Less 
Than 5% and Another Four with Regurgitant Fraction Greater than 30%) Before and 
After Applying DFW with SureShrink and Manually Chosen Thresholds

Measurements (mean ± std) Original DFW SureShrink DFW manual

Regurgitant fraction < 5%

 Flow rate (L/min) 2.934 ± 0.304 2.913 ± 0.302 3.021 ± 0.331

 Percentage change in flow rate (%) -0.1 ± 0.6 3.0 ± 3.1

 Regurgitant fraction (%) 1.542 ± 1.284 1.375 ± 1.076 0.917 ± 1.330

 Change in regurgitant fraction (%) −0.167 ± 0.252 −0.625 ± 0.452

  (Qp − Qs) (L/min) −0.019 ±0.312 −0.031 ± 0.291 −0.034 ± 0.288

Regurgitant fraction >30%

 Flow rate (L/min) 2.056 ± 0.451 2.063± 0.444 2.171 ± 0.463

 Percentage change in flow rate (%) 0.4 ± 1.3 6.0 ± 9.2

 Regurgitant fraction (%) 19.417 ±21.786 19.333 ± 21.676 17.458 ± 20.002

 Change in regurgitant fraction (%) −0.083 ± 0.427 −1.958 ± 2.930

  (Qp − Qs) (L/min) −0.022 ± 0.378 −0.010 ± 0.318 −0.007 ± 0.082
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