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ABSTRACT: Energy harvesting textiles have emerged as a
promising solution to sustainably power wearable electronics.
Textile-based solar cells (SCs) interconnected with on-body
electronics have emerged to meet such needs. These technologies
are lightweight, flexible, and easy to transport while leveraging the
abundant natural sunlight in an eco-friendly way. In this Review, we
comprehensively explore the working mechanisms, diverse types,
and advanced fabrication strategies of photovoltaic textiles.
Furthermore, we provide a detailed analysis of the recent progress
made in various types of photovoltaic textiles, emphasizing their
electrochemical performance. The focal point of this review centers
on smart photovoltaic textiles for wearable electronic applications.
Finally, we offer insights and perspectives on potential solutions to
overcome the existing limitations of textile-based photovoltaics to promote their industrial commercialization.
KEYWORDS: energy harvesting, smart textiles, wearable electronics, photovoltaic textiles, electronic textiles, solar cells, green energy,
solar energy

Wearable electronic textiles (e-textiles) have been a
focus of research interest in sportswear, military
uniforms, safety instruments, and healthcare

applications as lightweight and portable devices to monitor
vital health parameters.1,2 E-textiles inherit the advantages of
being lightweight, flexible, wearable, and air-permeable while
possessing several electronic functions.3−7 Functionalities such
as sensing, computation, display, and communication,8−11 in e-
textiles could facilitate the manufacturing of highly innovative
and intelligent garments, which can seamlessly integrate all the
sensors, actuators, energy harvesters, and energy storage
components.12−15 However, to realize the functionalities of
intelligent garments requires a lightweight, flexible, and high-
performance power supply.16−19 Traditional power-supply
technologies (e.g., batteries) are incompatible with such
smart textile systems due to their bulky size, rigidity, limited
lifetime, repeated replacement, release of heat during
discharging, and particularly the inclusion of some toxic
materials which can cause serious skin issues.20−22 Therefore,
the key focus in powering wearable electronics is moving away
from traditional battery systems to safe, lightweight, flexible,
wearable counterparts, and energy-harvesting textiles are a
compelling solution toward that effort.23,24

The need for electrical energy in human civilization is
ubiquitous, and it has been expanding at a rapid pace with
technological advancements.25,26 Traditional methods for

electricity generation, such as the burning of fossil fuels, are
nearing the end of their residual value and are expected to be
depleted within the next 150 years.25 A vast quantity of
hazardous pollutants are being released into the air during the
burning of fossil fuels, causing a wide range of public health
concerns, such as cancer,27 eye illness,28 and respiratory
disorders.29,30 In addition, the release of excess carbon dioxide
(CO2) and other greenhouse gases from the combustion of
fossil fuels also shows a serious negative impact on climate
change and human sustainability.31,32 Considering the rapidly
growing need for nonfossil fuel sources of energy and the
mounting environmental challenges, the development of
sustainable and renewable energy alternatives has become a
priority to build a sustainable environment for human
civilization.33,34 Among renewable energy choices, sunlight is
one of the most abundant, green, and high energy density
sources. A report from the Massachusetts Institute of
Technology elaborated that the earth is constantly being
bombarded by ∼173,000 terawatts (trillions of watts) of solar
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energy, equivalent to producing more than ten thousand times
the amount of energy used per year globally.35 Although
technologies for solar energy harvesting, such as silicon-based
SCs,36,37 are already established and being used in various solar
power plants. Though the current state of flexible and wearable
SCs falls short of the efficiency and durability required to
effectively compete with traditional energy generation
technologies in terms of power generation capabilities.38

However, flexible, and wearable electrodes and/or substrate
materials in SCs provide structural flexibility, which are highly
attractive for a large number of emerging portable and
lightweight consumer devices.39,40 Flexible plastic, elastomeric
and textile substrates possess better biocompatibility, stretch-
ability, transparency, and wearability.41 In addition, comfort-
ability, and ability to integrate with other electrical
components makes textile-based SCs a suitable candidate for
the next generation of self-powered wearable e-textile
applications, including for personalized healthcare. Figure 1
illustrates the basic concept of a wearable photovoltaic textile
garment for powering wearable and portable devices.
Considering the potential of smart solar textiles for the next

generation of wearable power supply, this Review specifically
focuses on smart textiles for solar energy harvesting as a
wearable and sustainable power-supply system. We begin our
review by introducing various energy harvesting approaches
and their elemental categories. We then discuss SCs for energy
harvesting and several generations of development. In each
case, we summarize their construction and working principles.
In the following section, we discuss the structure of textile-
based SCs. The key metrics for evaluating SCs are then
introduced. The different materials required for preparing
several component layers of the SCs are then reviewed. The
preparation of active materials and the fabrication strategies for
different forms of textile-based SCs are then discussed. We
subsequently summarize the electrochemical performance of
the existing SCs along with their various wearability properties.
Finally, we conclude our review with recommendations for
future research directions in the field of textile-based SCs.

RENEWABLE ENERGY HARVESTERS
Energy is the essential necessity for any functionality.42 Since
ancient times, energy has been transformed from one form to
another based on the application, such as a steam engine where
thermal energy is transformed into mechanical energy.43 In this
context, energy harvesting refers to the process of transforming
different sources of energy into electrical energy. Renewable

energy harvesting is the practice of harnessing renewable
energy sources (e.g., sunlight, wind, ambient thermal energy)
to generate electricity.44 Experts in the field of energy
harvesting are exploring various options to harvest energy by
using advanced nanotechnologies.45,46 The most common and
emerging energy harvesting technologies include nanogener-
ators (NGs), photovoltaic systems, electromagnetic generators,
magnetoelastic generators (MEGs), and catalytic energy
harvesting systems.47,48

There are different types of modern techniques developed to
harvest ambient renewable energy, including triboelectricna-
nogenerators, piezoelectric nanogenerators, and magnetoelastic
generators for mechanical energy conversion, pyroelectric
generators (PEG) and thermoelectric generators (TEG) for
harvesting ambient thermal energy .49,50 Especially, these
modern mechanical energy harvesting techniques are increas-
ingly gaining popularity due to their ability to harvest a variety
of energy forms from the environment including human
motions (walking,51 breathing,52 heartbeat pulse,53 etc.),
vibration, flowing water,53 raindrops,54 wind,55 and waste
heat.56−59

Nanogenerators based on the piezoelectric effect are known
as piezoelectric nanogenerators (PENGs), which were
introduced in 2006 by Wang et al.60,61 PENGs convert
mechanical energy into electrical energy. The structure of a
PENG device is generally a sandwich type, where two
electrodes sandwich piezoelectric materials, (Figure 2a).
When an external strain is applied to the two electrodes, a
piezo potential difference arises between the contacts, enabling
the flow of charges toward an external load.62−64 PENGs are
widely used for textile-based energy harvesting due to their
simple and straightforward mechanisms, as well as their
compatibility with wearable devices.65−68

The Triboelectric Nanogenerator (TENG) is a device that
harvests ambient mechanical energy by combining the
triboelectric effect with electrostatic induction (Figure 2b).69

TENGs operate in four different modes: single electrode
mode,70 contact separation mode,71 linear sliding mode,72 and
free-standing mode.73 In all of these modes, two separate
triboelectric materials, electrode connections, and an insulating
layer between them are essential components.74 TENGs are
considered the most promising choice for textile-based energy
harvesters due to their high electrical output potential, flexible
structure, easy and low-cost fabrication approach. Textile-
based TENGs have recently been developed and fabricated on
a large scale.75 A liquid pumping method was employed,

Figure 1. Textile solar cells for powering wearable and portable devices.
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utilizing a thin hollow polymer fiber with a liquid metal/
polymer core−shell structure (LCFs). Once the LCFs were
fabricated, a basic weaving machine was used to construct a
textile-based TENG. These textile-based TENGs have also
been utilized for energy harvesting from human movements.76

Silver conductive yarns wrapped in polytetrafluoroethylene
(PTFE) and Nylon 66 were used, resulting in peak power
densities of up to 1484 W/m2 in the stretching motion mode
and 7531 W/m2 in the compressive motion mode.
To harvest the ambient biomechanical energy, the

magnetoelastic generators emerges as a compelling platform
technology in 2021 with intrinsic waterproofness and high
current output (Figure 2c). The magnetoelastic effect, also
called the Villari effect and discovered by Italian physicist
Emilio Villari in 1865, is the variation of the magnetic field of a
material under mechanical stress. This effect has been
traditionally observed in rigid alloys with an externally applied
magnetic field and has been overlooked in the field of soft
bioelectronics for three reasons. First, the magnetization
variation in the biomechanical stress range is limited. Second,
the requirement of the external magnetic field induces
structural complexity and bulkiness. Finally, there exists a
large mismatch in mechanical modulus (6 orders of magnitude
difference) between the magnetic alloy and human tissue. In
2021, the giant magnetoelastic effect was discovered in a soft
polymer system.77 The giant magnetoelastic effect was further
coupled with magnetic induction to invent a soft magne-
toelastic generator as a fundamentally new and efficient
platform technology that can convert tiny biomechanical
pressure, such as arterial vibrations, into electrical signals with
high fidelity.78−82 It features high current, low internal
impedance, high stability, and decent biocompatibility, which
would also revive the biomechanical energy conversion
community that is currently challenged by low current, high
internal impedance, and instability due to the vulnerability to
water/humidity.83 More importantly, the soft MEGs are

intrinsically waterproof since the magnetic fields can penetrate
water with negligible intensity loss. Thus, they demonstrate
stable performance as wearable and implantable power sources
without the need of an encapsulation layer.84−87 This could be
essentially compelling since the working environment of a
bioelectronic device holds high humidity, no matter if they are
skin-interfaced devices or in an implanted format.
Thermal energy is abundant in our environment, particularly

in factories and manufacturing plants where it plays a critical
role in daily operations. Renewable energy researchers aim to
harness ambient temperatures, especially the heat generated by
the human body and the surroundings.88,89 To harness
ambient thermal energy, PEGs are one of the widely utilized
technologies. These PEGs are based on the pyroelectric effect,
which is the property of certain anisotropic materials in which
polarization changes with the changing temperature. Nonuni-
form heating causes nonuniform stresses, leading to a change
in the polarization through a piezoelectric action, resulting in
pyroelectricity.42,90 The spontaneous polarization of pyro-
electric materials decreases as the temperature rises and vice
versa. Consequently, temperature fluctuations generate an
alternating current, which is collected by electrodes.91 PEGs
were introduced by the Wang group in 2012.92 On the other
hand, the ambient thermal energy can be harvested by
employing TEGs, which are based on the thermoelectric
effect, also known as the Seebeck effect. This effect is the
process by which an electric voltage is produced from a
temperature gradient using a thermocouple.93,94 As shown in
Figure 2d, a typical thermoelectric device consists of two
thermoelectric layers, with one surface being heated and the
other surface being cold to establish a temperature differ-
ential.95 A thermoelectric fabric has been developed using
electrospinning and spraying techniques.96 To make these
fabrics, carbon nanotubes (CNTs), polyvinylpyrrolidone
(PVP) and polyurethane (PU) were synthesized, demonstrat-
ing stretchability of up to 250% with high air permeability.

Figure 2. Schematics of different energy harvesters’ working mechanisms. (a) Piezoelectric, (b) triboelectric, (c) magnetoelastic, (d)
thermoelectric, (e) electromagnetic, (f) antenna-coils, (g) hydrovoltaic, (h) catalytic, and (i) photovoltaic.
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Additionally, a maximum current of 0.75 mV was generated at
ambient temperature. Five devices were connected in series
and fixed on a human arm to track real-time human respiration
using this self-powered thermal sensor.
Electricity generation from electromagnetic radiation is one

of the oldest power generation mechanisms, dating back to
1813. Faraday discovered that a varying magnetic field
stimulates an electric current in a nearby circuit, providing
evidence that mechanical energy can be transformed into
electric energy.97−99 Generally, there are two basic compo-
nents required to build an electromagnetic generator: a circuit/
coil and a moveable magnet (Figure 2e). Electromagnetism has
been explored for powering wearable electronics, particularly in
shoes.100−105 Recently, textile-based electromagnetic energy
harvesters have gained interest due to the rapid development
in portable and wearable energy harvesting devices. A wearable
electromagnetic generator has been developed by harnessing
the ambient kinetic energy of a human hand swing motion
utilizing a conductive yarn coil.106 However, most of the
reported textile-based electromagnetic devices are heavy,
inflexible, incredibly hard, and bulky, which limits their further
exploration as textile-based energy harvesters.107−109

Electromagnetic radiation may be scavenged by antennas
and coils, which has recently shown substantial potential as an
alternative energy source, (Figure 2f).110 This technology is
capable of harnessing and transforming electromagnetic energy
into electrical energy.111,112 A wearable energy harvesting
device, for example, has recently been developed with MXene
(Ti3C2Tx) 5G antenna technology. The device serves as a
remote and battery-less power source, allowing constant
monitoring and data transfer. The antenna efficiently absorbs
RF electromagnetic energy at astonishingly low input levels, 16
times lower than the threshold for standard copper antennas,
while operating within the 915 MHz 5 GHz frequency range.
Furthermore, the device has demonstrated exceptional
mechanical flexibility, retaining over 99% power transmission
efficiency despite being at a tilting angle of 90°.113
A Hydrovoltaic Energy Generator (HEG) is another

emerging device, effectively utilizing the physiochemical
properties of water to generate electricity, (Figure 2g). With
the capacity to charge wearable devices continuously with DC
power from an endless natural source, such as ambient

humidity, HEGs are becoming increasingly popular in research
and academia.114 A group of researchers recently developed a
HEG using the ionic polymer nafion and a poly(N-isopropyl-
acrylamide) hydrogel. The developed device yielded an
extraordinarily high voltage of −1.86 V utilizing a single
module.115 This cutting-edge development has the potential to
significantly broaden the possibilities for wearable technology’s
use of effective clean power sources.
Catalytic energy harvesters, also known as biofuel cells

(Figure 2h), utilize enzymes as catalysts to transform chemical
energy into electrical energy.116 The electrochemical oxidation
of ioenzymes such as glucose and lactate, among others, at the
anode and the reduction of oxygen at the cathode of a biofuel
cell generate electrical energy. The advantages of such energy
harvesters are their compatibility with biological environments
and their ability to use biological materials as a source of
energy.117−119 Most of the research conducted on biofuel cells
has resulted in relatively small-sized devices, yielding outputs
recorded at the microscale.120,121 For instance, the high
concentration of lactate dehydrogenase found in human body
sweat makes it an effective enzyme for oxidizing lactate. As a
result, catalytic energy harvesters are receiving significant
attention as a source for self-powered textile-based wearable
devices.116,122

Among those already mentioned ambient energy resources,
the sun is by far the most powerful and abundant resource for
renewable energy.123−125 SCs are energy harvesting devices
that absorb photons from sunlight and generate electrical
energy, (Figure 2i). SCs based on silicon are known as first-
generation SCs, which are not suitable for flexible electronics
due to their bulky and brittle nature.126,127 However, second-
generation and third-generation SCs (discussed in detail in
later sections) have enabled the development of flexible SCs.
These emerging photovoltaic technologies demonstrate the
potential of implementing and harnessing energy from textile-
based SCs while maintaining the comfortability required to
preserve the features of clothing.128,129 Potential techniques for
integrating SCs into textiles include fabricating SCs thin films
on flexible substrates and adhering them to the textile, or
directly developing SCs thin films on the fabric surface using
solution-processable techniques such as printing and coating.
Other methods are to build/incorporate SCs fibers/yarns/

Figure 3. Timeline of solar energy toward the development of a practical photovoltaic system.
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filaments into the textile’s structure. Technologies based on
polymer-based and dye-sensitized SCs have gained attention
due to significant improvements in conversion efficien-
cies.109,130−132 The urgent need for developing these emerging
photovoltaic technologies for wearable applications has piqued
interest in understanding, exploring, and garnering solutions to
overcome current limitations for advancing textile-based SCs.

PHOTOVOLTAIC ENERGY HARVESTING: SOLAR CELL
SCs have a long history, dating back to the early discovery of
the photovoltaic effect in 1839.133 Alexandre-Edmond
Becquerel, Antoine Cesar Becquerel, and Henri Becquerel
observed tiny electric currents when they exposed metals to
light while working with metallic electrodes in a liquid
electrolyte. However, they could not fully explain the
phenomenon at that time. Later in 1873, Willoughby Smith,
discovered the impact of sunshine on selenium and its
photoconductivity while working on telegraph cable materi-
als.134,135 Charles Fritts, an American inventor, introduced the
SC in 1883 by sandwiching the selenium (Se) between two
metallic electrodes. However, those SCs were only 1% effective
at converting sunlight into electrical energy and were
impractical at that time.136 In 1954, Bell Laboratories
introduced a functional silicon-based SC, marking a turning
point in photovoltaics. To this day, silicon based SCs account
for more than 90% of global solar energy harvesting panels.137

Figure 3 illustrates a brief history of the utilization of solar
energy in the development of the practical SCs and the scope
of solar energy in today’s world.

Construction/Working of SC. The construction of a SC is
very similar to the concept of a p−n junction diode. An n-type
and a p-type material are sandwiched together, and when they
come close to each other, electrons from the n-type material
diffuse into the holes of the p-type material, creating a
depletion region in between. This depletion region acts as an
active region that enables the photovoltaic mechanism. To
better understand the SC mechanism, the basic structure of a
SC is shown in Figure 4a and b. Since the majority of charge
carriers (i.e., electrons in n-type and holes in p-type
semiconductors) begin to diffuse once the two materials (p-

type and n-type) are bonded, they leave exposed charges on
the dopant atom sites, that are stuck in the crystal lattice and
cannot move. In the n-type material, the centers of positive
ions are released, while in the p-type material, the centers of
negative ions are released. N-type materials have clusters of
positively charged ions, and p-type materials contain clusters of
negatively charged ions; an electric field E is generated
between these two types of ions. Since free carriers are rapidly
swept out of this area by the electric field, it is referred to as the
“depletion region.″ The junction receives enough energy from
the photons of light to generate multiple electron−hole pairs.
The sunlight disturbs the junction’s thermal balance, exciting
charges to create hole-pairs. Electrodes collect both positive
and negative charges and transfer them to an external load.138

Second- and third-generation SCs consist of several layers of
light absorption materials that are up to 300 times thinner than
Si-based SCs.139 Such SCs devices consist of n-type and p-type
materials, also known as acceptor and donor materials, which
form heterojunctions. Regardless of the structure or the
material types, the essential function of each generation of SCs
is the same, generating electricity directly from solar energy. In
the third-generation of SCs, typically for the photovoltaic
mechanism, there are 4 steps involved: light absorption,
electron injection, transportation of carriers, and collection of
current.140 In the photovoltaic process of third-generation SCs,
especially organic solar cells (OSCs), photons (energy
packets) from the sun are absorbed by the active layer (also
known as an absorber layer), which consist of donor and
acceptor semiconducting materials. Upon photon absorption,
excitons (bounded electron−hole pairs) are formed, with the
electrons dissociating at the lowest unoccupied molecular
orbital (LUMO) level of acceptor and the holes are at the
highest occupied molecular orbital (HOMO) level of donor.
These dissociated electrons and holes are driven by the built-in
electric field and then transported to the negative and positive
electrodes, respectively. Concurrently, these dissociated
electrons and holes are trapped in the charge carrier transport
layers, the electron transport layer (ETL) and the hole
transport layer (HTL).141−143 The electrons are collected by
the external electrodes and recombine with the unoccupied

Figure 4. Power generating mechanisms and structure of photovoltaic systems. General mechanism of photovoltaic process in SCs (a)
without sunlight illumination and (b) with sunlight illumination. Schematics of (c) first-generation and (d) second-generation SCs.
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holes after passing through the load, as illustrated in Figure 5e.
The distinctive chemical and physical characteristics associated
with each layer are outlined in the Layers and Materials for
SCs section, along with the impact in performance of the SC
device.

Generation and Types of SCs. With an ever-increasing
demand for energy, research, and development (R&D) on SCs
has been extensive in recent years. To achieve the highest
possible efficiency in SCs, researchers have been investigating
both materials and modern fabrication technologies. Based on
their development stages, materials and working processes, SC
technologies may present in three separate generations:144 (i)
first-generation, (ii) second-generation and (iii) third-gener-
ation.

First-Generation SCs. First-generation SCs are a well-
developed technology in the field of photovoltaics. These
systems are widely used for commercial purposes. Figure 4c
illustrates the general structure of first-generation SCs, which
consists of a sandwich-type structure with n-type and p-type
semiconducting materials. First-generation SCs are typically
based on crystalline semiconductor films such as silicon (Si)
and gallium arsenide (GaAs). GaAs, with a bandgap of 1.43 eV,
is excellent for single-junction photovoltaic applications. In
addition, GaAs have high absorption capabilities, allowing for
high absorption spectra even with cells only a few micrometers
thick. In contrast, Si-based cells require thicker layers to
achieve appropriate absorption. Furthermore, GaAs-based SCs
have a lower temperature coefficient, resulting in minimal
temperature dependence.145 Thermal laminations have re-
cently been used to develop transparent polyhedral oligomeric
silsesquioxanes (POSS) polyamide film sealed flexible triple
junction GaAs thin film SC with an outstanding power
conversion efficiency (PCE) of 28%.146 While GaAs is one of
the oldest materials used in first-generation SCs with higher
PCE, Si has dominated the commercial market, capturing 90%
of the market share, due to several advantages. These
advantages include its abundance in the earth’s crust,147 and
its nontoxic nature that prevents contaminations and enhances
durability. Single crystal silicon SCs have received significant
attention from scientists for the past half-century and were
initially reported by Bell Laboratories in 1954.148 Since then,
the SCs market has been greatly influenced by these
advancements and they have played an important role in

energy production in domestic and commercial sectors.
Silicon-based SCs have had significant progress, reaching a
PCE greater than 5% in 1957.149 Within three years, by 1960
the efficiency increased to 14%.150 In 1973, NASA launched a
self-powered Skylab using silicon-based SCs.151 During that
era, some other materials were also introduced for SC
applications, such as AlGaAs-based SC in 1970. In 1995, a
monolithic AlGaAs/Si-based SC was produced with a high
conversion efficiency of up to 20.6% using 4 terminal
configurations.152 The maximum theoretical efficiency for
silicon-based SCs is limited to 34%, while the greatest achieved
efficiency to date is 24.7%.153,154 However, despite the
expansion of the silicon-based SCs business in recent years,
it has been hindered by high costs.155 The expensive recovery
and refining of Si, as well as its preparation into wafers,
significantly contributes to the high price. The production
process of Si is also complex and requires extremely high
temperatures. Despite technological advancements, there have
been only minor cost reductions in Si technology.156

Additionally, Si-based SCs require thick materials as they are
indirect bandgap semiconductors. Therefore, for wearable
electronics applications, it is more favorable to use low-cost,
direct bandgap semiconductors that require less complex
manufacturing technologies.157 Furthermore, first-generation
SCs are not suitable for wearable electronics applications due
to their larger size and the need for a fixed supporting
substrate, such as glass.

Second-Generation SCs. Second-generation SCs, includ-
ing thin film technologies, are also known as thin film SCs. The
primary objective of second-generation SCs was to reduce their
cost and size, which were the main disadvantages of first-
generation SCs. Figure 4d depicts the fundamental config-
uration of second-generation thin film SCs, which consists of
four layers: the top electrode (TE) or conductive transport
layer, an active layer (also known as the absorbing layer),
buffer layers (e.g., ZnO) and counter electrode (CE) layers.
The foundation of the second-generation SCs was achieved
through the utilization of thin-film materials such as
amorphous silicon (a-Si), cadmium telluride (CdTe), copper
indium gallium selenide (CIGS) and some other materials with
a direct bandgap, including copper sulfide (Cu2S) and
cadmium sulfide (CdS). The use of these not only reduced
the volume of materials but also the overall size of the device.

Figure 5. Schematics of photovoltaic technologies in third-generation SCs. (a) Dye sensitized solar cell (DSSC), (b) perovskite solar cell
(PSC), (c) organic solar cell (OSC), and (d) quantum dot solar cell (QDSC). (e) The energy transfer mechanism of the photovoltaic process
in third-generation OSCs.
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Several manufacturers claimed an efficiency of ∼10% for Cu2S/
CdS cells developed using the cleveite method.154,158 CdTe-
based thin film SCs were introduced in the early 1970s, and to
this day, it remains the sole thin film technology among the
world’s top ten SCs manufacturers.159,160 CdTe is very strong
with extremely good chemical stability, making it suitable for
various scalable deposition techniques. According to the
Schockley-Queisser limit, CdTe has an optimal band gap of
1.5 eV, allowing it to achieve ∼32% efficiency with an open
circuit voltage (Voc) of more than 1 V and a short circuit
current density (Jsc) of more than 30 mA cm−2.159,161 Second-
generation SCs are comparatively cost-effective as they are thin
and lightweight. Additionally, they have excellent light-
absorbing characteristics and can achieve a high PCE of
around 22.6%.162 However, second-generation SCs are not as
long-lasting as the first-generation since they degrade quickly
in outdoor conditions.163 While the performance of second-
generation SCs is continuously improving with lower
production costs, the materials needed to produce them are
rare and less accessible than those of the first-generation.

Third-Generation SCs. The third-generation of SCs was
developed almost after three decades of the first-generation
and second-generation to address the limitations of second-
generation technologies and aimed to introduce innovative
materials using modern processes for building flexible SCs.141

Dye-sensitized SCs (DSSCs), perovskite SCs (PSCs), OSCs,
and quantum-dot SCs (QDSCs) are among the most common
photovoltaic technologies used in third-generation SCs.164

Dye-Sensitized SCs. Dye-sensitized SCs, also known as
DSSCs, are one of the prominent third-generation SC
technologies. DSSCs typically have a sandwich-type structure,
consisting of two electrodes stacked one on top of the other
with an electrolyte (containing a suitable redox pair with an
acceptable solvent) in between them (Figure 5a). They are
capable of generating electricity in a wide range of lighting
conditions, both indoors and outdoors, allowing users to
convert both artificial light and sunlight into electrical
energy.165 In recent years, DSSCs have emerged as potential
competitors to Si-based SCs due to their easy and solution-
based fabrication process and their cost efficiency. The history
of DSSCs began in 1960 when it was discovered that
illuminated organic dyes could be used as an electrochemical
system to generate electricity.166,167 In 1972, scientists
successfully developed the chlorophyll-sensitized zinc oxide
(ZnO) electrode for electricity generation by injecting excited
dye molecules into a semiconducting material.166,168 DSSCs
have recently emerged as a promising technology due to their
potential for achieving high PCE combined with low
production costs and a straightforward fabrication process.169

Additionally, DSSCs are compatible with flexible and wearable
substrates, making them highly versatile in various applications.
For example, a textile-based DSSC has been recently
reported,170 achieving an efficiency of up to 1.8% under air
mass 1.5 global (AM 1.5 G) solar spectrum conditions. The
global AM 1.5 G spectrum is designed for flat-plate solar units
and represents the average yearly solar irradiation at
midlatitudes, accounting for 1.5 times the typical surface
atmospheric depth. while maintaining photoelectric output
stability for 7 weeks. Significant progress has been made in
developing environmentally friendly dye materials, including
the use of natural dye collected from harda fruits resulting in a
fabric DSSC that achieved a notable PCE of 3.52%.150

In fact, DSSCs are gaining popularity as their performance
continues to improve, with a recent report of a 13% PCE.164

Additionally, the development method for DSSCs is simple
and cost-effective. However, there are still significant
challenges associated with DSSCss, including the use of liquid
electrolytes, which pose durability and stability issues,
especially with changing temperatures. Moreover, the electro-
lyte can freeze at a low temperature, directly affecting the
electrical performance. Therefore, there is a pressing need to
address these issues and to extend the lifespan of DSSCs to
make them a competitive device in the commercial market.

Perovskite SCs. Perovskites are a class of compounds that
can effectively coat other surfaces and absorb significant
amounts of sunlight. The term ‘perovskite’ is derived from the
nickname given to its crystalline structure. PSCs have shown
promise for high-performance and low-cost SCs, as depicted in
the general schematic shown in Figure 5b. The chemical
formula for perovskites can be written as ABX3, in which the
letters “A” and “B” represent cations, and the letter “X”
represents ananion that binds to both cations.171 PSCs have
undergone tremendous development in recent years, achieving
a substantial increase in efficiency.172 The fabrication process
of PSCs is often performed at a low temperature, making them
an excellent option for the roll-to-roll process and a suitable
choice for flexible and plastic-based SCs.
The efficiency of PSCs has increased significantly from

approximately 3% in 2009 to more than 25% in recent
years.173,174 Recently, the pseudohalide anion format
(HCOO−) was employed to reduce anion-vacancy defects at
grain boundaries and surfaces of the perovskite layer, as well as
to enhance the crystalline structure of the layer. The developed
PSC device demonstrated a higher PCE of 25.6% with long-
term functional stability for up to 450 h.175 In other recent
research, PSCs were developed and achieved a significantly
high PCE of up to 25.8%, by incorporating an interlayer
between a SnO2 electron transport layer (ETL) and a halide
perovskite layer. The inclusion of the interlayer improved
charge collection and transportation from the perovskite layer,
enhancing the overall device performance. Furthermore, the
PSCs showed excellent stability for approximately 500 h and
achieved 90% consistency in the performance.176

It is worth mentioning that although PSCs have achieved
comparatively higher PCE, there are several challenges
associated with these SCs that need to be addressed before
successful commercialization. These challenges include device
hysteresis, toxicity and the stability of perovskite’s materials.
Additionally, the use of hazardous lead in perovskites raises
environmental concerns. Further research in encapsulation is
essential to mitigate any potential toxicity and hazardousness.

Organic SCs. Organic SCs (OSCs) are another family of
third-generation SCs in which the absorbing layer is composed
of organic semiconductors, primarily polymers (e.g., poly(3-
hexylthiophene-2,5-diyl) (P3HT), poly [[4,8-bis[(2-
ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-flu-
oro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]
(PTB7), etc.) or small molecules (e.g., dithienobenzo-
dithiophene (DTBDT), benzodithiophene (BDT) etc.). A
general schematic of an OSC is given in Figure 5c, consisting
of several functional materials such as charge career transport
layers, doner and acceptor layers etc. OSCs were initially
developed in the 1950s but were not widely adopted due to
their lower PCE.177 OSCs have gained significant traction due
to their exceptional flexibility and compatibility with wearable
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devices, making them increasingly popular. Unlike traditional
SCs that rely on crystalline semiconductor materials, OSCs
utilize organic polymers or small-molecule materials, present-
ing a more cost-effective alternative for capturing solar energy.
Although OSCs typically exhibit lower power conversion
efficiency (PCE) compared to silicon-based SCs (ranging from
15% to 40% PCE), their significantly lower manufacturing cost,
which is roughly one-tenth of that of silicon-based SCs, offers
substantial advantages in terms of affordability and accessi-
bility.178 It has been demonstrated that an OSC with a PCE of
5% can be achieved by employing the P3HT:PCBM as an
active layer in a typical configuration.179 An inverted structure
OSC using the active material P3HT:PCBM has been
investigated to achieve a high PCE of 9.2%.180 Furthermore,
an OSC based on P3HT and a fullerene derivative, indene-
C70-bisadduct (IC70BA) acceptor material, achieved a PCE of
7.4% by utilizing a high boiling point solvent additive.181

Recently, OSCs have been reported with high PCE of up to
15.8% and excellent stability, maintaining over 86.6% of their
initial performance after 1574 h in air under dark conditions at
room temperature. Additionally, the impact of temperature was
investigated by storing the fabricated OSCs for 172 h at a
temperature of 85 °C, and a 92.4% similarity in performance
was observed.182

Although OSCs are gaining popularity, they are still not
comparable to Si-based SCs due to certain limitations
including the use of fullerene derivatives (e.g., PCBM),
which abruptly affect the transport of electrons and the
kinetics of the recombination process.183,184 Other challenges
include low absorption in the visible range and poor precise
control of energy levels. The PCE of OSCs still fall short of the
commercial standard value of 15%.185 Additionally, the lifetime
of OSCs currently reported is relatively low, which is below the
commercial threshold.186 Further research is needed to
improve the durability and efficiency of OSCs to establish
their market viability.

Quantum Dot Sensitized SCs. Quantum dot SCs
(QDSCs) are an emerging class of third-generation SCs,
Figure 5d. These SCs utilize quantum dots as the light-
absorbing photoactive material.187 Quantum dots (QDs) are
nanoscale semiconductors created by humans and are widely
used in various applications, including light-emitting diodes
(LEDs) and SCs, due to their unique optical and electrical
properties.188−190 QDs are ideal for use in multijunction SCs
because of their unique properties of having an adjustable
bandgap and giving an advantage over bulky light-absorbing
materials having fixed bandgaps.191−193 In 1998, QDSCs with a
power conversion efficiency of less than 1% were pub-
lished194,195 Later on, several research groups recognized the
potential of QDs for SC applications. QDSCs were found to
have the ability to surpass the theoretical efficiency limit of
31% for single-junction cells.190 A recent demonstration of
QDSCs using Zn−Cu−In−S-Se (ZCISSe) QD-sensitized
TiO2 film electrodes achieved a maximum PCE of
15.31%.196 Other recent research showed that perovskite
quantum dots (PQDs) based on CsPbBrCl2:Sm3

+ achieved a
PCE of up to 22.52%.197 Despite the advantages offered by
QDs over bulk materials, the practical application of QD-based
SCs is limited due to certain limitations. For instance, SCs
based on cadmium selenide QDs are very hazardous, and
require robust polymer packaging. The addition of an extra
packaging layer increases the manufacturing cost and can
impact device performance, including light absorption and
PCE.

Structure of Textile-Based SCs. Depending on the shape
of SCs, textile-based SCs can be divided into two categories:
1D or fiber-shaped and 2D or planar-shaped SCs, as shown in
Figure 6.

Fiber Shape Textile-Based Solar Cells. Fiber-shaped
textile-based SCs, also known as 1D SCs, are named as such
due to their unique configuration. Early studies ignited interest
in exploring the structural layout of 1D SCs. Depending on the

Figure 6. Schematics of photovoltaic textile architectures. 1D fiber-level SCs: (a) coaxial type and (b) twisting type; 2D textile-level SCs: (c)
interlaced and (d) planar shape textile-based SCs.
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configuration and spatial interaction between the electrode and
functional layers, 1D or fiber-shaped SCs can be further
categorized as coaxial, twisting, and interlaced designs.198

Coaxial Type 1D SCs. The coaxial structure of 1D SCs is
derived from planar devices, as all layers are grown on a single
fiber substrate/electrode. A typical configuration of 1D devices
is as follows: internal electrode (fiber shape)/ETL/absorption
layer/HTL/external electrode, Figure 6a. The coaxial arrange-
ment offers robust coupling of electrodes with functional layers
such as HTL, resulting in superior charge collection and
transportation due to the small carrier distance.199 This is why
the coaxial structure is preferred in solid-state SCs like OSCs
and PSCs.200−202 However, one drawback of this configuration
is that it lacks transparency since the functional layers are
completely covered by external electrodes, which affects light
transmission. One possible solution is to use a thin layer to
enhance transmittance, but this can increase resistance due to
the reduced thickness of the conductive materials, directly
impacting the device’s performance. Additionally, mechanical
stability is curtailed for maintaining the longevity of the
device.203 Moreover, the fabrication of tiny external electrodes
and their subsequent connection to external connectors pose
significant challenges in the manufacturing process204,205

Twisting Type 1D SCs. As the name suggests, these 1D
SCs have a twisted or spring-shaped structure. The device
fabrication and configuration are the same as in coaxial-type
SCs, but the exterior electrodes are twisted around in a spring
form on HTL/ETL layers, giving additional room for light
transmission, Figure 6b.206,207 These twisting-type SCs are
significant to achieve high electrical performance due to the
choice of sophisticated electrode materials and refined
fabrication process. Furthermore, these fiber-based SCs are
advantageous for DSSCs, due to their use of a liquid
electrolyte, as the electrode makes full contact with the
electrolyte and forms a better interface between them.208,209

Highly stretchable and flexible fiber-shaped OSCs, configured
in a twisted design, have been demonstrated as a sustainable
option for wearable applications.210,211 However, it is
important to note that the shadow cast by the external
electrode over the functional layer, as well as the longer charge
carrier distance, can reduce the SCs performance of twisting-
type SCs. In general, the thickness of the electrode fiber
directly impacts the performance of twisting-type SCs.
Furthermore, these twisted-type SCs tend to be less
mechanically resilient compared to the coaxial type.

Interlaced/Interwoven Type SCs. When it comes to the
construction of large-scale textile-based SCs, the interwoven
form of SCs is the most practical configuration.212 In an
interlaced type of SC (Figure 6c), SC yarns are of are woven
together. While this configuration enables the development of
large-area Textile-based SCs, the contact between two adjacent
fibers is not tightly secured, which limits significant charge
collection. Additionally, the development of a dense and
interlaced structure textile-based SCs may exhibit more
shadows, which might have an impact on the overall
performance.165,213,214

Planar Shape 2D Textile-Based SCs. There are typically
two different ways of constructing planar-type Textile-based
SCs, also known as 2D SCs (Figure 6d). The traditional
methods involve creating a flexible SC and then incorporating
it into fabrics using adhesive materials.215 These techniques are
straightforward and may not require additional fabrication
standards, such as modifying the surface, apart from those
specific to the SC type. Textile-based SCs created using these
methods tend to have higher performance since they are
affixed to textiles using adhesive tape, rather than modifying
the original structure of the SC.202,216,217 However, these
Textile-based SCs have limitations, such as reducing the
garment’s washability and limiting flexibility and wearability
due to their rigidity. An alternative strategy is the direct

Figure 7. General photovoltaic system measurement setup and performance metrics. (a) Measurement setup for a SC characterization;
graphical representation of (b) maximum power output and (c) the fill factor.
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development of an SC device on textiles. This approach has
gained interest in the flexible and wearable solar energy
research community. However, several factors, including the
rough surface of textiles and the additional layers (e.g.,
encapsulation materials), reduce light transmission and have a
negative impact on SC performance.109,218

KEY PERFORMANCE METRICS
Every device has various essential aspects and qualities that
determine its performance. SCs have fundamental specifica-
tions that must meet certain criteria to be considered sufficient
for use. Figure 7a illustrates a general measurement setup,
which includes a solar simulator along with electrical output
measurement tools. The short-circuit current density (Jsc) vs
Voc curve, along with other performance metrics of a SC, are
shown in Figure 7b and c. These basic performance metrics of
a SC include power conversion efficiency (PCE), fill factor
(FF), maximum power (Pmax), ideal power (Pideal), open circuit
voltage (Voc) and the short circuit current density (Jsc).

Power Conversion Efficiency. Power conversion effi-
ciency (PCE) is one of the key and essential metrics that
define and compare SC performance with other referenced
SCs. PCE is defined as the ratio of generated maximum output
(Pmax) to the input energy from the sunlight (Pin) and it can be
mathematically expressed as

= P PPCE /max in (1)

In an ideal scenario, sunlight under AM 1.5 G conditions can
provide Pin at the rate of E = 100 mW/cm2, then further
simplifying the mathematical expression for PCE can be
written as PCE = Pmax/E or can be calculated using FF
(described in Layer-by-Layer Fabrication section) as the
following equation:

= × ×J V EPCE FF/sc oc (2)

SCs can be made more efficient using various approaches. One
strategy to increase spectral efficiency is by employing a variety
of semiconductor materials. Multijunction or heterojunction
devices can achieve greater spectral efficiency by collecting
diverse regions of the solar spectrum. The utilization of
photons with energies exceeding the energy band gap of the
semiconductors improves the performance of these photons
releasing charge carriers with energies above the Fermi level. A
multijunction device consists of separate single-junction cells
stacked in order of decreasing bandgaps. The top cell absorbs
photons with high energies and transmits the remaining
photons to cells with smaller band gaps for absorption. Recent
studies have demonstrated that by sequentially merging 36 SC
junctions, an ideal PCE of 72% can be achieved.219 However,
the development of these multijunction SCs is primarily
hindered by their technical complexity and higher cost. It is
worth noting that the PCE values that have been reported to
date for textile-based SCs are relatively lower. For example,
recently a textile-based DSSC with ∼3.86% PCE has been
reported, utilizing carbon fabric/polypyrene as the reference
electrode.220

Despite the considerable time that has passed since the
development of single-junction SCs, the practical PCE of SCs
remains around 27%.221 To achieve higher efficiencies, stacks
of two or more absorber layers (multijunction cells) can be
employed, enabling PCEs of more than 30%.222,223 Tandem
SCs, which consist of two different types of SCs, are a rapidly

advancing area of research. Tandem SCs have the potential to
increase the PCE of SCs to more than 45%.224 In addition, the
search for efficient materials and composites with tuned
bandgaps (e.g., quantum dots) is an intensive area of
exploration, which could lead to the utilization of the entire
solar spectrum and further improve the PCE of SCs.

Fill Factor. The fill factor (FF) is another essential
performance metric that indicates how close a SC to an ideal
device. It is a critical parameter influencing the PCE of SCs.
The FF is the ratio of maximum power from the device (Pmax)
to the ideal power (Pideal) and can be calculated either as,

= P PFF /max ideal (3)

or

= × ×J V J VFF ( )/( )max max sc oc (4)

The maximum FF reported for silicon-based SC is about
80%.225 Recently, 1 cm2 PSCs have been reported attaining a
FF up to 85.3%.226 In the developed PSC device, a nitrogen-
doped titanium oxide (TiOxNy) electron transport layer was
used to construct the apparatus to facilitate the charge
movement between the perovskite absorber and the electrodes.
The fill factor can be improved by selecting materials with a
lower resistance, as a higher resistance leads to an increased
voltage drop. Additionally, having an optimum band gap and
high absorption coefficient are other factors that contribute to
improving the FF.

Power Maximum and Power Ideal. The power of a
device is a primary concern for consumers and is typically
specified in the datasheet of the electrical devices. The
maximum output power (Pmax) is an important parameter
that helps determine the quality of a SC. In Figure 7b, the
yellow region represents Pmax which is the product of Jmax and
Vmax under standardized sunlight energy conditions (AM 1.5
G) and is measured in mW/cm2 units:

= ×P J Vmax max max (5)

For every device, ideal outcomes are anticipated but they are
often impractical to achieve. These ideal outcomes serve as
benchmarks to assess how close the actual results are and help
to evaluate other metrics. In the case of SCs, there is a metric
called the ideal power (Pideal), which is determined under ideal
conditions. Under these conditions, the output current is
considered maximum while the voltage drop is assumed to be
zero (short circuit), and vice versa for measuring the output
voltage (open circuit). In simple words, Pideal is the product of
Jsc and Voc, which will be discussed in the following section.
Mathematically, Pideal can be represented as

= ×P J Videal sc oc (6)

Current Density. Current measurement is a crucial output
in any energy-generating device, as it helps describe other
parameters such as power. In general, current refers to the flow
of charged particles, such as electrons or ions, and its SI unit is
the ampere (A). In a SC the amount of current generated
depends on the amount of active area exposed to solar energy.
Therefore, current is typically measured per unit area and is
referred to as the current density (J). One commonly used
term in creating the IV curve is the short circuit current
density, denoted as Jsc. It represents the maximum current
when there is no voltage applied, as shown in Figure 7b and c.
Jsc is measured by short-circuiting the electrodes of the SCs
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using a digital multimeter. Another important metric
associated with current measurement is the maximum current
density (Jmax). Jmax represents the maximum output current that
a SC can generate under specific load conditions. For silicon-
based SCs under AM 1.5, the theoretical maximum current
density can reach 46 mA cm−2.227 Lab-based devices have
recorded short-circuit currents over 42 mA cm−2, while
commercial SCs typically range between 28 and 35 mA
cm−2.228,229

Voltages. Output voltage is another important metric in
the characterization of SCs. Voltages are measured under two
conditions: with no load and under load. The Voc represents
the maximal voltage that a SC device can produce when no
current is flowing to an external load or circuit (under no load
condition), as shown in Figure 7b and c. In the no-load
condition, the wires of the digital multimeter are directly
connected to the anode and cathode of the SC devices,
creating an open circuit system for measurement. Voc

corresponds to the forward bias voltage at which the dark
current density compensates for the photocurrent density.
Output voltage can also be measured under a specific load
condition, and the highest value obtained is referred as Vmax.
This measurement helps in calculating the maximum power
Pmax of the SC. Recently, a wide bandgap OSC with a Voc of 1.4
V was reported, which represents the highest voltage reported
for OSCs to date.230

LAYERS AND MATERIALS FOR SCS
Electrodes. Electrodes play a fundamental role in electronic

devices as they are responsible for supplying or drawing electric
charges to or from the device. In the case of SCs, the choice of
electrodes directly impacts the efficiency and other performance
metrics. Therefore, selecting suitable electrodes is crucial for
optimizing the performance of an electronic device. In general, SCs
consist of two electrodes: the bottom electrode and the top electrode.
These electrodes can be made of various conductive materials,
including metals, carbon-based components, conductive oxides, or
conductive polymers. Table 1 summarizes commonly used electrodes
for SC applications highlighting their advantages and limitations.

Metal-Based Electrodes. Metals have been widely utilized as
electrodes and conductive materials for many centuries. In the context
of SCs metal electrodes are commonly employed for both the bottom
and top layers. Some frequently used metal electrodes include
platinum (Pt), aluminium (Al), gold (Au), and silver (Ag).231 The
selection of a specific metal is typically based on factors such as its
work function, resistance, and compatibility with other layers in the
SC, such as the hole transport layer. The resistance, also known as
contact resistance, between the transport layer and the electrode is
crucial in determining the efficiency of a SC. Additionally, the
transparency of the top electrode plays a significant role in reducing
reflection.232 Therefore, thin metal-based layers, patterns or nano-
wires are being utilized as top electrodes.233−235 The crystal/chemical
structure of commonly used metal-based electrodes is illustrated in
Figure 8a.

Silver. Silver (Ag) is a highly conductive metal with a work
function of 4.3 eV. The work function refers to the minimum energy
required for an electron to escape from the surface of a material. Ag
has been commonly used as an electrode in various electronic devices.
Due to its compatibility with different functional materials, it has been

Table 1. Performance and Stability of Some Common Electrodes in SCs

Electrode
Material Configuration Efficiency Stability/Remarks Ref

Ag Ag/MoO3/PM6:Y6/ZnO/PH1000/Ag-
Grid

10.87% The photolithographic based Ag grid demonstrated high
efficiency at 400 μm thickness (up to 97.6%)

375

Ag FTO/Cu:NiOx/MAPbI3/PCBM/Ag 15.87% Corrosive behavior of Ag electrode causes instability in PSCs 376
Ag thin film TeO2/Ag/BCP/PCBM/Pervoskite/NiOx/

ITO/Glass
17.36% TeO2 with Ag is a good choice for developing bifacial SCs 377

AgNWs Glass/FTO/bl-TiO2/MAPbI3/spiro-OMe-
TAD/AgNWs

10.64% AgNWs are found to be more stable in comparison to other
metallic films

239

Au DSSC 2.3% Gold leaf based counter electrodes were found to be excellent for
DSSC due to their porous surface

378

Au Glass/FTO/SnO2/TiO2/Pervoskite/Spiro-
OMe-TAD/Au

25.8% In metal based electrodes Au is found to be the most stable 176

Au thin film MoO3/Au/MoO3/PTB7:PC71BM/Al 6% 50% increase in PCE occurred in comparison to referenced device 379
Ni Glass/FTO/TiO2/Al2O3/HP/piro-OMe-

TAD/PEDOT:PSS/TCA/PET/Ni/PET
15.5% PCE drops with the illumination of Ni (bottom electrode) 279

Cu ITO/PTAA/MAPbI3/Cu 20.7% Stays stable while maintaining 98% of original PCE after keeping
for 816 h in ambient conditions

274

Al ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al 4.6% The stability was improved with the insertion of an LiF layer in
between the Al and active layer

380

Al Glass/ITO/PEDOT:PSS/MAPbI3/
PCBM/Al

16.1% Due to oxidation the stability of Al is considerably low 272

CNTs SWCNTs-Glass/FTO/C-TiO2/
TiO2:Al2O3/MAPbI3/SWCNT-C

14.7% Found to be more stable than metallic based electrodes 381

GR PEN/GR/MoO3/PEDOT:PSS/MAPbI3/
C60/BCP/LiF/Al

16.8% Found to be comparatively more stable 382

GR GR/PCBM:GQDs/MAPbI3/PTAA/Au 16.4% Highly stable 382
GR with
AgNWs

Gr:AgNWs/PH1000/PEDOT:PSS/Active
layer/PDINO/Al

13.4% Retained 84.6% PCE after being bent 1000 times. 383

PANI+Au 6.71% PCE of the DSSCs with PANI/Au composite electrode was found
to be more efficient compared to Pt based DSSC (PCE 6.18%)

384

ITO Glass/ITO/PEDOT:PSS/Perovskite/
PCBM/Ag

15.6% ITO is a considerably stable transparent conductive oxide 385

polypyrrole
(PPy),
PEDOT

PEDOT (1.35%), PPy
(0.41%), PT
(0.09%)

PEDOT PCE was found to be comparable to that of a sputtered
Au based reference device.

386
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extensively used as an electrode in SCs for a long time. Ag exhibits
good compatibility with the ETL layers in SCs, as well as being
opaque in nature. It is often utilized as the bottom electrode.
However, a thin layer of Ag and as well as silver nanowires (AgNWs)
has been investigated as a top electrode material. Furthermore, Ag
offers advantages such as its availability in various forms, including
dispersions, pastes, and inks, which facilitate the deposition of Ag-
based conductive layers for diverse applications, particularly in
wearable and e-textile-based devices. While it has a suitable work
function for some ETLs, such as zinc oxide (ZnO),236 it may degrade
when used with certain other materials. For example, the interaction
between Ag contacts and lead perovskite materials was investigated by
depositing Ag directly onto the perovskite surface using thermal
evaporation techniques. Instead of forming a uniform Ag layer, the
deposited Ag formed particles on the perovskite layer, leading to the
degradation of both the silver electrode layer and the perovskite
layer.237 This highlights the challenges associated with using Ag in
certain configurations. Additionally, AgNW electrodes are getting
considerable interest due to their tunable optoelectronic and
mechanical properties. However, the junction sites of AgNW
electrodes often exhibit poor contact, resulting in increased sheet
resistance and reduced mechanical properties.238,239 In 2012, Ag was
employed in PSCs, while achieving a PCE of 10.9%.240 Ag has been
employed in various generations of SCs, including first-generation
silicon-based SCs,241,242 second-generation SCs,243,244 and third-
generation SCs.245−247 In a recent study,239 silver ink has been spin-
coated on a flexible PET substrate to fabricate PSCs with a PCE of
10.3%. Researchers have recently synthesized Ag nanowires and
utilized them as top electrodes in different types of SCs.248,249 AgNWs
have also been inkjet-printed as the top electrode of a SC,
demonstrating a PCE of 2.7%.250 Additionally, the use of a Ag
nanoparticle ink as the top electrode in a PSC, fabricated through spin
coating techniques, resulted in a PCE of 10.3%.251 The literature on
Ag as part of SCs indicates that Ag is one of the most common
elements used in these devices,237,252−254 but it is important to

address and enhance mechanical properties to maximize flexibility
when considering wearable textile-based electronics.

Gold. Gold (Au), a precious metal, has long been a commonly
used and highly efficient electrode material in high-end devices due to
its excellent conductivity.255 Au is predominantly utilized as a back
electrode in SCs, but thin layers of Au have been investigated as a top
electrode.256−259 In addition to its functionality as an electrode, Au
has also been utilized as a buffer layer with other conductive materials
to enhance the transmittance of the top electrode. For instance, the
intercalation of ultrathin Au seed into V2O5/Au/Ag/V2O5 (VAuAgV)
multilayers improves the optical and electrical characteristics of such
structures. By reducing the thickness of the intermediate metallic
layer, the optical transmittance can be increased by more than
15%.260,261 A recent study explored the use of an Au film between the
emitter and base of a structure made of Si semiconductor diode
structure to enhance the efficiency of SCs. The results showed that
the voltage and current in the device incorporating the Au film were
up to 10 times higher than in the reference device.262 In a
comparative study of metal electrodes used in PSCs, it was reported
that an Au electrode is the optimized choice for improving the
efficiency and stability of the PSC’s.263 Recently, a 100 nm thick Au
electrode was coated onto a glass substrate using thermal evaporation,
resulting in a high efficiency of 25.2%.263,264 Additionally, Au has been
utilized as the back/bottom electrode in PSCs. In a recent
development, nanoporous gold back electrodes were formed using
spin coating, leading to a PSC device with an efficiency of 7.99%.265

Furthermore, Au was employed as the top electrode in a tandem SC
stacked on top of a Si-heterojunction device, achieving a high PCE of
28.3%.258

Au has also been employed in various e-textile and wearable
applications. Recently, an Au textile-based electrode was utilized as
the top electrode in an OSC using a physical lamination approach,
resulting a PCE of 2.91%.266 Additionally, in another study, a yarn-
based OSC with stainless steel wire as the primary electrode and Au as
the secondary electrode achieved a PCE of 4.6%.267 While Au

Figure 8. Chemical structures of common electrode materials employed in photovoltaic systems. (a) Metals, (b) transparent conductive
oxides (TCOs), (c) carbon-based, and (d) conductive polymers.
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electrodes exhibit behavior similar to platinum, their use in the
positive potential range is limited due to surface oxidation. It is
evident that Au is a good conductor compared to other conductive
materials; however, its high cost makes it commercially unfeasible for
energy-harvesting devices, especially in textile and wearable
electronics where cost efficiency is a key consideration.268

Aluminum. Aluminum (Al) is considered one of the most suitable
and cost-effective electrode materials used in SCs to date. Its work
function is compatible with SCs and it has been utilized as an
electrode in various types of SCs, including Si-based SCs,269 OSCs270

and PSCs.271 Recently, solution-processed PSCs with an Al electrode
demonstrated a PCE of 16.1%, showing improved stability and
reduced susceptibility to degradation compared to traditional
PSCs.272 In recent research, the use of Al foil as a bottom electrode
resulted in a PCE of up to 7.09%.273 Despite being less expensive and
having an excellent work function, Al is prone to degradation in open
air and water. It can oxidize and diffuse into the transport layers,
altering their fundamental characteristics and potentially leading to
issues such as short circuits and increased internal resistance.231,274

Nickel. Nickel (Ni) is an abundant metal known for its low cost
and high conductivity (14.3 MS/m2), which makes it the preferred
material for electrodes and has been used since the early stages of SCs
technology.275,276 Recently, a 1 μm thick electroplated Ni film was
employed in a Si SC to enhance the Ohmic contact, resulting in a
significant decrease in sheet resistance and higher FF of 81.2%.277 Ni
electrode-based PSCs were investigated and compared to reference
Au-based PSC devices, achieving a comparable PCE of 10.4%
compared to 11.6% for the Au-based device.278 Furthermore, a Ni
grid was evaluated as a semitransparent electrode with transparent
adhesive materials for fabricating PSC devices, achieving a POCE of
up to 15.5%, which is comparable to devices based on noble metal
electrodes such as Au, and Ag.279 Ni has also been utilized in SCs as a
composite material, such as nickel oxide (NiO) and nickel sulfide
(NiS).280,281 A Ni acetylacetonate (Ni(acac)) precursor was used to
fabricate NiO thin films in OSC device fabrication, resulting in a PCE
of up to be 5.2% after heating the NiO layer to 400 °C and treating
with oxygen plasma.282 Furthermore, Ni has been employed in textile-
based SCs. For example, such as coating it as a counter electrode over
cotton fabric in a textile-based DSSC resulting in a PCE of up to
3.83%.283 While Ni can serve as an alternative material to expensive
metals at a significantly lower cost for SC fabrication,276 it does come
with certain risks. Ni can cause allergies, heart and kidney diseases,
lung damage, and nasal cancer, when in contact with the human
body.284 These potential health risks may limit its applications in
textile-based wearable energy harvesting.

Platinum. Platinum (Pt) is known of being one of the most
expensive and rare conductive materials, characterized by its high
work function of ∼5.65.285 Pt is also biocompatible, making it an
excellent choice for implantable biomedical devices.286 The use of Pt
in SCs can be traced back to 1877, when it was employed as
connections at the ends of a small cylinder of glassy selenium, marking
the initial documentation of photoconductivity in selenium.287 Pt has
been utilized in various types of SCs, including Si-based SCs,288,289

and DSSCs.290 In the development of photoelectrochemical SC,
platinum islands ranging in size from 5 to 50 nm were deposited on n-
type (n-Si) wafers. This configuration resulted in a maximum
generated Voc of 0.63 V, which is 8% higher than the Voc produced
by conventional p−n junction SCs.291 Pt has been recently utilized in
a flexible DSSC, where the Pt electrode was printed on ITO-PEN
through screen printing, resulting in a maximum PCE of 5.41%.292 In
another application, a Pt/Ti bilayer was deposited using vacuum
sputtering on ITO-PEN substrates to create a completely polymer-
based DSSC, which demonstrated a PCE of 4.31%.293 Furthermore,
Pt has been employed as a counter electrode in textile-based SC.294

While Pt is a favorable choice for electrodes due to its properties, it is
important to note that Pt reserves are being depleted leading to an
increase in device manufacturing costs. Consequently, Pt is not an
optimal choice for applications where cost efficiency is a major
concern such as SCs energy generation.

Alloys. Alloys consist of two or more materials, including at least
one metal, combined to enhance mechanical, electrical, and optical
properties. In recent developments, an Ag−Al alloy was utilized as a
cathode in PSC fabrication, resulting in a PCE of 11.76% and a higher
Voc compared to the standard device with ITO/PEDOT: PSS/
CH3NH3PbI3/PCBM/Ag, as well as Al alone as a cathode.295

Furthermore, DSSC devices with alloyed (Ni−Pt) electrodes have
been reported, achieving a PCE of 8.29% and 7.41% for DSSCs with
Ni−Pt nanowire and nanosheet alloy electrodes, respectively.296

Alloys, with their ability to offer a wide range of mechanical and
electrical properties, hold tremendous potential for the future of
wearable applications.

Transparent Conductive Oxides. Transparent conductive
oxides (TCOs) are semiconductive materials with high energy
bandgaps, offering excellent electrical properties and a high trans-
mission capacity in the visible and near-infrared ranges. They have
recently, garnered significant attention as crucial components in large-
area electronics, including organic light-emitting diodes (OLEDs),297

liquid crystal displays (LCD),298 SCs,299 and as anti-reflective
coatings.300 In the context of SCs, TCOs are employed as transparent
electrodes to allow sunlight penetration along with charge flow but
have the potential for counter electrodes as well.301,302 Additionally,
TCOs are employed as buffer layers in SCs.303 They serve as
alternatives to CdS in thin-film SCs like CuInS2, enabling the
production of Cd-free SCs.304 Common TCOs include indium tin
oxide (ITO),272,305 fluorine-doped tin oxide (FTO),306 and
aluminium-doped zinc oxide (AZO),299 as shown in Figure 8b.
Recently, various TCOs, including ITO, AZO, and FTO, with
thicknesses ranging from 10 to 200 nm, have been investigated.
Among them, ITO-based perovskite SCs achieved a maximum PCE of
10.06%, with Voc = 0.84 V, Jsc = 18.92 mA/cm2, and FF = 60%. The
performance of the other two TCO-based devices (AZO and FTO)
was quite similar, with PCEs of 10.21% and 10.0%, respectively.307

Indium tin oxide (ITO) is widely used in SCs due to its high
conductivity (>103 S/cm) and excellent transparency (>90%) in the
visible range. It also has a higher work function compared to other
TCOs.308 A PSC device with the configuration of ITO/Perovskite/
Spiro-OMeTAD/Au attained a PCE of 13.5%.309 In another research
work FTO was employed and an ETL-free PSC with the architecture
FTO/Perovskite/Spiro-OMeTAD/Au was developed, reaching a
PCE of up to 16.1%, which is comparable to that of a PSC device
with a ZnO based ETL.310

Although TCOs, such as ITO, offer excellent performance
potential, they are the most expensive part of SCs.311 For example,
the cost of a TCO is approximately ten times higher than that of the
perovskite layer. Additionally, TCOs, like FTO, are fragile and can
cause degradation in PSCs when subjected to bending.312

Furthermore, their resistance increases with temperature, limiting
the usability of SCs in high-temperature environments. It is important
to explore alternative materials for transparent electrodes that can
optimize both the mechanical and electrical characteristics. For
example, research is being conducted on metal nanowires (NWs)
such as Au and Ag NWs, as well as other conductive materials like
PEDOT: PSS.312,313 These alternatives aim to address the limitations
of TCOs and enhance the overall performance and durability of SCs.

Carbon-Based Materials. Carbon-based materials are highly
promising as electrode materials in SCs due to their excellent
electrical conductivity, mechanical and electrical stability, and large
surface area.314−316 These materials have been extensively studied in
SCs research over the last two decades, particularly in Si-based SCs,
where carbon nanotubes (CNTs) have been investigated as a means
to reduce manufacturing costs.317,318 Furthermore, carbon-based
materials have generated significant research interest for their
application in emerging third-generation SCs technologies such as
DSSCs and PSCs.319−321 Figure 8c illustrates the crystal structures of
some common carbon-based materials.

Graphene. Graphene, a carbon allotrope consisting of a single
layer of atoms arranged in a 2D honeycomb lattice nanostructure, has
attracted significant interest since its demonstration in 2004 for
various applications.322−326 Due to its excellent electrical conductivity,
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mechanical stability, and transparency graphene is well suited for use
in heterojunction SCs.327−330 Its versatility allows for device
applications, including as anodes, cathodes, and donor/acceptor
layers.331−334 In recent research, an OSC device was developed using
a solution processing method, where a single layer of graphene on a
quartz substrate was employed as a transparent electrode. The device,
with graphene as the transparent electrode, achieved a PCE of 0.4%,
which is half the value attained by the ITO-based referenced OSC
device.335 Another study found that applying a thin molybdenum
oxide (MoO3) film to the surface of a 4-layer graphene stack achieved
a PCE of 2.5%, which is comparable to the 3% achieved with the more
expensive ITO layer.336 Recently, a semitransparent flexible OSC that
acquired a PCE of 3% was investigated. Where the top electrode was
formed by chemical vapor deposition (CVD) using graphene.337

Similarly a recent report highlighted the use of graphene as the top
electrode in a PSC device, achieving an impressive PCE of up to
11.5% and demonstrating excellent flexibility.338 Graphene has also
found applications in textile-based SCs. A metal-free DSSC utilizing
carbon fabric coated with reduced graphene oxide (rGO) as the
counter electrode has been developed, showcasing a noteworthy PCE
of 2.52%.339 Furthermore, in another study, a highly conductive
graphene-coated fabric was employed as a counter electrode in textile-
based DSSCs, achieving a PCE of 6.93%.340 These graphene-based
electrodes not only provide a cost-effective alternative but also
contribute to reducing the manufacturing costs associated with the
deposition of metal electrodes.341

Carbon Nanotube. Carbon nanotubes (CNTs) are nanoscale
hollow cylinders consisting of graphitic carbon atoms with a diameter
much thinner (∼1 nm) than a human hair (10s of μm).342 Since their
discovery in 1991, CNTs have captured worldwide interest for a
variety of applications.343 Due to their unique photoelectric
properties, CNTs have been extensively researched for their potential
application in light-harvesting devices.344 CNTs have been employed
in various types of SCs, including a Si-based SCs,345 OSCs,346,347

DSSCs,348 copper indium gallium diselenide (CIGS) thin film SC,345

and more. Recently, a PSC device with the configuration TiO2/
perovskite/CuSCN/CNTs has achieved an impressive PCE of
17.58%. The developed PSC device has demonstrated an enhanced
charge collection at the CuSCN/CNT layer contact.349 CNTs in
combination with other conductive materials have demonstrated
higher efficiency compared to those using metallic electrodes.321 For
instance, a planar PSC with the device structure TiO2/MAPbI3/
CNTs and copper(II) phthalocyanine (CuPc) as a carbon electrode
modifier achieved a PCE of up to 18.8%, which was 30% higher than
devices with a simple carbon electrode.350 Recently, a flexible OSC
device with multilayer electrodes composed of CNTs and AgNWs
reported a PCE of 2.21%.351 To maximize the efficiency of reflected

light, a bifacial carbon-based PSCs (C-PSCs) with transparent CNT
layers in the back electrode has been investigated achieving a PEC of
up to 21.4% under natural sunlight conditions (20% of AM 1.5 G
radiation) and 34.1% in artificial sun simulators (100% of AM 1.5 G
irradiance). Along with that in a four-terminal (4-T) tandem
configuration, where the bifacial device served as the top cell,
combined with a CIGS bottom cell, a very high PCE of 27.1% was
achieved.352 CNTs are gaining popularity in wearable and textile
textile-based SCs as well due to their flexible nature. For example,
yarn-based CdSe SCs directly utilize CNT yarns as the counter
electrode and achieved a PCE of 2.9%.353 Additionally, CNT fibers
have been utilized in the development of fiber DSSCs, resulted in a
PCE of 2.94%.354

Carbon Black. Carbon black (CB) is a term used to describe black
materials produced through the partial combustion or carbonization
of organic materials such as natural gas, oil, wood, and vegetables.355

CB materials are gaining popularity in SCs due to their affordability
and ability to be deposited through solution processing. In Pt-free
DSSCs, CB has been utilized as a catalyst for the reduction of
triiodide on FTO glass substrates acting as counter electrodes,
resulting in a PCE of 9.1% under light intensity (AM 1.5 G).356 In a
research study, it was observed that the catalytic activity of CB
increases as the particle size decreases. In this study CB particle sizes
from 90 to 20 nm were employed as a counter electrode in DSSCs,
with a particle size of 20 nm, resulted in a high PCE of 7.2%.357 In
2013, CB was investigated as a counter electrode in a PSC and a PCE
of 6.6% was obtained.358 Low-temperature cured carbon electrodes
were developed as substitutes for noble metals in HTL-free PSCs,
attaining a PCE of 8.31%. This was further improved to 9% compared
to the referenced device by utilizing a doctor-blading technique.359

Another approach involved the incorporation of a conductive silicone
rubber layer loaded with carbon black and graphite on a viscose
woven fabric to serve as a counter electrode with an intrinsic catalyst
for textile-based DSSCs.360

Conductive Polymer. Conductive polymers (CPs) are organic
materials that possess metal-like properties, including electrical,
optical, and magnetic capabilities, while also exhibiting fundamental
polymer-like features such as being lightweight and possessing high
stiffnesss and strength.361 Due to their cost effectiveness, low density,
stretchability, and flexibility, conducting polymers have gained
preference over other electrode materials.362−364 Researchers have
extensively investigated the unique and interesting characteristics of
CPs for the compatibility with various functional materials, develop-
ment of smart sensors and systems, Organic LEDs, SCs, and a broad
range of other electronic devices.365,366 Over the past three decades,
several types of air-stable conducting polymers have been developed,
with polyaniline (PANI), polypyrrole (PPy), and poly(3,4-ethylene-

Figure 9. Chemical and crystal structures of commonly employed absorbing/active materials. (a) First-generation, (b) second-generation,
and (c) third-generation SCs.

ACS Nano www.acsnano.org Review

https://doi.org/10.1021/acsnano.3c10033
ACS Nano 2024, 18, 3871−3915

3884

https://pubs.acs.org/doi/10.1021/acsnano.3c10033?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c10033?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c10033?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c10033?fig=fig9&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c10033?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


dioxythiophene) (PEDOT) being the most commonly used
CPs.367,368 The crystal structures of some common CPs are shown
in Figure 8d.

A recent study investigated the use of PEDOT as a counter
electrode with varying thicknesses. The researchers discovered that
DSSC devices with a thin PEDOT layer (33 nm) achieved a PCE of
up to 10.39%.369 PPy has been employed as a counter electrode in
DSSCs demonstrating a PCE up to 5.75%.370 PPy has also been
utilized as a dopant material to enhance conductivity. For instance,
PPy nanoparticles were recently used as a dopant for PEDOT: PSS,
resulting in a high PCE of 9.48%, which was 20% higher than that of a
pure PEDOT: SS-based OSC device.371 CP based materials are also
finding applications in textile-based SCs. A recent development
involved the use of PPy coated carbon fabric as a counter electrode in
a textile-based DSSC, achieving a PCE of 3.86%.372 CP-based PPy has
been employed as a catalytic layer on Ni-coated fabric to develop
fabric-based DSSCs, resulting in a PCE of 3.30%.373 PPy-coated
PANI has recently been employed as a counter electrode in a textile-
based DSSC, yielding a PCE of 3.8%.374 These findings highlight the
potential of CPs in textile-based SCs.

Active/Absorbing Layer. Active layers, also known as absorbing
layers, consist of photoactive materials and play a crucial role in the
photovoltaic process. This layer is where the photons from the sun
energize the electrons, creating electron−hole pairs. The generated
charge carriers are then separated by an electric field established in the
depletion layer. After passing through a load, these charges can
recombine through electrodes.138,387 Figure 9a illustrates the general
chemical structure of first-generation SC absorbing/active materials.
Silicon has been a game-changer in the field of solar energy harvesting
and has played a pivotal role in the development of SCs
technology.388,389 The journey of silicon SCs has seen steady progress
starting with the initial achievement of 1% PCE and currently
commanding a 95% market share.390,391 Figure 9b showcases the
chemical structures of the most prevalent photoactive materials used
in second-generation SCs, including cadmium telluride (CdTe),
copper zinc tin sulfide (CZTS), and amorphous silicon (a-Si).392−394

Active materials in third-generation SCs encompass various types
of materials, including perovskites (organic/inorganic), dyes,
quantum dots and organic polymers, among others. Figure 9c
illustrates the chemical/crystal structures of some common third-
generation active materials. In OSCs, the active layers were initially
formed of a single-component organic semiconductor layer, resulting
in low performance due to the limited excitons dissociation and
charge transfer in such materials.395 However, in recent decades,
several electron donor materials, particularly polymers and small
compounds, have been synthesized. Poly(3-hexylthiophene) P3HT is
one of the oldest and most common polymer materials employed in
OSCs, showing excellent photovoltaic capabilities. Its absorption
spectrum (500 to 650 nm) is however still relatively narrow for
achieving a high PCE. Different composites of P3HT with other

materials such as ([6,6]-phenyl-C61-butyric acid methyl ester) PCBM
with P3HT,396 etc., are being studied to broaden the absorption
range. PCBM, one of the most effective fullerene derivatives, has also
been studied as an electron-accepting material due to its favorable
photovoltaic capabilities.397

Charge Transport Layer. The charge transport layers are situated
between the electrode and the active layers in thin-film SCs. These
layers play a crucial role in facilitating charge carrier extraction and
recombination processes, thereby enhancing the electrical perform-
ance of thin-film SCs.398−400 The choice of materials for the transport
layer has a significant impact on the efficiency of the SC. As there are
two types of charge careers, negative (also known as an electron) and
positive (also known as a hole); two types of charge transport layers
are primarily used: the (i) electron transport layer and the (ii) hole
Transport layer.

Electron Transport Layer. The electron transport layer (ETL)
plays several crucial roles in thin-film SCs. Its main functions include
collecting and transporting the photoelectron carriers, as well as
functioning as a blocking layer to prevent the hole recombination at
the early stage of generation and enhancing the efficiency of
SCs.401,402 Titanium Oxide (TiO2) is a widely used material for the
ETL due to its wide band energy range, with a conduction band
maximum (CBM) of 4.4 eV and the valence band maximum (VBM)
of 7.63 eV. This allows for efficient electron transfer from the
perovskite layer and effective hole blocking at the interface with the
active layer.403,404 Other commonly used ETL materials include Tin
Oxide (SnO2), PCBM and Zinc Oxide (ZnO2).

405,406 While
traditional fabrication techniques for TiO2-based ETL require high
temperatures, recent reports have demonstrated it occurring at around
100 °C.407 Optimizing the thickness of the ETL layer is critical to
boosting SC performance.408 Different processes such as chemical
bath coating,409 spin coating,410 spray pyrolysis, sol−gel411,412 and
atomic layer deposition (ALD)413 are employed to develop ETL
layers in solution process-based SCs.

In addition to TiO2, other transparent metal oxides, namely zinc
oxide (ZnO), indium oxide (In2O3), and tin oxide (SnO2), exhibit
excellent optical and electrical properties, as well as significantly
higher electron mobility. These alternative metal oxides have been
extensively studied in the context of SCs, including PSCs, DSSCs,
OSCs.414,415 In a recent study, a planar PSC was developed by low-
temperature solution-processing, where ZnO nanoparticles were
employed as an ETL achieving a PCE of 15.7%.416 SnO2 has recently
been found to have considerably larger bandgap energy and
substantially better electron mobility than TiO2.

417 SnO2 has been
employed as an ETL layer in PSCs and has demonstrated improved
efficiency in terms of electron extraction, stability and PCE.418 The
chemical/crystal structures of some common ETLs are illustrated in
Figure 10a.

Hole Transport Layer. Hole transport layer (HTL) materials play
a crucial role in SCs, particularly in organic OSCs significantly

Figure 10. Chemical and crystal structures of commonly used (a) electron transport materials and (b) hole transport materials.
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impacting device stability and PCE.419 The main function of HTL is
to collect and transport the generated holes toward an external
electrode and facilitate their recombination after passing through load
on return.420,421 Additionally, HTL also serves as a moisture barrier in
SCs.422 Figure 10b depicts the crystal structures of some common
HTL materials. A recent study investigated the impact of the HTL
layer in SCs by fabricating PSCs with and without the HTL layers. It
was observed that the device without the HTL exhibited a lower
generated Voc, indicating higher recombination losses at the
electrode.421 While both organic and inorganic HTL materials are
used in SCs, inorganic materials are not preferred for PSCs and OSCs
due to their high-temperature requirements and costly deposition
processes, despite their potential for achieving a high PCE.423

Materials such as CuSCNCuI, and NiOx are examples of inorganic
HTLs. On the other hand, organic HTLs are gaining popularity,
particularly in OSCs, due to their lower cost and ease of roll-to-roll
manufacturing.424 Organic HTL materials commonly used in OSCs
include PTTA, P3HT PEDOT: PSS, spiro-OMeTAD, among others.
Recently two-dimensional materials such as MoS2 and, WS2, have also
been utilized in OSCs.420 HTLs were implemented in PSCs in 2012,
with the organic spiro-OMeTAD material being used. Since then,
spiro-OMeTAD has remained a popular choice for HTLs, and its
performance has been improved when combined with additives like 4-
tert-butylpyridine (tBP).425 Dopant-free HTLs using alternative
organic materials, such as PEDOT: PSS, are also being explored for
PSCs and OSCs.426,427 Another widely used organic material is
poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTTA) as a hole
transport materials (HTM) in PSCs. Like spiro-OMeTAD, PTTA has
stability issues and requires specific additives for optimal performance.
Recently, mesoporous PSCs with a defect-engineered thin perovskite
layer were fabricated using lithium bis(trifluoromethanesulfonyl)-
imide (tBp-LiTFSI) doped poly(triarylamine) (PTAA) as the HTMs,
achieving a PCE of 22.1% for a 1 cm2 SC.428 However, one major
drawback of organic HTLs is their stability. In addition to organic
materials, there are also inorganic HTL materials available. Examples
of inorganic HTMs include Cu2O, CuO, CuI, CuSCN, NiOx, and
MoS2. Other materials like CuS, CuCrO2, MoOx, and WOx have also
been investigated for HTL applications.429 According to recently
reported articles, inorganic HTMs exhibit higher hole mobility,
excellent stability, and lower cost compared to organic
HTLs420,430−433 These advantages have led to an increased research
interest in inorganic HTMs.

Other Materials for Miscellaneous Purposes in SCs. Other
materials, such as transition metal dichalcogenides (TMDs), black
phosphorus (BP), phosphorene, hexagonal boron nitride (h-BN), and
MXene, have been employed in various functions within SCs due to
their functionalization and bandgap re-engineering capabilities.50

These materials have been utilized as absorber layers, charge transport
layers, blocking layers, surface passivators, heterojunction compo-
nents, catalysts, and as electrodes. Among these materials MXene

have been extensively employed for a wide range of applications,
including energy harvesting, energy storage, photonics, advanced
sensors, and healthcare devices; a general crystal structure is shown in
Figure 10b.434−437 Because of its promising electrical conductivity,
transparency, flexible work function, and robust mechanical character-
istics, MXene has gained popularity in the field of SCs since it was
reported in 2018.438 MXenes exhibit semiconductor-like character-
istics with a direct bandgap at the monolayer level, making them
suitable to be used as an active material in flexible SCs.439,440

Numerous investigations have examined the adaptability of MXene in
SC technology, wherein it functions as a transparent electrode, a
counter electrode, as an ETL and HTL.441−443 These diverse uses
highlight how these materials may be used in a variety of SC
technologies for a range of applications.

FABRICATION TECHNIQUES FOR TEXTILE-BASED SCS
SCs are composed of multiple layers, requiring several distinct
manufacturing steps. It is important to note that the assembly
of textile-based SCs differs from that of rigid surface SCs, even
though the deposition or fabrication process for different
layers, such as coating and printing processes, are the same.
This section mainly focuses on solution processes and
techniques employed in thin-film SC technologies.

Materials Preparation and Fabrication. One of the
most critical aspects of fabricating any electronic device is the
preparation of materials suitable for the fabrication process.
However, certain materials, such as active/absorbing materials,
ETL and HTL, are not always single substances but rather
combinations of two or more materials that need to be
synthesized into a composite solution. Each material requires
distinct chemical and physical procedures for preparation, such
as high temperature or an oxygen-free atmosphere, among
others.444−447 Furthermore, material preparation in accordance
with the manufacturing procedure is an important factor to
consider. Because of the varied viscosity and surface tension
requirements, the procedure for producing screen printable ink
differs from that of spray coating. To achieve maximum
performance and compatibility with the selected process, each
manufacturing method demands certain changes in material
preparation. After preparing and obtaining the materials, the
next step involves the fabrication and deposition of those
materials. The next section will discuss the various fabrication
processes, along with their benefits and drawbacks, in terms of
textile-based SCs.

Spinning. Conductivity is a fundamental characteristic that
must be achieved in the development of e-textiles. There are

Figure 11. Spinning techniques for photovoltaic textile fabrication: (a) melt spinning, (b) electrospinning, and (c) wet spinning.
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several known methods used to achieve electrical conductivity
or other functionalities on a textile substrate. Spinning is one
useful process that is gaining popularity because of its ability to
maintain the original form and breathability of the final fabric.
In the spinning process, liquid polymeric filaments are
extruded and continuously drawn while being solidified to
create a continuous synthetic fiber.448 There are three main
categories of spinning techniques: wet spinning, melt spinning,
and dry spinning,449 as shown in Figure 11.
Figure 11a illustrates the melt spinning process, where

polymeric pellets or microbeads are introduced into a chamber
and melted. The liquid is then filtered and pumped through a
nozzle to cool and solidify it. Fibers are formed from a melted
and cooled polymer. If conductive fibers are desired, materials
such as graphene and others are added to the polymeric
materials during the processing.450,451 Melt spinning is limited
to polymers that are thermally stable well above their melting
points, and the hardening of fiber occurs during the drawing
process as they are cooled below their glass transition
temperature. Electrospinning and wet spinning are common
solvent-based spinning processes, as shown in Figure 11b and

c, respectively. In these processes, the fiber is extruded into a
nonsolvent medium. The solvent-based methods are preferred
to produce conductive wires due to their low processing
temperature. The wet spinning method is effective for
producing fibers with various cross-sectional diameters.452−454

Coating. The coating process is one of the common and
straightforward techniques used for layer deposition in
nanotechnology applications.6 Techniques such as spray
coating, dip coating and spin coating are widely employed in
the field of textile-based and flexible devices. Spray coating
involves propelling the ink of the desired material through a
nozzle and spraying it onto a surface or substrate using an air
pressure pump, as depicted in Figure 12a.455,456 Recently,
spray coating has been employed to directly fabricate OSCs
onto textile substrates. The process involves initially applying
an interface material to smoothen the textile surface, followed
by the sequential deposition of different layers using spray
coating. Figure 12b depicts corresponding cross-sectional SEM
images of the fabricated OSC, while Figure 12c presents a
photograph of the fabricated OSC device accompanied by its
performance curve.457 Spray coating is considered a repeatable

Figure 12. Coating techniques for photovoltaic textile fabrication. (a) Schematic of the spray coating system. Fully spray coated OSC device
(b) SEM image and (c) the performance curve in both light and dark mode with an original photograph (inset) of the fabricated device.
Reprinted with permission from ref 457. Copyright 2016 The Royal Society of Chemistry. (d) Schematic of a spin coating system. (e) A spin-
coated wearable PSC device under sun simulator, while glowing an LED upon exposing to light and (f) the photograph of the spin-coated
PSC device (inset) along with the corresponding IV curve under 1 sun condition. Reprinted with permission from ref 294. Copyright 2017
The Royal Society of Chemistry. (g) Schematic of dip coating process, (h) the photographs of the PSC device where the active layer was dip-
coated and (i) the performance curves of the fabricated PSC with respect to different thicknesses of the active layer. Reproduced with
permission from ref 462. Copyright 2014 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim.
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and efficient method for applying thin functional layers onto
fabrics. Recently a textile-based PSC was fabricated using the
coating technique for the PU interface layer. Planar textile-
based- PSCs have achieved a PCE of 5.72% and the devices
demonstrated outstanding flexibility under ambient environ-
ments.458

Another highly applicable coating technique is spin coating.
Spin coating is a simple and cost-effective method for
depositing thin and homogeneous film layers on flat surfaces.
In this process, a micropipette or a syringe is used to drop-cast
a predetermined volume of dispersion into the spin coater to
spin the substrate at high speed (up to 10,000 rpm), which
allows the fluid to be distributed throughout the substrate
using a centrifugal force, as shown in Figure 12d.459 Recently,
except for the ETL layer, an entire textile-based PSC device
has been fabricated using a spin coating technique. Figure 12e
shows the photograph of the device being worn on a hand
while lighting an LED upon exposure to a sun simulator.
Figure 12f depicts a characteristic IV curve under a 1 sun
condition, along with a photograph of the fabricated device.294

In another study, the spin coating was utilized for the entire
device fabrication of an OSC device in a 9 cm × 9 cm array on
a glass substrate, achieving a PCE of ∼14%.460 These findings
highlight the flexibility of spin coating in nanofabrication and
nanotechnology. Although the spin coating technique is not
directly suitable for textiles due to their rough surfaces and
high absorbency, the surface of textiles can be modified using
interface materials to make them smoother and more uniform
before coating.461

Another common method, “Dip coating,″ involves immers-
ing the substrate/textile components into the coating
dispersion, as shown in Figure 12g. In a recent fabrication of
a PSC device, the active layer was coated using a dip coating
process. A photograph of the device in a straight and bent
shape is shown in Figure 12h. The performance curve of the
fabricated PSC device with different thicknesses of active

materials is shown in Figure 12i, where the highest
performance was achieved with an 18 nm thick layer.462 In
another PSC fabrication, the ETL layers (SnO2) were coated
using four cycles of dip coating and they obtained a PCE of
3.2%.463 These results demonstrate the advantages of employ-
ing dip coating, as it is an easy and cost-efficient technique.

Printing. Printing, in its most basic sense, refers to the act
of transferring a pattern, such as an image, text, or any other
kind of pattern, from one surface (like a page or piece of cloth)
to another. In the field of nanotechnology, printing is
employed to deposit layers or patterns onto a substrate for
the manufacturing of printable devices.464 When it comes to
fabricating wearable devices, screen printing and inkjet printing
are the two techniques that are most commonly uti-
lized.7,465,466

Screen Printing. The method of screen printing involves a
stencil process that transfers ink onto a surface or substrate.
Figure 13a illustrates the setup for screen printing, highlighting
the different parts involved. When it comes to textile-based
SCs, screen printing has been employed either fully or partially
by various researchers.467,468 For example, a solid-state DSSC
on a textile fabric was recently developed using both screen
printing and spray coating techniques. A photograph of the
fabricated device is shown in Figure 13b and c showing the
performance curves of two devices with and without the
interface materials.469 Similarly another textile-based DSSC
was fabricated employing screen printing for printing the
polyurethane (PU) materials as a interface layer to smoothen
the surface. Additionally, screen printing was also employed for
the electrode (silver bottom electrode) and TiO2 as the ETL
layer.470 Screen printing is a simple and cost-effective
technique in terms of technology and can be used on a wide
range of materials. However, the process may be time-
consuming due to the need to prepare a pattern and for
careful cleaning of the screen after printing.

Figure 13. Printing techniques for photovoltaic textiles fabrication. (a) Schematic of a screen printer and its different parts, (b) a photograph
of screen printed DSSC-based on glass fabric and (c) the corresponding IV curve for two different devices with and without an interface
layer. Reprinted in part with permission under a Creative Commons CC-BY License from ref 469. Copyright 2019 Springer Nature. (d)
Schematic and different parts of inkjet printer. (e) Photographs of the inkjet-printed OSCs, where the shape OSC is fabricated in the shape
of a Christmas tree. Reprinted in part with permission under a Creative Commons Attribution 3.0 Unported License from ref 473. Copyright
2015 The Royal Society of Chemistry. (f) The shape of an inkjet-printed sea turtle on an ITO Glass substrate. Reused with permission from
ref 474. Copyright 2019 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. These works demonstrate the capabilities of inkjet printing
to be employed for a variety of fine patterns.
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Inkjet Printing. Inkjet printing is one of the emerging
technologies utilized especially for fabricating wearable
devices.471 The print head in an inkjet printing method
consists of multiple minute nozzles, also known as jets. When
the substrate passes in front of the print head, the nozzles
digitally designed patterns or images onto the substrate (see,
Figure 13d). Inkjet printing has been utilized in a variety of
applications such as sensors, supercapacitors, and SCs.7,465

Inkjet printing has been utilized for the full or partial
fabrication of SC devices.472 Recently, fully inkjet-printed
OSCs were successfully fabricated using an industrial-scale
inkjet printer equipped with 512 nozzles printheads. Figure
13e presents a photograph of two fabricated OSC devices, one
of which is in the shape of a Christmas tree.473 Figure 13f
shows photographs of the OSC devices, where one of them is
fabricated in the shape of a turtle employing inkjet printing
techniques.474 These demonstrations highlight the versatility of
inkjet printing, as it enables the fabrication of various intricate
structures without the need for masks.

Despite inkjet printing being a popular and material-effective
approach for device and solar fabrication,475,476 there are some
limitations to consider. Developing fine layers with an inkjet
printer requires smooth surfaces like a sheet of paper. A
cartridge also needs changing every time for printing different
materials, increasing the cost compared to other printing
methods. Finally, textiles do not have a smooth surface, and
they tend to absorb ink more, making direct inkjet printing on
textile substrates very challenging. To address this, the surface
of textiles can be modified to have a smoother appearance by
applying an interface material. However, this modification may
negatively impact the light absorption and alter the original
fabric appearance.

ASSEMBLY OF TEXTILE-BASED SCS
In this section, we will provide a detailed overview of the
assembly of textile-based SCs. There are three main methods
utilized for the fabrication of these SCs: stacking of

Figure 14. Assembly methods for photovoltaic textiles. (a) Schematic of a preprepared SCs stacking on a fabric, (b) flexible SCs wire
interwoven, and (c) the IV curves before and after bending along with the photograph, powering an MP3 device under sunlight. Reproduced
with permission from ref 478. Copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. (d) Schematic of layer-by-layer
process of a textile-based SC. (e) A photo of the layer-by-layer fabricated textile DSSC and (f) their IV curves in comparison to the standard
device, respectively. Reproduced with permission from ref 484. Copyright 2017 Elsevier. (g) Schematic of SC’s yarns, interwoven with
zoomed cross section and (h) A photograph of a SC yarn-based fabric. Reproduced with permission under a Creative Commons CC-BY
License from ref 130. Copyright 2019 John Wiley and Sons. (i) The IV curves of a yarn-based SC in both yarn and textile shape, along with a
photograph of the device (inset). Reproduced with permission from ref 485. Copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA,
Weinheim.
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prefabricated SCs, the direct layer-by-layer fabrication method,
and yarn intersections. Each of these will be discussed in detail.

Prefabricated Solar Cell Stacking. The practice of fixing
one layer or device over another is known as layer stacking (see
Figure 14a). The direct attachment or integration of SCs to
textile substrates is an old and well-established technique. This
is a simple and efficient way to build Textile-based SCs and
offers several advantages. For example, it saves the textile from
high-temperature processing, which can potentially burn or
damage the materials. Numerous researchers have described
the incorporation of prefabricated SCs into fabrics. Common
methods employed for stacking include stitching, hot-melting
and wet- transferring etc.217,477 For example a SCs integrated
winter jacket produced by Maier Sports in collaboration with
the Institute for Physical Electronics at the University of
Stuttgart and delivered up to 2.5W of power.217 Another recent
development includes a PSC device in the shape of wires,
which were weaved into flexible clothing to provide a
lightweight and flexible power source. Figure 14b shows
original photos of SCs in flat and bent forms, while Figure 14c
shows the IV curves before and after bending along with a
photo while powering an MP3 device under sunlight.478

Polymer SCs on woven textiles were also developed using a
free-standing wet transfer method, achieving a PCE of 2.9%.479

In a study, the hot-melt process was utilized to integrate an
ultraflexible and thermally stable OSC into textiles, demon-
strating a PCE of 10% without degrading the performance.480

Using the stitching mechanism, an OSC device was vertically
transferred onto a textile, resulting in an enhanced PCE of
approximately 1.8%.266 Although the direct transfer is simple
and effective in maintaining the functionality of SCs, it
hampers the appearance of the fabrics and makes them less
comfortable to wear. It also affects the washability of the
textiles. Therefore, researchers are favoring alternative methods
such as the layer-by-layer approach for preparing textile-based
SCs.

Layer-by-Layer Fabrication. The “Layer-by-layer” meth-
od is considered a promising approach to preserve the integrity
and original state of the textiles in terms of their shape and
comfort level (see Figure 14d). By developing a structure in
layers, strong contact is established, resulting in excellent
stability and mechanical durability against disturbances.481 The
layer-by-layer approach is considered a prominent approach for
scalable textile-based SCs production.482 Coating and printing
are the primary manufacturing processes used in the
fabrication of textile-based SCs, as discussed in previous
sections.24 A research team used combined printing and
coating techniques to develop an entirely textile-based OSC,
although its PCE was significantly lower than that of other
substrates.483 Additionally, a DSSC device fabricated on a
polyester fabric substrate using the layer-by-layer approach is
presented, maintaining flexibility and achieving a PCE of 2.5%
(Figure 14e,f).484

Yarns Intersection. Although stacking and direct layer-by-
layer approaches are straightforward and effective for building
textile-based SCs, both mechanisms can significantly com-
promise the breathability of the fabric, leading to wearer
discomfort. Additionally, the presence of top electrodes,
adhesive layers, and stitching can potentially impede the
absorption of light energy, resulting in a decrease in the SC
performance.353 These limitations have prompted researchers
to explore alternative approaches. Weaving and knitting using
active yarns, such as photoactive fibers or electrode fibers, have

emerged as promising methods to overcome the drawbacks of
stacking. The surface topology and bare regions of photoactive
fibers allow these SCs to maintain breathability and effectively
absorb solar energy from diverse light incidence angles. Figure
14g presents a schematic of a SC yarn. Figure 14h showcases a
picture of a fabricated yarn-based SC textile, which was
developed using silicon SC-embedded yarns connected by fine
coper wires.130 Recently, wire-based DSSCs were developed
using polybutylene terephthalate (PBT) wires as a substrate,
with each wire achieving a PCE of 1.3%. Figure 14i shows a
photograph and IV curves of both single fibers and yarns in a
textile form of the SCs.485 The yarn-based approaches
demonstrate the potential for integrating SC functionality
into textiles while preserving breathability and optimizing light
absorption due to shadows between interwoven yarns.

PERFORMANCE OF TEXTILE-BASED SCS
Researchers in the field of renewable energy have recognized
the potential of integrating SCs into textiles due to their
exposure to sunlight and their prevalence in everyday human
life. While fabricating silicon-based SCs directly on textile
substrates is challenging, various techniques have been
developed to embed SCs into textiles. One recent study, for
instance, integrated silicon SCs into textiles using two
approaches: a tessellation design for stiff folding and textile-
based deformable metallic connections. The performance of
the foldable tessellated textile embedded with silicon SCs was
superior to that of a traditional module.486 Recently, eight
monocrystalline SCs were encapsulated with functional
synthesized fabric materials using an industrial textile
lamination technique. These SCs demonstrated reliable
laundering durability, meeting the ISO 6330:2012 standards.
After 50 laundering cycles, five of the eight devices exhibited
no change in PCE, while three devices experienced a decrease
in PCE performance ranging from 20−27%.487 Besides, the
first-generation SCs and second-generation thin-film SCs have
also been explored for textile applications. Thin-film SCs based
on materials such as CIGS (copper indium gallium selenide)
and amorphous silicon have shown promise in integrating with
textiles.130,488,489 The potential applications of SCs in wearable
and functional fabrics are fascinating. While the efficiency of
first- and second-generation SCs for powering wearable devices
is noteworthy, their large and rigid structure affects the fabrics’
originality and breathability.
With the emergence of the latest SC technologies,

particularly third-generation SCs that offer enhanced flexibility
and solution processability, there has been a renewed interest
in textile-based solar energy harvesting. These advancements,
as highlighted in various studies,458,485,490 have positioned
third-generation SCs as sustainable options for researchers to
explore in the development of textile-based SCs. Consequently,
this Review further categorizes the performance of textile-
based SCs based on the specific type of SCs, focusing on the
potential of third-generation SC technology, such as DSSCs,
PSCs, OSCs, and QDSCs.

Textile-Based DSSC Performance. Textile-based DSSCs
have been the topic of extensive studies over the past decade
because they are lightweight, flexible, sustainable, possess low-
cost efficiency, are easy to process, and the potential for
industrial manufacturing techniques such as coating, printing,
and other similar techniques.165 A flexible DSSC based on a
solid polymer electrolyte was developed using a platinum-
coated stainless-steel wire as the counter electrode. ZnO-
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coated photoelectrode (PE) and the counter electrode (CE)
were woven together to produce a satin weave structure (10 ×
10 wires). Under typical lighting conditions (AM 1.5 G), the
developed flexible DSSC achieved a PCE of 2.57%, with Voc of
0.45 V.491 A textile DSSC device was fabricated using
poly(butylene terephthalate) (PBT) polymers, interwoven in
two distinct patterns and filled with a solid dye. The developed
textile DSSC attained a PCE of 1.3% under a standard
illuminance (AM 1.5 G) for a single cell unit and Voc of 4.6
V.213 A three-layered textile DSSC was woven concurrently on
a Jacquard loom, utilizing stainless steel wires as electrode
bases and spacers to create a basket-like structure. Figure 15a
provides a schematic of the proposed textile DSSC, where the
PE was developed using TiO2, which was applied to the
stainless-steel woven electrode using float printing and
sintering techniques. For the CE, platinum was coated with
an activated carbon paste. Figure 15b displays the IV
performance curve and the power density curve. Despite an
initial PCE of 1.7% and Voc of 0.64 V, the fabricated device
experienced a 20% decrease in PCE within 1 day and a 50%
decrease within 7 days. Additionally, the flexibility of the

fabricated textile DSSC was analyzed (Figure 15c) by studying
its performance curve at different radii of curvature. The
photograph (inset) of the device is also shown in Figure 15c. A
significant decline in PCE was observed as the radius of
curvature decreased from flat to 1 cm.492

The wire interlacing-based textile DSSCs show good
electrical performance results; however, the mechanical
stability and output consistency have not been prominent to
date. Researchers have recently determined the fabrication of
direct layer-by-layer textile DSSCs that offer enhanced
flexibility. In a recent investigation, a flexible sandwiched-
type DSSC textile (as shown in Figure 15d) was investigated. A
polyamide interface layer was coated on a glass fiber surface to
smooth the roughness, followed by the printing of an Ag
bottom electrode layer. Spray pyrolysis was employed as the
method to apply a TiO2 compact layer (CL) onto the fabric,
preventing the occurrence of a short circuit between the
counter electrode and the solid-state electrolyte. The PE was
formed by annealing the TiO2 layer after it had been placed on
top of the TiO2 CL, and the solid-state electrolyte solution was
added to dye-sensitize the PE. A PEDOT: PSS layer was then

Figure 15. Performance evaluation for DSSC-based photovoltaic textiles. (a) Schematic of a proposed 3D textile-based DSSC. (b) the
electrical performance of the device: current density and specific power. (c) the relative efficiency with respect to the radius of curvature in
centimeters along with a photograph of the fabricated textile-based DSSC. Reprinted in part with permission under a Creative Commons
CC-BY License from ref 492. Copyright 2019 Springer Nature. (d) A schematic of a recently developed textile-based DSSC, (e) the current
density and specific power of the fabricated device and (f) a photograph of the device in a bent shape along with the relative PCE with
respect to the radius of curvature. Reprinted with permission from ref 493. Copyright 2014 Springer Nature. (g) A schematic of another
recently investigated textile-based DSSC, (h) the current density curve of the device, and (i) a photograph of the fabricated device along with
the normalized efficiency as per radius of curvature. Reprinted in part with permission under a Creative Commons CC-BY License from ref
218. Copyright 2016 Springer Nature.
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spray-coated to serve as the hole transport layer (HTL).
Though the SC achieved a PCE of only 0.4%, the research
work introduced the development of textile DSSCs through a
direct layer-by-layer process. The electrical performance curves
of the fabricated textile DSSC is shown in Figure 15e. A photo
of a fabricated device, along with the impact on PCE with
respect to the radius of curvature is shown in Figure 15f.493 In
other research, a PCE of 7.13% was reported, where aligned
MWCNT sheets were twisted onto rubber fibers using CVD to
construct the counter electrode (CE) for a textile DSSC. A
functional electrode in the shape of a spring was made using
titanium wire with TiO2 nanotubes grown in a perpendicular
direction. A yarn-type DSSC was developed by winding it
around a flexible MWCNT fiber.493 Yarn-based textile DSSCs
have garnered significant attention in various research
endeavors. For instance, Figure 15g presents a schematic of a
recently developed DSSC yarn. The fabricated yarn-based
textile DSSC demonstrated a Voc of 0.62 V and a Jsc of 1.04
mA/cm2, as depicted in Figure 15h. The flexibility of the
device was also examined, and the results depicted in Figure
15i indicate minimal changes in PCE as the radius value
decreases, thereby highlighting the high flexibility of the
developed textile DSSC.218 The outcomes of some recent
research work on textile and fiber-based DSSCs are
summarized in Table 2.

Textile-Based PSC Performance. The discovery of
organic−inorganic lead halide perovskites as a potentially
valuable and emerging materials for low-cost, high-efficiency
SCs has been one of the most significant breakthroughs in the
field of photovoltaics in recent years. Particularly, methyl-
ammonium-lead-trihalide perovskites (e.g., CH3NH3PbX3,
where X = Cl, Br, or I) have been identified as potential
next-generation competitive photoactive materials for applica-
tions in SCs.494 Due to significant improvements in the PCE,
PSCs have gained attraction for building textile PSCs.495

Recently, a textile-based PSC has been developed employing
low-temperature solution processing. The developed prototype
of a planar PSC on a polyester/satin textile substrate
demonstrates a PCE of 5.72%, along with considerable
flexibility and durability under natural environmental con-
ditions. Figure 16a shows a schematic of the fabricated PSC
device, while Figure 16b illustrates the corresponding cross
sectional SEM image of the developed PSC. Figure 16c shows
the original photo of the fabricated device along with
performance Jsc curve. Furthermore, in this research project
the thickness of the perovskite layer and corresponding
variation in performance was also observed and determined
that the absorption spectral range shifts depend on the layer’s
thickness.458 Recently, the configuration of Ti/c-TiO2/meso-
TiO2/perovskite/spiro-OMeTAD/Au was transformed into a
fiber structure to build a fiber shaped PSC. Under an AM 1.5
illumination, the fiber-shaped perovskite cells attained a PCE
of 5.3%. Figure 16d and Figure 16e show the schematic layout
and cross-sectional SEM image of the fabricated PSC, while
Figure 16f presents the IV curve of the fabricated device,
respectively.496 In another recent research study, a fiber-shaped
PSC was developed by employing the configuration shown in
Figure 16g. Figure 16h provides an illustration of the cross-
sectional SEM image of the fabricated fiber-shaped PSC
device. The corresponding PSC device achieved an improved
PCE of 7.53%, reported by the same authors496 and a Voc of
0.96 V under an AM 1.5 G. illumination (Figure 16i).205

Recently, a flexible fiber-structured PSC was reported using

stainless steel (SS) fiber as the working electrode and multiwall
carbon nanotube (MWCNT) sheets as the counter electrode.
This configuration obtained a maximum PCE of 3.3%.200

Another research group developed a fiber-shaped PSC using
methylammonium lead iodide (CH3NH3PbI3) perovskite. The
perovskite material was dipped in a solvent mixture of N,N-
dimethylformamide (DMF) and N-methyl-2-pyrrolidone
(NMP), followed by dipping in toluene. This approach
achieved an impressive PCE of 3.85%.497 CNT-yarn-based
perovskite SCs have also been recently developed. A layer of
TiO2 oxide was formed on the twisting CNT yarns, which was
then annealed using TiCl4 to establish a homogeneous ETL. A
dip coating method was used to create a homogeneous
perovskite layer on top of the TiO2 layer. A platinized carbon
nanotube yarn was twisted around the top of the hole transport
layer as the counter electrode. The developed yarn-based PSC
device demonstrated a PCE of 0.63%, along with a high Voc of
0.82 V.498 Table 2 summarizes some of the recent work on
textile and fiber-based PSCs.

Textile-Based OSC Performance. OSCs have swiftly
emerged as a leading option for the next-generation of flexible
power sources as an emphasis has been focused on portable
electronics. This is because of the unique qualities of OSCs,
including their versatility, lightweight nature, low cost, and
minimal impact on the environment.499−501 Notably, OSCs
exhibit significantly better mechanical stability compared to
other types of SCs, making them particularly suitable for
wearable electronic textiles.502−504 Recent advancements have
led to the development of lightweight and flexible organic SCs
that maintain a constant level of PCE regardless of the
direction of illumination.505 Recently, the active layer of the
textile OSC was developed by using the dip-coating method,
employing poly(3-hexylthiophene):phenyl-C61-butyric acid
methyl ester (P3HT:PCBM) as the active material. In the
developed OSC the substrate was made of Ti wires with
perpendicularly aligned TiO2 nanotubes serving as the cathode,
and CNTs with substantial electrical and mechanical proper-
ties were used as the anode. This textile-based OSC attained an
efficiency of 1.08% and remained unaffected by mechanical
bending for up to 200 cycles.462 Another research group
developed a textile-based OSC that achieved a PCE of 2% and
a current density of 13 mA/cm2. The textile-based OSC was
fabricated employing P3HT:PCBM as an absorbing layer and a
gold-based textile electrode served as the bottom electrode.
Following fabrication, the developed textile-based OSCs were
stitched onto a shirt and demonstrated stability with
mechanical bending at a speed of 3 cm/s. Changes in the
textile’s electrode resistivity with bending were observed but
this was reversible in the reset position.506

A textile-based OSC was developed by incorporating
plasmonic nanostructures onto commercially available woven
fabrics that are typically incompatible with organic SCs due to
their spatial opacity, irregularity, and physical porosity. The
schematic configuration of the fabricated OSC is shown in
Figure 17a. Spin coating was employed for the deposition of an
active layer and electrodes. Figure 17b shows the photograph
of the device integrated into the textile substrate, determining
the flexibility of the textile-based OSC. Furthermore, the
developed textile-based OSC achieved an impressive PCE of
8.71% (Figure 17c) and maintained its IV performance for
more than 100 bending cycles.131 Figure 17d presents the
schematic of another recently investigated flexible and
waterproof OSC that was coated with an elastomer. The

ACS Nano www.acsnano.org Review

https://doi.org/10.1021/acsnano.3c10033
ACS Nano 2024, 18, 3871−3915

3892

www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c10033?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


T
ab

le
2.

Pe
rf
or

m
an

ce
of

So
m
e
R
ec

en
t
T
ex

til
e-
B
as
ed

SC
s

T
yp
e

Su
bs
tr
at
e

J sc
(m

A/
cm

2 )
V o

c
(V

)
FF

(%
)

PC
E

(%
)

St
ab
ili
ty
/D

ur
ab
ili
ty

W
ea
ra
bi
lit
y

Re
f

D
SS
C
s

Po
ly
/c
ot
to
n

te
xt
ile

36
.5
6

0.
3

25
2.
78

_
T
he

de
vi
ce

co
m
pr
ise

s
bo

th
fle
xi
bl
e
fa
br
ic

an
d
rig

id
gl
as
s
pa
rt
s

51
0

Po
ly
es
te
r
fa
br
ic

12
.4

0.
7

72
6.
26

D
ec
lin
e
in

PC
E
ov
er

tim
e,
in
di
ca
tin

g
an

18
%

re
du

ct
io
n
af
te
r
4
w
ee
ks
.

Be
nd

in
g
th
e
C
E
at

va
rio

us
an
gl
es

sh
ow

ed
no

sig
ni
fic
an
tc

ha
ng
es

in
re
sis
ta
nc
e.
Bu

t
ov
er
al
lt
he

de
vi
ce

co
ns
ist
s
of

a
FT

O
co
at
ed

gl
as
s
as

w
el
l

51
1

Po
ly
es
te
r
fa
br
ic

11
.9
2

0.
69

69
5.
69

C
E
ex
hi
bi
te
d
st
ab
ili
ty
,s
ho

w
in
g
no

no
ta
bl
e
re
sis
ta
nc
e
ch
an
ge
s
ac
ro
ss

va
ry
in
g
be
nd

in
g
an
gl
es

an
d
cy
cl
es
.

D
ev
ic
es

co
ns
ist

of
bo

th
fle
xi
bl
e
po

ly
es
te
r
fa
br
ic

an
d
rig

id
gl
as
s

51
2

C
ot
to
n
fa
br
ic

14
.7
5

0.
66

71
6.
93

T
he

st
ab
ili
ty

of
th
e
gr
ap
he
ne
-c
oa
te
d
fa
br
ic

re
m
ai
ne
d
co
ns
ist
en
t
ac
ro
ss

va
rio

us
be
nd

in
g
an
gl
es
,a

re
sis
ta
nc
e
ch
an
ge

of
le
ss

th
an

1.
5%

.
C
on

sis
ts

of
bo

th
fa
br
ic

an
d
rig

id
gl
as
s

33
9

C
ot
to
n/
Si
lk

15
.5
9

0.
67

47
5

C
ap
ab
le

of
en
du

rin
g
th
ou

sa
nd

s
of

de
fo
rm

at
io
n
cy
cl
es
.

D
ur
ab
le
,h
ig
hl
y
fle
xi
bl
e,
an
d
st
re
tc
ha
bl
e,
w
ith

a
be
nd

in
g
cu
rv
at
ur
e

ra
di
us

of
4
m
m

49
3

C
ot
to
n
fa
br
ic

9.
6

0.
65

52
3.
3

_
C
on

sis
ts

of
fle
xi
bl
e
co
tto

n
fa
br
ic

an
d
rig

id
gl
as
s

37
3

G
la
ss

fib
er

te
xt
ile

10
.2
4

0.
73

54
4.
04

T
he

de
vi
ce

m
ai
nt
ai
ne
d
a
st
ab
le

PC
E
up

to
8
w
ee
ks
.

Re
m
ai
ns

fu
nc
tio

na
le

ve
n
w
he
n
be
nt

ar
ou

nd
a
5
m
m

ra
di
us

ro
d

47
0

5.
1

0.
79

27
.4

1.
1

Re
m
ai
ns

st
ab
le

fo
r
ov
er

7
w
ee
ks
.

Fl
ex
ib
le
su
bs
tr
at
es

su
ch

as
gl
as
s
fib

er
an
d
PE

N
-IT

O
w
as

ut
ili
ze
d

17
0

5.
2

0.
31

25
0.
4

St
ab
le

fo
r
2
w
ee
ks

w
ith

m
in
im

al
PC

E
re
du

ct
io
n
in

an
op

en
-a
ir

en
vi
ro
nm

en
t
w
ith

ou
t
en
ca
ps
ul
at
io
n

H
ig
hl
y
fle
xi
bl
e
an
d
be
nd

ab
le

46
9

Fl
ex
ib
le

Pl
as
tic

12
.0
3

0.
76

79
7.
29

_
_

51
3

C
N
T
s
Ya
rn

10
.0
6

0.
64

45
2.
94

Fo
un

d
to

be
st
ab
le

w
ith

ou
t
an
y
pa
ck
ag
in
g
fo
r
se
ve
ra
lh

ou
rs

C
an

be
w
ov
en

as
a
fa
br
ic

to
m
ak
e
te
xt
ile

35
4

8.
32

0.
67

71
.7
9

4
Fo

un
d
to

be
st
ab
le

fo
r
m
or
e
th
an

35
da
ys
.

W
ea
ra
bl
e,
m
ai
nt
ai
ne
d
90
%

PC
E
fo
r
60
0
be
nd

in
g
cy
cl
es

51
4

19
.4
3

0.
73

71
10

PC
E
re
du

ce
d
by

18
%

af
te
r
20
00

cy
cl
es

at
90
-d
eg
re
e
be
nd

in
g.

M
ai
nt
ai
ne
d
86
%

un
de
r
be
nd

in
g
fro

m
0
to

18
0
de
g

51
5

C
ar
bo

n
fib

er
15
.3

0.
68

68
7.
03

_
_

51
6

Ru
bb

er
ya
rn

16
0.
71

61
7.
13

M
ai
nt
ai
ne
d
90
%

ou
tp
ut

af
te
r
st
re
tc
hi
ng

30
%

50
tim

es
.

_
51
7

Pt
w
ire

12
.3
4

0.
69

74
6.
29

_
Be

nt
1
cm

,r
es
ul
tin

g
in

a
PC

E
ch
an
ge

fro
m

1.
0
to

0.
85

51
8

T
iw

ire
te
xt
ile

7.
89

0.
53

64
2.
7

_
_

51
9

St
ai
nl
es
s
st
ee
l

w
ire

20
.0
2

0.
45

28
2.
57

_
W
ov
en

st
ru
ct
ur
e
an
d
be
nd

ab
le

49
1

4.
63

0.
64

56
1.
7

Sp
ec
ifi
c
po

w
er

de
cr
ea
se
d
50
%

in
7
da
ys

W
ea
ra
bl
e
de
vi
ce

m
ad
e
w
ith

Ja
cq
ua
rd

w
ea
vi
ng

m
ac
hi
ne

49
2

PS
C

Po
ly
es
te
r
T
ex
til
e

12
.9
1

0.
89

51
5.
72

D
ev
ic
e
re
ta
in
s
83
%

of
in
iti
al
PC

E
af
te
r
30
0
h.

W
ea
ra
bl
e,
as

fa
br
ic
at
ed

on
a
te
xt
ile

su
bs
tr
at
e

45
8

po
ly
et
hy
le
ne

na
ph

th
al
at
e

T
ex
til
e

20
.5
3

1.
06

66
14
.3

M
ai
nt
ai
ne
d
70
%

of
in
iti
al

PC
E
in

am
bi
en
t
en
vi
ro
nm

en
t
fo
r
42
5
h.

Fl
ex
ib
le

an
d
w
ea
ra
bl
e

29
4

C
N
T

8.
75

0.
61
5

56
.4

3.
03

St
ab
le

fo
r
m
or
e
th
an

96
h
in

am
bi
en
t
co
nd

iti
on

s.
Ex
ce
lle
nt

fle
xi
bi
lit
y,

en
du

rin
g
ov
er

10
00

be
nd

in
g
cy
cl
es

w
ith

ou
t

de
gr
ad
at
io
n

52
0

2.
16
5

0.
82

35
.3

0.
63
1

_
_

49
8

St
ai
nl
es
s
St
ee
l

w
ire

10
.2

0.
66
4

48
.7

3.
3

M
ai
nt
ai
ne
d
st
ab
le

PC
E
(9
5%

)
up

on
50

be
nd

in
g
cy
cl
es
.

Be
nd

ab
le

in
va
rio

us
sh
ap
es

w
ith

ne
gl
ig
ib
le

re
du

ct
io
n
in

ou
tp
ut

20
0

T
iw

ire
11
.2
3

0.
67

58
5.
3

_
_

49
6

_
0.
85

_
7.
1

M
ai
nt
ai
ne
d
90
%

of
th
e
in
iti
al

re
su
lts

up
on

40
0
tw
ist
in
g
cy
cl
es
.

C
an

be
w
ov
en

in
to

a
te
xt
ile

52
1

11
.9
7

0.
73
1

44
3.
85

O
ve
r
93
%

PC
E
re
ta
in
ed

af
te
r
50

be
nd

in
g
cy
cl
es
.

Be
nd

ab
le

49
7

O
SC

Po
ly
/c
ot
to
n

Fa
br
ic

6.
05

0.
54

37
1.
23

Lo
st

ph
ot
on

ic
fu
nc
tio

na
lit
ie
s
af
te
r
te
n
cy
cl
es

at
2.
5
cm

ra
di
us
.

Be
nd

ab
le

48
3

In
te
gr
at
ed

to
T
ex
til
e

2.
15

0.
76
9

70
.8

8.
7

Fo
un

d
to

be
st
ab
le

af
te
r
be
nd

in
g
10
0
cy
cl
es

of
ra
di
us

2.
5
m
m
.

Fl
ex
ib
le

an
d
w
ea
ra
bl
e

13
1

G
ol
d
ba
se
d
te
xt
ile

13
.1
1

0.
57

24
1.
8

T
o
so
m
e
ex
te
nt

fo
un

d
to

be
du

ra
bl
e
an
d
re
lia
bl
e
un

de
r
m
ec
ha
ni
ca
l

st
re
ss
.

W
ea
ra
bl
e
an
d
in
te
gr
at
ed

w
ith

cl
ot
hi
ng

26
6

G
ra
ph

en
e
sh
ee
t

8.
14

0.
57

54
.5

2.
53

Fo
un

d
to

be
st
ab
le

w
ith

5%
de
gr
ad
at
io
n
in

PC
E
af
te
r
8
da
ys
.

_
52
2

C
N
T

ya
rn

8.
1

0.
55

50
2.
30

PE
C

dr
op

pe
d
fro

m
2.
26
%

to
1.
77
%

w
ith

in
th
e
fir
st
5
da
ys
.

Fo
un

d
st
ab
le

up
on

be
nd

in
g
to

45
an
d
90

de
gr
ee
s

52
3

ACS Nano www.acsnano.org Review

https://doi.org/10.1021/acsnano.3c10033
ACS Nano 2024, 18, 3871−3915

3893

www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c10033?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


device was attached to a shirt, as shown in Figure 17e,
achieving a high PCE of 7.9%. Only a 5.4% reduction was
observed after 2 h of water exposure. Figure 17f shows the IV
curve of the OSC device when attached to a shirt.507

Fiber-shaped textile OSCs have recently gained attention
due to their flexible nature.508 A spring-like organic SC has
been developed to gain high stretchability and foldability, using
Ti wire as the substrate, and by coating with TiO2 nanotubes,
employing the electrochemical process (Figure 17g−i). The
active material P3HT:PCBM and hole transport material
PEDOT:PSS were subsequently coated. The device main-
tained a PCE of 90% even after more than 1000 bending
cycles.509 However, these spring-type SCs exhibit strong
mechanical stability but poor electrical responses due to
limited exposure to sunlight. While mechanical stability and
liability are important, the electrical performance of a SC, such
as its PCE, is a crucial parameter metric to functionalize the
perspective device in real-time applications. For further
insights, Table 2 presents a summary of key research findings
in textile-based OSCs. These results collectively indicate a
promising future for the market of textile-based OSCs.

Textile-Based QDSCs Performance. Recently, QDSCs
have attracted considerable interest as a potential alternative to
traditional SC technologies.525 QDs possess a tunable
bandgap, which can be adjusted by varying their size.526

Notably, QDs have been incorporated into SCs, leading to
significant improvements in both PCE and stability.527 For
instance, the use of multication CdxZn1−xSeyS1−y QDs as an
interfacial modifying layer in a PSC device has resulted in
reduced defects and traps, decreased recombination losses,
enhanced electron extraction rates, and impressive PCE of
21.63%.528 In another study, researchers investigated the
impact of different counter electrodes on QDSCs and found
that a c-fabric/WO3-x electrode exhibited the highest power
conversion efficiency among nine tested electrodes, reaching
4.6%.529 Despite the promising properties of QDs, their
utilization in textile-based QDSCs has not received much
attention due to concerns over their toxic nature. QDs
commonly used, such as II−VI and IV−VI QDs, often contain
heavy metal particles like cadmium (Cd), which are known to
be highly toxic.530,531 Additionally, both Cd and selenium ions,
present in the QD core, have recognized cytotoxic effects.532

Apart from toxic QDs, there have been researching reports of
environment-friendly QDs being investigated for SCs
applications.533,534 Ternary I−III−VI QDs, for example,
possess favorable optical characteristics and are non-toxic. By
incorporating these QDs into SCs, it is possible to improve the
performance of SCs without introducing additional toxic
components. Non-toxic (I−III−VI Copper indium sulfide
(CuInS2)) QDs exhibit an excellent conduction bandgap (CB)
and valence bandgap (VB) alignment with materials like
MAPbI3 and graphene. Moreover, they exhibit high adsorption
coefficients, leading to improved photoactivity and electron
injecting. However, it should be noted that CuInS2 QDs are
prone to air instability and have a low oxygen resistance.535 To
further advance the field, it is necessary to develop stable
encapsulation techniques that maintain performance while
ensuring environmental sustainability. Further research on the
exploration of sustainable and environmentally friendly QD
materials is required to contribute to the positive potential of
flexible and wearable solar energy harvesters.530

Comparative Analysis of Third-Generation SCs.
Continuing the exploration into the performance of third-T
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generation SCs, a comprehensive comparative discussion
becomes pivotal to delineate the future direction and scope
for textile-based SCs. Table 3 presents a concise comparative
analysis highlighting the strengths and weaknesses of each
technology as applied to textile-based SCs. As observed from a
diverse range of researchers’ perspectives, each technology
exhibits its unique limitations and advantages, which should be
considered in tandem with various parameters such as cost,
durability, and efficiency. However, an overarching observation
indicates several gaps are yet to be addressed in the domain of
textile-based SCs before contemplating commercialization.

WEARABLE PROPERTIES OF TEXTILE-BASED SOLAR
CELLS
Textiles have played a significant role in human society since
the early stages of our evolution. Initially, textiles serve as a
protective shelter against different weather conditions.
However, as human civilization has progressed, textiles have
transformed into garments and become an integral part of our
daily lives. Recently, there has been a growing interest in the
potential of energy-harvesting textiles in the field of wearable
electronics. Various energy harvesting devices have been
developed and integrated into textiles, and among them, SCs

have emerged as a particularly promising option due to their
affordability and widespread availability. The growing popular-
ity of flexible SCs, such as third-generation SCs, has captured
the attention of researchers in the field of electronic
textiles.38,550 The emergence of textile-based SCs has expanded
opportunities for scientists aiming to harvest solar energy
without altering the inherent characteristics of textiles.551

Comfortability, Breathability, Flexibility, and Appear-
ance. When choosing a textile for a particular application,
especially in the case of clothing, two crucial considerations are
the garment’s comfort and overall appearance. E-textiles, on
the other hand, integrate modules such as sensors, controllers,
and so on, which make the textile more attractive as compared
to ordinary textiles.552,553 The incorporation of SCs into
textiles allows for efficient energy harvesting, but it disrupts
their original state through the deposition of different materials
via physical, chemical, and thermal processes. One of the key
concerns in energy-harvesting textiles is finding a balance
between maintaining their original characteristics, such as
breathability, and avoiding stiffness and altered appearance
resulting from the various processes involved.554−556 Recently,
a significant advancement was made in the development of an
OSC-based fabric, which achieved the practical implementa-

Figure 16. Performance evaluation for PSC photovoltaic textiles. (a) Schematic of recently developed textile-based PSC along with (b) the
SEM image of perovskite layer and (c) the current density of the fabricated textile PSC as well as a photograph of the fabricated device.
Reproduced with permission from ref 458. Copyright 2018 Elsevier. (d) Schematic of a fiber-shaped PSC along with (e) the corresponding
cross sectional SEM image of the device and (f) the electrical performance of the corresponding fiber shaped PSC and optical image (inset)
of the device. Reproduced with permission from ref 496. Copyright 2016 The Royal Society of Chemistry. (g) Schematic of a fiber shape
textile PSC, (h) corresponding SEM image with indication of different layers, and (i) the electrical performance curves. Reproduced with
permission from ref 205. Copyright 2018 The Royal Society of Chemistry.
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tion of OSC textiles at a meter-scale using an industrial loom.
This innovative approach effectively combined device
fabrication, textile weaving, and circuit connection into a
single process, resulting in improved performance of OSC
textiles accelerating their commercialization.554 However, there
is still room for improvement in terms of appearance, comfort,
and electrical performance to compete with the existing energy
harvesting technologies.
Textiles are typically porous structures, to be breathable.

However, the embedding of SCs into textiles can have an
impact on their breathability. Specifically, the direct layer-by-
layer fabrication of an interface and SC layers over textile
surfaces can reduce the porosity and permeability of the fabric,

hindering its ability to wick away moisture. Additionally, the
heat transmission properties of the fabric may also be affected.
A common approach involves affixing prefabricated OSCs to
textiles, potentially resolving integration issues. However,
ensuring a balance in flexibility between the SCs and the
textile remains critical. Recent progress in flexible SCs has
demonstrated high mechanical stability and exceptional
stretchability,557,558 showing promise for seamless textile
integration. Nevertheless, the attachment of these prefabri-
cated devices may compromise the original state of the textile
and impact the output quality due to the use of adhesive
materials etc. Another potential solution to address this issue is
the development of solar textiles using yarn intersections. This

Figure 17. Performance evaluation for OSC photovoltaic textiles. (a) Schematic of a fabricated textile-based OSC, (b) a photograph of
textile-based OSCs and (c) the IV curve for 100 bending cycles which is almost similar, demonstrating the flexibility of the fabricated device.
Reproduced with permission from ref 131. Copyright 2019 American Chemical Society. (d) Schematic of a textile based OSC, (e)
photograph of a device fixed on a shirt, showing high flexibility, and (f) the performance curve of the device in free stand mode on a perylene
substrate. Reproduced with permission from ref 507. Copyright 2017 Springer Nature. (g) Schematic of fiber-shaped OSC, (h) a photograph
of the fabricated fiber-shaped OSCs both before and after deformation, and (i) the current density curve along with an SEM image (inset).
Reproduced with permission from ref 509. Copyright 2014 John Wiley and Sons.

Table 3. Advantages and Disadvantages of Different Third-Generation SCs Technologies

SCs
Technology Advantages Disadvantages Ref

DSSCs Easy fabrication, Flexibility, Versatility in low light condition, cost-
effective

Electrolyte leakage and volatile, Stability concerns, Sensitive
to low and high temperature, Less durable

536−540

PSCs Rapid improvement in PCE, Low-cost fabrication, Solution Processable,
Potential technology for high PCE to compete Si-based SCs

Less stable, Sensitivity to moisture, Sensitivity to UV light,
Some are hazardous because of the inclusion of lead

541−545

OSCs Flexibility, Solution processable, Lightweight, Low-cost materials Lower efficiency, Poor stability and durability, Some
materials are Oxidizing

546−548

QDSCs Tunable bandgap, Low production cost, High efficiency, Multiple
excitons generation capability, Solution processable

Some quantum dots are very toxic, Undesirable
recombination, Low stability

190, 532,
549
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approach allows for the integration of SCs without
compromising the breathability of the fabric. It is also
important to consider fabrication techniques that involve
processing at low temperatures, as high-temperature processing
can distort the shape of the textile. Using curing materials that
can be processed at room temperature, such as UV curable
materials may offer a solution to maintain the breathability of
the textiles while incorporating SCs.216,559

Contemplating the future of wearable textile-based SCs,
significant strides can be made to enhance flexibility,
wearability, and efficiency. A pivotal measure involves the
development of flexible fabric electrodes tailored for optimal
SC configurations, necessitating improvements in electrical
conductivity, transmittance characteristics, surface smoothness,
and water-resistant attributes. From a broader perspective,
fibrous SCs exhibit distinct advantages over traditional flat SCs,
being lightweight, easily manufacturable, wearable, and
adaptable to curved surfaces such as the human body.
However, a notable impediment to the widespread adoption
of fibrous SCs is the potential presence of hazardous materials,
limiting their suitability for wearable applications. For instance,
the prevalent use of liquid electrolytes in fibrous DSSCs results
in cumbersome device packaging and reduced stability. In
contrast, fibrous PSCs and OSCs address these concerns by
eliminating liquid components.560 Despite this favorable
attribute, the commercialization of such textile-based SCs
faces challenges related to output efficiency, stability, and
durability, hindering their widespread market acceptance.

Durability and Stability. Ensuring long-term reliability in
both mechanical and electrical aspects is essential for bringing
a product to market and competing with existing products.
According to a press release published by ira.org,561 there is a
forecast indicating a significant increase in worldwide renew-
able electricity production by over 60% from 2020 levels to

exceed 4,800 GW by 2026. This would be comparable to the
current total electricity production from fossil fuels and nuclear
combined. Renewable energy generation is expected to
contribute to approximately 95% of the global power capacity
growth during this period, with solar energy harvesting
accounting for more than half of this growth. Si-based SCs,
which currently dominate the commercial market with a 90%
share, are known for their robustness and reliability due to the
sturdy substrates they employ, such as silicon wafers or glass.
However, when it comes to integrating SCs into textiles, the
various chemical and physical processes involved can disrupt
the mechanical durability and overall stability of the textiles.
Therefore, ensuring the long-term reliability and stability of
textile-based SCs remains a challenge. Further research and
advancements are needed to enhance the mechanical durability
and stability of these textile-based systems to compete with the
well-established Si-based SCs.
As an alternative to using hard conductive connections, a

technique that has gained attention involves utilizing
conductive carbon-based yarns as electrodes. Another option
for improving textile-based SCs is to enhance their structure
and configuration. For example, comb-shaped structures, have
shown to be more adaptable compared to planar square
structures, suggesting that further improvements in structure
could potentially lead to optimal levels of both durability and
stable performance. In summary, researchers in the field need
to consider the longevity and stable output of Textile-based
SCs, as their electrical performance tends to degrade over
time.562 Therefore, exploring innovative approaches and
refining the design and construction of Textile-based SCs
can contribute to achieving long-lasting and reliable perform-
ance.

Washability. The ability of a textile to withstand multiple
washes and drying cycles is crucial for its usability as a wearable

Figure 18. Washability performance evaluation for photovoltaic textiles. (a) Photographs of a fabricated textile-based OSC device, (b)
electrical performance curves after passing through different washing cycles and (c) the demonstration of the relative changes in
performance with respect to washing cycles such as Voc, PCE. Reproduced with permission from ref 563. Copyright 2018 The Royal Society
of Chemistry. (d) In these set of images, five solar-E-yarns woven into a textile are shown in their dry state, soaked with tap water, and
immersed in tap water. (e) The normalized ISC with different hand and machine-washing cycles, and (f) the number of fully functional solar-
E-yarns after 25 washing cycles. Reproduced with permission under a Creative Commons CC-BY License from ref 130. Copyright 2019 John
Wiley and Sons.
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item. Wearable e-textiles are designed to maintain their
attractiveness or original form over time, as this is their
primary function. However, the incorporation of SCs into
fabrics introduces a sensitivity to cleaning agents, as there has
been limited advancement in making textile-based SCs
resistant to mechanical or chemical washing. Researchers
have been exploring various materials and processes to
improve the washability of textile-based SCs without
compromising their performance. For instance, coating
methods have been employed to develop textile-based OSCs
that have undergone more than 20 washing cycles. Figure 18a
depicts a photograph of a textile-based OSC, while Figure 18b
and c illustrate the impact on performance after various
washing (both hand and machine) and bending cycles.
Regardless of the number of washing cycles, the device
attained a PCE of up to 7.24%.563

Another research team conducted a study where they
developed a solar fabric with SCs integrated into yarns and
subjected it to hand and machine-washing cycles. Figure 18d
presents photographs of a fabric in dry, wet, and immersed
conditions, from right to left. Figure 18e showcases the
corresponding Isc values, indicating that the Isc values were
even better than those observed under dry conditions. Figure
18f demonstrates that all SC yarns remained functional up to
15 washing cycles, regardless of whether it was hand or
machine washed.130 However, still there is huge room for
research investigation to make washable textile-based SCs
without any loss for commercial applications.

Safety and Toxicity. The integration of SCs involves the
use of many hazardous chemicals. For instance, the active
perovskite materials in PSC, dyes in DSSCs, and thin film
materials such as CdTe are known to be hazardous to the skin
and can cause serious effects upon direct interaction.564 While
textiles and garments are typically designed to have no adverse
effect on human skin, the integration of SCs introduces these
potentially harmful chemicals. DSSCs, due to their high
efficiency, are being used in textile-based SCs; however, there
are concerns regarding evaporation and leakage of liquid dye,
which could lead to complications for the skin and other
tissues. To meet the requirements of future textile-based DSSC
applications, it is necessary to use inexpensive and environ-
mentally friendly materials, as well as improve the safety of the
dyes. Researchers have been exploring nontoxic solutions, such
as using dimethyl sulfoxide (DMSO) as a nontoxic solvent for
gel electrolytes that do not include ionic liquids.565 If textile-
based SCs are to be used in clothing, extreme caution must be
exercised due to direct contact with the human body.
Implementing proper isolation from the surroundings,

adequate packaging to minimize ecological impacts, and
ensuring electric shock/spark-free systems are crucial criteria
to avoid any risk. Consequently, research and development
efforts in textile-based SCs prioritize correct packaging and the
selection of materials with reduced or no risk.

FUTURE RESEARCH DIRECTION OF TEXTILE-BASED
SOLAR CELLS
According to research conducted by Global Industry Analysts
Inc. (2022),566 the global market for smart textiles is expected
to reach $5.9 billion by 2026. Sectors such as sports and
wellness, healthcare, safety, and industrial workwear show great
potential for the utilization of smart e-textiles. However, for
wearable technology to function effectively, it requires a
reliable source of electrical energy. As early as 2010,
researchers started exploring the possibility of integrating
SCs into fabrics.487,567 SCs have been incorporated into
various products like bags, tents, and helmets, to provide
energy for electronics. However, the design options for textiles
with attached SCs are limited because the SCs are visible and
occupy a significant portion of the product’s surface. Although
incorporating SCs into yarns may have aesthetic advantages,
their limited surface coverage reduces the amount of power
generated per unit area.109 However, the production of SCs
directly in parallel with textile manufacturing, creating a fully
textile-based energy harvester, requires additional efforts to
ensure flexibility and efficiency.294,495,552 The ongoing research
on textile-based energy harvesting SCs indicates a strong
potential for a significant commercial market for such products
in the future. A general perspective for future wearable textiles
is illustrated in Figure 19.

Toward High Performance Energy Harvesting Tex-
tiles. The current reported efficiency of c-SCs is only a
maximum of 26.7% on a rigid substrate such as a silicon
wafer,137 indicating that there is significant room for
improvement. First-generation SCs, as previously mentioned,
are constructed on stiff surfaces, and require high-temperature
processing, making them unsuitable for fabrics and flexible
substrates. While second-generation SCs are thinner than first-
generation cells, many of the thin film materials are toxic (such
as CdTe) and rare in terms of availability.568,569 Therefore, the
focus is now shifting toward third-generation SCs technology,
which emphasizes lightweight and flexible structures that can
be processed at low temperatures. This makes them a primary
consideration for the development of next-generation textile-
based SCs. The choice of electrodes directly impacts the
performance of SCs. The use of metallic or rigid electrodes is
not preferable for textile-based SCs due to their stiffness, which

Figure 19. Future perspectives of smart photovoltaic textiles.
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also affects breathability.568,569 To address this, newly
developed conductive materials that are suitable for textiles
and possess good conductivity can improve the output
response of textile-based SCs (see Figure 19). For instance,
replacing metallic and rigid electrodes with carbon and
polymer-based electrodes339,340,570 can potentially enhance
the overall PCE of the textile-based SCs. Additionally, the
choice of materials for charge transport layers and active
materials is crucial and warrants further research for improve-
ment. One example is the utilization of composite materials
such as P3HT in combination with other materials like
PCBM,571−573 among others. Developing SCs on a rough
surface such as textile can lead to the degradation of the
deposited layers, resulting in cracks and void defects. These
defects act as barriers to spectral absorption and proper charge
transportation. To address this, it is possible to smooth the
surface of textiles by utilizing interface materials. Researchers
have employed interface layers like UV curable polyurethane
(PU), polyamide,476 and others to achieve a smoother surface
for the fine deposition of different layers via printing or
coating. However, it is important to consider that using such
interface materials may affect the original state and uniqueness
of the textiles.476 The selection of encapsulation materials that
are both flexible and robust, with reduced thickness, may prove
more effective than bulky materials. Another approach to
enhancing the performance of textile-based SCs is by
combining them with other renewable energy harvesters,
such as piezoelectric nanogenerators (PENG), triboelectric
nanogenerators (TENG), and thermoelectric nanogenerators
(TNG). These types of energy harvesters can produce
significant amounts of electricity. However, their durability
has been a limiting factor for commercial applications.
Therefore, combining the effects of various nanogenerators
has garnered attention to generate more power, as shown in
Figure 19.55

Toward Sustainable Energy Solutions to Wearables.
The rapid development of the electronic industry has led to an
increased demand for high-performance portable and wearable
power supply units. However, with the growing focus on
energy consumption and environmental protection worldwide,
there is a rising interest in using clean energy sources.324 As a
result, it has become imperative to explore safe and sustainable
manufacturing methods for energy harvesting devices.553 The
development of new eco-friendly and cost-efficient energy
generation systems is crucial to address emerging ecological
concerns and meet the needs of modern society.361 Figure 19
also illustrates the concept of sustainability in energy
harvesting SCs, often referred to as “green energy”. This
concept involves extending the lifespan of the device, reducing
costs, and most importantly, ensuring recyclability.361 Sunlight
is the most abundant source of clean energy available to us;
however, the process of harnessing solar energy through SCs
may pose health risks when used in wearables, primarily due to
the presence of hazardous materials such as CdTe, perovskites
(containing lead halides), and other functional materials.
Sustainable, scalable, plentiful, renewable, and environmentally
friendly energy generation using biomaterials is the ultimate
goal of clean energy harvesting.574 Generating electric power
from sunlight through SCs has the potential to become a
widespread, biodegradable energy source that is also
commercially viable.575 Further research into textile-based
SCs is necessary, particularly in exploring electrode materials
that are less harmful, biodegradable, and recyclable. The

selection of sustainable materials for electrodes and other
functional layers is a critical factor that directly impacts the
performance of SCs. Additionally, choosing appropriate
encapsulation materials that can stop the migration of any
hazardous materials is also important. However, the primary
consideration of any industry’s sustainability is improving
product performance while reducing production costs, and
improving recyclability;the same applies to the SCs industry.
Alongside improving manufacturing processes and technolo-
gies, identifying stable and effective biodegradable materials
while reducing cost is a focus of future research. Substituting
existing materials with low-cost raw materials, such as natural
mineral resources, could be an attractive option. Furthermore,
combining low-cost raw materials with high-priced ones
without compromising performance could be another
approach to reduce the overall cost of SCs.

Toward Multifunctional Wearable Self-Powered Sys-
tems. Due to the advancements in electronics miniaturization,
nanotechnology and the digital revolution, smart wearable e-
textiles have made significant progress in the past decade. Such
advancements in flexible and wearable technologies have
enabled the creation of customized wearable textiles capable of
interacting with the body, continuously monitoring, recording,
and communicating various physiological information.361

Figure 19 presents a schematic of a multifunctional garment
that incorporates basic physiological parameters of the human
body. E-textile-based sensors for electrocardiogram (ECG),576

and electroencephalogram (EEG),466 strain sensors for
electrophysiological signal sensing,465 body-temperature sen-
sors,577 humidity sensors,578 and others have already been
reported. However, there are still many challenges to overcome
in integrating them into a self-powered multifunctional system.
For instance, a separate power supply source is required, as
well as additional circuitry for transferring body signals. E-
textiles with a single functionality are insufficient to meet the
demands of modern electronics. Therefore, increasing
attention is focused on achieving functional integration
among energy generation, storage, and utilization to power
multiple functionalities within a single e-textile.361,466 Various
strategies can be employed to accomplish this goal. One
approach is the development of specialized yarns for various
purposes, including energy harvesting yarns, energy storage
yarns, and various sensor-based yarns, all woven to create a
multifunctional e-textile. Another potential solution lies in the
selection of functional materials that can be applied across
different applications. For example, ZnO possess characteristics
that make it suitable for use as stress and heat sensors, allowing
it to provide dual benefits. Additionally, textiles composed of
multiple thin layers, with each layer serving a different purpose
such as energy harvesting, storage, and sensing, could be a
viable solution. However, overcoming these existing challenges
and achieving fully multifunctional,579 self-powered textiles
that are suitable for commercialization will require significant
effort. In the future, integrating SCs with sensors, actuators,
electrochromic, shape memory, and even self-repair capabilities
will be highly appealing for the development of multifunctional
and self-powered personalized healthcare textiles.560

CONCLUSIONS
Portable and wearable e-textiles have garnered significant
attention due to their wide range of applications in healthcare,
military, entertainment, among others. This increasing demand
has resulted in the growth in the popularity of methods that
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produce electricity energy from solar energy conversion. The
development of wearable e-textiles capable of generating
electricity holds great potential in the energy and wearable
sectors, especially in the era of the Internet of Things and
modern communication. It is worth giving a timely summary of
the remarkable progress in the community of textile-based
solar cells, which could promote their industrial commercial-
ization and being in accordance with the standards of the
photovoltaic market in the near future.
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VOCABULARY
energy harvesting, process of converting ambient energy into
useful electrical power; photovoltaic effect, process of
producing electrical power from sunlight in solar cells; solar
cell, device that uses the photovoltaic effect in semiconductor
materials to convert sunlight into electricity;; magnetoelastic
generator: small device that converts ambient mechanical

energy into electrical power based on magnetoelastic effect;
nanogenerator:, small device that converts mechanical energy
into electrical power based on piezoelectric and trioelectric
effects; wearable electronics, lightweight flexible devices that
are worn on the body and incorporate technology for tasks
such as health tracking, communication, etc.; electronic textile
(e-textile), fabric or textile-based materials that are combined
with electronic components, allowing the development of
wearable technology or smart clothes that can perceive,
respond, or interact with their surroundings or their wearer.
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