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Abstract

In severe trauma and hemorrhage the early and empiric use of fresh frozen plasma (FFP) is

associated with decreased morbidity and mortality. However, utilization of FFP comes with

the significant burden of shipping and storage of frozen blood products. Dried or lyophilized

plasma (LP) can be stored at room temperature, transported easily, reconstituted rapidly

with ready availability in remote and austere environments. We have previously demon-

strated that FFP mitigates the endothelial injury that ensues after hemorrhagic shock (HS).

In the current study, we sought to determine whether LP has similar properties to FFP in its

ability to modulate endothelial dysfunction in vitro and in vivo. Single donor LP was com-

pared to single donor FFP using the following measures of endothelial cell (EC) function in

vitro: permeability and transendothelial monolayer resistance; adherens junction preserva-

tion; and leukocyte-EC adhesion. In vivo, using a model of murine HS, LP and FFP were

compared in measures of HS- induced pulmonary vascular inflammation and edema. Both

in vitro and in vivo in all measures of EC function, LP demonstrated similar effects to FFP.

Both FFP and LP similarly reduced EC permeability, increased transendothelial resistance,

decreased leukocyte-EC binding and persevered adherens junctions. In vivo, LP and FFP

both comparably reduced pulmonary injury, inflammation and vascular leak. Both FFP and

LP have similar potent protective effects on the vascular endothelium in vitro and in lung

function in vivo following hemorrhagic shock. These data support the further development of

LP as an effective plasma product for human use after trauma and hemorrhagic shock.

Introduction

Globally, it is estimated there are over 5 million deaths per year due to traumatic injury, many

of which occur from uncontrolled bleeding. [1] Hemorrhage in fact remains the number one

cause of early trauma deaths and the primary cause of potentially preventable deaths in both

military and civilian settings. In recent years, employing modern resuscitation strategies,
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which include the early, and empiric use of plasma in a balanced ratio with packed red cells

have reduced early mortality. [2–8] This decrease in mortality is thought to be more than just a

reduction in bleeding related deaths and is hypothesized to involve the protective effects of

plasma to an injured and impaired endothelium, termed the “endotheliopathy of trauma

(EoT).” [9,10] Clinically this is manifested as a pro-inflammatory state with vessel hyperperm-

ability and tissue edema, all of which can result in organ failures and late deaths.

While the use of plasma has demonstrated benefits on outcome, little is known about its

mechanism of action. Over the past few years pre-clinical and clinical studies have suggested

that the mechanism may not be solely related to hemostasis, but also due in part to its ability

to globally promote systemic vascular stability, defined by decreased endothelial cell (EC)

permeability, decreased inflammation in the lungs and systemically as well as improved hemo-

dynamic stabilization following hemorrhagic shock. [10–18] Plasma resuscitation in a hemor-

rhagic shock rodent model has also been shown to partially restore a damaged endothelial

glycocalyx, including syndecan-1, the structural backbone of the glycocalyx [14,17,19]. Resto-

ration of the glycocalyx may improve outcomes after trauma and hemorrhagic shock by atten-

uating leukocyte-EC adhesion, platelet adhesion, and inflammatory cytokine binding by

establishing a physical barrier between the blood and EC barrier. [19–25] Plasma and plasma

products have been shown to decrease endothelial cell permeability, inflammation, and lung

injury both in vitro and in vivo and may contribute to improved outcomes [10–18].

Despite its benefits, the use of fresh frozen plasma (FFP) in traumatic injury comes with a

significant logistical challenge and the burden of shipping and storage of frozen blood prod-

ucts around the world. Conversely, lyophilized plasma (LP) can be stored at room tempera-

ture, transported easily, and reconstituted rapidly in remote and austere environments. [26]

Due to its rapid reconstitution time, LP can be administered much earlier than FFP and is

ideal for pre-hospital use where transport times are lengthened due to location and logistical

challenges. Furthermore, the storage lesion that develops in thawed plasma would not occur

with LP, as only what is needed is reconstituted. Once thawed, fresh frozen plasma is approved

for use for up to five days when stored at 4˚C. Our group has shown that the beneficial effects

of FFP on EC function and hemodynamic stability in vitro and in vivo decrease over time from

day zero thru day five of storage. [27] Our collaborators have also shown that an increase in

TGF-β in day 5 FFP inhibits endothelial cell migration, which potentially results in diminished

repair of injured vessels and tissue during trauma and HS. [12] There is considerable interest

therefore to develop dried plasma products in the US that have expanded storage capabilities

and can be rapidly reconstituted. In addition, pathogen reduction is feasible for dried products

and can potentially reduce the risk of infection of new emerging pathogens and transfusion

transmitted infections [26]. We therefore sought to determine if lyophilized plasma would

demonstrate comparable protection to FFP by examining endothelial cell function in vitro and

lung function in vivo in a clinically relevant mouse model of hemorrhagic shock.

Materials and methods

Plasma

Fresh Frozen Plasma (FFP) type male O+ was obtained from Gulf Coast Regional Blood Cen-

ter and from Blood Center’s of the Pacific (BCP). Lyophilized type male O+ plasma was

obtained from the HEMOCON (Portland,OR) and reconstituted in buffer provided by Hem-

con (Portland, OR). The lyophilized plasma utilized in the current study tested was produced

as part of a contract from the US Army. The program made significant progress in optimizing

conditions, resulting in a process that yielded factor levels within the normal range, The prod-

uct proceeded to and was successful in a phase I clinical trial. [28] However, the company is no

LP attenuates vascular permeability, inflammation and lung injury in HS
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longer in business, but the same technology is currently being developed by Vascular Solutions

(Maple Grove, Minnesota) which is part of Teleflex (Wayne, PA). It is expected that this pro-

gram will produce a FDA approved product for US use by 2020–2021. [26]

In vitro studies

Primary cells and cell lines. Early passage Human Umbilical Vein Endothelial Cells

(HUVECS) were purchased from Lonza (Walkersville, MD). Cells were maintained in EGM-

2MV media (Lonza) and used for in-vitro VE-Cadherin and B-catenin staining and flow

cytometry. U937 cells were obtained from ATCC (Bethesda, MD) and passaged in RPMI with

10% fetal bovine serum. All experiments were conducted in U937 between passages 3–8. All

cell lines were maintained at 37˚C and 5% CO2 in a humidified incubator.

Resuscitation fluids. Treatment groups tested in vitro were 1) FFP (Day 0 freshly thawed)

2) LP 3) Lactated Ringers Solution (LR) and 4) no treatment (media alone). All fluids were

diluted to 10% or 30% into EC media- EGM-2MV. We have previously shown 10% dilution to

be effective. [12,16]

Endothelial cell (EC) permeability. Collagen-coated 0.4μm pore size inserts were ob-

tained from BD Biosciences. ECs were seeded at 40,000 cells per insert well in a total volume of

500μl of EGM-2 MV media and cultured for 8 hours to allow for cell attachment and adhesion.

When confluence was reached, monolayers of ECs in the transwells were pre-treated with the

five treatment groups (FFP, LP, LR and media control) for one hour at 10 and 30% total well

volume. Permeability was then induced in monolayers with 50ng/ml VEGF-A165 from R&D

(Minneapolis, MN), administered simultaneously with the addition of FITC-Dextran. EC

monolayer permeability was tested by adding 50μl of 2mg/mL 40 kDa dextran conjugated to

alexa fluor 480 (Sigma-Aldrich, St. Louis, MO) to the upper chamber of each well (final con-

centration). 75 μl samples were removed at timed intervals from the bottom well to determine

the amount of fluorescent signal that had passed through the monolayer, which directly corre-

lates to the degree of paracellular permeability in each sample. Measurements were determined

with a fluorimeter (Biotek Synergy Biotek Winooski, VT) using excitation and emission wave-

lengths of 485nm and 530nm, respectively, from samples obtained 45 minutes after addition of

FITC-Dextran. This is the same experiment that was run in Wataha et al. (2013) [16]

Endothelial Cell Impedance Assays (ECIS). Endothelial cell barrier function was

assessed as described in Potter et al. (2015) [18]. Briefly, trans-endothelial electrical resistance

(TEER) is measured by ECIS system (ECIS 1600, Applied BioPhysics, Troy, NY) Confluent

HUVECs were treated with 10% FFP, LP, LR or media alone and TEER measured at 4/16/64

kHz continuously for 2.5 hours afterward (n = 6 /group). Resistance measurements were

expressed as the area under the curve for 2 hours.

In vitro VE-cadherin and β-catenin staining. ECs at passage 3 were seeded into 8-well

glass chambered slides and grown for 48 hours at 37˚C. The cells were treated with 10% dilu-

tions of the groups diluted into EGM2-MV basal media for 1 hour, and then stimulated with

VEGF-A (50 ng/ml) for 30 minutes (R&D Systems #293-VE-010, Minneapolis, MN). The cells

were then fixed in 2% formaldehyde and blocked in TBS-T + 2.5% normal goat serum for 60

minutes at room temperature. A rabbit α-VE-cadherin antibody (1:400 dilution, Cell Signaling

#2500 Beverly, MA), and a mouse α-β-catenin antibody (1:200 dilution, Cell Signaling #2677)

were applied overnight at 4˚C and detected using an Alexa 488 α-rabbit antibody (1:500 dilu-

tion, Molecular Probes #A-11034, Invitrogen, Carlsbad, CA) and an Alexa 568 α-mouse anti-

body (1:500 dilution, Invitrogen Molecular Probes #A-11031, Invitrogen). The next day the

slides were mounted using ProLong Gold anti-fade reagent with DAPI (Molecular Probes P-

36931, Invitrogen) to obtain nuclear staining. Images of the cells were taken at 40x on a Nikon
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A1R confocal microscope (Nikon Instruments, Inc, Melville, NY). Merged images (yellow)

depict the degree of co-staining of VE-Cadherin and β-catenin indicating adherens junctions

(AJs) mobilized at the endothelial cell membranes.

Leukocyte binding assays. ECs were grown to confluence on 96-well plates. 104 cells/well

were seeded and incubated at 37˚C for two days or until confluent. Cells were pre-treated with

the treatment groups for 1 hour at 10 and 30% plasma product of total well volume. As we

have previously described, adhesion molecule expression was stimulated by the addition of

TNFα (50ng/ml) for 4 hours following pre-treatment of the cells. [16] U937 cells were fluores-

cently labeled with Calcein-AM (Invitrogen Carlsbad, CA). A total of 104 U937 cells, a well-

established monocyte line, were added to wells and allowed to adhere for one hour. Non-

adherent cells were gently washed away (3 washes) in PBS and labeled cells that remained

bound to the ECs were quantified by fluorescent readings on the Biotek Analyzer. This is the

same experiment that was run in Wataha et al. (2013) [16]

In vivo studies

Rodent model of hemorrhagic shock. All procedures performed were protocols

approved by the University of Texas Houston Medical School’s Institutional Animal Care and

Use Committee (IACUC). The experiments were conducted in compliance with the National

Institutes of Health guidelines on the use of laboratory animals. All animals were housed at

constant room temperature with a 12:12-h light-dark cycle with access to food and water ad

libitum. We used our established coagulopathic mouse model of trauma-hemorrhagic shock.

[15,18] Male C57BL/6J mice, 20–25 grams, underwent isoflurane anesthesia. A midline lapa-

rotomy incision was made, the organs and small bowel inspected, and then the incision closed.

Bilateral femoral arteries were cannulated for continuous hemodynamic monitoring and

blood withdrawal or resuscitation. Mice were bled to a mean arterial pressure (MAP) of 35±5

mmHg and maintained for 90 minutes. At the completion of the shock period, mice were

resuscitated with either LR at 3x shed blood volume or FFP or LP at 1x shed blood volume.

Mice will be awoken from anesthesia at the conclusion of resuscitation then underwent eutha-

nasia by CO2 inhalation confirmed by cervical dislocation at 3 hours as we have found this

time optimal to study organ function.[9]

Lung inflammation and histopathology. Lung inflammation was assessed by myeloper-

oxidase (MPO) immunostaining as in indicator of neutrophil influx. Paraffin-embedded tissue

was cut into 5 μm-thick sections then incubated with MPO primary antibody (1:100 MPO

mouse monoclonal antibody; Abcam, Cambridge, Mass) followed by incubation with second-

ary antibody (goat antiY-mouse; Alexa Fluor 568; Invitrogen). Two random images were

taken from each lung section with a fluorescent microscope (Nikon Eclipse Ti, Melville, NY)

at 200X magnification and immunofluorescence quantified using ImageJ software (National

Institutes of Health). Results are expressed as relative fluorescent units (RFU). Sectioned tissue

was also stained with hematoxylin and eosin (H&E) then scored by a blinded examiner for

alveolar thickness, capillary congestion, and cellularity as originally described by Hart et al.

and as we have employed. [14,29,30]

Lung vascular permeability. To measure Evans blue dye extravasation, animals received

an intravenous injection of 3% Evans blue (4 mL/kg) two hours after the completion of resus-

citation. One hour later, at the time of sacrifice, animals were perfused via right ventricle with

4˚C PBS for 10 minutes to remove intravascular dye followed by 4% paraformadehyde at 4˚C.

Lungs were harvested then incubated in N-methylformamide for 24 h at 55˚C to allow for dye

extraction. After centrifugation, absorbance was measured in the supernatant at 620 nm using

the VersaMax plate reader (Molecular Devices Inc, Sunnyvale, CA).

LP attenuates vascular permeability, inflammation and lung injury in HS
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Lung edema. Lung tissue was weighed and then dried to constant weight at 50˚C for 72

hours. The ratio of wet-to-dry was calculated by dividing the wet weight by the dry weight.

Statistical analysis. All data were analyzed by one-way analysis of variance (ANOVA)

with Tukey’s test for post-hoc analysis with p<0.05. Data are expressed as mean ± SEM. In
vitro data was repeated in triplicates unless indicated and for in vivo studies, n = at least 8/

group.

Results

FFP and LP decrease endothelial permeability in vitro

We have previously shown that FFP and pooled, solvent detergent treated spray dried plasma

decreased endothelial cell permeability in vitro. [16] In the current study, we sought to deter-

mine if LP had similar effects on endothelial permeability. Fig 1A and 1B demonstrate that

both LP and FFP attenuate EC permeability to FITC conjugated-dextran tracers over time

compared to LR and media alone at concentrations of 10% and 30% of the total fluid volume.

In support of these findings are the data shown in Fig 2 that EC monolayer resistance is simi-

larly increased by FFP and LP depicted as the raw traces in (Fig 2A) and the bar graph depic-

tions of total area under the curve (Fig 2A). Monolayer electrical resistance is directly

correlated to the permeability of an endothelial monolayer. [31,32] Increased resistance indi-

cates decreased permeability. These results both support the premise that FFP and LP equiva-

lently attenuate EC permeability and monolayer barrier dysfunction.

FFP and LP preserve EC adherens junctions on activated endothelial cells

To further understand at the molecular level the effects of LP and FFP on endothelial junctional

stability, we investigated the adherens junctions. Adherens junctions are critical regulators of

vascular endothelial junctional stability and composed of beta-catenin and VE-cadherin.
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Fig 1. LP and FFP attenuate EC permeability on Transwells. Transwell permeability of treated wells to FITC-dextrans (40kD) after treatment with 10%(A) and 30%

(B) of the fluids tested respectively. FFP and LP are significantly less than control and LR at time points 30 minutes and beyond while FFP and LP are significantly

different on at the 90 and 120 time points, p< 0.05 via post hoc turkey tests of an unpaired Two-way ANOVA. Controls and FFP were featured in Wataha et al. (2013).

[16].

https://doi.org/10.1371/journal.pone.0192363.g001
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[20,33–36]. Monolayers stimulated with VEGF-A, an instigator of AJ breakdown and paracellu-

lar permeability, were stained for both beta-catenin and VE-Cadherin (Fig 3). FFP and LP both

qualitatively restored adherens junction integrity as depicted by enhanced staining pattern of

VE-Cadherin (green) and beta- catenin (red). Neither LR nor media alone had any notable

effects on preventing adherens junction breakdown by VEGF-A.

FFP and LP attenuate endothelial cell-leukocyte binding

We next sought to determine if plasma products modulated leukocyte binding to ECs. U937

cells, a monocyte cell line that we have used in the past on these studies of leukocyte-EC bind-

ing were utilized [16,33]. To stimulate U937 binding, ECs were treated with TNF-α then the

relative binding of calcein-labeled U937 cells bound to ECs was quantified by fluorimetry.

Binding studies revealed that treatment of the ECs with 30% and 10% LP significantly inhib-

ited U937 binding to the ECs (Fig 4A and 4B) compared to media alone and LR as depicted by

fold decrease in leukocyte binding. Only 30% FFP showed a significant inhibition of binding.

Furthermore, there were no significant differences found between the effects of FFP and LP on

leukocyte-EC adhesion at 10% but at 30% LP significantly decreased binding compared to

FFP.

LP reduces pulmonary vascular permeability, edema, and inflammation

following HS

To evaluate the ability of LP to reduce the HS-induced lung injury, we employed our estab-

lished murine model of fixed pressure HS and laparotomy (Fig 5). [16,17,34] [12,13,25] We

found that lung injury was significantly attenuated in LP and FFP treated mice as indicated by

histopathological analysis (Fig 6A–6E) of H&E stained sections and calculated lung injury

scores (Fig 6F). Myeloperoxidase (MPO) staining, an indication of neutrophil infiltration,

revealed decreased MPO staining in the lungs from LP and FFP treated mice compared to LR
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Fig 2. LP and FFP increase TEER of EC monolayers. (A) Mean average ECIS generated traces of the TEER of HUVECs treated with 10% media (control), LR, FFP or

LP. (B) Area under the curve analysis for thirty minutes after the addition of treatment. � = (p<0.05) compared to control via post hoc turkey tests of an unpaired one-

way ANOVA.

https://doi.org/10.1371/journal.pone.0192363.g002
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and shock alone and was comparable to shams. (Fig 7A). In a separate set of experiments, HS

mice treated with LP and FFP similarly decreased permeability and lung edema (Fig 7B and

7C). LP and FFP comparably decreased Evan’s Blue dye extravasation, indicative of permeabil-

ity and decreased lung wet:dry ratios compared to LR and shock alone.

Discussion

We have previously shown that fresh frozen plasma has potent protective effects on EC func-

tion and vascular barrier integrity in vitro and in vivo. [12,14,16,20] We now hypothesized that

the stabilizing effects of LP on the endothelium in vitro and in vivo would be superior to Lac-

tated Ringers solution and similar to our findings for FFP. We have indeed demonstrated that

LP and FFP similarly inhibited EC permeability and trans-endothelial monolayer resistances,

adherens junction reconstitution and leukocyte-EC binding in vitro. Minor differences

between the two were found in that in vitro, LP is more effective at inhibiting leukocyte adhe-

sion than FFP at the lower dose (10%). This is also the case for theability to inhibit permeability

to dextran dye in endothelial monolayers. These difference may be manifesting in vitro since

the donors of the LP are different than the FFP. However, these differences did not appear in
vivo as FFP and LP equivalently mitigated pulmonary vascular permeability and edema, lung

injury and inflammation induced by HS. Taken together, these studies support the central

premise that LP can potentially be used as a substitute to FFP to correct endothelial dysfunc-

tion and mitigate the endotheliopathy of trauma (EOT). [9]

FFP resuscitation has also been shown to partially restore the damaged endothelial glycoca-

lyx, and syndecan-1 expression. [13,15,20] Restoration of the glycocalyx physically reinforces

the endothelial barrier and attenuates leukocyte-endothelial cell adhesion. [21] We have not

examined the effect of LP on the glycocalyx but our current data suggests it would be equally

Fig 3. FFP and LP prevent VEGF disruption of adherens junctions. Cells were pretreated with LR, FFP, LP or not

treated for 1 hour before VEGF was added. Cells were fixed and stain for (A) Dapi (blue), β-Catenin (red) and

VE-Cadherin (green). In (B) it is qualitatively observed that FFP and LP preserve the overlap of VE-Cadherin and β-

Catenin (yellow) compare to untreated and LR controls.

https://doi.org/10.1371/journal.pone.0192363.g003
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Fig 4. LP and FFP reduce that amount of leukocyte binding in vitro. Fluorescently labeled U397 cells were added to wells of HUVEC

cells treated with 10(A) and 30(B) percent LR, FFP, LP or no treatment control. Unbound cells were removed after a period of one hour
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turkey tests of an unpaired one-way ANOVA. N.S. clarifies that the indicated groups are Not Significantly different. Controls and FFP

were featured in Wataha et al. (2013). [16].

https://doi.org/10.1371/journal.pone.0192363.g004
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restorative. Though we have focused our study on the lung, we have also shown that FFP mitigates

gut injury and inflammation in our mouse hemorrhagic shock model.[29] Additionally, work by

Alam and colleagues demonstrated that FFP decreased mortality, blood brain barrier compromise

and cerebral edema in a swine model of traumatic brain injury. [35] Based on the findings of the
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Fig 6. LP and FFP reduce the damage done to the lungs by a model hemorrhagic shock. Representational images of lungs stained with H&E from Sham (A), Shock

(B), Shock+ LR (C), Shock + FFP (D) and Shock + LP (E). Histopathology scores average across all animals (F). Bars indicate significant differences (p< 0.05) via post

hoc tukey tests based on a one-way ANOVA. N.S. clarifies that the indicated groups are Not Significantly different.

https://doi.org/10.1371/journal.pone.0192363.g006
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current study, we anticipate that LP would also provide protection to HS and trauma induced gut

and brain compromise. This is a future direction of ongoing investigations.

The current study focused on the effects of LP on the endothelium not coagulation. Others

have demonstrated that LP has potent corrective effects on coagulopathy in pre-clinical trauma

bleeding models, similar to FFP. Lyophilized or freeze dried plasma has also been shown to

have similar beneficial effects in reducing inflammation and mortality after HS in large animal

models. [35,37–40]

There are limitations of the current study. Both the FFP and LP were from single donors

but as we have demonstrated, donor variability can be present within single donor units of

plasma. [23] Another limitation of the study is the use of human plasma in mice. Using human

plasma in mice affords us the opportunity to study the clinical product used in humans in pre-

clinical models of hemorrhagic shock. We believe this to be of important translational benefit

but xeno-incompatibility is a possible confounder. However, when we compared the use of

mouse to human plasma in our murine model of HS we found a lack of specifies specific differ-

ences in pulmonary indices of injury, permeability or edema despite some differences in

hemodynamic parameters. [41] While our model of trauma/hemorrhagic shock does result in

coagulopathy as shown in our manuscript below by Peng et al. We did not access coagulation

in the current study, we were focused on endothelial function and inflammation. However, in

a study by Lee et al, full volume reconstituted LP retained on average 86% coagulation factor

activity compared to fresh plasma and when used in 1:1 ratios with red blood cells demon-

strated superior hemostatic efficacy compared to FFP.

In summary, our data support the concept that lyophilized plasma has potent systemic effects

on the vascular endothelium and post-hemorrhagic shock lung and mitigates the endotheliopa-

thy of trauma (EOT). Since there is a dire clinical need for dried plasma products in remote and

austere settings, both in the military and civilian settings, these data support the premise that LP

can be used in lieu of FFP in bleeding patients following severe traumatic injury.

Supporting information

S1 File. Data file for all figures. This file contains the raw data for all graphs contained in this

manuscript.
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Fig 7. Measures of permeability and inflammation in the lungs after hemorrhagic shock. (A) Resuscitation with FFP and LP reduce the number of cells positive for

MPO, a marker of inflammation compared to LR and shock alone. (B) Treatment with FFP or LP reduces the amount of Evans blue permeability to a point statistically

indistinguishable from sham treatment after 3 days. (C) Both plasma groups also attenuate edema compared to animals treated with LR but not compared to HS alone.

Bars indicate significant differences (p < 0.05) via post hoc tukey tests based on a one-way ANOVA.

https://doi.org/10.1371/journal.pone.0192363.g007
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9. Jenkins DH, Rappold JF, Badloe JF, Berséus O, Blackbourne CL, Brohi KH, et al. THOR Position

Paper on Remote Damage Control Resuscitation: Definitions, Current Practice and Knowledge Gaps.

Shock. NIH Public Access; 2014 May 1; 41(0 1):3–12.

10. Pati S, Potter DR, Baimukanova G, Farrel DH, Holcomb JB, Schreiber MA. Modulating the endothelio-

pathy of trauma: Factor concentrate versus fresh frozen plasma. Journal of Trauma and Acute Care

LP attenuates vascular permeability, inflammation and lung injury in HS

PLOS ONE | https://doi.org/10.1371/journal.pone.0192363 February 2, 2018 11 / 13

https://doi.org/10.1097/SLA.0b013e318185a9ad
https://doi.org/10.1097/SLA.0b013e318185a9ad
http://www.ncbi.nlm.nih.gov/pubmed/18791365
https://doi.org/10.1371/journal.pone.0192363


Surgery. 2016 Apr; 80(4):576–84–discussion584–5. https://doi.org/10.1097/TA.0000000000000961

PMID: 26808040

11. Holcomb JB, Pati S. Optimal trauma resuscitation with plasma as the primary resuscitative fluid: the sur-

geon’s perspective. Hematology Am Soc Hematol Educ Program. American Society of Hematology;

2013; 2013(1):656–9.

12. Pati S, Matijevic N, Doursout M-F, Ko T, Cao Y, Deng X, et al. Protective effects of fresh frozen plasma

on vascular endothelial permeability, coagulation, and resuscitation after hemorrhagic shock are time

dependent and diminish between days 0 and 5 after thaw. J Trauma. 2010 Jul; 69 Suppl 1:S55–63.

13. Haywood-Watson RJ, Holcomb JB, Gonzalez EA, Peng Z, Pati S, Park PW, et al. Modulation of synde-

can-1 shedding after hemorrhagic shock and resuscitation. PLoS ONE. 2011; 6(8):e23530. https://doi.

org/10.1371/journal.pone.0023530 PMID: 21886795

14. Kozar RA, Peng Z, Zhang R, Holcomb JB, Pati S, Park P, et al. Plasma restoration of endothelial glyco-

calyx in a rodent model of hemorrhagic shock. Anesth Analg. 2011 Jun; 112(6):1289–95. https://doi.

org/10.1213/ANE.0b013e318210385c PMID: 21346161

15. Peng Z, Pati S, Potter D, Brown R, Holcomb JB, Grill R, et al. Fresh frozen plasma lessens pulmonary

endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of

syndecan-1. Shock. NIH Public Access; 2013 Sep 1; 40(3):195–202. https://doi.org/10.1097/SHK.

0b013e31829f91fc PMID: 23807246

16. Wataha K, Menge T, Deng X, Shah A, Bode A, Holcomb JB, et al. Spray-dried plasma and fresh frozen

plasma modulate permeability and inflammation in vitro in vascular endothelial cells. TRANSFUSION.

2013 Jan; 53 Suppl 1(S1):80S–90S.

17. Rosemary A Kozar SP. Syndecan-1 Restitution by Plasma After Hemorrhagic Shock. J Trauma Acute

Care Surg. NIH Public Access; 2015 Jun 1; 78(6 Suppl 1):S83–6.

18. Potter DR, Baimukanova G, Keating SM, Deng X, Chu JA, Gibb SL, et al. Fresh frozen plasma and

spray-dried plasma mitigate pulmonary vascular permeability and inflammation in hemorrhagic shock.

Journal of Trauma and Acute Care Surgery. 2015 Jun; 78:S7–S17. https://doi.org/10.1097/TA.

0000000000000630 PMID: 26002267

19. Rahbar E, Cardenas JC, Baimukanova G, Usadi B, Bruhn R, Pati S, et al. Endothelial glycocalyx shed-

ding and vascular permeability in severely injured trauma patients. Journal of Translational Medicine

2015 13:1. BioMed Central; 2015 Apr 12;13(1):117.

20. Peng Z, Ban K, Sen A, Grill R, Park PY, Costantini TW, et al. Syndecan-1 plays a novel role in enteral

glutamine’s gut protective effects of the post ischemic gut: Role of syndecan-1 in gut protection by gluta-

mine. Shock. NIH Public Access; 2012 Jul 1; 38(1):57–62. https://doi.org/10.1097/SHK.

0b013e31825a188a PMID: 22706022

21. Lipowsky HH. The endothelial glycocalyx as a barrier to leukocyte adhesion and its mediation by extra-

cellular proteases. Ann Biomed Eng. 2012 Apr; 40(4):840–8. https://doi.org/10.1007/s10439-011-0427-

x PMID: 21984514

22. Ostrowski SR, Johansson PI. Endothelial glycocalyx degradation induces endogenous heparinization

in patients with severe injury and early traumatic coagulopathy. Journal of Trauma and Acute Care Sur-

gery. 2012 Jul 1; 73(1):60–6. https://doi.org/10.1097/TA.0b013e31825b5c10 PMID: 22743373

23. Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. A high admission syndecan-1 level, a

marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibri-

nolysis, and increased mortality in trauma patients. Ann Surg. 2011 Aug; 254(2):194–200. https://doi.

org/10.1097/SLA.0b013e318226113d PMID: 21772125

24. Johansson PI, Sørensen A, Perner A, Welling K, Wanscher M, Larsen CF, et al. Disseminated intravas-

cular coagulation or acute coagulopathy of trauma shock early after trauma? An observational study.

Critical Care. BioMed Central; 2011; 15(6):R272.

25. Chappell D, Dörfler N, Jacob M, Rehm M, Welsch U, Conzen P, et al. Glycocalyx protection reduces

leukocyte adhesion after ischemia/reperfusion. Shock. 2010 Aug; 34(2):133–9. https://doi.org/10.1097/

SHK.0b013e3181cdc363 PMID: 20634656

26. Pusateri AE, Given MB, Schreiber MA, Spinella PC, Pati S, Kozar RA, et al. Dried plasma: state of the

science and recent developments. Pidcoke HF, Spinella PC, editors. TRANSFUSION. 2016 Apr 1; 56

(S2):S128–39.

27. Matijevic N, Kostousov V, Wang Y-WW, Wade CE, Wang W, Letourneau P, et al. Multiple levels of deg-

radation diminish hemostatic potential of thawed plasma. J Trauma. 2011 Jan; 70(1):71–9–discus-

sion79–80. https://doi.org/10.1097/TA.0b013e318207abec PMID: 21217484

28. The Safety of Autologous Lyophilized Plasma Versus Fresh Frozen Plasma in Healthy Volunteers.

2009.

LP attenuates vascular permeability, inflammation and lung injury in HS

PLOS ONE | https://doi.org/10.1371/journal.pone.0192363 February 2, 2018 12 / 13

https://doi.org/10.1097/TA.0000000000000961
http://www.ncbi.nlm.nih.gov/pubmed/26808040
https://doi.org/10.1371/journal.pone.0023530
https://doi.org/10.1371/journal.pone.0023530
http://www.ncbi.nlm.nih.gov/pubmed/21886795
https://doi.org/10.1213/ANE.0b013e318210385c
https://doi.org/10.1213/ANE.0b013e318210385c
http://www.ncbi.nlm.nih.gov/pubmed/21346161
https://doi.org/10.1097/SHK.0b013e31829f91fc
https://doi.org/10.1097/SHK.0b013e31829f91fc
http://www.ncbi.nlm.nih.gov/pubmed/23807246
https://doi.org/10.1097/TA.0000000000000630
https://doi.org/10.1097/TA.0000000000000630
http://www.ncbi.nlm.nih.gov/pubmed/26002267
https://doi.org/10.1097/SHK.0b013e31825a188a
https://doi.org/10.1097/SHK.0b013e31825a188a
http://www.ncbi.nlm.nih.gov/pubmed/22706022
https://doi.org/10.1007/s10439-011-0427-x
https://doi.org/10.1007/s10439-011-0427-x
http://www.ncbi.nlm.nih.gov/pubmed/21984514
https://doi.org/10.1097/TA.0b013e31825b5c10
http://www.ncbi.nlm.nih.gov/pubmed/22743373
https://doi.org/10.1097/SLA.0b013e318226113d
https://doi.org/10.1097/SLA.0b013e318226113d
http://www.ncbi.nlm.nih.gov/pubmed/21772125
https://doi.org/10.1097/SHK.0b013e3181cdc363
https://doi.org/10.1097/SHK.0b013e3181cdc363
http://www.ncbi.nlm.nih.gov/pubmed/20634656
https://doi.org/10.1097/TA.0b013e318207abec
http://www.ncbi.nlm.nih.gov/pubmed/21217484
https://doi.org/10.1371/journal.pone.0192363


29. Hart ML, Ceonzo KA, Shaffer LA, Takahashi K, Rother RP, Reenstra WR, et al. Gastrointestinal Ische-

mia-Reperfusion Injury Is Lectin Complement Pathway Dependent without Involving C1q. J Immunol.

American Association of Immunologists; 2005 May 5; 174(10):6373–80. PMID: 15879138

30. W F, P Z, P PW, K RA. Loss of Syndecan-1 Abrogates the Pulmonary Protective Phenotype Induced

By Plasma After Hemorrhagic Shock. Shock. 2017 Jan 1;:1.

31. Giaever I, Keese CR. Use of Electric Fields to Monitor the Dynamical Aspect of Cell Behavior in Tissue

Culture. IEEE Trans Biomed Eng. 1986; BME-33(2):242–7.

32. Tiruppathi C, Malik AB, Del Vecchio PJ, Keese CR, Giaever I. Electrical method for detection of endo-

thelial cell shape change in real time: assessment of endothelial barrier function. Proc Natl Acad Sci

USA. 1992 Sep 1; 89(17):7919–23. PMID: 1518814

33. Letourneau PA, Menge TD, Wataha KA, Wade CE, Cox CS Jr, et al. Human Bone Marrow Derived

Mesenchymal Stem Cells Regulate Leukocyte-Endothelial Interactions and Activation of Transcription

Factor NF-Kappa B. Journal of tissue science & engineering. NIH Public Access; 2011; Suppl 3

(S3):001.

34. Chesebro BB, Rahn P, Carles M, Esmon CT, Xu J, Brohi K, et al. Increase in Activated Protein C Medi-

ates Acute Coagulopathy in Mice. Shock. NIH Public Access; 2009 Dec 1; 32(6):659–65. https://doi.

org/10.1097/SHK.0b013e3181a5a632 PMID: 19333141

35. Imam AM, Jin G, Sillesen M, Duggan M, Jepsen CH, Hwabejire JO, et al. Early treatment with lyophi-

lized plasma protects the brain in a large animal model of combined traumatic brain injury and hemor-

rhagic shock. Journal of Trauma and Acute Care Surgery. 2013 Dec; 75(6):976–83. https://doi.org/10.

1097/TA.0b013e31829e2186 PMID: 24256669

36. Imam AM, Jin G, Duggan M, Sillesen M, Hwabejire JO, Jepsen CH, et al. Synergistic effects of fresh fro-

zen plasma and valproic acid treatment in a combined model of traumatic brain injury and hemorrhagic

shock. Surgery. Mosby, Inc; 2013 Aug; 154(2):388–96. https://doi.org/10.1016/j.surg.2013.05.008

PMID: 23889966

37. Sillesen M, Jin G, Oklu R, Albadawi H, Imam AM, Jepsen CH, et al. Fresh-frozen plasma resuscitation

after traumatic brain injury and shock attenuates extracellular nucleosome levels and deoxyribonucle-

ase 1 depletion. Surgery. Elsevier; 2013 Aug; 154(2):197–205. https://doi.org/10.1016/j.surg.2013.04.

002 PMID: 23889948

38. Van PY, Hamilton GJ, Kremenevskiy IV, Sambasivan C, Spoerke NJ, Differding JA, et al. Lyophilized

plasma reconstituted with ascorbic acid suppresses inflammation and oxidative DNA damage. J

Trauma. 2011 Jul; 71(1):20–4–discussion24–5. https://doi.org/10.1097/TA.0b013e3182214f44 PMID:

21818011

39. Lee TH, Van PY, Spoerke NJ, Hamilton GJ, Cho SD, Watson K, et al. The use of lyophilized plasma in a

severe multi-injury pig model. TRANSFUSION. 2013 Jan 10; 53(Suppl):72S–79S.

40. Spoerke N, Zink K, Cho SD, Differding J, Muller P, Karahan A, et al. Lyophilized plasma for resuscitation

in a swine model of severe injury. Arch Surg. 2009 Sep; 144(9):829–34. https://doi.org/10.1001/

archsurg.2009.154 PMID: 19797107

41. Peng Z, Pati S, Fontaine MJ, Hall K, Herrera AV, Kozar RA. Lack of species-specific difference in pul-

monary function when using mouse versus human plasma in a mouse model of hemorrhagic shock. J

Trauma Acute Care Surg. 2016 Nov; 81(5 Suppl 2 Proceedings of the 2015 Military Health System

Research Symposium):S171–6.

LP attenuates vascular permeability, inflammation and lung injury in HS

PLOS ONE | https://doi.org/10.1371/journal.pone.0192363 February 2, 2018 13 / 13

http://www.ncbi.nlm.nih.gov/pubmed/15879138
http://www.ncbi.nlm.nih.gov/pubmed/1518814
https://doi.org/10.1097/SHK.0b013e3181a5a632
https://doi.org/10.1097/SHK.0b013e3181a5a632
http://www.ncbi.nlm.nih.gov/pubmed/19333141
https://doi.org/10.1097/TA.0b013e31829e2186
https://doi.org/10.1097/TA.0b013e31829e2186
http://www.ncbi.nlm.nih.gov/pubmed/24256669
https://doi.org/10.1016/j.surg.2013.05.008
http://www.ncbi.nlm.nih.gov/pubmed/23889966
https://doi.org/10.1016/j.surg.2013.04.002
https://doi.org/10.1016/j.surg.2013.04.002
http://www.ncbi.nlm.nih.gov/pubmed/23889948
https://doi.org/10.1097/TA.0b013e3182214f44
http://www.ncbi.nlm.nih.gov/pubmed/21818011
https://doi.org/10.1001/archsurg.2009.154
https://doi.org/10.1001/archsurg.2009.154
http://www.ncbi.nlm.nih.gov/pubmed/19797107
https://doi.org/10.1371/journal.pone.0192363



