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Abstract

Objective: Range uncertainty in proton therapy is an important factor limiting clinical 

effectiveness. Magnetic resonance imaging (MRI) can measure voxel-wise molecular composition 

and, when combined with kilovoltage CT (kVCT), accurately determine mean ionization potential 

Im , electron density, and stopping power ratio (SPR). We aimed to develop a novel MR-based 

multimodal method to accurately determine SPR and molecular compositions. This method was 

evaluated in tissue-mimicking and ex vivo porcine phantoms, and in a brain radiotherapy patient.

Approach: Four tissue-mimicking phantoms with known compositions, two porcine tissue 

phantoms, and a brain cancer patient were imaged with kVCT and MRI. Three imaging-based 

*Author to whom any correspondence should be addressed. raanan.marants@rmp.uhn.ca. 

HHS Public Access
Author manuscript
Phys Med Biol. Author manuscript; available in PMC 2024 August 28.

Published in final edited form as:
Phys Med Biol. ; 68(17): . doi:10.1088/1361-6560/ace876.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



values were determined: SPRCM (CT-based Multimodal), SPRMM (MR-based Multimodal), and 

SPRstoich (stoichiometric calibration). MRI was used to determine two tissue-specific quantities of 

the Bethe Bloch equation (Im, electron density) to compute SPRCM and SPRMM. Imaging-based SPRs 

were compared to measurements for phantoms in a proton beam using a multilayer ionization 

chamber SPRMLIC .

Main Results: Root mean square errors relative to SPRMLIC were 0.0104(0.86%), 0.0046(0.45%), 

and 0.0142(1.31%) for SPRCM, SPRMM, and SPRstoich, respectively. The largest errors were in bony 

phantoms, while soft tissue and porcine tissue phantoms had <1% errors across all SPR values. 

Relative to known physical molecular compositions, imaging-determined compositions differed by 

approximately ≤10%. In the brain case, the largest differences between SPRstoich and SPRMM were in 

bone and high lipids/fat tissue. The magnitudes and trends of these differences matched phantom 

results.

Significance: Our MR-based multimodal method determined molecular compositions and SPR 

in various tissue-mimicking phantoms with high accuracy, as confirmed with proton beam 

measurements. This method also revealed significant SPR differences compared to stoichiometric 

kVCT-only calculation in a clinical case, with the largest differences in bone. These findings 

support that including MRI in proton therapy treatment planning can improve the accuracy of 

calculated SPR values and reduce range uncertainties.

Keywords

MRI; proton therapy; stopping power ratio; range uncertainty

1. Introduction

Compared to traditional photon-based radiotherapy, proton therapy makes use of the 

clinically advantageous dose distributions of heavy charged particles that are characterized 

by a low, flat entrance dose and a high, sharp terminal dose (i.e., Bragg peak) (Levin et 

al., 2005). Accurately determining the location of the Bragg peak, which enables excellent 

target coverage with minimal dose deposition distal to the peak, relies on a relative (to 

water) stopping power ratio (SPR) map that is patient-, tissue-, and voxel-specific. Despite 

the theoretical potential for improved radiotherapy treatments, it has been challenging to 

take full advantage of proton therapy (Hu et al., 2018) in the clinical setting, due in part 

to limitations in the ability to accurately determine where the beam stops. This uncertainty 

necessitates conservative beam angle choices and the addition of large treatment margins 

(typically 3.5% of the beam range plus an additional 1–3 mm) which minimize the 

biophysical benefit of the Bragg peak (Paganetti, 2012). Recent virtual studies for brain 

proton therapy have shown that even modest range uncertainty improvements to 2% may 

allow for novel beam angles and superior normal tissue complication probability (NTCP) 

(Tattenberg et al., 2022a; Tattenberg et al., 2021). Range uncertainty in proton therapy has 

been cited as one of the most important factors limiting normal tissue dose sparing and 

tumor dose escalation (Knopf and Lomax, 2013).

Clinically, SPR is most often determined using a stoichiometric calibration of single energy 

spectrum kilovoltage computed tomography (CT) Hounsfield Unit (HU) (Schaffner and 
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Pedroni, 1998). However, this approach carries with it considerable sources of uncertainty 

due to HU-to-SPR degeneracy and deviation of actual human body elemental compositions 

from ICRU standard tissue (i.e., density changes and elemental composition changes in 

the mean ionization potential, Im, that are not patient-specific) (Paganetti, 2012; Yang et 

al., 2012). Various strategies have been proposed to reduce these errors and mitigate range 

uncertainty, including dual energy CT (DECT) (Bär et al., 2017; Niepel et al., 2021; Yang 

et al., 2012), proton CT (Schulte and Penfold, 2012; Dedes et al., 2019), and prompt 

gamma-ray spectroscopy (Verburg et al., 2013; Tattenberg et al., 2022b), each with its 

own advantages and limitations. In particular, DECT has been explored by several research 

groups, where the ability to perform material decomposition can theoretically reduce proton 

range uncertainty to sub-percent levels (Landry et al., 2011; Hunemohr et al., 2013; Bourque 

et al., 2014; Hunemohr et al., 2014a; Hunemohr et al., 2014b; Han et al., 2016; Taasti et 

al., 2016; Peters et al., 2022). DECT applications in proton therapy planning have been 

clinically implemented though with modest improvements in range uncertainty. Margins 

>2% are still typically required due to new sources of uncertainties related to increased 

sensitivity to imaging noise and residual beam hardening effects that are particularly 

pronounced at lower energies (Li et al., 2017; Bär et al., 2017; Peters et al., 2022).

Magnetic resonance imaging (MRI) has recently grown in prominence as an alternative 

imaging modality to CT in radiation oncology with many centers now simulating with MRI 

and, separately, treating with MR-linac machines (Keall et al., 2022; Kurz et al., 2020; 

Hoffmann et al., 2020). This growing trend of MR in radiotherapy is due in part to MRI 

offering improved soft tissue contrast and structure visualization compared to CT-based 

imaging methods (Dirix et al., 2014). In particular, this soft tissue advantage allows for 

quantification of water, fat, and even hydrogen content which can imply aggregate or 

average elemental composition (Scholey et al., 2021; Sudhyadhom, 2017). Recently, it has 

been shown that the primary factors contributing to proton beam range uncertainty, due to 

translation of imaging data to SPR, may be overcome when using information obtainable by 

MRI (Scholey et al., 2021; Saito, 2023).

As opposed to stoichiometric calibration, SPR can be directly calculated by the Bethe-Bloch 

equation if Im and electron density (ED) values are known. It has previously been shown 

that MR-based compositional information can provide accurate determinations of Im using a 

parameterized model (Unified Compositions, UC) to determine Im in human biological tissue 

(Sudhyadhom, 2017). In that study, it was demonstrated that SPR determined with the UC 

model Im via a multimodal imaging approach using MRI with CT was in close agreement 

to SPR calculated from physical measurements for various tissue-mimicking phantoms 

(Scholey et al., 2021). However, it was found that accurate ED determination required 

megavoltage CT (MVCT), as kilovoltage CT (kVCT) resulted in significant uncertainties 

in SPR (Scholey et al., 2021). This result was expected as MVCT has both a stronger 

linear and one-to-one relationship with ED compared to kVCT, due to MVCT being highly 

weighted by Compton scattering and relatively independent of atomic number (Langen et 

al., 2005; Scholey et al., 2021). While useful for highly accurate ED, MVCT imaging has 

various noise and contrast limitations compared to kVCT and is not readily accessible in 

most radiation oncology departments owing to it being clinically available only on certain 
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radiotherapy devices such as TomoTherapy and Radixact machines. To address this, a 

process was developed to directly determine ED using MR-based knowledge of molecular 

compositions in combination with kilovoltage CT HU. This process is designated in this 

manuscript as Molecularly-based Electron Density (MED) (Sudhyadhom, 2020). In the work 

of Sudhyadhom (Sudhyadhom, 2020), it was shown that MED could be calculated more 

accurately than by ED determined by kVCT via interpolation of a calibration curve and 

provided MVCT-level ED accuracy.

In this manuscript, we describe a novel MR-based Multimodal (MM) method to determine 

SPR and molecular compositions. This MM method, which depends on data from kVCT 

and MRI, combines two separate MR-based frameworks for calculating mean ionization 

potential (UC model Im) and electron density (MED) previously developed by Sudhyadhom. 

These independent methods are, for the first time, combined in this work to more accurately 

determine SPR. We validated the accuracy of this methodology in homogeneous tissue-

mimicking phantoms (of known molecular and elemental composition) and in ex vivo 
porcine tissue phantoms by comparing against SPR measurements in a clinical proton beam 

and against SPR as determined by the stoichiometric method. Finally, SPR determined 

by this MM method was compared with the standard stoichiometric method in a brain 

radiotherapy patient.

2. Methods

2.1 SPR Calculation Model – Im and ED

In this manuscript, SPR was determined from imaging using three separate methods: SPRCM, 

SPRMM, SPRstoich. SPRCM is a kVCT-based multimodal method using kVCT for ED EDkVCT

and the UC model to determine Im (Sudhyadhom, 2017). SPRMM is an MR-based multimodal 

method using MR-derived molecular composition and kVCT for ED (MED) and the UC 

model to determine Im (Sudhyadhom, 2017, 2020). SPRstoich was determined by interpolating 

a stoichiometric calibration for the kVCT scanner used in this study (Schaffner and Pedroni, 

1998) using the process previously outlined in Scholey et al. (Scholey et al., 2021). For 

SPRCM and SPRMM, they required combined kVCT and MR imaging for SPR calculation. For 

EDkVCT, a Gammex Model 467 (Gammex; Middleton, WI) electron density phantom was 

scanned by kVCT and used to create an HU-to-ED calibration curve which was interpolated 

to calculate subsequent EDkVCT values.

The stopping power ratio (SPR) of a charged particle can be calculated by the Bethe Bloch 

equation:

SPR = ρe, water

ln 2mec2β2/Im 1 − β2 − β2

ln 2mec2β2/Iwater 1 − β2 − β2 (1)

where ρe, water is the electron density normalized to water electron density (also known as 

ED), me is the mass of the electron, c is the speed of light, β is the velocity of the proton 

normalized to the speed of light, Im is the mean ionization potential (also known as the 

average excitation energy) of the medium, and Iwater is the mean ionization potential of water. 
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The only quantities that are medium- and tissue-specific are Im and ρe, water, implying that 

SPR can be accurately determined should these two quantities be known to high accuracy. 

In this manuscript, we describe the MRI-based multimodal (MM) method to calculating 

SPR that combines two previously published methods: 1) to calculate Im using the unified 

compositions (UC) method (Sudhyadhom, 2017; Scholey et al., 2021) and 2) to calculate ED 

using a Molecularly-based Electron Density (MED) method (Sudhyadhom, 2020).

The UC model previously proposed by Sudhyadhom (Sudhyadhom, 2017) and further 

refined in Scholey et al. (Scholey et al., 2021) is a formalism to calculate mean ionization 

potential, or Im, from quantities that are obtained from MRI and kVCT. The specific 

quantities are percentage (by mass) of water and minerals/hydroxyapatite (HA), as well 

as the total hydrogen content. The Im value for each voxel value can be calculated using the 

following set of equations:

ln Ivoxel

=
wH2O

ZH2O

AH2O
ln IH2O + 1 − wH2O + wHA

Zorg
Aorg

ln(A) − B ⋅ ℎorg + wHA
ZHA
AHA

ln IHA

Ztotal
Atotal

ℎorg = ℎtot − ℎHA ⋅ wHA + ℎH2O ⋅ wH2O

1 − wH2O + wHA

Ztotal

Atotal
= 0.502ℎtot + 0.499

Zorg

Aorg
= 0.490ℎorg + 0.500

(2)

where wi is the fraction of i by mass, Zi is the atomic number of i, Ai is the atomic 

mass of i, Ii is the mean ionization potential of i, ℎi is the percent hydrogen by mass of i, 
and i = water H2O , organic (org), and mineralized/hydroxyapatite (HA) tissue components. 

A comprehensive description of how specific imaging data are used to compute each 

component in equation [2] is available in Scholey et al. (Scholey et al., 2021). In the current 

work, the constants in the UC model of equation [2] have been updated to implement the 

elemental Im values proposed in Bär et al. (Bär et al., 2018) which results in the following 

changes: IH2O = 78.73 eV, IHA = 169.44 eV, A = 92.70 eV, and B = −3.24.

Analogous to the UC model, ED can be reformulated as a function of molecular composition 

quantities directly measurable by MRI and CT HU, known as MED. The MED method to 

calculate ED was previously proposed by Sudhyadhom (Sudhyadhom, 2020) and uses the 

following equations:

ρe = (HU + 1000) × 1 + wlipidsβlipids + wproteinsβproteins + wmineralsβminerals

wlipidsαlipids + wproteinsαproteins + wmineralsαminerals + 1000
αi = 1000 × μi

ρi
× ρwater

μwater
− 1

βi = Zi

Ai
× Awater

Zwater
− 1

(3)
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where i = lipids/fats, proteins, or minerals/hydroxyapatite, wi is the fraction of i by mass, 

μi is the mean attenuation coefficient for a given x-ray energy spectrum, ρi is the mass 

density of i, Zi is the atomic number of i, Ai is the atomic mass of i, and HU is the 

Hounsfield Unit of a voxel of a CT scan for a given x-ray energy spectrum. The values 

for βi are independent of x-ray energy and beam spectrum, and were determined in a prior 

study (Sudhyadhom, 2020). The values for αi are dependent on CT x-ray energy and beam 

spectrum, and should be determined for each CT scanner at each clinically relevant kVp 

setting. In the original MED work of Sudhyadhom (Sudhyadhom, 2020), it was shown that αi

values could be calculated in a CIRS electron density phantom (Model 062; CIRS, Norfolk, 

VA). However, as that phantom was made of non-biological molecular compositions, there 

were no actual biological molecular compounds (water, fat, protein, and bone) used in its 

creation. Thus, these αi likely had a higher amount of uncertainty associated with them as the 

molecular compositions used in that study were assumed to be close to ICRU standard tissue 

compositions rather than measured or known.

A summary of the multimodal imaging data pipeline for determining the different SPR 

values presented in this work is given in Figure 1.

2.2.1 Pork Shoulder Phantoms—In this work, αi values were determined for our 

specific CT scanner and scan protocol by scanning an ex vivo pork shoulder phantom 

with MRI, kVCT, and MVCT. This phantom was created by placing a plastic-wrapped 

pork shoulder in a cylindrical container and filling it with water. This pork shoulder 

was determined to have significant skin, adipose, muscle, and (dense and spongy) bone 

components. MED was calculated by kVCT using MR-determined molecular compositions. 

Water and fat/lipid images created from Dixon MR were used to calculate wH2O, W lipids, and 

W proteins components.

The αi values were determined by minimizing the error between MED (using kVCT and 

MRI) and ED calculated by MVCT. The αi values used in this work were determined 

to be −35.2 for lipids/fat, −7.9 for protein, and 458.4 for minerals/HA. The βi values 

were previously determined in Sudhyadhom (Sudhyadhom, 2020) as 0.00499 for lipids/fat, 

−0.0419 for protein, and −0.113 for minerals/HA.

In a separate but analogous pork shoulder phantom, these optimized αi values were validated 

by calculating the mean absolute errors (MAE) between MED and MVCT-based ED which 

were found to be 0.024, 0.021, and 0.046 for adipose, muscle, and bone, respectively. MAE 

relative to MVCT for MED and kVCT were similar in adipose and muscle but improved in 

bone with 0.046 and 0.053 for MED and kVCT, respectively.

2.2.2 Tissue-Mimicking and Porcine Tissue Phantoms – Construction 
Methods and Composition—Homogeneous tissue-mimicking phantoms, partially 

derived from animal tissues, were created with known elemental and molecular 

compositions. Knowledge of composition allowed for assessment of the accuracy of 

imaging-based metrics. Four tissue-mimicking phantoms were created from varying 

mixtures of water, gelatin from porcine skin (protein), porcine lard (fat), and hydroxyapatite 
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(mineralized bone), and were meant to represent the different major types of biological 

tissues of the human body. The elemental composition of gelatin and lard were determined 

by CHNS(O) combustion analysis at the UC Berkeley Microanalytical Facility. Phantoms 

containing water and lard included a small amount of detergent/surfactant (SDS) to 

encourage mixing of fat with water to improve overall homogeneity. Constituents of each 

mixture were carefully weighed using two high-precision scales: Practum313–1S (Sartorius 

Biotech, Germany) for loads below 300 g and HK-3200A (Mars Scale Corporation, Canada) 

for loads above 300 g. The muscle phantom was created by mixing dissolved gelatin in 

hot water with dissolved SDS in melted lard. The adipose phantom was created by melting 

lard. The spongiosa bone phantom was created similar to the muscle phantom but includes 

dissolving hydroxyapatite in the resulting muscle mixture. The cortical bone phantom was 

created by dissolving hydroxyapatite in hot water. The method to create most of these 

tissue mimicking phantoms has been previously described in Scholey et al. (Scholey et 

al., 2021). Tissue-mimicking phantom types and the material compositional recipes are 

presented below in Table 1.

In addition, two porcine tissue phantoms were created by combining freshly harvested and 

finely chopped porcine brain or porcine liver tissue with porcine blood such that small air 

gaps between adjacent pieces of tissue were predominantly filled. In this work, brain or 

liver tissue was combined with 16% or 19% blood (by mass), respectively (e.g., 16% of the 

mass of the brain/blood combination was blood). Total water content for these phantoms was 

determined by precision weighing before and after dehydration. These phantoms represented 

more realistic mammalian soft tissue compositions for which the results could be most 

readily applied to in vivo human tissues/organs.

Once prepared, phantom mixtures were transferred from beakers (tissue-mimicking 

phantoms) or bags (porcine tissue phantoms) to custom rectangular prism-shaped 

polymethyl methacrylate (PMMA) containers (inner dimensions: 20×10×10 cm3). Two 

individual (i.e., one 20×10×10 cm3 compartment) containers and two double (i.e., two 

20×10×10 cm3 compartments separated by a divider) containers were used. Porcine tissue 

phantoms were refrigerated immediately to maintain freshness, while tissue-mimicking 

phantoms cooled and solidified at room temperature first prior to being refrigerated to 

mitigate the development of air pockets. These prism phantoms were imaged within a larger 

outer plastic container that was filled with a saline (~0.2% NaCl) solution to mimic overall 

body size and conditions for both MR and CT imaging. A saline solution was used instead 

of pure water to mitigate potential dielectric effects during MRI. Small modifications were 

made to the outer containers such that the encased phantom was suspended at approximately 

the center of the outer container.

2.3 Image Acquisition and Processing – CT and MRI

Three different imaging modalities were used in this study: MVCT, kVCT, and MRI. As 

shown in prior works, MVCT is highly linear and most accurate for the determination 

of electron density (Langen et al., 2005). MVCT scans were acquired on an Accuray 

TomoTherapy (TomoHD; Accuray, Sunnyvale, CA, USA) using the 3.5 MV energy MVCT 

beam with fine pitch and 1 mm slice thickness reconstruction. MRI and kVCT scans were 
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acquired on a 3T MRI scanner (MAGNETOM Vida RT Pro Edition, Siemens Healthcare, 

Erlangen, Germany) and on a CT scanner (SOMATOM Confidence RT Pro, Siemens 

Healthcare, Erlangen, Germany), respectively. MVCT scans were acquired for two separate 

pork shoulder phantoms to determine αi values in one phantom and validate them in the 

other. MRI and kVCT were acquired for all phantoms and for the exemplar radiotherapy 

brain cancer patient. A head protocol kVCT was acquired at 120 kVp and reconstructed to 

0.5 mm slice thickness. A multi-echo stack-of-spiral ultrashort echo time (UTE) prototype 

sequence was acquired with flip angle of 1°, TR of 5 ms, and TE of 0.03 ms and 1.35 ms 

for the in-phase (1st echo) and out-of-phase (2nd echo) images, respectively. Images were 

acquired with a 2×2×2 mm3 isotropic resolution in an acquisition time of approximately 

2.5 minutes. The 1st echo (TE = 0.03ms) was used as the highly proton density weighted 

scan for subsequent image processing steps. Two-point Dixon was used to separate water 

only and fat/lipid MR signal components from the two-echo scan, resulting in a water 

image and a fat/lipid image. CT imaging data were rigidly registered (optimizing for mutual 

information) and resampled to the MR data space (to 2×2×2 mm3 isotropic voxel resolution 

with cubic spline interpolation) using MIM Software v7.2.7 (MIM; Cleveland, OH, USA).

Imaging data were read into Python and converted into numpy arrays for processing and 

analysis. First, an N4 bias field correction was applied to the MR images to correct for low 

spatial frequency intensity non-uniformity due to B1 field heterogeneities (Tustison et al., 

2010). Next, a water-only 3D region of interest (ROI) was created and used to obtain MRI 

water signal normalization values for the UTE, Dixon water, and Dixon fat data, enabling 

calculation of ℎtot, wH2O, and wlipids, respectively. Water ROIs were created from the saline 

water that surrounded each tissue-mimicking or porcine tissue phantom container, or pork 

shoulder phantom. In the case of patient scans, water found in the ventricles, in the form 

of cerebrospinal fluid (CSF), was used to create an internal water ROI. While N4 bias 

correction accounts for intrascan (spatial) intensity variations, water ROIs were used to 

normalize scan intensities to the water signal across scans. In addition, wHA was calculated 

from kVCT-based physical density information using a CT HU to density relationship 

between density and calcium content derived from previously described bone composition 

models (Zhou et al., 2009; Scholey et al., 2021) in conjunction with a phantombased mass 

density calibration. The MR signal in each voxel was assumed to be the sum of water, 

organic (fat/lipid and proteins), and inorganic (minerals/hydroxyapatite) constituents, and 

so W proteins was computed as 1 − wH20 + wlipids + wHA . Next, using equations 2 and 3, Im and 

MED were computed and used to determine SPRMM. The stoichiometric calibration was 

used to determine SPRstoich. Lastly, a cylindrical ROI with diameter ~2.5 cm (to match the 

diameter of the collecting electrodes of the multi-layer ionization chamber) that extended 

along the length of the center of each phantom was used to obtain SPRCM, SPRMM, and 

SPRstoich values to compare to measured SPR values (see next section). For the human head 

dataset, SPR values were computed for four tissue types: bone, low density soft tissue, high 

density soft tissue, and high lipid/fat tissue. The ROI mask for bone was created using a 

percent by mass hydroxyapatite threshold of wHA > 12.5 %. Physical density (PD) thresholds 

of 0.9<PD<1.0 g/cm3 and 1.0<PD<1.1 g/cm3 were used to create ROI masks for low-density 

Marants et al. Page 8

Phys Med Biol. Author manuscript; available in PMC 2024 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and high-density soft tissue, respectively. The high lipid/fat tissue ROI mask was created by 

applying threshold of 90% on the wlipids (percent by mass lipid/fat) images.

The patient head MR scan was acquired as part of a prospectively acquired patient imaging 

study that was approved by the Massachusetts General Brigham Institutional Review Board, 

protocol #2020P001101, and conducted in accordance with the principles embodied in the 

Declaration of Helsinki. Informed consent was obtained from the patient.

2.4 Proton Beam Measurements - Phantoms

The method for proton beam measurements was previously reported in Tattenberg et al. 

(Tattenberg et al., 2022b) and is briefly summarized here. For each phantom, SPR was 

measured by using a residual range experiment in a Zebra multi-layer ionization chamber 

(MLIC; IBA Dosimetry, Germany) by irradiating the center of each phantom along its long 

axis with a 223.6 MeV proton beam (2 nA beam current) that then passed into the collecting 

electrodes of the MLIC. In addition, MLIC measurements were also performed for an empty 

air-filled container and a distilled water-filled container. The SPR of each phantom could 

then be determined with the following equation:

SPRMLIC = Rpℎantom
80 − Rair

80

Rwater
80 − Rair

80 1 − SPRair + SPRair (4)

where Ri
80 is the 80% distal fall-off point of the MLIC-measured Bragg peak, i is the 

phantom, air, or water, and SPRair was based off National Institute of Standards and 

Technology PSTAR data for a 223.6 MeV proton beam.

3. Results

3.1 Tissue-Mimicking and Porcine Tissue Phantoms SPR and Composition

In this study, SPR was determined by imaging using 3 separate methods: SPRCM, SPRMM, and 

SPRstoich for the tissue-mimicking and porcine tissue phantoms described in the methods. The 

accuracy of each of these methods was assessed relative to SPRMLIC determined by proton 

beam measurements. Table 2 shows a summary of SPR values determined by the various 

methods with percentage errors (relative to SPRMLIC) calculated and shown in parentheses 

to the right of the values. Only SPRMM was within 1% of SPRMLIC for all phantoms. Table 

3 gives the absolute and relative root mean square errors (RMSE) between SPRMLIC and all 

other SPR values for different tissue-based phantom groupings. Differences from SPRMLIC

were generally greater in bony tissue phantoms compared to soft tissue (including porcine 

tissue) phantoms. The average RMSEs for all phantoms were 0.0104 (0.86%), 0.0046 

(0.45%), and 0.0142 (1.31%) for SPRCM, SPRMM, and SPRstoich, respectively, when compared to 

SPRMLIC. Imaging-determined percent molecular compositions by mass are shown in Table 

4 with subtractive differences/errors relative to known physical molecular composition 

(from Table 1) shown in parentheses. Generally, subtractive differences/errors in the percent 

molecular composition are ~10% or less. Water composition tended to be overpredicted in 

the composite tissue-mimicking phantoms but were closer to physical measurement in the 

brain and liver porcine tissue phantoms.
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3.2 Human Head SPR and Composition

3D maps of SPRCM, SPRMM, and SPRstoich were determined in a radiotherapy brain cancer 

patient to calculate differences in SPR between the clinical standard stoichiometric method 

and the two other methods (CM and MM) examined in this study. ROI-averaged SPR 

values for various tissue types were calculated for these three methods. Results are shown 

in Table 5 with differences relative to SPRstoich shown in parentheses as ground truth SPR 

values are not known. The largest differences are in bone and tissues with high lipids/fat, 

with smaller differences in low- and high-density soft tissue. Overall, SPRMM was in greater 

disagreement with the SPRstoich compared to SPRCM, where the MAE for all tissue types 

between SPRstoich and either SPRMM or SPRCM was 1.4% and 0.8%, respectively. This coincides 

with the results of the previous section, where SPRMM agreed more with SPRMLIC and less 

with SPRstoich compared to SPRCM. Other than tissues with high lipids/fat, SPRstoich was larger 

compared with SPRCM and SPRMM. The magnitude of these differences is in line with results 

seen in the tissue-mimicking phantoms where the largest errors (relative to measured SPR 

values) were in bone tissues followed by adipose. Exemplar images are shown in Figure 2 

with a noticeable anatomic pattern to the SPR differences. Molecular compositions (water, 

fat/lipid, protein, and minerals) are shown in Figure 3. In general, the ground truth is not 

known for either SPR or molecular composition. In the special case of CSF, the composition 

is likely almost entirely water with a density within 0.1% of 1.00 g/cc. In this study, we 

found the CSF to have an SPR of 0.992, 0.998, and 1.015 for SPRCM, SPRMM, and SPRstoich, 

respectively, with 94.8% water.

4. Discussion

In this manuscript, we described an MR-based multimodal method, MM, to determine 

molecular composition, electron density, Im, and SPR. In contrast to previously published 

work on a CT-based multimodal method (CM), this MM method integrates MR molecular 

composition data into the electron density calculation process, which increases the accuracy 

of electron density calculation and produces more accurate SPR values. This MM method’s 

accuracy was validated with proton beam residual range measurements in tissue-mimicking 

and ex vivo porcine tissue phantoms and found to have an RMSE of 0.0046 (0.45%) and 

better than 1% SPR accuracy across all tissues studied. This result coincides with the 

findings of other groups, where Xie et al. (Xie et al., 2018) obtained a RMSE between 

MLIC-measured SPR and stoichiometric calibration-based SPR in a variety of frozen animal 

tissues of 0.0250 (1.85%) and 0.0067 (0.62%) for single-energy spectrum CT (SECT) and 

DECT, respectively, and Taasti et al. (Taasti et al., 2017) found that RMSE (compared to 

MLIC-measured SPR) decreased from 2.8% to 0.9–1.5% when changing from SECT- to 

DECT-derived SPR in a large array of animal tissues. In the proton CT studies of Dedes 

et al. (Dedes et al., 2019) and DeJongh et al. (DeJongh et al., 2021), they independently 

obtained RMSEs of 0.58% and 0.0039 (0.20%), respectively, between proton CT-based SPR 

and reference SPR in phantoms with various tissue surrogate inserts. This MM method 

proved to be more accurate than the clinical standard stoichiometric method, especially in 

bone tissue. The results of this work are in line with prior groups which have found that 

the tissue type with largest uncertainty are bone tissues (Niepel et al., 2021; Bär et al., 
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2017). The porcine tissues were most accurate which may be due to more realistic molecular 

compositions, coinciding with what other groups have also found when investigating SPR 

accuracy by DECT (Niepel et al., 2021; Xie et al., 2018; Taasti et al., 2017).

SPR differences between MM and the stoichiometric method in an example human brain 

cancer case show a similar pattern of error magnitude to what was seen in the tissue-

mimicking phantoms, with the largest differences in bone tissues and high lipids/fat tissues, 

followed by low- and high-density soft tissues. Similar results were reported by DeJongh et 

al. (DeJongh et al., 2021), who compared proton CT-derived SPR to x-ray CT-derived SPR 

in a porcine head phantom. In Table 5, we see that SPR values by stoichiometric method 

were lower than those of MM and CM for high fat/lipid content tissues, which is consistent 

with adipose tissue-mimicking phantom results. Interestingly, while high fat/lipid content 

tissues tend to have lower mass and electron density, SPR values by the stoichiometric 

method are higher than those of MM and CM for the overall set of low-density soft tissues. 

These findings imply that the relationship between HU and SPR is, in general, not a one-to-

one relationship, but that molecular composition information can improve the accuracy of 

SPR determination. The stoichiometric calibration assumes specific ICRU compositions for 

each density, which may not represent actual elemental or molecular compositions for any 

given individual. In this work, we can directly measure the composition by MRI. In the 

case of bone, the composition can vary significantly across individuals. Some patients may 

have bone loss (due to osteoporosis) which may result in lower bone mineral content and 

greater water content in the pores, for example. It is possible that the assumed ICRU tissue 

compositions diverge away from this specific individual’s composition in bone, an effect that 

has been shown to result in errors of up to approximately 3.5% (Goma et al., 2018). For 

high lipid/fat tissues, it may also be the case that the actual composition (high lipid content) 

differs from the assumed composition used for the stoichiometric calibration, previously 

shown to yield errors of 2–3% (Jiang et al., 2007). In addition, for this work’s high fat 

tissues, we looked at tissues with >90% lipids which corresponded with ~0.94 SPRstoich (Table 

5). Our stoichiometric calibration had 4 distinct regions, with an SPR value of 0.93 being 

at the inflection point of two regions with very different compositions (lung and fat). In the 

work of Cui et al. (Cui et al., 2022), they found that SPRstoich errors in adipose tissue were 

larger (−4.25%) than for other tissue but that these errors could be mitigated in the specific 

case of breast, where adipose tissue is dominant, by improving the conversion of HU to SPR 

specifically for adipose tissues.

In general, the ground truth SPR is not known within a patient. In the special case of CSF, 

the composition is likely almost entirely water with a density within 0.1% of 1.00 g/cc (Lui 

et al., 1998; Richardson and Wissler, 1996) which implies that the SPR of CSF would be 

~1.000. In this study, we found the CSF to have an SPR of 0.992, 0.998, and 1.015 for 

SPRCM, SPRMM, and SPRstoich, respectively, and close to the expected result for the MM method. 

Across phantom and patient data, the accuracy of both the CM and MM methods appear to 

be similar or better than much of the literature on DECT accuracy which has been reported 

to have a theoretical SPR determination accuracy better than 1% (Hunemohr et al., 2014a; 

Niepel et al., 2021).
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Molecular compositions (i.e., percent mass for water, lipids/fats, proteins, and minerals/

hydroxyapatite) determined in this study were in line with the level of accuracy seen in our 

prior works (Scholey et al., 2021; Sudhyadhom, 2017). Percentage water appeared to have 

the largest degree of uncertainty (approximately 10%) in tissue-mimicking phantoms and 

was generally overpredicted. In prior studies, Sudhyadhom evaluated the sensitivity of soft 

tissue SPR to simulated 10% errors in the percentage water, demonstrating that errors of this 

magnitude in water content resulted in sub 1% changes in SPR (Sudhyadhom, 2017, 2020). 

Water composition was more accurate (within ±2%) in porcine tissue phantoms, possibly 

due to the more realistic nature of the ex vivo tissues. Other molecular compositions could 

not be determined in the porcine tissue phantoms. Fat/lipid composition was slightly more 

accurate with a combination of over- and under-predicted composition. The accuracy of 

protein composition was dependent on the accuracy of the other molecular components as 

wproteins = 1 − wH2O + wlipids + wHA . Water and fat/lipid composition by MR was determined 

by a simple 2-point Dixon method which assumes a simple fully in-phase and fully 

out-of-phase relationship (i.e., single peak) between water and fat/lipid components. In 

reality, there are multiple lipid peaks, with some partially overlapping the water peak. 

Additional accuracy in the determination of water, fat/lipid, and protein composition may 

be possible using a multi-echo multi-peak method (Karampinos et al., 2014). Mineral/

hydroxyapatite composition was determined solely by kVCT imaging using a previously 

derived relationship with mass density (Zhou et al., 2009; Scholey et al., 2021) and may 

be further improved in the future with additional MR data (Diefenbach et al., 2019; Jerban 

et al., 2019). In the human head example, compositions were, qualitatively, as would be 

expected. Regions with CSF (as in the ventricles) were found to have an average of 94.8% 

water content (Figure 3a; blue arrow) while intraconal tissue surrounding the optic nerves, 

known as a high fat/lipid area, appeared to have significant fat/lipid content (Figure 3b; 

red arrow). Based on prior literature, CSF would be expected to be composed of at least 

99% water with the remaining 1% being proteins, ions, neurotransmitters, and glucose 

(Khasawneh et al., 2018; Bulat and Klarica, 2011). Bone appeared to have the most complex 

composition with spatially varying amounts of mineral and protein content (highest in the 

cortical bone and lowest in the internal spongiosa bone), adipose/fat content (lowest in the 

cortical bone and highest in the internal spongiosa bone), and water only in the cortical 

bone regions. The relative patterns of molecular composition are consistent with those 

previously reported in the literature (Woodard and White, 1982, 1986; White et al., 1987; 

White et al., 1991). An additional advantage of the MM and CM methods is that it is 

possible to also determine mass density from HU and molecular compositions. In the work 

of Sudhyadhom (Sudhyadhom, 2020), it was shown that mass density can be accurately and 

directly calculated using a formalism analogous to the one in this work used to calculate 

MED. Molecular composition may also provide an insight into elemental composition, as 

average elemental compositions can be assumed for each type of molecule, which along 

with mass density may be useful in calculating proton dose distributions by Monte Carlo.

CT is the dominant form of imaging used to calculate SPR in large part due to its 

prevalence in radiation oncology clinics and ease of use. MRI, on the other hand, is not 

as widely available in radiation oncology as CT simulation but is regularly acquired for 

diagnostic imaging of many types of patient treatments ranging from intracranial stereotactic 
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radiosurgery to prostate radiotherapy. In addition, MR simulation is a rapidly growing 

area of radiation oncology with many centers now acquiring MR scans in addition to 

CT scans for simulation. MR imaging is also being considered as a potential on-board 

imaging modality for a future integrated MR-proton machine (Schellhammer et al., 2018a; 

Schellhammer et al., 2018b; Burigo and Oborn, 2019; Santos et al., 2019; Schellhammer 

et al., 2019; Hoffmann et al., 2020). In this work, we show that MR data, in conjunction 

with kVCT imaging, can be used to improve the calculation of SPR by taking advantage of 

each modality’s strengths, specifically MR molecular composition and kVCT density. The 

MR scans used in this study can be readily added to a diagnostic MR protocol and can be 

acquired in about 2.5 minutes covering the entire head at a 2mm isotropic resolution. These 

MR scans could then be registered to a kVCT simulation scan and used to calculate all 

necessary components as in this work. Such a workflow may allow this MM method to be 

implemented at most proton therapy centers.

As with all multimodal imaging methods, accurate registration of these images will limit 

potential clinical implementation accuracy. In this study, we examined phantoms that were 

immobilized with little to no anatomic deformation. In addition, our in vivo imaging 

study was conducted in the head where rigid registration is known to be highly accurate. 

Deformable image registration may help to mitigate these errors which might be useful in 

some body sites with less deformation such as in the pelvis. Future studies will need to 

be conducted to assess the accuracy in cases with sub-optimal registration before clinical 

implementation for other body sites can be considered. A potential method to mitigate the 

error due to registration would be the creation of an MR-only method. Current MR-only 

methods generally rely on creating a synthetic CT by converting MR images to CT-like data 

(Wang et al., 2022; Zimmermann et al., 2021; Maspero et al., 2020; Aramburu Nunez et al., 

2020; Maspero et al., 2017). While these methods are growing increasingly more realistic 

and accurate, they generally rely on translating MR intensities to single-energy kVCT HU 

followed by stoichiometric conversion of synthetic CT HU to SPR. Thus, errors in synthetic 

CT SPR would combine errors in conversion to CT-like data and stoichiometric SPR errors. 

Conversion of MR data directly to SPR could be a future direction to increase SPR accuracy 

and eliminate registration errors that any multimodal method may have.

5. Conclusions

We reported on a novel MR-based multimodal method to determine molecular compositions 

and SPR. This MM method was validated in tissue-mimicking and ex vivo porcine tissue 

phantoms using proton beam range measurements. We then implemented this method in 

a brain cancer radiotherapy patient and showed significant differences in SPR calculated 

by this MM method compared with a stoichiometric kVCT only calculation. The largest 

differences appeared to be in bone tissues, a tissue type known for higher uncertainty. 

Additional work will be necessary to validate this method in patients prior to clinical 

implementation, as inaccurate image registration may lead to higher errors.
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Figure 1. 
Multimodal imaging data pipeline for how kVCT and MRI are used to determine the 

different stopping power ratio (SPR) values presented in this work: SPRstoich (using a 

stoichiometric calibration), SPRCM (using a CT-based Multimodal method), and SPRMM (an 

MR-based Multimodal method). SPR values obtained with the Bethe Bloch equation (SPRCM

and SPRMM) used a multimodal imaging-based mean ionization potential Im  and either a 

monomodal imaging-based electron density EDkVCT  or a multimodal imaging-based electron 

density (MED).
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Figure 2. 
Exemplar axial SPR difference images for panels a, b: SPRMM − SPRstoich and panels c, d: 

SPRCM − SPRstoich. Difference images show significant amounts of structure due to anatomy- 

and composition-dependent changes in SPR.
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Figure 3. 
Exemplar axial slice showing percentage by mass molecular compositions in a human head: 

a) water, b) lipid/fat, c) protein, and d) minerals/hydroxyapatite. Relative scale with white 

being 100% and black being 0% for the respective molecule type. Blue arrow represents 

CSF within the ventricle, red arrow represents intraconal adipose tissue surrounding the 

optic nerve, and the light green arrow represents bone in the skull.
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Table 1.

Physical molecular composition of tissue-mimicking phantom materials as determined by mass percentage 

during the creation process.

Phantom Water (%) Protein (%) Lipid/Fat (%) Hydroxyapatite (%) SDS (%)

Muscle 74.78 19.97 5.00 0.00 0.25

Adipose 0.00 0.00 100.00 0.00 0.00

Spongiosa Bone 26.61 11.83 47.43 12.81 1.32

Cortical Bone 55.00 0.00 0.00 45.00 0.00
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Table 2.

SPR values measured by proton beam (MLIC), kVCT-based multimodal (CM), MRI-based multimodal (MM), 

and stoichiometric method in tissue-mimicking and porcine tissue phantoms. Percentage errors relative to 

proton beam MLIC data are shown in parentheses.

Phantom SPRMLIC (± 0.005) SPRCM SPRMM SPRstoich

Muscle 1.055 1.056 (0.1%) 1.051 (−0.4%) 1.051 (−0.4%)

Adipose 0.964 0.959 (−0.5%) 0.971 (0.7%) 0.955 (−0.9%)

Spongiosa Bone 1.064 1.079 (1.5%) 1.073 (0.9%) 1.096 (3.1%)

Cortical Bone 1.320 1.345 (1.9%) 1.324 (0.3%) 1.340 (1.5%)

Porcine Brain 1.014 1.019 (0.5%) 1.015 (0.2%) 1.023 (0.9%)

Porcine Liver 1.061 1.059 (−0.2%) 1.059 (−0.2%) 1.062 (0.1%)
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Table 3.

Absolute and relative root mean square errors (RMSE) between SPR values measured by proton beam (MLIC) 

and kVCT-based multimodal (CM), MRI-based multimodal (MM), or stoichiometric method for different 

tissue-based phantom groupings (bone grouping: spongiosa and cortical, soft tissue grouping: muscle, adipose, 

porcine brain, and porcine liver).

Phantom Grouping SPRCM vs. SPRMLIC SPRMM vs. SPRMLIC SPRstoich vs. SPRMLIC

RMSEabs RMSErel RMSEabs RMSErel RMSEabs RMSErel

Bone 0.0144 1.15% 0.0047 0.44% 0.0188 1.73%

Soft Tissue 0.0077 0.67% 0.0046 0.45% 0.0111 1.03%

All 0.0104 0.86% 0.0046 0.45% 0.0142 1.31%
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Table 4.

Imaging-based measurement of water, fat/lipid, protein, and mineral/hydroxyapatite (HA) composition in 

tissue-mimicking and porcine tissue phantoms. Subtractive errors relative to ground truth composition (where 

appropriate) are shown in parentheses.

Phantom Water Lipid/Fat Protein Minerals/HA

Muscle 87.1% (12.3) 2.8% (−2.2) 10.2% (−9.8) 0%

Adipose 10.4% (10.4) 91.0% (−9.0) 2.2% (2.2) 0%

Spongiosa Bone 29.5% (2.9) 54.7% (7.3) 5.5% (−6.3) 11.6% (1.2)

Cortical Bone 65.4% (10.4) 7.4% (7.4) 0.3% (0.3) 36.1% (−8.9)

Porcine Brain 85.6% (−1.8) 7.8% 7.9% 0%

Porcine Liver 80.3% (1.1) 6.4% 13.3% 0%

Phys Med Biol. Author manuscript; available in PMC 2024 August 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Marants et al. Page 25

Table 5.

Average SPR values for SPRCM, SPRMM, and SPRstoich across various tissue types in a human head with percentage 

differences shown in parentheses relative to SPRstoich.

Tissue Type SPRCM SPRMM SPRstoich

Bone 1.403 (−1.2%) 1.391 (−2.1%) 1.420

Low-Density Soft Tissue 0.954 (−0.9%) 0.956 (−0.7%) 0.963

High-Density Soft Tissue 1.023 (−0.6%) 1.020 (−0.9%) 1.029

High Lipids/Fat 0.936 (0.5) 0.948 (1.8) 0.931
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