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Abstract

CogMod: Simulating Cognitive & Perceptive Limitations in Human Drivers

by

Abdul Jawad

Autonomous Vehicles (AVs) will share the roads with humans, where they

will regularly interact with different participating agents such as human-driven vehi-

cles, cyclists, pedestrians, etc. Scenario-based testing is a simulation-based AV testing

process where many possible scenarios can be tested inside a simulator to verify that

an AV interacts appropriately in corresponding scenarios. According to the current

approaches, the participating vehicles in those scenarios are modeled using static, pre-

determined, time-stamped trajectory information, which fails to obtain the behavioral

variability of human drivers. Moreover, such a modeling approach limits the usability

of the scenario with continuous software updates of the AVs, as surrounding vehicles

remain static while the AVs behavior changes due to system updates. To address this

issue, we created CogMod, a cognitive theory-inspired human driver behavior model

built on a cognitive framework that integrates two complimentary cognitive architec-

tures, QN-MHP and ACT-R, to reflect human cognition while driving. Contrary to

most models, where control is directly based on observed variables, the control actions

of CogMod agents rely on a temporally persistent internal representation. This internal

representation results from a novel gaze mechanism that enables the CogMod driver

to have a selective update of the surrounding environment. The model can simulate
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human drivers’ perceptive and cognitive limitations and thereby capture human driving

variability. We put our model through two different simulations to test its ability to

generate variable driving behavior. In the first simulation, we explored the influence of

decision-making latency, a consequence of variable cognitive processing capacity. This

variation, simulated by our model and facilitated by the hybrid cognitive architecture,

was evaluated based on the distribution of stopping distances under differing cognitive

processing capacities. In the second simulation, we test CogMod’s ability to augment

real-world naturalistic driving data. To test the model’s ability to generate a variety of

scenarios from a given scenario, we used car-following scenarios from the HighD dataset.

The microscopic distributions obtained from the naturalistic dataset are compared with

the simulation results using agents based on Intelligent Driver Model and CogMod. Our

results show that with variable driving behavior, our model can augment an existing

scenario and increase its complexity.
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1 Introduction

While testing AVs on real-world roads is necessary, it is expensive and limited

in scope, rarely covering unusual or risky situations. Simulation-based testing is a more

cost-effective and safe solution that allows for a greater focus on specific challenging

situations. Scenario-based testing, a subset of simulation-based testing, enables repeat-

able, safe, and parallel testing of critical scenarios, saving time and effort. The majority

of current scenario-based testing research focuses on extracting and constructing rep-

resentative scenarios. The development of accident and near-accident scenarios, which

are critical for AV testing, has received little attention. Some proposed frameworks are

capable of automatically generating critical scenarios [1, 2], but research has largely

focused on generating static aspects of scenarios, such as the environment and infras-

tructure [3], rather than the variation of dynamic elements, such as surrounding vehicles.

To overcome this, computational models for dynamic elements in AV simulations must

be developed.

Extensive research conducted in the field of driver modeling, spanning psy-

chology, cognitive science, computer science, and traffic modeling, has resulted in two

types of models: abstract motivational models inspired by psychology and cognitive

science and task-specific models discussed in computer science. While the psychology

and cognitive science-inspired models lack precise definitions, making their implementa-

tion in simulations challenging, the simulation models in computer science oversimplify

human perception and cognition by assuming unlimited capacity and accuracy. These
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simulation models, typically validated to be collision-free, struggle to create critical sce-

narios. Additionally, computational models usually discuss driving in parts (lateral and

longitudinal subtasks) and lack completeness in modeling. In sec 2, we discuss different

existing driver behavior models in detail.

Variability in driver behavior can be attributed to numerous factors, both

abstract and tangible. Abstract factors encompass elements such as motivation, per-

sonality traits, and other subjective aspects. On the other hand, variability arises from

disparities in drivers’ cognitive and perceptual abilities. Although driving may not be as

complex as piloting an aircraft or as simple as walking, it still demands the processing of

relevant information, requiring moderate levels of perception and cognition. Each indi-

vidual driver possesses unique physical, sensory, cognitive, and information-processing

abilities, imposing different constraints and capabilities. To accommodate these limita-

tions, certain in-vehicle design features like side mirrors with a wider field of view and

the implementation of regulations such as speed limits have been introduced to enhance

road safety. However, despite these measures, road accidents persist. Many incidents

occur due to faulty perception, stemming from the imperfect acquisition and processing

of information. These failures in driving, as discussed by Rumar, can be categorized

into two main types: cognitive failures and perceptual failures [4]. Both types of failures

significantly diminish driver performance and increase the likelihood of accidents.

There is a need for a theory that integrates task-specific driving behavior

into the broader context of driving with the goal of creating a more realistic human

driver model that takes into account psychological and cognitive aspects and closely
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mimics real-world behavior. Human drivers face limitations in cognitive abilities and

perception, such as neuromuscular delays, sensory constraints, and limited information

processing. Cognitive architectures like SOAR [5], QN-MHP [6], and ACT-R [7] provide

valid frameworks to model these limitations. In sec 3, we introduced a comprehensive

approach to driver modeling by proposing a computational model of human driver be-

havior based on a hybrid cognitive architecture. The model incorporates perceptive and

cognitive aspects that account for different cognitive and perceptive limitations inherent

to humans to replicate real-world behavior and provide a more precise characterization

of factors contributing to accidents.

Our proposed model, CogMod, incorporates working and long-term memory

[8], schema theory [9], and visual gaze modeling to simulate drivers with a restricted

field of view and sensory range. Behavioral studies have shown that working memory

plays a crucial role in compensating for these limitations by approximating the actions

and locations of relevant objects. To emulate this process, CogMod utilizes a dead-

reckoning-based approximation mechanism to update information about objects outside

the FOV. This incomplete information is then stored in its working memory to inform

decision-making. In order to mirror the observed variability in information processing

speed among human drivers, CogMod’s access to and processing of both working and

long-term memory are deliberately restricted. This limitation is integrated into the

hybrid cognitive architecture employed by CogMod, enabling the model to simulate

the variability of human driving behavior realistically. We also provide a framework to

incorporate existing task-specific models using schema and subtasks (see sec 3.3).
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CogMod’s ability is assessed through simulation in two distinct car-following

scenarios. In sec 4, the details of the simulation setup are provided. A detailed discus-

sion on the implication of the simulation result can be found in the evaluation section

(sec 5). In the first evaluation, referred to as the braking scenario, CogMod demon-

strated its capability to exhibit variable behavior. This was achieved by simulating

a scenario where the preceding vehicle abruptly halted after braking sharply once the

following vehicle reached a specific trigger distance. By simulating varying cognitive

processing abilities, CogMod successfully produced different stopping distances within

this scenario. The evaluation of the model focused on analyzing the distribution of

stopping distances across different cognitive processing times. In the second evaluation,

referred to as the follow scenario, a car-following scenario from the HighD dataset was

utilized to examine CogMod’s capacity for scenario augmentation. In comparison to the

Intelligent Driver Model (IDM), CogMod effectively enhanced the existing scenario by

incorporating variable driving behavior, thereby increasing its complexity.

The novelty of this research is three-fold; First, we provide a computational

model for human driving behavior that takes into account the cognitive and perceptive

limitations of humans. Second, we provide a framework to ingrate different task-specific

driver models within a cognitive architecture. Finally, we evaluate the model’s capability

to generate critical scenarios by comparing it with the intelligent driver model by using

scenarios from the HighD dataset.
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2 Related Work

Understanding and modeling human drivers have been extensively studied in

various disciplines such as psychology, computer science, behavioral science, cognitive

science, ergonomics, and accident research, resulting in a wide range of theories and

models. These studies aim to improve traffic infrastructure and regulations for a more

efficient mobility ecosystem. Human driver modeling research can be broadly catego-

rized into general behavioral theory and frameworks, as well as detailed computational

models of specific driving tasks.

2.1 General Behavioral Theory and Frameworks

Research in the field of human driver behavior can be classified into two main

categories: theories and frameworks that describe motives, decision-making processes,

and driving decision categories, primarily studied in psychology and cognitive science,

and qualitative descriptions of human driver behaviors. These researches encompass

motivational models of driving and interdisciplinary efforts in mental workload and

multiple resource theories. The major drawback of these models is that due to explaining

the general trend of driving, they are often very abstract. Implementing them in a

simulation will require concrete definitions and details.

2.1.1 Motivational Models

Research under this category presents theories and frameworks to describe the

overall motive behind human driving behavior and what process makes drivers prefer
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one decision over another. These models often introduce the concept of “homeostasis”

to explain the satisficing nature of driving. Homeostasis means maintaining a steady

state for risk and capability despite external environmental changes [10, 11, 12].

Fuller et al. identified three types of risk: objective risk, subjective risk es-

timation, and the feeling of risk, where objective risk is factual and after-event, while

the other two are personal perceptions and reactions [13]. Fuller also proposed a model

where driver decision-making is based on the subjective evaluation of task difficulty

rather than risk [12]. This model suggests that task difficulty results from the dy-

namic interplay between driving task demands and the driver’s capabilities. The task

is deemed too hard when demand surpasses capability, leading to potential loss of con-

trol and accidents. Gibson and Crooks’ concept of the “field of safe travel” aligns with

subjective risk and refers to the possible unimpeded paths a driver can take based on

their risk assessment [14]. Risk-threshold models suggest that drivers strive to balance

subjective and objective risk, and behavior is directly tied to perceived risk. Under their

zero-risk model, drivers generally perceive no risk until it exceeds a threshold, triggering

risk mitigation [15]. In our CogMod model, we adopt the performance degradation idea

of the human drivers with increased task demand and driver capabilities. The model

makes assumptions about the task demand and models the driver capacity to simulate

driving performance degradation.
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2.1.2 Information Processing Models

Information processing models describe driving as an output of a sequential

information-processing system, often applying the perception-cognition-action (PCA)

framework to explain information transformation [16]. These models include cognitive

architecture-inspired driver modeling, although only a subset of driving tasks has been

implemented in this context. Related theories include mental workload and resource

theory, frequently discussed in tandem with driving [17, 18, 19]. Resource theory ex-

plores human mental resources (perceptual, cognitive, and motor), emphasizing resource

demand, overlap, and allocation. Two principal perspectives exist; the undifferentiated

resource pool [20] and Wicken’s multiple resource theory [17], the latter proposing mul-

tiple resource supplies and better task timesharing when tasks use different levels across

the three dimensions [21]. It later incorporated a fourth dimension, visual channels [17].

Mental workload mainly concerns the resource demand aspect and outlines

the demands tasks impose on limited human mental resources. Different subjective and

physiological measures of mental workload have been identified in driving experiments

[22, 23, 24]. Both low and high-complexity situations can provoke overload, demanding

high vigilance and strategic approaches [19]. Information processing models, mental

workload, and resource theory have been instrumental in studying performance degra-

dation in dual-task driving situations. Our model adopts the idea that demand overload

can significantly impair driving performance. CogMod places deliberate restrictions on

different cognitive resources to simulate the information processing overload situation.
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2.2 Task Specific Computational Model

Detailed computational models of human driving behavior have been researched

under traffic modeling research, computer science, cognitive science, and ergonomics.

Traditionally the focus of traffic simulation models has been to study the impacts of

road design and traffic management in congestion situations. Usually, these model ex-

plains driving partially (for only a small subpart like lane following, lane changing, etc.).

However, CogMod provides a framework to integrate these models in a coherent way so

more aspects of driving can be modeled together.

2.2.1 Microscopic Driver Model

Models under this category usually divide driving into specific tasks and build

computational models for those tasks. Driving is divided into lateral and longitudinal

movements and decision-making, which are usually modeled separately. Usually, lateral

and longitudinal models describe drivers’ behavior using analytical equations containing

various parameters [25, 26, 27, 28]. Separately modeling specific tasks provides the

flexibility to examine each task independently; however, the interaction between these

specific tasks is not thoroughly understood. A framework that can realistically integrate

these task-specific models can increase that understanding. CogMod does exactly that

by combining specific tasks to simulate their interaction under a coherent framework.

Longitudinal vehicle movement models: The Gazis-Herman-Rothery (GHR)

model proposes that acceleration is a function proportional to the ratio of relative ve-

locity to the distance between the following vehicle and the leading vehicle [26]. This
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calculation includes the reaction time of the following vehicle to measure the relative

speed and distance. However, to counter the GHR model’s constraint with zero relative

velocity, Newell proposed the notion of adiabatic dependency of velocity on the relative

distance [29]. Additionally, the Gipps model introduced a dual-mode representation of

driving, including free-flow mode and car-follow mode, to express a vehicle’s longitudi-

nal movement [27]. The intelligent Driver Model (IDM) represents the vehicle’s velocity

using relative distance, relative velocity, and desired gap. The equation is the combi-

nation of two-equation describing two modes [25]. In the free-flow mode, the vehicle

accelerates according to the desired acceleration of the driver. The other part represents

the deceleration tendency when the vehicle perceives a leading vehicle in close proxim-

ity. CogMod uses IDM for the longitudinal subtask with the following changes. Instead

of using perfect information and directly outputting the velocity, CogMod uses imper-

fect information from the working memory and adds a delay in executing the control

values. Any of the existing longitudinal models is usable in CogMod by making the

above-mentioned changes.

Lateral vehicle movement models: Lateral movement models, essential

for vehicular lane-change decisions, generally adopt rule-based methodologies. In the

Gipps model, the rule-based method asks three questions to decide when to perform a

lane change [27]. These questions are about the possibility, necessity, and desirability of

the lane change. Ahmed’s model categorizes lane changes into mandatory and discre-

tionary, using a random utility approach to model responses [28]. Wiedemann’s model,

another rule-based model, distinguishes lane changes into shifts to faster or slower lanes
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based on the situation. These models focus on the decision-making process, including

drivers’ intentions, the favorability of target lanes, and the physical possibility of lane

change [30]. Lastly, the Minimizing Overall Braking Induced by Lane change (MO-

BIL) model encapsulates the compromises drivers make during a lane change, with a

’politeness factor’ that accounts for the potential discomfort imposed on other drivers

[31]. These models collectively offer insights into the complex processes governing lane-

change decisions in vehicular traffic. In its current form, CogMod does not include any

lateral movement model. In the next iteration of this research, we plan to include a

lane change model with CogMod.

These models mostly do not involve cognitive modeling and have limited to

no ability to describe driver behavior under extreme situations. However, some re-

search extended the existing equations by adding new parameters to account for human

variability [32, 33].

2.2.2 Cognitive Architecture-based Driver Model

Several research studies have used cognitive architectures, namely ACT-R [34]

and QN-MHP [35], to develop models that simulate human driving behavior. Salvucci

et al. utilized ACT-R to model lane following and changing behaviors [36]. Despite

simulating some complex behaviors, it fell short in modeling multitasking scenarios due

to ACT-R’s limitations. In response, Yenfei et al. modified the ACT-R framework

to process rules in parallel but encountered synchronization issues [7]. Conversely, QN-

MHP has shown more capability in multitasking scenarios. Various models based on QN-
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MHP have been proposed for steering, speed control, lane-changing, and car-following

behaviors, exhibiting a common implementation pattern from stimuli perception to

action initiation [37, 6, 38].CogMod uses theories from ACT-R and QN-MHP to create

a hybrid cognitive model.

3 Cognitive Driver Behavior Model: CogMod

The driver model in our study is primarily composed of two central compo-

nents: the vision module and the cognitive architecture module. The vision module

features the gaze component, which dictates the driver’s line of sight [Fig 1]. The cog-

nitive architecture module defines what information to process and how much time it

takes to process information and take action. [Fig 4] shows the complete architecture

of the cogmod driver.

3.1 Gaze Triangle

Our modeling approach divides the gaze element into eight distinct directions,

as illustrated in Figure 1. Essentially, the gaze takes the form of a triangle, defined by

its direction (from the driver’s perspective), the field of view’s (FOV) angle along that

direction, and a specific distance. The gaze’s orientation is denoted by a theta value,

determined from the driver’s vantage point, with a rightward head movement signifying

a negative theta. This direction informs the creation of two vectors drawn by two lines

inclined at a FOV/2 angle. We then select a point on each of these lines based on the

specified distance. Connecting these two points with the driver’s eye location, we form
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Figure 1: Gaze Triangle

the gaze triangle.

In our simulation, drivers perceive objects within this gaze triangle, with their

information updated based on actual values from the simulation. For objects outside the

gaze triangle, the model uses a simple dead reckoning process to assume they maintain

their perceived speed and course. We sample the gaze direction at each simulation step

from a Gaussian distribution, which varies according to specific tasks. The distribution’s

mean and variance reflect a task-based emphasis on different areas. For instance, a

driver on a straight road with no leading vehicle will gaze away more from the center,

whereas the presence of a lead vehicle causes the driver to focus more centrally due to

the moving vehicle ahead. Another realistic way to model would be to use wrapped
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normal distribution. We plan to explore this in our future work.

The driver requires some time to transition from one visual direction to an-

other. The time required for the transition is usually a variable. In CogMod, a driver

requires one simulation step for transitioning. The driver gets the exact information in

the next simulation step. These constraints restrict the CogMod driver from changing

visual direction too frequently.

Direction Name Gaze Direction (degree) FOV Distance Gaze zone

Center 0 50 100 AOB

Left 70 70 70 AOL

Right -70 70 70 BOC

Left Blind Spot 130 30 20 KOJ

Right Blind Spot -130 30 20 DOE

Left Mirror 160 20 50 IPH

Right Mirror -160 20 50 FQG

Back 180 45 100 JOE

Table 0.1: Different Gaze direction used in CogMod

3.2 Cognitive Architecture

Cognitive architectures like QN-MHP and ACT-R simulate human cognitive

abilities. QN-MHP employs queuing network and symbolic approaches, dividing pro-

cesses into perception, cognition, and motor subnetworks [Fig 2]. ACT-R consists of

programmable modules and a production system [Fig 3]. The Queuing Network-Model

Human Processor (QNMHP) is a computational architecture that integrates two cogni-

tive modeling approaches (queuing network and symbolic). QN-MHP decomposes the

mechanism from sensory stimulus to initiating actions into three parallel subnetworks
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of processes: perception, cognition, and the motor subnetwork. On the other hand,

ACT-R is a hybrid cognitive architecture. It comprises a collection of programmable in-

formation processing modules: visual, goal, declarative, and manual, and a production

system coordinating communication between modules. We use the Queuing Network

Theory from QN-MHP and adopt ACT-R’s buffer-centric memory access mechanism

to create the new architecture. There exists a recent Python implementation of the

ACT-R architecture, which is more suitable for linguistic research. We created our own

simpler implementation in python to integrate ACT-R and QN-MHP. The combined

architecture allows us to use existing task-specific analytical traffic simulation models

for lane/car-following and lane maintenance.

Figure 2: The Queuing Network-Model Human Processor (QN-MHP) (from [39]). (a)
Perceptual: 1=common visual processing; 2=visual recognition; 3=visual location;
4=location and recognition integrator; 5=sound localization; 6=linguistic processing;
7=processing of other sounds; 8=linguistic and other sounds integrator. (b) Cognitive:
A=visuospatial sketchpad; B=phonological loop; C=central executor; D=goal proce-
dures; E=performance monitoring; F=high-level cognitive operations; G=goal selection.
(c) Motor: V=sensorimotor integration; W=motor element storage; X=movement tun-
ing; Y=motor programming; Z=actuators.
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Figure 3: The Adaptive Control of Thought-Rational model (from [40]) .

Our new architecture integrates the Queuing Network theory from QN-MHP

and ACT-R’s buffer-centric memory access mechanism, allowing us to use analytical

traffic simulation models for car-following and lane maintenance tasks. CogMod ar-

chitecture includes working memory, a central executor, three server units, and two

distinct PID controllers. The working memory serves as a short-term repository, en-

abling temporary storage and processing of information to assist cognition and action.

Although theoretically capable of retaining accurate world simulations, we’ve imple-

mented constraints to simulate limited human information processing capabilities. The

central executor, equipped with instant access to buffers and working memory, manages

the driving algorithm composed of monitoring, decision-making, and control functions.

Each of the server units hosts a queue and a buffer, processing schema requests at

adjustable frequencies. Lastly, two separate PID controllers are employed to translate

target direction and speed into vehicle control inputs. One handles braking and throttle
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controls (longitudinal PID), while the other adjusts the steering input (lateral PID).

Figure 4: CogMod architecture.

3.3 Subtask and Schema

Driving is a multifaceted activity composed of numerous tasks. In CogMod

implementation, we’ve subdivided the core driving task into two critical subtasks, lon-

gitudinal and lateral control, modeled using schema theory principles [41]. According

to schema theory, knowledge is stored in memory in the form of schemas. A schema

may be defined as a structured mental pattern of thoughts or actions that aids in the

organization of knowledge. A schema may contain a large amount of information but

can be processed in memory as a single element. High-level schemas incorporate low-

level schemas in an automated manner that can be manipulated easily in memory after

extensive learning episodes [42]. Skilled performance develops by building increasing

numbers of ever more complex schemas by combining lower-level schemas into higher-
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level schemas [43].

Figure 5: Subtask execution model

Subtasks are modeled using schema. The rationale is that drivers go through

a learning process before getting their driving license. During this time, drivers develop

different schemas to deal with necessary maneuvers on the roads, such as left/right turns,

lane changes, etc. This knowledge, encoded in the architecture as memory and compu-

tation schemas, is pivotal to proficient task performance. Memory schemas, stored in

the long-term memory unit, provide the parameters required to execute computation

schemas stored in the complex cognitive process unit. Computation schemas, in turn,

use memory schemas and information from the working memory to generate short-term

targets for vehicle speed and direction.

In the longitudinal driving subtask, we employ the Intelligent Driver Model

(IDM) to regulate speed control, which involves managing the vehicle’s speed through

brake and throttle adjustments. This subtask transitions from lane-following to car-
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following when another vehicle is nearby. In contrast, the lateral control, or lane-

keeping subtask, requires continuous steering adjustments to keep the vehicle centered

in its lane. The driver uses two points, near and far, to maintain the vehicle’s position

and anticipate the road’s curvature. Each subtask initiates a specific memory schema

request during execution, pausing until the processed schema request is received. The

subtask then generates a computation schema request, yielding the next short-term

speed and direction targets. These targets are sent to the motor unit as a memory

schema, replacing the previous targets, and are then converted into actual vehicle control

values by PID controllers, thus completing the driving process.

4 Simulation Setup

We used Carla [44] to simulate and evaluate our model. Carla is an AV sim-

ulation engine built on top of the Unreal game engine. The simulator can take road

network descriptions in OpenDRIVE [45] format and has several prebuilt agents (basic

and behavioral agents) and vehicle models. The vehicle control has normalized throttle,

steer, and brake control values along with hand brake, reverse mode, and gear values.

We used a subset of these controls (steer, brake, and throttle).

4.1 Brake Scenario

We used the straight road of a T intersection for our simulation [fig 7]. We used

two agents (Carla’s basic agent and the CogMod agent) to simulate the car-following

scenario for our evaluation. In fig 9, the pictorial depiction of the scenario is provided.
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Figure 6: Simulated braking scenario

4.1.1 Scenario Description

The simulation starts with spawning the basic and CogMod agents with a 30-

meter initial distance. The basic agent is set with a target speed of 10 km/h. So at

the start of the simulation, the basic agent gains speed to reach the target speed. The

CogMod agent following behind is set to get a max speed of 20 km/h. Eventually, the

distance between the agents decreases due to positive relative speed. We start recording

data for the car-following scenario after the distance between vehicles reaches the trigger

distance and both vehicles are close to their target speed. We used 20 meters as the

trigger distance for our scenarios. The basic agent brakes sharply after the scenario

starts with a constant brake value. We used the normalized value 0.5 (50% maximum

brake pressure) as the brake value for the Carla basic agent. The CogMod driver notices

the basic agent is inside a 30-meter radius due to limitations imposed on the working
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memory. After perceiving the vehicle at the front, the CogMod agent slows down to

stop to avoid the collision.

4.1.2 Simulation Run

We varied the processing time of the CogMod agents by varying the time re-

quired to process schema in different servers and simulated the car-following scenario

100 times for each configuration to find the distribution of the minimum stopping dis-

tance. We used 7 msec as the simulation delta time. So one step in the simulation takes

7 msec. It takes one simulation step to create the schema request and one step to send

the request to the servers. Each server takes the defined amount of simulation steps to

process schema requests. We varied the processing time of the servers from 1-3 simula-

tion steps which means servers take 7-21 msec to process the schema request. The lowest

time for executing a subtask (from creating memory schema for long-term memory to

sending schema to the motor server) is 84 msec (if only one subtask is running). Server

processing time increases with the simultaneous execution of multiple subtasks. Due to

the variable processing time and the other uncertainty (using Carla asynchronous mode

simulation), the CogMod driver stops at different distances in the simulated scenario.

4.2 Follow Scenario

The following section describes the steps we took in order to simulate the

HighD scenarios. We build a highway road exactly to the definition provided in the

dataset using the RoadRunner [46] software. RoadRunner outputs the FBX file that
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Figure 7: Birds eye view of the simulation world for braking scenario

Figure 8: Simulator view of the follow scenario simulation from HighD
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can be imported into the Unreal Game Engine using the Carla plugin.

4.2.1 Scenario Filtering

Our principal data source is the HighD dataset, consisting of 60 individual

recordings. Our attention was specifically drawn to the dataset from location id 2,

representing a section of the German autobahn devoid of any speed limits. This dataset

comprises numerous vehicular actions. Yet, for our validation, we focused exclusively

on scenarios where one car was following another. It was essential to confirm that

the leading car was unimpeded, i.e., no other vehicles disrupted its path during the

recording session. It should be noted that the dynamics alter when more than two cars

participate in the following scenario. Moreover, we only incorporated scenarios where

the car-following event persisted for more than 5 seconds (equivalent to a minimum of

125 frames as HighD records data at 25 fps).

In an attempt to record the CogMod drivers’ reactions precisely, we chose sce-

narios with an initial vehicle-to-vehicle distance surpassing 50 meters. This specification

ensures that the trailing CogMod agent doesn’t visually detect the leading vehicle until

they’re within this defined distance. We also ensured the selected scenarios had seg-

ments where the distance between vehicles was reduced from the starting measurement.

The rationale behind this is that scenarios with a continuous increase in the distance

suggest that the leading vehicle is outpacing the following one, generally leading to less

risk for the following vehicle. Our criteria were met by five scenarios in total from the

initial dataset. We used the scenario that has the lowest TTC value (TTC = 31).
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4.2.2 Simulation Run

We utilized Carla to simulate the car-following scenario. The simulation pro-

cess began with the spawning of the leading vehicle, followed by positioning the trailing

vehicle 800 meters away. This distance was chosen to provide adequate time for the

following vehicle to attain the target speed to initiate the scenario. The target speed

was defined as the speed of the following vehicle in the first frame of the scenario. Upon

reaching this target speed, the following vehicle maintains it until the scenario com-

mences. The scenario is initiated when the preceding vehicle enters a predefined trigger

distance, set to the initial gap between the vehicles in the first frame. After the scenario

trigger, the target speed is adjusted to 50 m/s (equivalent to 180 km/h). For model

evaluation, we used two different models in the simulation. One model only uses IDM

to generate the target velocity at each frame based on the surrounding, while the other

model uses CogMod to simulate the same scenario. Each model was simulated 10 times

in Carla synchronous mode. In fig 10, we showed a comparative result of both models.

4.3 Model Parameters

The following parameters are used during the simulation [Table 0.2]. These

parameters remained constant for each simulation run.
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Table 0.2: Model parameters

Braking Scenario Follow Scenario

Working Memory
Tracking Radius 30 m 61.8 m

Controller
PID lateral kp 1.95 1.95
PID lateral ki 0.05 0.05
PID lateral kd 0.2 0.2
PID longitudinal kp 1.0 20.0
PID longitudinal ki 0.05 5.0
PID longitudinal kd 0.0 0.0
Throttle max 0.75 (normalized) 0.95 (normalized)
Brake max 0.3 (normalized) 0.5 (normalized)
Steer max 0.8 (normalized) 0.8 (normalized)

Subtask - Lane Following
Desired Velocity 5.56 m/s (20 km/h) 50 m/s (180 km/h)
Safe Time Headway 1.5 s 0.5 s
Max Acceleration 2.73 m/s² 2.9 m/s²
Comfortable Deceleration 1.67 m/s² 1.67 m/s²
Preferred Stop Distance 6 m 6 m
Minimum Distance 1 m 1 m
Vehicle Length 4 m 4 m
Acceleration Exponent 4 4

Subtask - Lane Keeping
Far Distance 100 m 100 m

5 Evaluation

In this research, we used Time-to-collision (TTC) and stopping distance as a

surrogate to measure the criticality of a scenario. A TTC value at an instant t is defined

as the time that remains until a collision between two vehicles would have occurred if the

collision course and speed difference are maintained [47]. The safety stop distance is the

distance between the vehicle after it stops and the obstacle ahead. The time-to-collision

distribution has been applied in several studies to identify traffic safety. Usually, lower
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TTC values represent increased criticality. We showed that our model could generate

a variety of scenarios with variable stop distance in a hand-authored scenario and with

lower TTC by augmenting the HighD [48] data.

5.1 Braking Scenario

The increased processing time increases the reaction time for the agents. Ac-

cording to [49], response time for drivers can be decomposed into a sequence of compo-

nents: mental processing time (time required to perceive cue and decide on a response),

movement time (time required for motor movement), and machine response time (time

a mechanical device takes to perform its response). In our model, we varied only the

mental processing time by applying constraints on the servers. The motor movement

time is zero. Machine response time is also zero, so no time is required for the ap-

plied control to take effect. We set the preferred stopping distance to 6 meters, which

increased the likelihood of scenarios with that stop distance.

How far behind the agent will stop is determined by how much time CogMod

agents require to process driving-related information. Due to increased processing time,

drivers stop early or late, resulting in an increased deviation from the preferred stopping

distance. We showed our results in figure 9. Figure 9 shows nine distance distributions

with varying server processing times split into four groups. The legends are displayed

in numeric pairs. The pair specifies the processing time of the long-term memory (lm)

unit and complex cognitive (cc) processing unit accordingly. The green line in figure

9(a) shows the stopping distance with the highest processing time among the simulation
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Figure 9: Stopping distance distribution with varying processing time. The numeric
value denotes the required amount of simulation steps in long-term memory (lm) and
complex cognitive (cc) process server accordingly. a. (blue) lm: 1, cc: 1; (orange) lm:
2, cc: 2; (green) lm: 3, cc: 3. b. (blue) lm: 2, cc: 1; (orange) lm: 1, cc: 2. c. (blue)
lm: 3, cc: 1; (orange) lm: 1, cc: 3. d. (blue) lm: 3, cc: 2; (orange) lm: 2, cc: 3.
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results.

5.2 Follow Scenario

Simulation results from the following scenario indicate that employing the

CogMod driver model enables us to amplify the criticality of a scenario by increasing the

TTC (Time to Collision) of the scenario, as depicted in Figure 10. Distracted CogMod

agents generated scenarios where the TTC value decreased from the original scenario.

This outcome stems from both the cognitive architecture and the vision module. Due

to the serial nature of task processing, latency in information processing is inevitable.

Moreover, the driver’s field of perception is limited to the area within the gaze triangle

due to the constraints of the vision module. This restriction can often cause drivers to

miss viewing task-critical information, thereby contributing to an escalation in scenario

criticality. On the other hand, IDM agents failed to achieve the TTC value of the

original scenario due to the early braking, as the agent had perfect information about

the surrounding.

Figure 10: Distribution of TTC (left) Original scenario from HighD dataset, (mid)
Augmented using IDM, (right) Augmented using CogMod
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6 Conclusion

In this paper, we put forth a model of human driver behavior that is grounded

in a hybrid cognitive architecture. Our approach drew upon theories from a diverse range

of fields, including traffic modeling research, psychology, cognitive science, and behavior

science, to create a unified process of driving. This model is capable of integrating

multiple task-specific analytical driver models, particularly in the simulation of car-

following scenarios, under a common cognitive process framework. Importantly, the

model is able to reproduce scenarios wherein agents exhibit delayed decision-making

due to an increased duration of information processing. Along with processing time

limitations, human drivers also have a limited field of view and variable resolution of

visual information due to focus and peripheral vision, forcing the driver to look into a

selective portion of the available visual field. These limitations emerged in scenarios with

variable driving behavior that we used to augment existing scenarios. The model can

act reactively to changing AV behavior and can be used throughout the AV development

process.
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[23] C. J. Patten, A. Kircher, J. Östlund, L. Nilsson, and O. Svenson, “Driver experi-

ence and cognitive workload in different traffic environments,” Accident Analysis

& Prevention, vol. 38, no. 5, pp. 887–894, 2006.

[24] C. Gabaude, B. Baracat, C. Jallais, M. Bonniaud, and A. Fort, “Cognitive load

31



measurement while driving. in: Human factors: a view from an integrative per-

spective,” 2012.

[25] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical

observations and microscopic simulations,” Physical review E, vol. 62, no. 2, p. 1805,

2000.

[26] D. C. Gazis, R. Herman, and R. B. Potts, “Car-following theory of steady-state

traffic flow,” Operations research, vol. 7, no. 4, pp. 499–505, 1959.

[27] P. G. Gipps, “A behavioral car-following model for computer simulation,” Trans-

portation Research Part B: Methodological, vol. 15, no. 2, pp. 105–111, 1981.

[28] K. I. Ahmed, Modeling drivers’ acceleration and lane changing behavior. PhD

thesis, Massachusetts Institute of Technology, 1999.

[29] G. F. Newell, “Nonlinear effects in the dynamics of car following,” Operations

research, vol. 9, no. 2, pp. 209–229, 1961.

[30] B. Higgs, M. Abbas, and A. Medina, “Analysis of the wiedemann car following

model over different speeds using naturalistic data,” in Procedia of RSS Conference,

pp. 1–22, 2011.

[31] A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model mobil for

car-following models,” Transportation Research Record, vol. 1999, no. 1, pp. 86–94,

2007.

32



[32] M. Treiber, A. Kesting, and D. Helbing, “Delays, inaccuracies and anticipation in

microscopic traffic models,” Physica A: Statistical Mechanics and its Applications,

vol. 360, no. 1, pp. 71–88, 2006.

[33] M. Lindorfer, C. F. Mecklenbraeuker, and G. Ostermayer, “Modeling the imper-

fect driver: Incorporating human factors in a microscopic traffic model,” IEEE

Transactions on Intelligent Transportation Systems, vol. 19, no. 9, pp. 2856–2870,

2017.

[34] J. R. Anderson, M. Matessa, and C. Lebiere, “Act-r: A theory of higher level cog-

nition and its relation to visual attention,” Human–Computer Interaction, vol. 12,

no. 4, pp. 439–462, 1997.

[35] Y. Liu, R. Feyen, and O. Tsimhoni, “Queueing network-model human processor

(QN-MHP) a computational architecture for multitask performance in human-

machine systems,” ACM Transactions on Computer-Human Interaction (TOCHI),

vol. 13, no. 1, pp. 37–70, 2006.

[36] D. D. Salvucci, “Modeling driver behavior in a cognitive architecture,” Human

factors, vol. 48, no. 2, pp. 362–380, 2006.

[37] L. Bi, G. Gan, and Y. Liu, “Using queuing network and logistic regression to model

driving with a visual distraction task,” International journal of human-computer

interaction, vol. 30, no. 1, pp. 32–39, 2014.

[38] L.-Z. Bi, J.-X. Shang, and G.-D. Gan, “Modeling driver lane changing control with

33



the queuing network-model human processor,” in 2012 International Conference

on Machine Learning and Cybernetics, vol. 3, pp. 830–834, IEEE, 2012.

[39] O. Tsimhoni and Y. Liu, “Modeling steering using the queueing network—model

human processor (QN-MHP),” in Proceedings of the human factors and ergonomics

society annual meeting, vol. 47, pp. 1875–1879, SAGE Publications Sage CA: Los

Angeles, CA, 2003.

[40] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and Y. Qin,

“An integrated theory of the mind.,” Psychological review, vol. 111, no. 4, p. 1036,

2004.

[41] F. C. Bartlett, Psychology and primitive culture. CUP Archive, 1928.

[42] R. C. Anderson, “Role of the reader’s schema in comprehension, learning, and

memory,” in Theoretical Models and Processes of Literacy, pp. 136–145, Routledge,

2018.

[43] J. Sweller, J. J. Van Merrienboer, and F. G. Paas, “Cognitive architecture and

instructional design,” Educational psychology review, vol. 10, no. 3, pp. 251–296,

1998.

[44] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open

urban driving simulator,” in Conference on robot learning, pp. 1–16, PMLR, 2017.

[45] ASAM OpenDRIVE, “Asam opendrive v1.8.0,” 2022. [Online; accessed 5-May-

2022].

34



[46] “Roadrunner,” 2023. Accessed: June 12, 2023.

[47] D. Gettman and L. Head, “Surrogate safety measures from traffic simulation mod-

els,” Transportation Research Record, vol. 1840, no. 1, pp. 104–115, 2003.

[48] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highd dataset: A drone

dataset of naturalistic vehicle trajectories on german highways for validation of

highly automated driving systems,” in 2018 21st International Conference on In-

telligent Transportation Systems (ITSC), pp. 2118–2125, IEEE, 2018.

[49] M. Green, “How long does it take to stop? Methodological analysis of driver

perception-brake times,” Transportation human factors, vol. 2, no. 3, pp. 195–216,

2000.

35


	List of Figures
	List of Tables
	Abstract
	Introduction
	Related Work
	General Behavioral Theory and Frameworks
	Task Specific Computational Model

	Cognitive Driver Behavior Model: CogMod
	Gaze Triangle
	Cognitive Architecture
	Subtask and Schema

	Simulation Setup
	Brake Scenario
	Follow Scenario
	Model Parameters

	Evaluation
	Braking Scenario
	Follow Scenario

	Conclusion

	Bibliography




