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ABSTRACT OF THE DISSERTATION

Limiting Bias in Biological Data Analysis by Pooling Information

by
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Professor Nicholas J. Schork, Chair
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Innovations in the design and implementation of high-throughput technologies

has shifted biological research from hypothesis-driven inquiries to large data-driven

studies. Scientists can now jointly interrogate the genome, transcriptome, metabolome,

microbiome, and dozens of other molecular systems to develop more complete, in-

terconnected pictures of biological states. However, accurate interpretation of each

state requires a thorough understanding of the sources of variation associated with

the underlying assays and experimental approaches used. Here, I pool information

from related sources based on known generative processes to model variation and

xiii



limit biases in the analysis of three different biological phenomenon. First, I discuss

jointly identifying genomic variants in induced pluripotent stem cells derived from

the same fibroblast population to assess the mutational burden of three different

reprogramming methods: retroviral transfection, Sendai virus, and non-integrating

mRNA. The research suggests that each method induces new mutations, but there

are no obvious systematic differences in the types of mutations nor in the genomic

regions harboring them. Shifting to transcriptomics, I next model uncertainty and

variation in imputed expression in transcriptome-wide association studies. I show

through simulations that a novel Bayesian method that pools multiple models of

transcription regulation outperforms current methodologies in identifying associations

between imputed gene expression and a phenotype. In an application to seven diseases

from the Wellcome Trust Case Control Consortium, the method finds 42 associations,

17 of which have not yet been previously identified by GWAS or differential gene

expression analyses in case-control cohorts. Finally, I describe results from a study

exploring longitudinal profiles of the metabolome, microbiome, and transcriptome of

a young female germline TP53 mutation carrier. The motivation for this study was

to determine if any health status changes might occur in this carrier that could be

indicative of tumor formation given her extremely high cancer susceptibility. I utilize

a Bayesian model to separate metabolite variation from instrumentation variation by

calculating latent metabolite levels across multiple instrumentation runs. Fortunately,

I do not find obvious and statistically deviations from baseline for any biomarker

indicate of cancer, but I highlight power limitations in such study designs. Together,

these three works demonstrate the importance and utility of pooling information to

limit biases in contemporary high-throughput, data intensive biological analyses.
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Chapter 1

Introduction

Innovations in the design and implementation of high-throughput technologies

have revolutionized approaches to the biomedical sciences. For example, with an

estimated 1021 bases sequenced a year by next-generation sequencing instruments

[SLF+15], genomically-guided biological research has shifted from hypothesis-driven

inquiries to large data-driven studies. In addition, scientists can now jointly interrogate

the genome, transcriptome, metabolome, microbiome, and dozens of other molecular

systems to develop more complete, interconnected pictures of biological states, such as

pathologies and precursors to disease. However, accurate interpretation of a biological

state requires a thorough understanding of the sources of variation associated with

each assay and experimental approach used in order to avoid false claims about that

state. In this thesis, I discuss pooling information from different, yet relevant, sources

based on known generative processes in order to model and account for variation

in, e.g., genomics, transcriptomics, and metabolomics data in specific applications.

In the sections below, I briefly describe settings in which I was able to leverage

different sources of information, model their influence on the phenomenon under study

1
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using computational and data analysis techniques and address important needs in

the biomedical sciences. These settings include the identification somatically-acquired

cancer mutations against a background of normal cells contaminating a cancer cell

sample, the characterization of the mutational landscape of induced pluripotent stem

cells, the identification of intermediate phenotypes impacting a specific clinically-

relevant phenotype using combined GWAS and imputation methods, and the analysis

of the longitudinal metabolic profile of a patient who is highly susceptible to cancer.

1.1 Genomics and the Identification of Somatically

Acquired Variations

With the advent of next-generation sequencing, it is possible to characterize the

genomes of a population of cells from a single individual or across a set of individuals.

Studying somatic cells from an individual could lead to insights about not only the

natural diversity of such cells, but also about the events, probably occurring during

cell replication, that could lead to disease states. This has far-reaching implications for

studying the origins and pathogenesis of many diseases, such as cancer, where there is

known to be a large somatic mutation-induced cell dysfunction component. In addition,

characterization of cell populations can also lead to insights into the genomic stability

of cells being considered in therapeutic cell replacement or transplant strategies.

However, the analysis of the genomic and mutational landscape of such cells is limited

by technological constraints associated with contemporary DNA sequencing-based

assays. For example, the depth of coverage achieved in a sequencing study, as well

as base call and sequencing read-mapping errors, must be considered when applying
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next-generation sequencing (NGS) to the study of cell populations. In the presence of

the many potential factors that may confound a study, Bayesian methods have been

developed and employed to accurately accommodate them [KZL+12, MHB+10].

1.1.1 Somatic Mutations in Cancer

In the specific context of cancer, emphasis is placed on identifying somatic

variants that are unique to a population of diseased cells, but do not exist in normal cells.

For such studies, several tools have been developed that compare the sequencing reads

matching the reference genome from the normal and disease (i.e., cancerous) tissues

and highlight variants unique to diseased population with a level of confidence[CLC+13,

KZL+12, RDM+12, SWS+12]. However, most of these tools fail when the samples

cellular composition is heterogeneous, particularly when the relative fraction of diseased

and normal cells is unknown.

In order to overcome limitations with many of the available tools for identifying

DNA sequence variants present in cancerous cells but not present in normal cells, I

worked with a team to create the Virtual Microdissection for Variant Calling (Virmid)

analysis tool, which leverages a Bayesian framework for detecting somatically-acquired

single nucleotide variants (SNVs) in paired normal/disease samples[KJB+13]. As

shown in Figure 1.1, the program explicitly models the fraction of normal cells

contaminating the diseased sample, α, by pooling information across genomic loci.

This contamination, as a generative process, affects the relative fraction of

diseased cells carrying a mutant (i.e., somatically acquired variant) allele in the sample.

Virmid models this contamination in a Bayesian probabilistic setting for evaluating

the likelihood of a site being mutated in the the faction of the sampled cells that
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are cancer cells. This formulation is a viable option for cancerous diseases such as

focal cortical dysplasia and hemimegalencephaly, in which its impossible to acquire

normal brain cells in addition to diseased ones. Additionally, gastric and breast cancer

tissues are normally contaminated by stromal cells and hence require some way of

accommodating the non-cancerous cells in an analysis. In such scenarios, if the cancer

is dominated by one subclone, the proposed method should be able to accurately

identify mutated sites.

In addition to the Bayesian framework, Virmid also applies a set of filters

that limits biases arising from poorly aligned reads and/or platform-specific errors.

Briefly, these focus on mapping quality, biases in the location of the variant allele in a

read, proximity to indels and base quality statistics[CLC+13]. Virmid has been shown

to be able to effectively identify low frequency variants in a tumor sample in many

settings, for example achieving 98.61% sensitivity to identify somatically acquired

mutations in breast cancer samples that were missed by other variant callers, such as

Mutect[CLC+13] (97.16%), JointSNVMix[RDM+12] (84.58%) and Strelka[SWS+12]

(97.82%), because of high contamination of normal cells.

1.1.2 Induced Pluripotent Stem Cells

Multi-sample DNA sequence variant calling techniques have their roots in

computational methods for use in population genetic studies seeking to pool DNA

sequencing data across a number of individuals and jointly identify variants in all

those individuals simultaneously. These strategies underlying assumption is that the

population of individuals are part of the same lineage and share many variants. If

a genomic position has several reads matching a variant allele in an individual, but
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Figure 1.1: Overall Virmid workflow. (a) Disease/control paired data are
used (top) to generate an alignment (BAM) file. The mixed disease sample
produces short reads of mixed types (blue and orange rectangles). Somatic
mutations, where the control has the reference genotype (AA) and the disease
has the non-reference (AB or BB, red dots in the alignment), are hard to
detect if there is high contamination due to the significant drop in B allele
frequency (BAF). Virmid takes the disease/control paired data and analyzes:
(1) the proportion of control cells in the disease sample (α) and (2) the
most probable disease genotype for each position that can be used to call
somatic mutations. (b) An example BAF drop. Without contamination, the
expected BAF is 0.5 and 1.0 for heterozygous and homozygous mutations
sites, respectively. When there is control sample contamination, α, mutation
alleles are observed only in (1 - α) of the whole reads. So the expected BAF
drops to (1 - α)/2 and (1 - α). With an accurate estimate of α, Virmid can
detect more true somatic mutations, which would be missed by conventional
tools due to insufficient observation of B alleles. BAF, B allele frequency.
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only a few in another individual, most models consider the variant as present in both

individuals with high probability. However, for a variant to be assigned only in a

single individual, the models would require several reads supporting the existence of

the variant allele.

In Chapter 2, I discuss an application of multi-sample variant calling to study

the genomic stability of cells derived from induced pluripotent stem cell (iPSC) tech-

nology that might be considered in therapeutic cell replacement strategies [BNW+16].

The study compared the mutational burden induced by three reprogramming methods

for transforming the same population of fibroblasts into iPSCs: a technique based on

the use of retroviruses, Sendai virus, and non-integrating mRNAs. Previous studies

have assessed the genomic integrity of iPSCs by using paired normal and disease

cell methodologies and subtracting mutations in fibroblasts from mutations found in

each iPSC colony separately. In contrast, I identified mutations associated with the

reprogramming techniques by considering all samples simultaneously.

It is important to note that the predominant theory behind techniques for

inducing pluripotency is that the overexpression of the Yamanaka transcription factors

(Oct3/4, Sox2, Klf4, c-Myc) leads to a cell-state switch for a single fibroblast (or other

cell) into a progenitor cell, which divides several times into a colony of iPSCs [TY06].

Under the aforementioned theory, if a mutation occurs as a result of reprogramming, it

will be present in all cells of a colony and, under the infinite sites assumption [McV02],

no two colonies will share a mutation resulting from reprogramming. By treating

each iPSC colony and the progenitor cell fibroblasts as ’individuals’, I show that

pooling information using multi-sample variant calling is better suited for identifying

mutations resulting from reprogramming than other methods.
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1.2 Transcriptomics and Transcriptome-wide As-

sociation Studies

Genome-wide association studies (GWASs) test for linear associations between

variant alleles and phenotypes using large populations of individuals[LS94]. Variant

alleles occur throughout the genome and number in the millions. Most risk loci

identified to-date in large GWAS initiatives lie outside of protein-coding regions

and provide no clear mechanistic or intervention insights to treat diseases[WMM+14].

Transcriptome-wide association studies (TWASs) extend the GWAS strategy by finding

linear associations between imputed gene expression values and phenotypes[GWS+15].

They use reference expression data to build models of transcription regulation that

relate variant alleles to gene expression values and then impute or assign gene expression

values to individuals with genotype data in GWAS cohorts where expression has not

been measured directly. Ultimately, a TWAS tests the association between imputed

or assigned gene expression values and phenotype in GWAS data sets to, e.g., identify

possible therapeutic targets.

Current methods for TWASs use a single model of transcriptional regulation,

and do not take into account the uncertainty in imputed expression. In Chapter

3, I pool information across multiple models of transcription regulation to quantify

uncertainty in imputed expression values and propagate it through the association

testing with the phenotype of interest. I show that this strategy of combining or pooling

the different transcriptional models when testing associations results in increased power

and led to the identification of several possible therapeutic targets for seven different

complex diseases that are missed by current analytical methods used in TWAS.
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1.3 Metabolomics and Li-Fraumeni Syndrome

Single subject or N-of-1 studies and trials monitor health information in single

individuals over time and study deviations from baseline measurements that might be

indicative of a health status change worth further scrutiny or provide evidence that a

therapeutic intervention is working. Such approaches are the hallmark of new initiatives

to promote and test precision (i.e., or personalized or individualized) medicine and care,

where interventions are tailored to an individuals profile instead of relying on the belief

that interventions will work on everyone in the general population[Sch15]. In Chapter

4, I discuss a suite of analytical techniques for an n-of-1 molecular surveillance study

of an individual a germline p53 mutation, which causes Li-Fraumeni syndrome[LFJ69].

Li-Fraumeni patients have a high incidence of cancer during their lifetime and often

undergo regular clinical surveillance, including several imaging and biochemical screens

for cancer. The analytical techniques were designed to accommodate a wide variety

of assays and sources of variation, particularly those associated with longitudinal

sampling.

To showcase the analytical techniques, we longitudinally profiled cancer biomark-

ers in the metabolome, microbiome, and transcriptome of the patient over 16 months.

I noticed incongruence across instrumentation runs when identifying potentially clin-

ically meaningful outliers and linear trends in the metabolome data. To combat

this, I created a Bayesian method that pools information across multiple metabolome

instrumentation runs to separate biologically-meaningful metabolite variation from

instrumentation or technical variation. Fortunately, I did not find any significant

deviations from baseline which might be indicative of tumor formation, but I highlight

power limitations in such study designs.



Chapter 2

Whole Genome Mutational Burden

Analysis of Three Pluripotency

Induction Methods

2.1 Abstract

There is concern that the stresses of inducing pluripotency may lead to dele-

terious DNA mutations in induced pluripotent stem cell (iPSC) lines, which would

compromise their use for cell therapies. Here we report comparative genomic analysis

of nine isogenic iPSC lines generated using three reprogramming methods: integrating

retroviral vectors, non-integrating Sendai virus, and synthetic mRNAs. We used whole

genome sequencing and de novo genome mapping to identify single nucleotide variants,

insertions and deletions, and structural variants. Our results show a moderate number

of variants in the iPSCs that were not evident in the parental fibroblasts, which may

result from reprogramming. There were only small differences in the total numbers

9
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and types of variants among different reprogramming methods. Most importantly,

a thorough genomic analysis showed that the variants were generally benign. We

conclude that the process of reprogramming is unlikely to introduce variants that

would make the cells inappropriate for therapy.

2.2 Introduction

Cell replacement therapies using cells derived from human pluripotent stem

cells (embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have

been approved for clinical trials for macular degeneration, spinal cord injury, and Type

1 diabetes. The limited data available to date indicate that there are no adverse events

in patients receiving these cells [HBV+11]. However, there continues to be discussion

about the theoretical chance that these transplanted cells may develop into tumors or

cause other pathologies. The discussion has come to focus on induced pluripotent stem

cells, largely due to concerns that the massive epigenetic remodeling that occurs during

reprogramming might cause genomic mutations that could make the cells tumorigenic.

These concerns have led multiple groups to study the genomic integrity of iPSCs

using methods that include SNP genotyping [HBV+11, LUS+11], CGH[MBDL+10],

karyotyping [TNN11], and exome sequencing[GLF+11] (reviewed in[PL14, SDB+14]).

In each case the focus has been exclusively on a single type of genomic alteration, rather

than considering the combined effects of single nucleotide variants (SNVs), structural

variants (SVs), and copy number variations (CNVs). Further, detailed comparative

genomic analyses of iPSC lines that have been generated via distinct reprogramming

methodologies have yet to be reported. In this study we assessed genome-wide mutation

rates from replicate isogenic cell lines generated by three distinct methods. We used
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integrating viral (retrovirus), non-integrating viral (Sendai virus), and non-integrating

non-viral (mRNA) reprogramming strategies to introduce exogenous expression of

POU5F1, SOX2, KLF4 and MYC in separate fractions of a single fibroblast population

(Figure 2.1a). Three clonal lines were established from iPSCs generated by each method

and determined to be pluripotent by standard measures. In order to detect SNVs, SVs,

and CNVs within each line and the parental fibroblast population, we generated whole

genome sequencing (WGS) data for each iPSC line and the parental fibroblasts at an

an average read depth of 39 fold, with 93.7% of the autosomal genome covered by at

least 10 reads. In addition, to assess chromosomal rearrangements and large structural

variants with high resolution, we performed whole genome mapping using the recently

developed Irys technology (BioNano Genomics (BNG), San Diego, CA). We detected

subtle differences in the numbers of variants depending on the method, but rarely

found mutations in genes that had any association with increased cancer risk. We

conclude that mutations that have been reported in iPSC cultures are unlikely to

be caused by their reprogramming, but instead are probably due to the well-known

selective pressures that occur when hPSCs are expanded in culture.

2.3 Results

2.3.1 Identification of single nucleotide variants

To characterize the mutational burden in iPSCs, we identified SNVs that were

unique to each iPSC cell line by integrating results from HaplotypeCaller[MHB+10]

and MuTect[CLC+13], as described in the Methods. For variant calling with Hap-

lotypeCaller, we treated all ten samples (the parent fibroblast population and three
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biological replicates for each reprogramming method) as part of a single population us-

ing the multi-sample option. This pipeline was tuned for the identification of recurrent

variations in population studies, and therefore enabled us to have higher specificity

in classifying reprogramming-induced mutations by accounting for mosaicism in the

parental fibroblast population. To gain a more sensitive assessment of the SNV

landscape across the iPSC samples, we also called variants using MuTect, wherein

each iPSC cell line was compared to the parental fibroblast population in an analogous

manner to which tumor samples are compared to normal tissue in oncogenomic studies

Figure (2.1c; Supplementary Figure S2.1). Taken together, the results from these two

distinct variant calling pipelines gave us higher confidence in our ability to identify

true variants through the moderation of type I and type II errors, respectively.

The identified set of putative unique variants was split into three groups

according to our confidence in the variant calls: Variant Set 1 was called unique by

both MuTect and HaplotypeCaller; Variant Set 2 had coverage between 20-60x and

allele frequency distribution between 0.4 and 0.6 but was called only by MuTect,

and Variant Set 3 comprised those with allele frequencies between 0.2-0.4 and 30-50x

coverage. Variant validation by qPCR from each of these three groups indicated that

the mutations from Variant Set 1 had the highest likelihood of being true somatic

variants (Supplementary Data 1; Methods). Therefore, subsequent analyses were

restricted to these variants, which likely occurred during the initial doublings of

the founder populations of the iPSCs compared to variants that are in lower allelic

fractions that could arise as a result of proliferation of the cells. Our filtering strategy

focuses on these high confidence variants and also removes variants that are found in

low complexity regions and dbSNP (Figure 2.1c).
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2.3.2 Identification of Insertions and Deletions

Due to the specificity of multi-sample HaplotypeCaller in identifying high

confidence SNVs, HaplotypeCaller was also used for identifying Insertions and Deletions

(indels).

2.3.3 Identification of Structural Variants

Structural variations (SVs), 10 kbp to 1 Mbp in size, are common in the

human genome, but challenging to assess by sequencing alone. Genome mapping

in nanochannel arrays provides a single-molecule platform complementary to DNA

sequencing for accurate genome assembly and SV analysis (Irys System, BioNano

Genomics[DAA+10, HDS+13, LHL+12, XPH+07]. Unamplified genomic DNA, fluo-

rescently labeled at a seven-base sequence motif and by the intercalating dye YOYO-1,

was linearized by electrophoresis into 50 nm channels. An array of approximately

12,000 nanochannels was imaged for each sample, and the process was repeated multi-

ple times, producing data at a throughput of about 1.5 Gbp/hour. Only molecules

150 kbp and longer were used to create a de novo assembly of the complete genome.

We analyzed the fibroblast control and one iPSC line chosen at random from each of

the three reprogramming methods.

We collected 160 Gbp ( 50x) of high molecular weight DNA for each sample,

approximately 500,000 single molecule maps with the minimal length of 150 kbp. Data

from each sample were assembled using an in-house developed de novo assembler based

on Overlap-Layout-Consensus paradigm[Ana01, Ngu10, VSZW06]. The N50 length is

the length for which the collection of genome maps of that length or greater cover

more than 50% of the total genome length. The genome maps in this study had a N50
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of ¿ 0.9 Mbp, overlapping close to 90% of the Genome Reference Consortium Human

genome (GRch37) (Methods; Supplementary Figure S2.2; Supplementary Table S2.1).

2.3.4 Assessing pathogenicity of unique variants

To assess the functional consequences of the variants, the sets of high confi-

dence unique SNVs and indels were annotated using the SGAdviser[PSE+15] and

Oncotator[RLG+15] program suites. They were further characterized based on over-

laps with ENCODE annotated genomic regions. As expected, most mutations fell

within intergenic or intronic regions, with the rate of coding mutations in the range

of two to ten mutations per cell line (Figure 2.2d). The potential for variants to be

oncogenic was assessed by measuring their overlap with cancer genes, transcription

factor binding sites (TFBS), MutSig genes, and Familial Syndrome Cancer Genes

(Methods). We then compared the frequency of the annotated somatic mutations

across the three reprogramming methods using an exhaustive permutation testing

procedure and one vs. all contrasts in ANOVA . All of the iPSC lines had hundreds

of variants compared to the parental fibroblasts, with the mRNA-derived lines having

fewer high confidence mutations on average than the other methods (Figure 2.2a;

Table 2.1, 2.2; Supplementary Table S2.2). We did not find evidence that any one

of the methods was more likely than the others to cause oncogenic or deleterious

mutations, but we identified trends based on one versus all ANOVA contrasts that

linked reprogramming strategies to certain mutations. The cell lines reprogrammed

using mRNA had several variants that overlapped binding sites for a transcription

factor (EZH2; enhancer of zeste 2 polycomb repressive complex 2 subunit), although it

is unknown if these would disrupt transcription factor binding. The retroviral induced
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cell lines harbored more potentially damaging mutations than the other methods

(Table 2.3). In addition, the three retrovirally reprogrammed cell lines contained inte-

grated vectors in 7, 8, and 12 sites in the genome, and while the majority of integration

sites were intergenic, some integrations mapped to coding regions (Supplementary

Figure S2.3). In Sendai virus reprogrammed cell lines there was a trend toward fewer

coding mutations. However, we want to emphasize that based on the variance and

means of the aggregated statistics, this study was not sufficiently powered to assess the

differences among the different reprogramming methods for some variant classifications

(Table 2.1).

We also characterized the context of the mutations as well as the overall tran-

sition/transversion rates for the different samples (Figure 2.2b). Mutational context

analysis revealed no realizable difference among the different reprogramming methods

and identified no links to known cancer-related mutational signatures[KMV+13]. Fi-

nally, we looked at the Combined Annotation Dependent Depletion (CADD)[KWJ+14]

score distribution of the variants, and although we saw statistically significant dif-

ferences among the three methods, the scores for all methods fell mostly within the

non-deleterious range of less than 15 CADD Score (Supplementary Figure S2.4).

Using the variant-calling algorithms for the data from de novo whole genome

mapping of four of the samples, we called 259 insertions and deletions in the parental

fibroblast sample, 239 in the retroviral sample, 248 in the Sendai sample and 268

in the mRNA sample. The size of the variants ranged from 2.8 kbp to 4.9 Mbp.

Using a 50% reciprocal size overlap cutoff, we identified variants that were shared

among the samples. After manual inspection to eliminate false positives and false

negatives, we found no cell line-specific variants in the retroviral and Sendai samples,
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but one deletion in the mRNA-reprogrammed sample. The deletion in this line

was a heterozygous 228.8 kbp deletion at Xp22.11, which removed one copy of the

PHEX gene (Phosphate-regulating neutral endopeptidase) and one copy of Mir 548.

This deletion is illustrated in Figure 2.3, which shows the assembly of part of the

X chromosome for each cell line, as well as the single-molecule data supporting two

haplotypes for this region in the mRNA sample. We subsequently looked for this

deletion in the sequencing data and identified it in the same sample; it was not present

in any of the other samples. This suggests that this iPSC line was derived from a rare

fibroblast containing the deletion or that the deletion was acquired very early in the

reprogramming process.

2.4 Discussion

Our assessment of the mutation profiles associated with three widely used

reprogramming methods for generating iPSCs indicates that all of the reprogramming

approaches add to the mutational load of cells, but there were subtle differences among

the methods. Although we found that the non-integrating mRNA reprogramming

technique resulted in fewer total mutations than either retrovirus or Sendai virus-based

reprogramming methods, mRNA-iPSCs had a greater number of mutations in binding

sites for a transcription factor (EZH2). In addition, the only large structural variation

(a 228.8 kbp deletion) we detected was in an mRNA-reprogrammed iPSC line. In

contrast, the Sendai virus samples had fewer coding mutations than the other methods.

Our results using retroviral vectors showed that this method caused a similar number

of mutations as the other methods, but was slightly more likely to introduce mutations

that are classified as deleterious. But the main concern with retroviral vectors is
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the fact that they insert into the genome. Genomic insertions have a low but finite

chance of disruption of active genes or regulatory regions, and can cause cancers if

they activate endogenous oncogenes[BvKS+04]. Retroviral vectors were used in the

first methods developed for reprogramming[TY06] but were reported to be capable of

reactivation, which resulted in tumors in mice[OIY07]. Use of retroviral vectors for

reprogramming has become less popular as delivery methods for transiently expressing

the reprogramming factors without being inserted, such as the Sendai viral vectors

and mRNA used here, have become more efficient.

Given the potential practical significance of our findings to clinical applications

for stem cells, it is important to appreciate some of the biological context surrounding

our experiments. We focused on the high confidence variants that differed from

the parental fibroblast population. These variants likely arose during the initial

doublings of the founder population of iPSCs, but we cannot rule out their origin in a

minority population in the heterogeneous parental fibroblasts that was undetectable by

sequencing. We note that there were sequencing reads that support several additional

lower variant allele frequency mutations in the cell lines as well. It should be noted

that the cells we analyzed were cultured for a relatively short time, and that variants

in an early-arising small subpopulation could become more dominant over time if they

give the cells a selective advantage in culture.

In order to move forward toward applying stem cell-based therapies for human

disease, it is important to focus our efforts on improving the likelihood that there

will be no adverse effects of these therapies. Our study was more extensive than

previous analyses, but larger studies of this depth are still needed. While results of

our study do not rule out the possibility that reprogramming cells could introduce
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oncogenic mutations that compromise the safety of iPSCs, they should alleviate some

of the concern about how likely it is that reprogramming itself would cause dangerous

genomic changes that could lead to harm to transplant recipients. It is important to

note that genomic aberrations, some of which could be oncogenic, are known to occur

during the considerable expansion of cells that is required for clinical applications.

While development of new methods for reprogramming will make the process simpler

and less expensive, it is critical at this stage that we concentrate on monitoring the

appearance and potential consequences of mutations that arise during cell division

and differentiation in culture and are selected for by the culture conditions.

2.5 Methods

The design of our study was to evaluate mutation profiles associated with

the three different reprogramming strategies (see below for details on each method)

we considered, as well as the characterization of different forms of variation and the

analysis of the variation within and across the different reprogramming strategies

2.5.1 Retroviral Reprogramming

PLAT-A packaging cells (Cell Biolabs, Inc.) were plated onto six well plates

coated with Poly-D-Lysine at a density of 1.5x106 cells per well without antibiotics

and incubated overnight. Cells were transfected with 4 µg of Moloney murine leukemia

based retroviral vectors (pMXs) containing the human cDNA of POU5F1, SOX2,

KLF4 or MYC (Addgene catalog number 17217, 17218, 17219, and 17220 respectively)

by Lipofectamine 2000 (Life Technologies) according to the manufacturers instructions.

Viral supernatants were collected at 48 and 72 hours post-transfection, filtered through
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a 0.45 µm pore-size filter. 200,000 Human dermal fibroblasts (Science cell Catalog

#2300) were seeded onto each well of a 6 well plate overnight prior transfection.

Equal volumes of fresh 48 hour and 72 hour viral supernatants containing each of four

retroviruses supplemented with 6 µg/ml of Polybrene (Sigma) were added onto the

cells on day one and day two, respectively. On day five, the transduced cells were

split onto MEFs at a density of 104 cells per well of a six well plate in hESC medium

supplemented with 0.5mM Valproic Acid (Stemgent). Cells were fed every other day

with valproic acid (VPA) supplemented hES medium for 14 days before VPA was

withdrawn. Individual iPSC colonies were manually picked and clonally expanded

three weeks post transduction and transferred onto MEF plates.

2.5.2 Sendai Virus Reprogramming

Human dermal fibroblasts (Science cell Catalog #2300) were reprogramed

according to the manufacturers instructions (CytoTune-iPS 2.0 Sendai Reprogramming

Kit, Life technology catalog number A1378001). Cells were transduced with Sendi

viruses containing the Yamanaka factors, and individual iPSC colonies were identified

by morphology,. The colonies were manually picked, expanded for three weeks post

transduction, and transferred onto a feeder layer of irradiated mouse embryonic

fibroblasts (MEFs).

2.5.3 mRNA Reprogramming

Human dermal fibroblasts (Science cell Catalog #2300) were reprogramed

according to the manufacturers instructions (The Stemgent mRNA Reprogramming

Kit catalog number 00-0071). Individual iPSC colonies were manually picked and
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clonally expanded three weeks post transfection and transferred onto MEF feeder

layers.

2.5.4 Cell Culture

Plat-A Packaging cells (Cell Biolabs, Inc.) were maintained according to the

manufacturers instructions. Human dermal fibroblasts (Science cell Catalog #2300)

were cultured in Dulbeccos modified eagle medium (DMEM), 2mM GlutaMax, 10%

fetal bovine serum and 0.1 mM non-essential amino acids (Life Technologies). iPSCs

were generated and maintained in standard hESC medium containing DMEM/F12

supplemented with 20% Knockout Serum Replacement (Life Technologies), 2mM

GlutaMAX, 0.1 mM nonessential amino acids, 0.1mM 2-Mercaptoethanol, and 12

ng/ml of Human Recombinant Fibroblast Growth Factor-basic (bFGF , Stemgent).

HDFiPS cells were cultured on MEF feeder layers in hESC medium and mechanically

passaged once a week. The hESC medium was changed daily. All cultures were tested

and were negative for mycoplasma.

2.5.5 DNA Extraction and Sequencing

The Qiagen DNeasy Blood and Tissue Kit (cat. no. 69504) was used to

prepare genomic DNA from 2 million cells of each cell line, as recommended by

the manufacturer. Template DNA fragments (3ug) were hybridized to the surface of

flow cells HiSeq Paired-End cluster Kits (v2.5 or v3) and amplified to form clusters

using the Illumina cBot. Paired-end libraries were sequenced for 2 x 101 cycles of

incorporation and imaging using TruSeq SBS kits. Sequencing was performed at

Illumina, Inc. (San Diego).
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2.5.6 Realignment of Illumina Reads and Recalibration

Reads were extracted from Illumina Casava aligned BAM files using the HTSLib

by first shuffling the reads and then extracting interleaved reads. These reads were

then processed through the GATK Best Practices workflow for Variant Calling v.2.6 ,

which included first aligning the reads using BWA 0.7 with the mem option, marking

duplicates, pursuing local realignment, considering base quality recalibration and

finally using the reduce reads options. The BAM files generated from this process

were used with the different variant calling methods.

2.5.7 SNVs and Indel Variant Calling

HaplotypeCaller, as bundled with GATK v2.7, was used to call all ten samples

together. The variant calls were recalibrated using files in the GATK bundle which in-

cluded data from HapMap, Omni, dbSNP, Mills Indels, 1000Genomes Indels databases.

Variants falling in tranche level 0-90, and 90-99.00 were used for downstream analysis.

Unique variants were identified by looking at positions where only one sample had a

non-reference allele.

It should be noted that the HaplotypeCaller multisample calling pipeline

described sacrifices sensitivity for specificity, as it is meant for population scale studies.

The pipeline may favor the identification of variants common across the samples rather

than variants or mutations unique to each. To gain a more sensitive assessment of the

somatic SNVs landscape across the iPSC samples, we also ran MuTect by treating

the parent fibroblast population as the normal and each iPSC cell line as a different

derived cell (in an analogous manner to which tumors are treated with respect to
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germline samples in oncogenomics studies). MuTect was run with default settings and

the calls were filtered using the judgment KEEP option. Unique variants from the

analysis were determined by intersecting the calls based on chromosomal coordinates

and the variant calls.

2.5.8 SNVs and Indel Validation and Filtering

To validate the identified variants, we split them into three groups of confidence:

high confidence variants had coverage between 40-60x with the variant allele frequency

in the range of 0.4-0.6; low confidence variants were classified as having coverage

20-40x with variant allele frequency between 0.4-0.6; and subclonal variants were

those with variant allele frequencies between 0.2-0.4 and 40-60x. We validated these

results using qPCR. The ABL files associated with the variants were read in using

the abifpy package (https://github.com/bow/abifpy ), and looking at the calls made

by the SOLID software. For any variants that appeared heterozygous, the relative

amount of noise in the ten upstream and downstream bases was evaluated based on

the assumption that they should be homozygous. Any amplitude values that were two

standard deviations higher than the mean background noise were called as variant

calls. Most of the calls made in this manner were validated through manual inspection

(Supplementary Table1).

2.5.9 SNVs and Indel Variant Annotation

The variants were run through the SGAdviser[PSE+15] pipeline for annotation.

A SNV was considered damaging if it had a harmful designation by Condel, Polyphen

or SIFT. To assess the likely oncogenic potential of any variant, we assessed overlaps
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with the MKCC Cancer Genes, Atlas Oncology, and Sanger Cancer Genes. Variants

that overlapped Transcription Factor Binding Sites (TFBS) were assessed as being

damaging by looking at changes calculated by the MOODS algorithm[KMP+09]. High

confidence TFBS altering mutations were those that changed the binding affinity by

more than 7. We also ran the variants through the Onconator annotation web service

(http://www.broadinstitute.org/oncotator/) and found overlaps with MutSig genes

and Familial Syndrome Cancer Genes. Finally, the variants were fed through CADD

annotation service through their online web service.

2.5.10 ENCODE Transcription Factor Binding Sites Annota-

tion

Genomic coordinates (hg19) for Transcription Factor (TF) bound regions of

DNA, as curated by ENCODE (wgEncodeRegTfbsClusteredV3.interval ), were down-

loaded from the UCSC genome browser Main Page (via Galaxy) in *.bed format.

Additionally, the genomic coordinates (hg19) for all iPSC variants (SNVs/indels)

were concatenated into a single bed file and intersected with the TF genomic in-

tervals (bedtools) in order to determine whether specific TFbinding profiles were

disproportionally enriched with/depleted of mutations in iPSCs generated via one

reprogramming method in comparison to the others.

2.5.11 Identification of Integration Sites

Integration sites were identified by looking at the paired end reads in which one

end mapped to the reference genome hg19 and one end maps to the viral sequences.

The one end mapped reads were extracted from the BAM files using the command
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samtools view[LD09], and then aligned to the viral genomes using BWA v. 0.7

aligner[LHW+09]. The readnames identifiers were used to find the pair in the hg19

aligned reads. These were further filtered down to require at least 5 reads matching on

either end of the integration site and were annotated by intersecting the knownGenes

track on UCSC.

2.5.12 Permutation Testing

We leveraged permutation testing in an analysis of variance (ANOVA) setting

to find the probability of observing the differences in mutation and variant rates across

the three reprogramming methods. We exhaustively relabeled all the reprogramming

types, recomputing the ANOVA statistic each time we relabeled the cell lines, thus

determining exactly how likely it would be to observe our mutation profile differences

across the reprogramming cell types given the 3 replicates for each of the 3 repro-

gramming methods (a total of 280 permutations). We tested each genomic feature

separately using this permutation strategy. To calculate the relative rates of different

types of mutations (e.g., coding, non-coding, etc.), we divided by the total number of

mutations.

2.5.13 ANOVA Contrasts

We also tested if one method was different from the other two methods using

contrasts. Three different tests were employed for mRNA versus all, retroviral versus

all, and Sendai virus vs all using the contrasts (-2, 1, 1), (1, -2, 1), and (1, 1, -2),

respectively. We employed an ANOVA fit to estimate the impact of the reprogramming

strategy on the aggregated counts of the different variant classifications. We employed
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this strategy to look at the difference in the nominal counts for the different variant

classifications, but we also subdivided by the type of variants (SNV, Insertion, or

Deletion) as well as the relative rates of each variant type. We further filtered reported

results to classifications that had at least 10 variants.

2.5.14 Comparison of Combined Annotation Dependent De-

pletion Score Distributions

To compare the distribution of Combined Annotation Dependent Depletion

(CADD) Scores across the different samples, we employed a Kruskal-Wallis test.

First, we looked at the differences between the replicates of the same reprogramming

method to ensure that the variance within a group was not high. Next, we looked at

pairwise comparisons between the different reprogramming methods by pooling all the

variants for the replicates into one distribution for the reprogramming method. This

analysis revealed that synthetic mRNA had a distribution skewed towards lower scores

compared to the retroviral vectors and non-integrating Sendai virus. There was no

realizable difference between the retroviral vectors and non-integrating Sendai virus.

However, further inspection of the distributions revealed that most of the variants

still fell in the non-damaging designation of CADD scores, indicating that the results

were not biologically significant.

2.5.15 BioNano High Molecule Weight DNA Extraction

HDF51iPS11, HDF51iPS509, HDF51iPS1003, and HDF51 cell lines termed

R3, S3, M3 and F cell lines, respectively were done on-site at BioNano Genomics

where they were washed with 1x PBS, placed in resuspension buffer, and embedded
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into agarose gel plugs (BioRad, Hercules, CA). Embedded cells were incubated with

lysis buffer (BioNano Genomics, San Diego, CA) and proteinase K for four hours at

50C. Agarose was solubilized with GELase (Epicentre, Madison, WI) and extracted

DNA was drop dialyzed for four hours. DNA concentrations were measured using the

Quant-iT dsDNA Assay Kit (Life Technologies, Carlsbad, CA).

2.5.16 BioNano DNA Labeling

DNA was labeled following the IrysPrep Reagent Kit protocol (BioNano Ge-

nomics, San Diego, CA). Briefly, 900 ng of DNA was digested with 10 U of Nt.BspQI

nicking endonuclease (New England BioLabs, Ipswich, MA) for two hours at 37 C.

Nick digested DNA was then incubated for one hour at 72 C with fluorescently labeled

dUTP and Taq Polymerase (New England BioLabs, Ipswich, MA). Taq ligase (New

England BioLabs, Ipswich, MA) was used in the presence of dNTPs for ligation of

nicks. DNA was counterstained with YOYO-1 (Life Technologies, Carlsbad, CA).

2.5.17 BioNano Data collection

Labeled and counterstained DNA samples were loaded into IrysChips (BioNano

Genomics, San Diego, CA) and run on the Irys (BioNano Genomics, San Diego, CA)

imaging instrument. Data was collected for each sample until 50-fold coverage of long

molecules (¿150 kbp) was achieved. The IrysView (BioNano Genomics, San Diego,

CA) software package was used to detect individual linearized DNA molecules using

the YOYO-1 counterstain and determine the localization of labeled nick sites along

each DNA molecule. Sets of single-molecule maps, equivalent to 50x haploid coverage,

for each sample were then used to build a full genome assembly.
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2.5.18 BioNano De Novo Assembly

De novo assembly of single molecules is accomplished using BioNanos custom

assembler software program based on an Overlap-Layout-Consensus paradigm. First,

we started with pair-wise comparison of all molecules longer than 150kbp and ≥ 5

labels to find all overlaps with a p-value ≤ 5× 10−10, then we could construct a draft

consensus genome map based on these overlaps. The draft map could be further

refined by mapping single molecules to it and recalculating the label positions. Next,

the maps were extended by aligning overhanging molecules to the maps and calculating

a consensus in the extended regions. Finally, the genome maps were compared and

merged where patterns match with a p-value ≤ 10−15. The process of extension and

merge was repeated five times before a final refinement was applied to finish all genome

maps. The result of this assembly is a genome map set entirely independent of any

known reference or external data (Figure 3). Statistics about N50 and percentage

coverage of Genome Reference Consortium Human Build 37 (GRCh37) are described

in Supplementary Table S2.1.

2.5.19 BioNano Structural Variation Calls

Structural variation was detected by examining the alignment profiles between

the de novo assembled genome maps against the GRCh37 human reference assembly.

Significant discrepancies in: a) the distance or b) the number of unaligned labels

between adjacent aligned labels would indicate the presence of insertion and deletion

events. We used two algorithms to call SV, and they differ in the way discrepant

regions in the alignment (termed outliers) were handled. In the first algorithm, the

reference and maps were split at outliers, and split maps were iteratively re-aligned.



28

The alignments of the newly split maps would then pinpoint the locations of the

insertion and deletion variants. We used an alignment p-value of 10−12 and an outlier

cutoff of 10−4 to call variants in all four cell line samples. In the second algorithm,

the reference and genome maps were not split; instead, the global alignment profiles

were kept with insertions and deletion events being intra-alignment gaps. For all four

cell line samples, the alignment p-value was 10−12 and the outlier cutoff was 10−4.

Alignment p-values are calculated using the algorithm described in Anantharaman et

al[Ana01].

2.5.20 BioNano Identification of Cell Line Specific Calls

A series of steps were used to identify cell line specific variants. First, we

conservatively selected only insertions and deletions detected by both calling algorithms.

Using a 50% reciprocal size overlap cutoff, we cross-compared variants detected among

all cell lines to identify those that were putatively cell line-specific. Finally, we manually

curated the candidate variants to ensure that a) there were molecule supporting the

variant allele in the cell line of interest, and b) there was no molecule supporting the

variant allele in all other cell line samples.
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2.6 Figures and Tables

Figure 2.1: Experimental and computational design for identifying variants
caused by reprogramming a) Diagram describing the derivation of three
biological replicates of each three reprogramming methods: retrovirus, Sendai
virus, and non-integrating mRNA b) Kernel density estimation for VAF and
coverage for a constituent sample from each reprogramming method: M1
(mRNA), R1 (retro-virus), S1 (sendai virus). For R1 and S1, there are denser
clusters near 40x coverage and 40% - 60% VAF than the M1 sample, which
indicates they had a higher mutational load during initial doublings. However,
it should be noted that all these samples also contained several subclonal
variants that are not considered in further analyses. The histograms are
intended to aid the readers in interpreting the results of the kernel density
estimations. c) Flow diagram detailing the filtering strategy employed to
arrive at high confidence set of SNVs unique to each reprogrammed cell line
using MuTect and HaplotypeCaller.
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Figure 2.2: Characterization of variants caused by reprogramming method
a) Overall counts for the number of high confidence SNVs and indels per
sample. b) The relative percentage of mutational subtypes for the SNVs in
each sample. c) A violin plot and box plot for the indel size distributions in
the sample, a positive length indicates an insertion, whereas a negative one is
a deletion. d) Variant classifications based on their relative locations in the
genome. The error bars indicate the low, median, and high replicate for each
reprogramming method. Introns and IGR variants are plotted on a different
scale.
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Figure 2.3: A 228.8 kb deletion at Xp22.11 in sample M3 detected by
BioNano genome mapping. Each assembly is compared to the GRCh37
reference genome. Black vertical marks show the position of the fluorescently-
labeled 7-base motif. For the M3 sample, observed individual DNA molecules
and their labels are represented, showing the support for two haplotypes, one
with the deletion at Xp22.11.
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Table 2.1: P-values from the permutation-based ANOVA test for variant type
differences across the three reprogramming methods. Rates were determined
by dividing the number of SNPs by the total number of variants. ND=Not
determined either because it is not consistent with the calculations or there
were too few variants to analyze. ”All” is the sum of SNVs and indels. The
last column lists the sample size estimates necessary based on 80% power for
an ANOVA statistic given the current mean and variance for the grouping by
reprogramming methods. This is based on the combined counts.

SNVs Rates Insertions Deletions Indels All Samples
for 80%
Power

CADD Phred >15 0.12 0.36 ND ND ND 0.12 4
Coding 0.03 0.18 0.34 0.23 0.24 0.16 4
Damaging 0.09 0.3 ND ND ND 0.09 4
Near Cancer Gene 0.1 0.94 0.11 0.2 0.14 0.39 10
Total 0.01 ND 0.18 0.16 0.16 0.2 6
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Table 2.2: High confidence variants in coding regions. The number of high
confidence synonymous and non-synonymous coding mutations identified
with high confidence SNVs in each sample. Non-synonymous variants in
protein coding regions are listed. M1-3: mRNA vector; R1-3: Retrovirus;
S1-3: Sendai virus.

Sample Number of high confidence variants Coding Regions

Synonymous Nonsense & nonsynonymous
M1 0 2 Nonsynonymous: BC068088,

C14orf159
M2 2 2 Nonsynonymous: BPIFB1,

MACROD1
M3 2 1 Nonsynonymous: RPAP2
R1 2 7 Nonsense: SALL1; Nonsyn-

onymous: C2orf91, CCDC150,
SSC5D, SYT4, UTRN, WDR72

R2 0 7 Nonsense: PRR12; Nonsynony-
mous: ADAM18, CATSPERG*,
IKBIP, NCR3LG1, PRR12,
SPTA1

R3 3 7 Nonsynonymous: ALPI,
HIST1H2BD, ITGB8, OR5AP2,
PKP2, RNF10, TMPRSS5

S1 0 5 Nonsynonymous: KCNC3,
OVOS2, SDR16C5, XPR1,
ZNF660

S2 3 4 Nonsynonymous: CLEC5A,
FAM208B, MMEL1, PCDHB16

S3 0 2 Nonsense: FSCN3; Nonsynony-
mous: FSCN3, PRDM4

Table 2.3: Functional impacts as calculated by ANOVA contrasts using a
One versus All approach. ANOVA contrasts were set up to compare one
reprogramming methods against the other two. For each reprogramming
method, the most significant difference is presented. The EZH2 binding site
overlaps were determined by ENCODE annotations (Methods).

M1 M2 M3 R1 R2 R3 S1 S2 S3 P-value

Non-integrating mRNA vs All others Transcription Factor EZH2 Binding Sites
13 11 6 1 7 2 3 0 3 0.008
Retrovirus vs All others Damaging mutations assessed by Condel, Polyphen or SIFT

5 3 1 5 9 13 5 3 2 0.014
Sendai virus vs All others Mutations in coding regions

27 16 9 16 20 24 12 9 5 0.044
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Figure S2.1: Kernel density estimation based on variant allele frequency
(VAF) and coverage for samples not presented in main text Figure 1.
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Figure S2.2: De novo assemblies of the fibroblast control and one of each
iPSC type from nanochannel mapping data. Genome maps of the four cell
lines were aligned to the GRch37 reference map. Ideogram and Giemsa
banding is plotted at the bottom of each chromosome in grey scale, with
centromeres highlighted in light red. In each de novo assembly, white spaces
separate contigs, and N base gaps in the reference are shaded with grey.
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Figure S2.3: Integration sites of Retrovirus in the three replicates. Inte-
gration sites in the three retroviral induced cell lines based on the methods
outlined in the Methods. A list of genes is also provided for integration sites
that were not intergenic.
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Figure S2.4: To investigate the potential pathogenicity of the variants, we
compared the CADD scores of SNVs across the three different reprogramming
methods. Although there is a statistical difference between the reprogramming
methods (Kruskal-Wallis p-value 0.02) the results are biologically insignificant
based on the criteria that most known damaging SNPs fall above a CADD
Score of 15.
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Table S2.2: Coding mutations identified by MuTect. The number of syn-
onymous and non-synonymous coding mutations identified in each sample
using MuTect.

Sample Number of variants identified by MuTect

Synonymous Nonsense and nonsynonymous
M1 92 32
M2 133 42
M3 24 20
R1 8 13
R2 25 20
R3 7 21
S1 44 17
S2 31 20
S3 7 9
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Chapter 3

Modeling prediction error improves

power of transcriptome-wide

association studies

3.1 Abstract

Transcriptome-wide association studies (TWAS) test for associations between

imputed gene expression levels and phenotypes in GWAS cohorts using models of

transcriptional regulation learned from reference transcriptomes. However, current

methods for TWAS only use point estimates of imputed expression and ignore uncer-

tainty in the prediction. We develop a novel two-stage Bayesian regression method

which incorporates uncertainty in imputed gene expression and achieves higher power

to detect TWAS genes than existing TWAS methods as well as standard methods

based on missing value and measurement error theory. We apply our method to

GTEx whole blood transcriptomes and GWAS cohorts for seven diseases from the

41
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Wellcome Trust Case Control Consortium and find 45 TWAS genes, of which 18 do not

overlap previously reported GWAS associations. Surprisingly, we replicate only 2 of

40 previously reported TWAS genes after accounting for uncertainty in the prediction.

Software implementing our methods and fitted model parameters are available at

https://github.com/Schork-Lab/mediator-was.

3.2 Introduction

Thousands of loci associated with hundreds of complex diseases have been re-

ported in the NHGRI catalog of genome-wide association studies [KAT+11, WMM+14]

(GWASs). However, most genome-wide significant loci are devoid of protein-coding

alterations [HSJ+09] and likely instead affect gene regulation by mechanisms such as

transcriptional, post-transcriptional, or epigenetic regulation. Several studies have

directly investigated the role of transcriptional regulation on complex diseases by

jointly considering genotypes, expression, and phenotypes using Mendelian randomiza-

tion [SFP+14, ACF+16]. However, such studies require genetic, transcriptomic, and

phenotypic data to be measured in all samples, which is still prohibitive at the scale

of GWAS.

Recent large-scale efforts such as the Gene-Tissue Expression Project (GTEx)

have generated reference transcriptomes across multiple human tissues[ADS+15].

These data have enabled transcriptome-wide association studies (TWAS), which use

the reference expression data to build models of transcription regulation, impute gene

expression into GWAS cohorts where expression is not measured, and directly test

for association between predicted gene expression and phenotype[GWS+15, GKS+16].

However, current methods are limited to using only point estimates of imputed

https://github.com/Schork-Lab/mediator-was
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expression, while ignoring the uncertainty in the predicted expression.

The impact of not incorporating uncertainty of imputed predictors on genetic

association analysis has been previously studied in the context of imputed genotypes in

GWAS. Although taking the best-guess genotype (posterior mode) is standard practice

for GWAS, using posterior mean dosages increases power to detect associations

[ZLAS11, AS13]. Standard methods from missing data theory such as multiple

imputation have been applied in this setting yielding reductions in bias [SSK+07,

PPB+16]. More sophisticated (and computationally expensive) methods such as

SNPTEST [MHM+07] can analytically integrate over the full posterior distribution of

the imputed genotypes, further improving power.

Here, we develop a novel Bayesian method for modeling uncertainty in im-

puted expression and propagating this uncertainty through TWAS. We compare our

method to existing methods for TWAS and standard methods from missing data and

measurement error theory and show that our method increases power to detect genes

associated with phenotype. We apply our methods to GWAS for seven diseases from

the Wellcome Trust Case Control Consortium [BCC+07] and find 42 TWAS genes,

replicating only 2 of 40 previously reported TWAS genes. We find 17 of the 42 genes

have not yet been identified by GWAS or differential gene expression in case-control

cohorts. We provide an implementation of all of the methods in a Python package

(https://github.com/Schork-Lab/mediator-was).

https://github.com/Schork-Lab/mediator-was
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3.3 Results

3.3.1 Uncertainty in TWAS

The key insight enabling TWAS is that one can train models to predict gene

expression from genotype in reference cohorts, and use these models to impute

unobserved gene expression values in GWAS samples using the genotype information.

Direct tests for association between gene expression and phenotype can be pursued,

more directly identifying putative causal genes for the phenotype of interest. However,

current methods only use a point estimate of the predicted gene expression in TWAS

and ignore the uncertainty in the prediction. The uncertainty arises from two sources:

not learning the correct model for transcriptional regulation (e.g., omitting trans-

regulatory effects), which we do not consider here, and not correctly estimating the

model parameters due to sample size, linkage disequilibrium, or biological and technical

confounders.

Our main contribution is a novel two-stage Bayesian regression model which

incorporates uncertainty for each SNP effect (BAY-TS). The key idea of BAY-TS

is to use the posterior distribution of SNP effects from the first-stage regression of

expression against genotype as the prior distribution on effects in the second stage

regression of phenotype against expression (Methods). After performing the second

stage regression, we compute a Bayes factor comparing the fitted model against a null

model where gene expression has no effect on phenotype.

We compared our method against existing methods, which merely calculate

association statistics using ordinary least squares. We compared two strategies: using

the full elastic net model trained on the entire GTEx dataset (OLS-E), and using the
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mean value of imputed expression across 50 bootstrapped models (OLS-M). We note

that existing methods for TWAS implement OLS-E only.

We then compared our method to multiple imputation (MI), a standard method

for handling completely missing (i.e., unobserved) data such as gene expression in

TWAS [LD02]. For each gene, we imputed 50 expression levels for each individual

using the bootstrapped models described above and estimated 50 effect sizes. We

then combined these effect sizes into a single association statistic for evaluation

incorporating both the mean and the variance of the 50 estimates (Methods).

Finally, we compared our method to regression calibration (RC), a standard

method from measurement error theory. Measurement error theory explicitly models

the error in observations (here, imputed expression) and predicts the impact of not

including the errors on statistical inference [Ful87]. Briefly, not explicitly including

error in the model leads to a violation of the model assumptions and therefore leads

to bias in the estimated regression coefficients. Applying this theory to TWAS, we

modeled each imputed expression value as the true expression value plus additive error.

We estimated the distribution of the error as the variance in predicted expression

across the 50 bootstrapped models. We then performed RC, estimating the true

expression based on the estimated measurement (imputation) errors and regressing

phenotype on the true expression.

3.3.2 Simulation study

We used real genotype data to jointly simulate gene expression at both causal

and non-causal genes in simulated reference and GWAS cohorts and continuous

phenotypes in the GWAS cohorts, as done in prior work [GKS+16]. To calculate the
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recall and the effective false discovery rate (FDR), we tested single-gene associations

against a phenotype generated using all of the simulated genes (Methods). For each

simulated data set, we computed the the area under the precision-recall curve (AUPRC)

of each method. We compared the AUPRC rather than the area under the receiver

operating characteristic (AUROC) curve because the AUROC is not appropriate when

the proportion of positive and negative examples is not 0.5 [DM07]. We ranked the

genes according to the association statistic computed by each method, then computed

the cumulative precision and recall (based on the simulated ground truth) for each

position in the ranked list (Figure S3.2).

We simulated a reference cohort of 300 individuals and a GWAS cohort of

5,000 individuals for which 40 genes were causal and 1,000 were non-causal, and

found that Bay-TS outperformed all other methods across the entire range of cis-

regulatory architectures (Figure 3.1a). Interestingly, neither MI nor RC improved

performance over OLS-E, which is likely explained by the fact that in this setting

a central assumption in measurement error theory is violated. Specifically, when

modeling the error in imputation, the second-stage predictors (means of imputed

expression) and their associated errors (variances of imputed expression) are correlated

because they both depend on genotype.

We then investigated the recall of each method at FDR 10%. To control the

FDR of BAY-TS, we calibrated a threshold for the Bayes factor (BF > 24) which

controlled the average FDR over the entire range of simulation parameters at the

desired level (Methods). For the other methods, we used the Benjamini-Hochberg

procedure to control the FDR. We found that BAY-TS again consistently outperformed

all the methods, with average recall equal to 15% (Figure 3.1b). Surprisingly, MI had
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the worst performance, likely due to deflated association statistics (Figure S3.3).

3.3.3 Application to seven diseases

Before applying our method to real data, we sought to evaluate the impact of

expression normalization on the trained first-stage models in TWAS. We first asked

which genes had gene expression reliably predictable from cis-genotypes. We used

whole blood expression in 338 individuals from the GTEx project [ADS+15] and

compared models trained on the published normalized expression values (GTEx-Norm)

to models trained on regularized log transformed expression (RLog) (Methods). We

found 1,666 and 1,655 genes with R2 ≥ 0 for GTEx-Norm and RLog, respectively, and

found 1,043 genes common between the two sets (Figure 3.2a). However, only 987 of

the 1,043 genes had enough non-missing data in the GWAS cohorts to successfully

impute expression into GWAS.

We next considered the ratio between the variance of within-individual imputed

expression estimates to across-individual estimates, which we define as the variance

ratio (VR) (Methods). Measurement error theory predicts VR is correlated with power

to detect associations, which we confirmed in simulation (Figure S3.4). Intuitively,

after estimating the error variance of imputed expression, we can denoise the imputed

expression by subtracting variation due to error in the imputed values. For the set of

987 genes, RLog based models had higher VR than GTEx-Norm based models (Figure

3.2b, S3.5), suggesting RLog normalization increases power to detect TWAS genes.

We then asked whether the same cis-SNPs were reliably selected in the first

stage model fitting for the 987 genes. We note that in this setting first-stage regression

predictors are correlated due to linkage disequilibrium, and therefore regularized
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regression techniques such as elastic net will in general not select the same non-

zero regression coefficients for replicate data sets. We calculated the discordance

fraction between the predictors selected in our first-stage bootstrap training against

the predictors included in a single model trained on the entire dataset (Methods). We

found not only that GTEx-Norm models have more predictors per gene on average,

but also have higher discordance in the selected predictors. Since RLog models find a

more consistent set of cis-SNPs and have larger VR (Figure S3.5), we perform TWAS

based on RLog models.

We performed TWAS on seven disease cohorts from the Wellcome Trust Case

Control Consortium [BCC+07]: bipolar disorder (BD), Crohn’s disease (CD), coronary

artery disease (CAD), hypertension (HT), rheumatoid arthritis (RA), Type 1 Diabetes

(T1D), and Type 2 Diabetes (T1D). We first sought to replicate PrediXcan by using

the published cis-regulatory model weights on our imputed genotypes [GWS+15]. We

replicated only 18 of 40 reported TWAS genes (Bonferroni correction, p < 5.76×10−6),

likely due to differences in imputation pipelines between the two studies. 13 of the

discordant genes are in the Major Histocompatability Complex (MHC) region, and 15

have estimated effect sizes with the same sign as previously reported (Table S3.1).

We then performed TWAS using BAY-TS in each of the seven diseases and

found 45 associated genes (FDR 10%, Table 3.1). Surprisingly, we only replicated

2 of 40 reported TWAS genes (Table S3.1). Moreover, we found that only 9 of

the 40 reported genes in our set of high confidence genes with reliably predictable

expression. The discrepancy in TWAS genes is due partly to differences in genotype

imputation, expression normalization, and first stage model fitting as described above,

and highlight the importance of data processing choices when performing TWAS. We
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compared BAY-TS to the other methods proposed above (including OLS-E, equivalent

to Predixcan) and found that 23 of the 45 genes are not found by any of the other

methods (Table S3.2, S3.3, S3.4). The other methods collectively also found TWAS

genes for CD, HT, RA, T1D, and T2D , but did not find associations for the other

diseases likely due to lack of power.

We discovered three genes significantly associated with BD: SARDH, ZNF79,

and WDR25. A higher burden of CNVs in the SARDH gene has been previously linked

to BD and Schizophrenia[Lac08], and its loss is the principal cause for sarcosinemia,

which often leads to mental impairment[SCTS70]. However, ZNF79 and WDR25 are

both poorly characterized and have not been studied in the context of BD previously.

We discovered four genes associated with CAD: DAGLB, CYTH3, PARL, and

TMEM158. DAGLB is active in the triglyceride lipase activity pathway, and has

been linked previously to high-density lipoprotein levels levels[WSS+13]. CYTH3 is a

regulator of PI-3 kinase signaling, which mediates many pathways in the cardiovascular

system [STW+15]. Variants in PARL have been associated with increased levels of

plasma insulin and predisposition to CAD [PWA+08]. In Chinese populations, the

gene was also linked to higher levels of triglyceride and total cholestrol in both T2D

and control populations [LHL+14]. Lower TMEM158 expression is associated with

increased risk in both of the CAD and T2D populations in our study. It has previously

transcriptionally associated with T1D, T2D, and gestational diabetes based on a case-

control differential expression study performed using peripheral lymphomononuclear

cells[CEX+13].

We discovered seven genes associated with CD (Figure 3.3): PIGC (1q24..33),

FAAH (1p33), HLA-DQA1 (6pq21.32), HLA-B (6p21.33), PRKAB1 (12q24.23),
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LRRC37A2 (17q21.31), and HSBP1L1 (18q23). PIGC has been associated with

inflammatory bowel disease as part of a larger Immunochip meta-analysis[JRW+12]. It

is also significantly associated with T2D in our study. There has been no direct genetic

evidence supporting the role of FAAH in CD, but recent experiments have shown that

drugs targeting FAAH are effective against mouse models of colitis [SMZ+14]. The

HLA region has a known role in autoimmune disorders such as CD [FTA+08, AAB+02].

PRKAB1 encodes the noncatalytic beta subunit of the AMP-activated protein kinase

(AMPK), which has been previously experimentally validated to play an important

role in IBD and is a therapeutic target for drugs used to treat CD and T2D [LLY+15].

Neither LRRC37A2 nor HSBP1L1 have been characterized in CD.

We found two genes associated with HT: SHMT1 and CIAO1. SHMT1 has pre-

viously been associated with hypertension, is a general prognostic marker for hyperten-

sion [OAM+15], is a marker for intra-cranial hypertension during space flight [SGZ+16],

and mediates the response to the angiogenesis inhibitor Bevacizumab[BKA+12]. CIAO1

encodes a protein in the iron-sulfur protein assembly complex and modulates activity

of WT1, an oncogone associated with nephroblastomas [JWTV98]. It has not been

studied in relation to HT.

We found multiple associations for RA in the MHC region: HLA-B, HLA-

DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRB1, HLA-DRB5, HLA-G,

IER3, and MICA. Similarly, we found multiple MHC associations with T1D: BAK1,

BTN3A2, HISTH1H2AG, HLA-B, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-

DQB2, HLA-DRB1, HLA-DRB5, HMGN4, and IER3. However, we discovered T1D

associations with C1QTNF6, RBMS2, and RSP26. Larger meta-analysis of T1D has

found association in the C1QTNF6 and RSP26 loci[CSS+08, BCC+09]. However,
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RBSM2 has not been previously linked to T1D.

Finally, we found four genes are associated with T2D: KHK, PIGC, POLR2J3,

and TMEM158. Ketohexokinase (KHK) plays a role in fructose metabolism and

has been studied extensively as a possible cause for T2D [CGM+09, KK13]. A

sub-threshold association in its locus has been identified in a recent study of T2D

in a Japanese population [ITY+16]. The PIGC locus has been previously linked to

BMI[SVSV15], but not to T2D. POLR2J3 also has not been studied in T2D previously.

We further characterized our TWAS associations by looking at overlaps with

GWAS loci (Methods). For each significant gene, we looked for a GWAS hit within

1 MB of the gene body (p < 5 × 10−8), and found overlaps for 23 of 42 genes. We

then asked how many of the 42 genes were later discovered by larger meta-analyses

in the seven diseases using the NHGRI GWAS Catalog [HSJ+09, WMM+14] and

found 10 TWAS genes overlap loci reported in the catalog. However, most of the

common genes found by both TWAS and GWAS lie in the MHC region. We finally

sought to validate our TWAS associations using orthogonal case-control expression

data sets[IKB+04, BFT+12, WDC+07, BCM+04, TOMM+09, KAT+11].

Surprisingly, we found only 3 TWAS genes are differentially expressed between

cases and controls (limma modified t-test[Smy05], Benjamini-Hochberg FDR < 0.1).

We investigated the ranking of the top 250 genes by TWAS and differential expression

and found no significant overlap between the ranked lists (Methods). There are several

possible explanations for this discrepancy, including the tissue in which expression

was measured, sample size, and technical confounders.
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3.4 Discussion

Transcriptome-wide association studies (TWAS) have proven to be a powerful

approach for identifying new genes associated with a phenotype by cleverly combining

reference expression data and available GWAS data. TWAS directly associate genes

to disease, revealing new biological insights. Indeed, these ideas have been extended to

additional levels of mediation, incorporating histone modification data to study genetic

effects on epigenomic control of transcription [GMF+16]. However, the field has not yet

fully appreciated the importance of uncertainty in these multi-stage regression models.

We showed that the state-of-the-art methods for TWAS adequately control type I

error, but lose power due to uncertainty. We proposed a novel two-stage Bayesian

method, BAY-TS, which outperforms not only existing methods but also standard

methods from both missing data and measurement error theory. In applications

to seven diseases from WTCCC, our method identified new genes not identified by

previous methods, which do not incorporate uncertainty.

Our results reveal that uncertainty arises from many sources, not only differ-

ences in the trained models of regulation. Using the same GWAS genotypes, different

imputation pipelines did not yield the same gene associations. We showed that expres-

sion normalization has an impact on trained models used for TWAS, and demonstrated

that models trained on regularized-log transformed data were better than those trained

on published GTEx expression data. Other studies have shown inconsistency between

different population of reference transcriptomes from the same tissue [GKS+16]. These

differences can be attributed to technical variation, environmental noise, sequencing

technology, processing pipelines, and population differences. There is a pressing need

to develop methods which adequately account for all these sources of uncertainty.
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3.5 Methods

3.5.1 Uncertainty in TWAS

We assume a continuous phenotype yi with zero mean collected on n individuals,

and regress phenotype on predicted expression wi for each gene whose expression

levels can be predicted from genotype information. To handle binary phenotypes,

we estimate latent liabilities using LEAP[WLGH15] and regress predicted expression

against individual liabilities. For ease of exposition, we describe a model with no

additional covariates; these can be included as additional terms in the model with no

modification to the algorithms.

yi = αwi + εi

yi = phenotype of individual i

wi = predicted expression of individual i

εi = error in equation

Current models use only one prediction for wi, based on a model of transcrip-

tional regulation learned for the gene.
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ŵi = Giβ̂

Gi = cis-regulatory SNP dosages

β̂ = eQTL effect size

Here, we investigate models which account for the distribution of wi and β.

Assuming access to only one training cohort, we estimate these distributions by fitting

k bootstrapped models regressing observed gene expression E on genotype G. Here,

the regressions are performed using elastic net with regularization penalty tuned using

cross-validation.

β̂(k) = arg min
β(k)

||E −Gβ(k)||2 + λ1||β(k)||1 + λ2||β(k)||2

We estimate the first two moments of the distributions of wi and β using the

following equations:
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ŵ
(k)
i = Gβ̂(k)

w̄i =
1

K

∑
k

w
(k)
i

σ̂2
ui =

1

K − 1

∑
j

(w
(k)
i − w̄i)2

3.5.2 Bayesian two-stage regression model

To fit the Bayesian two-stage regression model for a gene (BAY-TS, Figure

S3.1), we use the distributions of βj learned using the k bootstrapped models for that

gene as the prior in the second-stage regression.

P (βj) = N (E[βj],V[βj])

P (α) = N (0, 1)

P (εi) = N (0, σ2
e)

P (σ2
e) = C+(0, 10)

Here, N (·, ·) denotes the Gaussian density and C+(·, ·) denotes the half-Cauchy

density. Our inference goal is to estimate a Bayes factor comparing the model described

above to a null model where α = 0. Rather than estimating the intractable model

evidences and taking a ratio, we added a model indicator variable z and combined the

null model p(x, y) = N(0, σ2
e) and the alternate model (described above). Then, the
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Bayes factor is given by the ratio p(z = 1)/p(z = 0). We implemented the model using

PyMC3 [SWF16] and used the Metropolis-Hastings algorithm to perform inference.

We ran the MCMC chain for 100,000 steps and used the last 10,000 samples to compute

the Bayes factor.

3.5.3 Multiple imputation

To perform multiple imputation (MI), we fit the k bootstrapped models for w

against the phenotype using linear regression, calculate an aggregated test statistic

θmi, and compute a Wald test statistic.

α̂MI =
1

K

∑
k

αk

Var(α̂MI) = Var(α) +

(
1 +

1

K

)
1

K

∑
k

Var(αk)

θMI =
α̂MI

Var(α̂MI)

H0 : θMI = 0

H1 : θMI > 0

3.5.4 Regression calibration

We assume additive measurement error on the predicted expression value:
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wi = xi + ui

xi = true (latent) expression of individual i

ui = error in predicted expression of individual i

We assume measurement errors have zero mean and finite variance:

E[ui] = 0

V [ui] = σ2
ui

To perform regression calibration (RC), we impute the true expression value

and regress phenotype against this estimated true expression. Given σ̂2
ui, we regress yi

on x̂i = w̄ − κ̂(wi − w̄), yielding estimate α̂∗. To estimate the association p-value, we

perform a Wald test. We estimate Σα, the covariance of α̂∗, using a robust estimator

[Ful87]:
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Σα = M−1
XXHM

−1
XX

MXX =
W ′W

n
− Σ̂u

W = n× p design matrix (including intercept)

Σ̂u = covariance of measurement errors

H =
1

n(n− p)
∑
i

∆i∆
′
i

ri = yi −Wiα̂

∆i = W ′
iri + Σuiα̂

θRC =

(
α̂∗

SE(α̂∗)

)2

∼ χ2(θ; 1)

H0 : θRC = 0

H1 : θRC > 0

3.5.5 Simulation study

We used imputed dosages for 4,884 samples from the Hypertension, 58C,

and NBS cohorts as described below. We selected 193 genes with cis-heritable

gene expression (likelihood ratio test, GREML) in all of three studies as previously

reported[GKS+16]: Metabolic Syndrome in Men (METSIM), Netherlands Twin Reg-

istry (NTR), and Young Finns Study (YFS). We held out 350 individuals as the

training cohort and used the rest as the test cohort.

For each gene, we sampled the causal fraction of eQTLs from (Single, 1%, 5%, 10%)
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of SNPs from the cis-regulatory window. We computed the genetic value of each

individual X = Gβ and added i.i.d. Gaussian noise to achieve proportion of variance ex-

plained (PVE) equal to 0.17 in expectation by sampling from N (0,V[Gβ]∗(1/.17−1)),

where V[Gβ] is the sample variance of the genetic values.

For each simulation, we sampled 40 causal genes and added i.i.d Gaussian

noise to achieve PVE = 0.2 using the procedure described above. We computed the

genetic value of each individual as y = Xα and add Gaussian noise as described above.

We evaluated the method using sample sizes of 5000 individuals. We also tested the

performance varying the number of non-causal genes from 400 to 4000.

3.5.6 GWAS processing

We downloaded Affymetrix genotypes for the Wellcome Trust Case Control

Consortium seven diseases study in OXSTATS format called using the Chiamo algo-

rithm from the European Genome Archive. We downloaded probe identifiers, hg19

positions, and strand information (http://www.well.ox.ac.uk/∼wrayner/strand/) to

convert positions to hg19 and used GTOOL version 0.7.5 to align all genotypes. We

used PLINK version 1.09b to produce hard genotype calls with genotype probability

threshold 0.99 and remove all SNPs and samples excluded from the original study.

We used SHAPEIT2 v2.r644 (ref. [HFS+12]) to exclude unalignable SNPs and

phase the case and control cohorts independently for each autosome. We used default

values for all model parameters. We used IMPUTE2 version 2.3.0 (ref. [HDM+09]) to

impute into all SNPs and indels with MAF in European samples > 0.01. We divided

the autosomes into 5 MB windows and threw out windows with fewer than 100 array

probes.

http://www.well.ox.ac.uk/~wrayner/strand/
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For each cohort, we hard-called imputed dosages with genotype probability

threshold 0.9. For each disease cohort, we produced a case-control set of hard-

called genotypes for both the array genotypes and imputed genotypes by merging all

chromosomes with the shared controls (1958 Birth Cohort and National Blood Services).

We used GCTA 1.24 (ref. [YLGV11]) to estimate a genetic relatedness matrix on the

case-control array genotypes and prune pairs of individuals with relatedness > 0.05.

We used plink to remove these individuals from the imputed genotypes, and further

remove indels and SNPs with missingness > 0.01, differential missingness (p < 0.05)

or HWE p < 10−5.

We used LEAP version 0.1.8.9 (ref. [WLGH15]) to estimate latent liabilities for

each chromosome of each case-control dataset separately (holding out that chromosome)

using the array genotypes. We used FastLMM version 0.2.26 (ref. [LLL+11]) to compute

association p-values for the imputed genotypes using kinship matrices estimated from

the array genotypes (described above). We made extensive use of GNU parallel[Tan11]

to facilitate the analysis.

3.5.7 Reference expression processing

We downloaded genotypes and RNA-Seq read counts in the v6 release of GTEx

from dbGaP. We restricted our analysis to only those genes which had RNASeqC

gene-level read count >= 10 in at least 10 individuals, resulting in 12,049 genes. We

transformed the counts to regularized log-transform values (RLog) using DESEq2,

adjusting for sequencing depth using the median-of-ratios method [LHA14]. We

trained our models on these normalized values to models trained on the published

expression values (GTEX-Norm).
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We extracted genotypes for SNPs within 500kb upstream and downstream of

the transcription start and end sites for each gene using plink. We filtered sites with

missingness > 0.01 or HWE p < 10−5. For models fit on the published expression values

(GTEx-Norm), we included 3 genotype principal components (PCs), 35 expression

PEER factors, gender, and sequencing platform as covariates. For models fit on RLog,

we used the same covariates but used 10 expression PCs instead of the PEER factors.

To find the optimal elastic net penalty parameter and l1/l2 regularization ratio,

we used ElasticNetCV from the scikit-learn package [PVG+11] with possible l1 ratio

values 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.95, and 0.99 and 100 uniformly distributed

penalty parameters from 0.1 to 1. Using the best fitted penalty parameters parameters,

we fit 50 bootstrapped models by sampling 300 individuals from the 338 samples.

We imputed expression using PrediXcan software as well as an independent

implementation. In our independent implementation, we filtered all GWAS sites that

had higher than 10% missing genotypes. Additionally, we assigned the average value

to all missing genotypes (which is possible for best-guess imputed genotypes after

thresholding on the posterior probability of any genotype call). We note that the

implementation of PrediXcan assumes there is no missingness in the data.

To calculate cross-validation prediction accuracy, we predicted hold-out gene

expression using only genotype (omitting covariates). We used 5-fold cross-validation

and calculated the average R2 across the folds.

We define the variance ratio (VR) as the ratio of variance of mean imputed

expression to the mean of the variance of imputed expression. Intuitively, the VR

compares the within-individual variation in imputed expression to between-individual

variation. We estimate VR by estimating the necessary means and variances over the
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50 bootstrapped models described above.

3.5.8 GEO data

We downloaded case-control expression datasets for the seven diseases from

GEO and processed them using the GEO2R web service: GSE12654 (BD) [IKB+04],

GSE20681 (CAD) [BFT+12], GSE6731 (CD) [WDC+07], GSE703 (HT) [BCM+04],

GSE15573 (RA) [TOMM+09], GSE55100 (T1D) [YYW+15], GSE21321 (T2D). For

each data set, we found differentially expressed genes between cases and controls using

limma and the GEO2R web service. We assessed significance in the ranking between

TWAS lists and GEO lists using the R package OrderedList [YXC], restricting to the

top 250 overlapping genes for each disease.
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Figure 3.1: Simulation results. a) Area under precision-recall curve
(AUPRC) for each method. Error bars represent standard error of AUPRC
estimated over 4 replicates. b) Recall of each method controlling FDR at
10%. Error bars represent standard error of recall over 4 replicates.
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Table 3.1: TWAS results for Bayesian two-stage regression model. BF:
Bayes factor of BAY-TS. We only report genes with BF > 24, corresponding
for FDR 10%. Effect size: Estimate of gene effect on disease liability. R2:
cross-validation prediction accuracy. Ratio: variance ratio, the ratio of
within-individual variance in imputed expression to across-individual variance.
GWAS: best p-value in the WTCCC cohort within 1MB of the gene body.
Catalog: best p-value reported in the NHGRI GWAS catalog within 1MB of
the gene body. Diff. expr.: p-value for differential expression in independent
case-control expression cohort

Gene Disease Chr BAY-TS Effect-Size R2 Ratio GWAS Catalog GEO

SARDH BD 9 76.52 -0.43 0.03 156.52 7.71e-04 - 0.98
ZNF79 BD 9 25.18 -1.01 0.04 23.03 1.40e-03 - 0.38
WDR25 BD 14 28.07 -0.69 0.15 41.10 6.76e-04 - -
PARL CAD 3 46.39 0.38 0.03 136.61 1.02e-04 - 0.26
TMEM158 CAD 3 48.50 -1.03 0.01 1.82 2.09e-03 - 0.092
CYTH3 CAD 7 28.15 -1.47 0.02 0.71 1.42e-04 - 0.47
DAGLB CAD 7 77.12 2.13 0.09 4.13 1.42e-04 - 0.39
FAAH CD 1 44.66 0.62 0.01 8.39 1.86e-04 - 0.38
PIGC CD 1 311.50 -1.73 0.12 34.47 5.93e-08 3e-22 0.0075
HLA-B CD 6 9999.00 -0.76 0.02 33.40 9.22e-09 7e-32 0.34
HLA-DQA1 CD 6 10000.00 0.59 0.39 27.64 6.12e-08 9e-59 0.98
PRKAB1 CD 12 26.17 -0.87 0.03 74.76 1.33e-03 - 0.34
LRRC37A2 CD 17 32.00 -0.47 0.34 47.37 3.55e-05 - 0.086
HSBP1L1 CD 18 29.86 -0.88 0.25 32.46 3.05e-05 - -
CIAO1 HT 2 49.00 1.07 0.03 48.08 6.04e-05 - -
SHMT1 HT 17 9999.00 0.47 0.15 45.07 1.48e-04 - -
HLA-B RA 6 311.50 -1.65 0.02 16.04 9.54e-33 3e-10 0.45
HLA-DQA1 RA 6 10000.00 3.90 0.39 8.21 2.25e-86 1e-299 -
HLA-DQA2 RA 6 10000.00 1.00 0.37 16.46 2.25e-86 1e-299 0.29
HLA-DQB1 RA 6 10000.00 4.97 0.61 6.58 2.25e-86 1e-299 0.85
HLA-DQB2 RA 6 10000.00 3.16 0.37 12.05 2.25e-86 1e-299 -
HLA-DRB1 RA 6 10000.00 -1.20 0.26 15.60 2.25e-86 1e-299 0.33
HLA-DRB5 RA 6 10000.00 -3.14 0.62 8.28 2.25e-86 1e-299 0.26
HLA-G RA 6 4999.00 -0.30 0.34 24.16 4.51e-16 - 0.75
IER3 RA 6 10000.00 1.55 0.05 16.03 9.13e-12 - 0.0089
MICA RA 6 10000.00 0.94 0.29 62.73 9.54e-33 3e-10 0.27
BAK1 T1D 6 10000.00 -1.10 0.14 32.53 2.35e-31 - 0.21
BTN3A2 T1D 6 10000.00 -0.47 0.19 148.71 1.94e-13 - 0.44
HIST1H2AG T1D 6 10000.00 -3.33 0.02 3.26 2.26e-15 - -
HLA-B T1D 6 10000.00 -4.84 0.02 2.24 1.44e-91 - 0.37
HLA-DQA1 T1D 6 10000.00 5.82 0.39 2.23 0.00e+00 5e-134 0.045
HLA-DQA2 T1D 6 10000.00 9.79 0.37 5.93 0.00e+00 5e-134 -
HLA-DQB1 T1D 6 10000.00 8.49 0.61 1.34 0.00e+00 5e-134 0.00018
HLA-DQB2 T1D 6 10000.00 7.40 0.37 26.58 0.00e+00 5e-134 0.11
HLA-DRB1 T1D 6 10000.00 -3.97 0.26 8.23 0.00e+00 5e-134 0.24
HLA-DRB5 T1D 6 554.56 -2.08 0.62 0.46 0.00e+00 5e-134 -
HMGN4 T1D 6 10000.00 -1.44 0.09 9.59 1.94e-13 - 0.22
IER3 T1D 6 10000.00 5.08 0.05 15.09 1.16e-48 - 0.13
RBMS2 T1D 12 10000.00 -3.31 0.23 1.23 8.93e-12 - 0.026
RPS26 T1D 12 10000.00 -3.10 0.02 12.37 8.93e-12 2e-25 -
C1QTNF6 T1D 22 27.82 0.83 0.06 45.02 1.17e-05 2e-08 0.73
PIGC T2D 1 33.01 -0.98 0.12 30.33 1.73e-05 - -
KHK T2D 2 28.15 -0.60 0.04 36.63 8.13e-04 2e-06 0.087
TMEM158 T2D 3 103.17 -1.06 0.01 1.77 9.53e-04 - 0.2
POLR2J3 T2D 7 624.00 -0.40 0.08 4.27 1.13e-03 - -



65

Figure 3.2: Impact of expression normalization on trained models of tran-
scriptional regulation. a) The number of genes with cross-validation R2 ≥ 0.
b) Density of the distribution of variance ratio (VR) for each of the 1043
common genes with cross-validation R2 ≥ 0. Contours denote surfaces of
equal density. c) The total number of selected predictors per gene and the
fraction of discordant predictors selected per gene.
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Figure 3.3: TWAS results for Crohn’s Disease. a) Manhattan plot of GWAS
summary statistics estimated using FastLMM and LEAP on the WTCCC
GWAS cohort. b) BAY-TS TWAS on the same samples reveals 7 genes that
are significantly associated with Crohn’s Disease. c) Quantile-quantile plot of
TWAS test statistics for frequentist methods. d) Bayes factor and z-score of
BAY-TS associations. A Bayes factor of at least 24 corresponds to FDR 10%.
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Figure S3.1: Graphical model for BAY-TS.

Table S3.1: Replication of PrediXcan TWAS genes by our imputed geno-
types and BAY-TS. Logit Z: TWAS z-statistic using logistic regression with
published cis-regulatory models and our imputed genotypes. Logit p-value:
TWAS logistic regression p-value. R2: Computed R2 in the Rlog trained
models. OLS-E: TWAS p-value computed using OLS-E with liability esti-
mates using LEAP and RLog trained models. BAY-TS: TWAS Bayes factor
computed using BAY-TS. A Bayes factor > 24 corresponds to FDR 10%.

Disease Gene Chr P-Xcan
z

P-Xcan
p-value

Logit
Z

Logit
p-value

R2 OLS-E BAY-TS

RA DCLRE1B 1 -6.68 2.46e-11 -6.42 1.35e-10 - - -
RA PTPN22 1 5.67 1.44e-8 5.78 7.61e-09 0.0097 0.0012 1.8
BD PTPRE 10 4.94 7.71e-7 4.27 1.95e-05 - - -
CD IL23R 1 5.23 1.74e-7 5.98 2.22e-09 - - -
CD APEH 3 5.14 2.77e-7 5.13 2.92e-07 - - -
CD ZNF300 5 -4.98 6.29e-7 -4.40 1.07e-05 0.027 0.49 0.94
CD NKD1 16 -4.91 8.91e-7 -4.97 6.78e-07 - - -
CD BSN 3 -4.68 2.89e-6 -3.37 7.39e-04 - - -
CD GPX1 3 -4.62 3.87e-6 -3.26 1.13e-03 - - -
CD SLC22A5 5 -4.54 5.75e-6 -3.62 2.98e-04 0.19 0.00088 0.87
HT KCNN4 19 -4.70 2.62e-6 -2.99 2.83e-03 0.043 8.7e-05 19
T1D DCLRE1B 1 -7.84 4.34e-15 -6.53 6.75e-11 - - -
T1D ZNF165 6 7.30 2.92e-13 7.00 2.58e-12 - - -
T1D ERBB3 12 -6.81 1.01e-11 -6.83 8.67e-12 0.016 0.0066 1
T1D EGFL8 6 6.33 2.52e-10 -11.36 6.39e-30 - - -
T1D C6orf136 6 -6.33 2.52e-10 -3.60 3.22e-04 - - -
T1D HCG27 6 -6.33 2.52e-10 3.36 7.93e-04 - - -
T1D GTF2H4 6 6.33 2.52e-10 -1.89 5.85e-02 - - -
T1D DDR1 6 6.33 2.52e-10 0.22 8.27e-01 - - -
T1D AGER 6 -6.33 2.52e-10 5.91 3.41e-09 - - -
T1D POU5F1 6 6.33 2.52e-10 0.25 8.00e-01 - - -
T1D ATP6V1G2 6 6.33 2.52e-10 1.28 2.01e-01 - - -
T1D TUBB 6 6.33 2.52e-10 4.92 8.51e-07 - - -
T1D AIF1 6 6.33 2.52e-10 0.02 9.81e-01 - - -
T1D CYP21A2 6 -6.33 2.52e-10 10.31 6.51e-25 - - -
T1D LSM2 6 6.33 2.52e-10 7.85 4.24e-15 - - -
T1D VARS2 6 6.33 2.52e-10 -9.70 3.01e-22 - - -
T1D APOM 6 -6.33 2.52e-10 4.03 5.57e-05 - - -
T1D DDAH2 6 -6.33 2.52e-10 -6.81 9.63e-12 - - -
T1D NCR3 6 -6.33 2.52e-10 -0.05 9.62e-01 - - -
T1D ZSCAN16 6 6.16 7.37e-10 5.94 2.93e-09 - - -
T1D ZKSCAN4 6 6.15 7.73e-10 5.90 3.57e-09 - - -
T1D PTPN22 1 5.83 5.41e-9 6.28 3.28e-10 0.0097 0.0003 2
T1D RPS26 12 5.82 6.00e-9 5.76 8.34e-09 0.022 3.6e-10 1e+04
T1D GDF11 12 -5.75 9.11e-9 -4.01 6.09e-05 - - -
T1D SUOX 12 -5.47 4.49e-8 -5.31 1.09e-07 - - -
T1D BTN3A2 6 -5.11 3.30e-7 -4.94 7.75e-07 0.19 8.3e-08 1e+04
T1D PRSS16 6 4.83 1.34e-6 3.15 1.62e-03 - - -
T1D FAM109A 12 -4.76 1.94e-6 -4.43 9.59e-06 0.033 - 1
T1D SH2B3 12 4.67 3.05e-6 5.50 3.81e-08 - - -
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Figure S3.2: Precision-recall curves for the proposed methods over four
simulated cis-regulatory architectures and four trials.
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Figure S3.3: Quantile-quantile plots for the frequentist methods across four
simulated cis-regulatory architectures and four trials.
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Figure S3.4: Power vs. variance ratio across four simulated cis-regulatory
architectures. Each of 150 consistently heritable genes is simulated 1,000
times, and power is estimated as the number of trials for which the gene
was significantly associated (p < 0.05) with the simulated phenotype after
Bonferroni correction for 1,000 tests.
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Figure S3.5: Mean variance ratio across the diseases. For genes with R2 ≥ 0,
the mean variance ratio across the diseases. As expected, there is a high
correlation between variance ratio and R2. However, variance ratio is higher
for RLog compared to GTEx-Norm transcription models.
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Table S3.2: OLS-E results using RLog learned models of transcription.

Gene Disease Chr OLS-E Effect-Size R2 Ratio GWAS Catalog GEO

MCM6 CD 2 4.03e-05 1.62 0.02 5.70 1.64e-05 - 0.67
IER3 CD 6 7.54e-05 -0.54 0.05 18.59 1.59e-06 7e-07 1.8e-05
ZC3HAV1 CD 7 6.30e-06 -4.69 0.04 8.30 5.57e-05 - 0.00018
LRRC37A2 CD 17 2.98e-04 -0.48 0.34 47.37 3.55e-05 - 0.086
MIF4GD CD 17 2.60e-05 -160.54 0.03 0.06 5.26e-06 - -
SHMT1 HT 17 3.40e-05 0.31 0.15 45.07 1.48e-04 - -
KCNN4 HT 19 8.70e-05 -0.58 0.04 5.99 1.63e-04 - -
AP4B1 RA 1 7.05e-04 2.70 0.04 5.80 3.82e-24 - 1.7e-05
HLA-B RA 6 7.62e-04 -0.38 0.02 16.04 9.54e-33 3e-10 0.45
HLA-C RA 6 1.38e-05 -0.18 0.40 150.82 1.26e-32 3e-10 0.75
HLA-DQA1 RA 6 1.34e-26 1.16 0.39 8.21 2.25e-86 1e-299 -
HLA-DQA2 RA 6 3.37e-43 0.73 0.37 16.46 2.25e-86 1e-299 0.29
HLA-DQB2 RA 6 3.62e-05 0.42 0.37 12.05 2.25e-86 1e-299 -
HLA-DRB1 RA 6 8.42e-33 -1.08 0.26 15.60 2.25e-86 1e-299 0.33
HLA-DRB5 RA 6 3.66e-06 0.98 0.62 8.28 2.25e-86 1e-299 0.26
IER3 RA 6 7.92e-05 0.55 0.05 16.03 9.13e-12 - 0.0089
MICA RA 6 6.52e-08 0.33 0.29 62.73 9.54e-33 3e-10 0.27
ZNF783 RA 7 4.89e-04 -52.68 0.02 0.08 2.02e-04 - -
CLEC12A RA 12 2.73e-04 -0.09 0.35 583.64 1.75e-06 - 0.84
CLEC12B RA 12 3.00e-04 -0.08 0.39 545.61 1.75e-06 - 0.23
NYNRIN RA 14 8.64e-04 2.02 0.07 1.57 1.78e-04 - -
AP4B1 T1D 1 9.92e-05 3.08 0.04 5.93 3.18e-25 - 0.0027
BMP8A T1D 1 1.15e-03 2.60 0.02 2.52 2.79e-03 - 0.5
CDC7 T1D 1 8.38e-04 0.67 0.05 13.84 1.15e-03 - 0.025
LBX2 T1D 2 5.14e-05 1.25 0.05 37.19 5.40e-05 - -
BTN3A2 T1D 6 8.31e-08 -0.22 0.19 148.71 1.94e-13 - 0.44
HIST1H2AG T1D 6 2.92e-10 -7.90 0.02 3.26 2.26e-15 - -
HLA-B T1D 6 4.09e-06 -0.79 0.02 2.24 1.44e-91 - 0.37
HLA-DQA1 T1D 6 4.70e-61 2.75 0.39 2.23 0.00e+00 5e-134 0.045
HLA-DQA2 T1D 6 1.42e-59 1.63 0.37 5.93 0.00e+00 5e-134 -
HLA-DQB1 T1D 6 3.99e-28 -1.60 0.61 1.34 0.00e+00 5e-134 0.00018
HLA-DQB2 T1D 6 5.60e-22 0.83 0.37 26.58 0.00e+00 5e-134 0.11
HLA-DRB1 T1D 6 2.98e-61 -2.17 0.26 8.23 0.00e+00 5e-134 0.24
HMGN4 T1D 6 6.68e-05 -0.85 0.09 9.59 1.94e-13 - 0.22
IER3 T1D 6 9.03e-28 1.52 0.05 15.09 1.16e-48 - 0.13
MICA T1D 6 2.08e-04 0.25 0.29 65.78 1.44e-91 - 0.83
RBMS2 T1D 12 2.48e-11 -10.08 0.23 1.23 8.93e-12 - 0.026
RPS26 T1D 12 3.58e-10 3.39 0.02 12.37 8.93e-12 2e-25 -
XRCC6BP1 T1D 12 1.10e-03 0.26 0.21 76.21 4.16e-04 - -
HEATR6 T1D 17 1.32e-03 -0.56 0.13 29.73 4.82e-04 - 0.18

Table S3.3: MI results using RLog learned models of transcription.

Gene Disease Chr MI Effect-Size R2 Ratio GWAS Catalog GEO

SHMT1 HT 17 5.17e-05 0.31 0.15 45.07 1.48e-04 - -
HLA-C RA 6 1.24e-04 -0.18 0.40 150.82 1.26e-32 3e-10 0.75
HLA-DQA1 RA 6 1.24e-07 1.28 0.39 8.21 2.25e-86 1e-299 -
HLA-DQA2 RA 6 5.07e-28 0.71 0.37 16.46 2.25e-86 1e-299 0.29
HLA-DRB1 RA 6 2.40e-15 -1.07 0.26 15.60 2.25e-86 1e-299 0.33
MICA RA 6 2.63e-06 0.32 0.29 62.73 9.54e-33 3e-10 0.27
CLEC12A RA 12 3.04e-04 -0.09 0.35 583.64 1.75e-06 - 0.84
CLEC12B RA 12 3.59e-04 -0.09 0.39 545.61 1.75e-06 - 0.23
LBX2 T1D 2 2.16e-04 1.28 0.05 37.19 5.40e-05 - -
BTN3A2 T1D 6 3.08e-07 -0.22 0.19 148.71 1.94e-13 - 0.44
HLA-DQA1 T1D 6 4.97e-12 2.87 0.39 2.23 0.00e+00 5e-134 0.045
HLA-DQA2 T1D 6 3.81e-09 1.58 0.37 5.93 0.00e+00 5e-134 -
HLA-DQB2 T1D 6 1.21e-08 0.82 0.37 26.58 0.00e+00 5e-134 0.11
HLA-DRB1 T1D 6 1.33e-30 -2.20 0.26 8.23 0.00e+00 5e-134 0.24
IER3 T1D 6 9.30e-16 1.60 0.05 15.09 1.16e-48 - 0.13
RPS26 T1D 12 3.45e-06 3.46 0.02 12.37 8.93e-12 2e-25 -
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Table S3.4: RC results using RLog learned models of transcription. For RC,
we additionally filter on Ratio > 1 due to known biases for Ratio ≤ 1.

Gene Disease Chr RC Effect-Size R2 Ratio GWAS Catalog GEO

CARKD BD 13 4.81e-03 0.63 0.07 7.25e+01 0.00024 - -
LGALS9B BD 17 9.23e-04 -0.21 0.04 3.54e+01 9.1e-05 - -
NT5M BD 17 4.71e-03 0.45 0.04 1.95e+01 0.001 - -
GSTT1 BD 22 1.50e-03 9.87 0.30 2.22e+00 0.00097 - 0.26
LBX2 CD 2 2.04e-03 1.77 0.05 1.02e+01 3.1e-05 - -
ZC3HAV1 CD 7 2.18e-07 -6.53 0.04 8.30e+00 5.6e-05 - 0.00018
KCNN4 HT 19 2.89e-03 -0.76 0.04 5.99e+00 0.00016 - -
AP4B1 RA 1 4.98e-04 3.49 0.04 5.80e+00 3.8e-24 - 1.7e-05
HLA-DQA1 RA 6 1.27e-05 1.52 0.39 8.21e+00 2.3e-86 1e-299 -
HLA-DQA2 RA 6 3.19e-05 0.74 0.37 1.65e+01 2.3e-86 1e-299 0.29
HLA-DRB1 RA 6 6.04e-05 -1.12 0.26 1.56e+01 2.3e-86 1e-299 0.33
HLA-DRB5 RA 6 8.09e-05 1.30 0.62 8.28e+00 2.3e-86 1e-299 0.26
IER3 RA 6 5.27e-03 0.68 0.05 1.60e+01 9.1e-12 - 0.0089
MICA RA 6 1.50e-07 0.33 0.29 6.27e+01 9.5e-33 3e-10 0.27
ASNS RA 7 2.28e-03 2.89 0.07 2.43e+00 0.00031 - 0.02
MRPS16 RA 10 3.60e-03 -5.55 0.02 6.18e+00 0.027 - 0.44
CLEC12A RA 12 4.64e-03 -0.09 0.35 5.84e+02 1.8e-06 - 0.84
AP4B1 T1D 1 1.17e-05 4.41 0.04 5.93e+00 3.2e-25 - 0.0027
DRAM2 T1D 1 5.03e-03 -6.31 0.03 3.04e+00 0.0039 - 0.51
LBX2 T1D 2 1.06e-04 1.39 0.05 3.72e+01 5.4e-05 - -
BTN3A2 T1D 6 3.22e-06 -0.22 0.19 1.49e+02 1.9e-13 - 0.44
HIST1H2AG T1D 6 1.70e-09 -11.63 0.02 3.26e+00 2.3e-15 - -
HLA-DQA1 T1D 6 8.10e-06 5.00 0.39 2.23e+00 0 5e-134 0.045
HLA-DQA2 T1D 6 1.02e-04 1.94 0.37 5.93e+00 0 5e-134 -
HLA-DQB2 T1D 6 2.76e-04 0.87 0.37 2.66e+01 0 5e-134 0.11
HLA-DRB1 T1D 6 2.56e-06 -2.54 0.26 8.23e+00 0 5e-134 0.24
IER3 T1D 6 4.08e-12 1.76 0.05 1.51e+01 1.2e-48 - 0.13
MICA T1D 6 8.71e-04 0.23 0.29 6.58e+01 1.4e-91 - 0.83
RPS26 T1D 12 3.71e-06 3.79 0.02 1.24e+01 8.9e-12 2e-25 -
HEATR6 T1D 17 1.56e-03 -0.59 0.13 2.97e+01 0.00048 - 0.18
C1QTNF6 T1D 22 2.55e-03 0.41 0.06 4.50e+01 1.2e-05 2e-08 0.73
GSTT1 T2D 22 3.07e-04 8.29 0.30 2.16e+00 0.003 - 0.97
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Chapter 4

Longitudinal metabolome,

microbiome, and transcriptome

profiling of a germline TP53

mutation carrier

4.1 Abstract

Patients suffering from Li-Fraumeni syndrome have a high incidence rate of

cancer during their lifetime as a result of a germline TP53 mutation. Clinical standard

of care includes regular surveillance, including several imaging and biochemical screens

for cancer. Here, we test the utility of molecular surveillance for a 16 year old female

with a T167C TP53 mutation through longitudinal profiling of her metabolome,

microbiome, and transcriptome. We devised analytical techniques to accommodate

several sources of variation, particularly those associated with longitudinal sampling.

75
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We did not find any significant deviations from healthy baseline measurements indicate

of cancer risk, but we highlight power limitations and propose several strategies for

increasing sensitivity in N-of-1 study designs.

4.2 Introduction

Li-Fraumeni syndrome (LFS) is a rare autosomal dominant disorder that

is caused by a germline mutation in the tumor protein 53 gene (TP53 ), which

encodes tumor protein 53 (p53) [LFJ69]. As a transcription factor that responds to

cellular stress, p53 plays a role in several important cancer-related pathways such as

DNA repair, cell-cycle arrest, senescence, and apoptosis[Geo11]. Carriers of many

nonsynonymous or nonsense germline p53 mutations have a high incidence of cancer

with 68% of males and 93% of females developing multiple cancers in their lifetime.

Compared to the general population, the average onset of cancer in LFS is much

younger, whereas 2% of the cancer cases in the general population occur before age 30,

and 11% before age 50, those figures rise to 56% and 100%, respectively in LFS families

[HKHH02]. There is high predisposition towards certain cancer subtypes including soft

tissue sarcoma, osteosarcoma, breast cancer, brain tumors, adrenocortical carcinoma,

and leukemias [SZNG93]. Patients are typically instructed to avoid known carcinogens

including tobacco, excessive alcohol, long sun explore, and other known occupational

exposures.

Early detection of cancer is an integral part of the clinical strategy to combat

LFS. Regular surveillance for mutation carriers includes several imaging and biochem-

ical screens: ultrasound, brain MRI, total body MRI, mammography and breast MRI,

and blood tests for several cancer biomarkers. A prospective study on the efficacy
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of added cancer surveillance showed a significant increase in 3-year overall survival

rate for the patients in the surveillance group compared to the non-surveillance group

[VTS+11]. To our knowledge, there has been no previous study that has additionally

surveyed the metabolome, microbiome, and transcriptome of a LFS patient and used

the resulting information to assess health status changes that might be indicative of

early signs of cancer.

Here, we show results from a 16 month molecular surveillance study of a 16

year old female with a germline T167C p53 mutation. We assessed her mutational

burden by analyzing whole genomes of the entire nuclear family and, via longitudinal

monitoring, also sought outliers and linear trends in her metabolome, microbiome,

and transcriptome profiling. We did not find any significant deviations that might

be indicative of the presence of a cancer in our study, but we highlight challenges

in achieving high sensitivity in small n-of-1 study designs due to inherent biological,

assay and instrumentation noise.

4.3 Results

The father is a healthy carrier of the heterozygous T167C variant, and trans-

mitted it to the daughter and son in the nuclear family (Figure 4.1a). The mother

is unaffected. The son developed neuroglioblastoma at age 12 and is deceased. The

daughter, the proband, is a healthy, 16 year old with no past indications of cancer.

4.3.1 Whole Genome Sequencing

We sequenced the father, mother, son, and daughter at an average read depth

of 39x, with 97% of the autosomal genome covered by at least 15 reads. We used
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GATK best practices (Methods) for group calling to align the reads and call single

nucleotide variants (SNVs) and insertions or deletions (INDELs) [MHB+10].

We hypothesized that the p53 variant will lead to malfunction of DNA repair

mechanism, and characterized the de-novo mutations in the offspring to study the

impact of the p53 variant. De-novo mutations, or mutations present in the offspring

germline that are not present in the parents’ germline, occur either in the parents’ sex

cells or in progenitor cells of the offspring blood cells. We are interested in the latter

case, or somatic de-novo variants that occurred in the presence of the p53 variant

in the offspring. There are 3071 and 886 de-novo SNVs and 3402 and 2962 de-novo

INDELs in the daughter and son, respectively using variant recalibration steps that

favor sensitivity (Methods, Figure 4.2a). We studied the mutational signatures of the

SNVs by categorizing the mutations based on the upstream and downstream bases.

This results in 96 total mutational subtypes: 4 upstream bases, 6 mutation types, and

4 downstream bases. The highest fraction of mutations for both offspring occur in

homopolymer contexts such 3’:T, C→T, 5’:T (Figure 4.2b, c).

Previous studies have shown it is possible to deconvolve mutational signatures

using matrix factorization into constitutive DNA repair malfunctions in cancer [AS14].

We used deconstructSigs to compare the mutational signatures of the offspring to 30

published COSMIC cancer signatures [FBG+15b, RMH+16]. Signature 3 and 12 are

highly abundant in both offspring, whereas the daughter’s signature further factorizes

into Signature 2, 8 and 11. Signature 3 is linked to DNA double-stand break repair

by homologous recombination and to mutations in the DNA repair genes BRCA1 and

BRCA2 in cancer patients. p53 is a known mediator of this DNA repair pathway, but

has not been linked to the mutational signature [MP14]. The aetiology of Signature 12
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is unknown. After subtracting the aggregated effect of COSMIC signatures, the residual

mutational signature is dominated by the homopolymer mutations (Supplementary

Figure S4.1).

We additionally surveyed the genome for cancer predisposition variants to

guide molecular and phenotype surveillance. We identified 265 (5 de-novo) and 267

(2 de-novo) loss-of-function variants using LOFTEE [MBF+12] in the genome of the

daughter and son, respectively using a variant recalibration steps targeted towards

high specificity (Methods). Two shared variants impact known oncogenes: HNF1A

and SETBP1[FBG+15b]. Mutations in HNF1A are linked to hepatic adenoma and

hepatocellular carcinoma [ILZR10], whereas mutational burden in SETBP1 is associ-

ated with Schnizel-Giedion syndrome[HvBG+10]. Patients suffering from the condition

have a higher prevalence for neuroepithelial cancers than the general population.

4.3.2 Longitudinal Profiling

We conducted longitudinal profiling of the microbiome, metabolome, and

transcriptome of the daughter over a 16-month period from April 2014 to August 2015

(Figure 4.1b). As part of real-time monitoring, when possible, we profiled each new

sample in the context of all previous samples to identify any outliers or linear trends

for known cancer biomarkers. For brevity and completeness, we present results here

from the final time-point. However, we highlight deviations that would be impactful

during surveillance.
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Metabolomics

We performed real-time monitoring of the metabolome over 14 months across

13 samples using nine different instrumentation runs (Figure 4.3a). At each run, we

re-profiled all available samples due to known issues with comparing values across

instrumentation runs (Methods, Supplementary Figure S4.2). On average, we measured

601 metabolites per instrumentation run, but here we only consider the 279 metabolites

that were measured confidently in each instrumentation run.

In addition to analyzing each instrumentation run separately, we devised

a Bayesian strategy to pool information across runs to separate metabolite level

variation from instrumentation variation. The model produces a latent abundance of

each metabolite, and finds a scaling factor for each run to allow direct comparisons

across runs (Methods). We highlight scaling and latent levels for Gycocholenate

Sulfate as an example in Figure 4.3b). The latent levels have a significant robust linear

regression association between the metabolite abundance and days (p-value: 4.1e-5;

Bonferroni-corrected p-value cutoff: 1.8e-4), but the added variance for Runs 8 and 9

lead to non-significant associations (p-value: 3.97e-3 and 2.99e-3, respectively). In

general, the Bayesian strategy yields more power for discovering associations between

metabolite levels and time by removing instrumentation variation from metabolite

levels.

Overall, we find 15, 9, and 13 significant associations for latent, Run 8, and

Run 9 metabolite levels, respectively after a Bonferroni correction for 279 metabolites.

There is high overlap across the different measurements, but Run 8 produced no

unique associations (Figure 4.3c). On average, Run 8 added 33% more variance

to each metabolite compared to 13% for Run 9 (Figure 4.3d). In the absence of
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any variation from instrumentation, the current study design of 13 samples has

80% to detect correlation of 0.9 between metabolite levels and days. If we add

instrumentation noise, only 65 metabolites require less than 20 samples to achieve

80% power for the same latent correlation (Figure 4.3e, Table 4.1, Methods). We

did not find any significant deviations for metabolites that have been previously

associated with abnormal abundance in cancer samples compared to normal samples

in population studies: N1-methyladenosine and hydrocinnamate (3-phenylpropionate)

[WJG+13]. Hydrocinnamate had very low instrumentation noise with only 0.04%

relative variance added, whereas N1-methyladenosine had 167% relative noise added

for Run 9 (Supplementary Figure S4.2). Given the high amount of instrumentation

noise for N1-methyadenosine, there would be a huge reduction in power to detect true

deviations from baseline in an n-of-1 study design with a single instrumentation run.

Microbiome

We profiled 11 fecal microbiome samples over five months from July 2014 to

December 2014 (Methods). On average, we generated 12,103,824 shotgun sequencing

reads per sample. The relative abundance of the 6 phylum exhibited high variations

with no significant time-variant properties (Figure 4.4a). We analyzed 6 genera

that have been previously associated with colorectal cancer: Porphyromonas, Pep-

tostreptococcus, Parvimonas, Fusobacterium, Collinsella, and Anaerococcus [BRRS16].

Collinsella had a high deviance on September 16, but quickly reverted to baseline

8 days later (Figure 4.4b). Similar deviations occurred at later time points for the

other genera, but in all cases, there was a rebound back into baseline range. We note

previous studies have shown there is known high variation in microbiome samples



82

due to diet [DMC+13], and larger sample sizes are necessary to quantify baseline

variation. We also analyzed outliers and linear trends by mapping sequences to the

TigrFam database [HSW03] of sequence functions. We did not observe any significant

deviations for any biological processes.

Transcriptome

We analyzed 11 samples of the patient’s transcriptome over 12 months 4.1b.

Additionally, we profiled the mother’s transcriptome three times. We sequenced the

RNA collected from whole blood in three different batches, and principal component

analysis of the transcriptome revealed a large variation between batches that contained

a globin-clearing library preparation step and those that did not (Figure 4.5a, Methods).

All samples were retrospectively sequenced using the same library preparation and

sequencer.

We looked for deviance in the expression levels of 222 curated oncogenes

[FBG+15a] for each of the time points using a simulated surveillance study design,

where we analyzed each time point after February 2015 using only time points up to

the given date. May 11, 2015 had a large number of outlying oncogenes with high

Cook’s distances compared to all other samples using both the simulated surveillance

(Supplementary Figure S4.3) and retrospective analysis of all samples together (Figure

4.5b). However, the genes reverted to baseline expression levels at later time points

(4.5c). It is unclear if these changes are caused by underlying biological changes or

by other cofactors such as diet and exercise or by cyclical deviations resulting from

circadian rhythm or seasonal patterns of expression. We looked for enrichment in

KEGG pathways[KG00] outliers across all genes separately for each sample (Methods).
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We did not find any significant associations for cancer-related pathways.

The most significant associations for linear trends were similarly found for May

11 and June 10, 2015 time-points using a simulated surveillance strategy. However,

these genes similarly reverted to baseline expression on later dates. Enrichment

analysis did not reveal any significant associations across top 100 associations from

each simulated surveillance for each sample.

4.4 Discussion

During a 16-month molecular surveillance study of a 16 year-old germline TP53

gene mutation carrier, we did not find any significant trends in her biomarker profile

that might be indicative of the presence of a tumor. We additionally characterized the

genome of the carrier using blood cells and found a high rate of de-novo mutations.

Although she had less than one-third the number of de-novo mutations as her brother,

both offspring had mutational signatures that deconvolved into malfunctions to

homologoous DNA repair. However, we note that the bulk of the de-novo mutations

occurred in homopolymer contexts, which have been previously associated with

sequencing errors [RRC+13].

We employed two strategies for longitudinal profiling: a simulated real-time

monitoring strategy and a retrospective analysis strategy. The goal of these analyses

was to see if any changes in her profile occurred that deviated from her previous profile

in ways that might be indicative of a significant health status change. Although we

identified several instances where outlier detection using real-time monitoring yielded

a signal, we found that this signal quickly receded back to baseline levels at the next

time point, suggesting that those signals were likely false positives. Such deviations
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can occur as a result of both natural biological variation or measurement noise inherent

to the biological system being interrogated. Any recommendations for clinical care

should properly account for these sources of variation. The larger number of samples

in retrospective analysis yielded refined estimates of baseline range and we found

fewer number of deviations from baseline. For future study designs, we recommend a

strategy of first defining a baseline range through collection of several samples and

then real-time monitoring to limit false positives. The number of samples necessary for

defining a baseline range depends on the biological variation and measurement error

associated with the particular biomarker. Due to uneven sampling and limited sample

sizes in our study, we did not consider autocorrelation in the data, but biological

processes should exhibit such properties and analytical methods should properly

account for them.

As we highlight in our analysis of metabolomics, it is possible to model in-

strumentation noise using multiple measures of the same quantity. In metabolomics,

the instrumentation noise results from the detection of the m/z spectra, the mapping

of the m/z spectra to a specific metabolite, and then the quantification of the area

under the curve for the metabolite. In cases where there are multiple metabolites

that have overlapping m/z spectra or metabolites with low signal, these steps yield

high variation in abundance values. By intelligently averaging signal over multiple

measurements, it is possible to separate instrumentation noise from true biological

variation. We identified 65 metabolites with low instrumentation noise that could be

sensitive enough for detecting health status changes via linear regression analysis for

less than 20 samples. Similar multiple measurement strategies could be pursued for

microbiome and transcriptome profiling.
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Although previous studies have shown that retrospective n-of-1 studies can yield

insights for linking molecular and macroscopic phenotypes [CMLPT+12], real-time

molecular surveillance currently provides limited utility due to several technical and

analytical challenges. Researchers interested in pursuing such study designs should

carefully consider issues such as homogeneity of experimental procedures, biological

and experimental variation, the number of samples and data time point collections

necessary for proper inference, and the ease with which such procedures might be

integrated into clinical care.

4.5 Methods

4.5.1 Whole Genome Sequencing

Whole blood samples from each family member were sent to Illumina for

sequencing. Reads were extracted from Illumina Casava aligned BAM files using

the HTSLib [Li11] by first shuffling the reads and then extracting interleaved reads.

These reads were then processed through the GATK Best Practices workflow for

Variant Calling v.2.6, which included first aligning the reads using BWA 0.7[LD10]

with the mem option, marking duplicates, pursuing local realignment, considering

base quality recalibration and finally using the reduce reads options using Genome

Analysis ToolKit v. 3.1[MHB+10]. The multi-sample option in HaplotypeCaller was

used to call variants in the family with variant recalibration applied at tranch levels 0

- 90.00 and 90.00 - 99.00 to filter to a high confidence set of variants.

De-novo variants were identified using gemini v. 16 [PCKQ13] and its mendelian

errors option. We selected only plausible de novo variants from the output, further
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filtering down to posterior probability of mutation greater than 0.99. We did not

include cases where the parents were homozygous alternate and the children had a

different alternate mutation or a mutation to heterozygous reference.

Putative LOF variants, defined here as stop-gained, nonsense, frameshift,

and splice site disrupting, were identified using the LOFTEE plugin for VEP and

Ensembl release 85. LOFTEE assigns confidence to loss of function annotations

based on position of variant in the transcript, proximity to canonical splice sites,

and conservation of the putative LOF allele across primates. For our analysis we

used default LOFTEE filter setting and only included high confidence predicted LOF

variants. A variant was called LOF if it received a high confidence LOF prediction in

any Ensembl transcript. We further filtered variants down to tranch levels 0 - 90.00

only.

4.5.2 Metabolome

We sent whole blood samples to Metabolon, Inc. for metabolomics profiling.

The laboratory divided each sample into 12 homogeneous aliquots to allow new sample

would be re-profiled with all previous samples. Each instrument run reports the raw

abundance of each metabolite as produced by their internal processing pipeline of

the m/z spectra. To pool information across the runs, we devised a Bayesian latent

model as illustrated in Supplementary Figure ??. Briefly, there is a hidden, latent

metabolite level zt for each time point, but we only observe ytr for each time point

and run. ytr adds additional noise specific to the instrument σr that is sampled from

a larger hierarchical space of all instrument noise. It additionally scales this value by

a scaling factor βr.
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zt ∼ N (Constant, σ2
m)

ytn ∼ N (βzt, β
2σ2

r)

P (β) = N+(0, 1e7)

P (σ2
m) = C+(0, 10)

P (σ2
n) = C+(0, ζ)

P (ζ) = U(0, 100)

Here, N (·, ·) denotes the Gaussian density, N+(·, ·) the half-Gaussian density,

and C+(·, ·) the half-Cauchy density. We implemented the model using PyMC3

[SWF16] and used the Metropolis-Hastings algorithm to perform inference. We ran

the MCMC chain for 100,000 steps and used the last 10,000 samples to compute the

posterior means for zt, σm, σr, and ζ for downstream analysis.

We fit Robust Linear Regression using the statsmodels python package with

a Huber’s T M-estimator [SP10]. We used the R package ’pwr’ [Cha16] to perform

power calculations. We estimated the number of samples necessary for 80% power with

Ordinary Least Squares given the instrumentation noise by calculating a projected R2

R2
projected =

R2
originalσ

2
m

σ2
m + σ2

r

and using a significance level of 0.05/200 to account for multiple hypothesis

correction.
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4.5.3 Microbiome

We used Human Longevity Inc’s Microbiome service to profile the fecal mi-

crobiome samples. Their proprietary software estimates abundance of 3785 species,

and aggregates information to get relative abundances of genera, orders, families,

phyla, and kingdoms. They further map the sequences to orthogonal sequences in the

TigrFam database to quantify relative function of different molecular processes across

the bacterial species.

4.5.4 Transcriptome

We sent whole blood samples to The Scripps Research Institute’s Sequencing

Center for RNA Sequencing. We used bcbio-nextgen v. 0.9 to align and generate

counts for paired end reads. The packaged pipeline uses cutadapt for adapter trimming

[Mar11], aligns the reads using TopHat2[KPT+13], and generates gene-level counts

with HTSeq [APH15].

We normalized the samples using DESeq2 [LHA14] using all samples included

not globin-cleared for illustrative purposes in 4.5a, but all subsequent analysis was

done using normalization performed on all samples that were globin-cleared only. We

identified outliers and linear trends in the data using DESeq2 provided Cook’s distance

and its likelihood-ratio test comparing a generalized linear model using a negative

binomial link with days as a predictor to a reduced model of only variance.

4.6 Figures and Tables
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Figure 4.1: Pedigree of nuclear family and overview of sample collection
for patient a) The father is an affected, but healthy heterozygous germline
T163Y p53 mutation carrier and the mother is not affected. The offspring
are carriers of the mutation. The son developed a glioblastoma at 12 years of
age and is deceased. The daughter is a healthy 16 year old with no signs of
cancer. b) We profiled the metabolome, microbiome, and transcriptome of
the daughter on 13, 11, and 11 occasions, respectively over the course of 16
months.
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Figure 4.2: De-novo mutation context analysis in the offspring a) We
identified 886 and 3071 de novo SNVs and 2957 and 3395 de novo INDELs in
the daughter and son, respectively. Of these only 136 SNVs and 758 INDELs
were shared between the offspring. b, c) Each bar represents a different
mutational context. The contexts are lexical sorted, i.e. A, C→A, A · · · A,
C→A, T · · · T, C→, A · · · T, C→, T. We characterized these mutations by
deconvolving their mutational context signatures using deconstructSigs and
comparing them to COSMIC curated mutational signatures. Signature 3 and
12 explain a high fraction of the variation of the mutational signatures in
both offspring. Signature 3 has been previously associated with homologous
DNA repair, whereas Signature 12 has no known etiology.
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Figure 4.3: Metabolome profiling reveals metabolite-dependent instrumen-
tation noise a) Due to known scaling issues across instrumentation runs, a
profiling run for a new sample also reprofiled all previous samples. Runs 8
and 9 were performed using all samples. b) The latent and scaled abundance
values of Glycocholenate Sulfate. Run 8 and 9 have higher variation than
the latent model, which leads to non-significant linear associations. c) Over
all metabolites, the latent model recovers the most associations using robust
linear regression. d) Run 8, on average, added more variability to metabolite
levels than Run 9. e) Number of samples necessary to achieve 80% power
for observing a significant association with a latent correlation of 0.9 due to
added instrumentation noise.
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Figure 4.4: High variation in Microbiome profiling a) There was high
variation in relative abundances of the 6 phyla across the samples, but no
obvious trends. b) Although we did observe deviations from baseline in six
colorectral cancer associated genera, there is high variability overall.
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Figure 4.5: Outliers detected by transcriptome profiling a) Library prepara-
tion using a globin-clearing (GC) step was a source of large variation in initial
sequencing of RNA. All samples were retrospectively profiled using the same
RNA-Seq protocol. Grey lines connect technical replicates. b) Cook’s distance
for a curated list of cancer genes for the last seven samples. 05-11-2015 had
several large outliers. c) Top 20 gene outliers from 05-11-2015 all returned to
baseline expression at later time points.
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Table 4.1: Low instrumentation variance metabolites.65 metabolites that
require less than 20 samples to detect a correlation of 0.9 between days and
metabolite levels with 80% power.

Type Metabolites

Amino Acids 3-(4-hydroxyphenyl)lactate, 3-methylhistidine, 3-
phenylpropionate (hydrocinnamate), creatine, ethylmalonate,
indolepropionate, isobutyrylcarnitine, N-methyl proline,
p-cresol sulfate, serotonin (5HT), S-methylcysteine, taurine,
tryptophan betaine

Carbohydrates glucuronate, lactate

Cofactors
and

Vitamins

gamma-CEHC, pyridoxate

Lipids 10-heptadecenoate (17:1n7), 10-nonadecenoate
(19:1n9), 10-undecenoate (11:1n1), 1-
linoleoylglycerophosphoethanolamine*, 3-carboxy-4-methyl-
5-propyl-2-furanpropanoate (CMPF), 3-hydroxyoctanoate,
4-androsten-3beta,17beta-diol monosulfate (1), 5alpha-
pregnan-3beta,20alpha-diol disulfate, 5alpha-pregnan-
3beta,20alpha-diol monsulfate (2), 5-dodecenoate (12:1n7),
androsterone sulfate, cholate, choline phosphate, cis-4-
decenoyl carnitine, decanoylcarnitine, dihomo-linoleate
(20:2n6), eicosanodioate, eicosenoate (20:1n9 or 11),
epiandrosterone sulfate, glycochenodeoxycholate, glyco-
cholate, glycolithocholate sulfate*, glycoursodeoxycholate,
laurate (12:0), laurylcarnitine, margarate (17:0), myris-
tate (14:0), myristoleate (14:1n5), myristoleoylcarnitine*,
octanoylcarnitine, palmitate (16:0), pregn steroid mono-
sulfate*, taurochenodeoxycholate, taurocholenate sulfate,
taurodeoxycholate, taurolithocholate 3-sulfate

Xenobiotics 2-aminophenol sulfate, 2-hydroxyhippurate (salicylurate), 4-
methylcatechol sulfate, 4-vinylphenol sulfate, catechol sulfate,
cinnamoylglycine, hippurate, methyl glucopyranoside (alpha
+ beta), O-methylcatechol sulfate, stachydrine, theobromine,
thymol sulfate
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Figure S4.1: Residual mutational signatures of de-novo variants in offspring.
Residuals mutational signatures after subtracting the effects of Signature 2, 3,
8, 11, and 12 and Signatures 3 and 11 for the daughter and son, respectively.
Each bar represents a different mutational context. The contexts are lexical
sorted, i.e. A, C→A, A · · · A, C→A, T · · · T, C→, A · · · T, C→, T
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Figure S4.2: Metabolomic profiling of two known cancer-associated metabo-
lites: N1-methyladenosine and Hydrocinnamate [WJG+13]. The top panel is
the reported raw abundance values for the metabolites for each instrumenta-
tion run. The bottom panels are the scaled metabolite levels based on the
Bayesian latent model fit.
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Figure S4.3: Outliers in simulated real-time monitoring of oncogene tran-
scriptome. Cook’s distance and hierarchical clustering of samples based on
expression levels in 222 oncogenes

zt
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Figure S4.4: Graphical model for latent metabolite levels
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Chapter 5

Closing Remarks

As the biomedical sciences continue to generate data describing biological

phenomena at astronomical scales, robust analysis and interpretation of data will

require an intimate understanding of biases inherent to biological experiments and

assays. In this dissertation, I have illustrated one widely-applicable strategy for

separating biological signal from other sources of variation: pooling information.

Through general analysis pipelines and several hierarchical Bayesian models, I have

shown that it is possible to pool information to explicitly model variation that is

inherent to the experimental setup, and differentiate it from the biological signal of

interest.

In Chapter 2, I discuss pooling information across iPSC colonies to better

characterize the single nucleotide variants in the initial fibroblast populations. This

analysis pipeline allowed us to find variants that were specifically caused by the

reprogramming step of iPSC creation. In another application, in Chapter 3, I focus

on pooling information across bootstrapped models of transcriptional regulation to

estimate uncertainty and then propagate this uncertainty in a second stage hierarchical

99
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Bayesian regression model for associating imputed gene expression to a continuous

phenotype. Finally, in Chapter 4, I discuss pooling information across multiple metab

olomic instrumentation runs to separate instrumentation variation from biological

signal in a latent Bayesian model. I also show that given the inherent noise in the

assay, it is not possible to find highly correlated relationships between metabolite

levels and time for several metabolites using regular blood draws.

Although I discuss only post-data generation application of pooling information,

the technique could be incorporated as part of the initial study design before any

experimental work is performed. Currently, many experiments designs utilize replicates

to confirm biological results and prevent false positives. The underlying assumption

in this design is that noise in the experiment is random and more replicates will

yield better estimates of the true biological signal. Scientists could similarly design

studies to utilize pooling information across replicates or other shared characteristics

to increase interpretability and understanding of functional forms of the variation

inherent to the experimental setup or assay. I mainly highlight Bayesian formulations

of pooling information in application-dependent ways, and I foresee similar efforts of

creating mathematical models for pooling that are application specific and unique

to the system of interest. I hope that this dissertation has served as an introduction

to the power of pooling information to limit biases in biological data analysis, and

believe the importance and application of pooling information will continue to grow

alongside the data revolution in the biomedical sciences.
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Carsten Büning, Ariella Cohain, Sven Cichon, Mauro DAmato, Dirk
De Jong, Kathy L. Devaney, Marla Dubinsky, Cathryn Edwards, David
Ellinghaus, Lynnette R. Ferguson, Denis Franchimont, Karin Fransen,
Richard Gearry, Michel Georges, Christian Gieger, Jrgen Glas, Talin
Haritunians, Ailsa Hart, Chris Hawkey, Matija Hedl, Xinli Hu, Tom H.
Karlsen, Limas Kupcinskas, Subra Kugathasan, Anna Latiano, Debby
Laukens, Ian C. Lawrance, Charlie W. Lees, Edouard Louis, Gillian
Mahy, John Mansfield, Angharad R. Morgan, Craig Mowat, William
Newman, Orazio Palmieri, Cyriel Y. Ponsioen, Uros Potocnik, Na-
talie J. Prescott, Miguel Regueiro, Jerome I. Rotter, Richard K. Russell,
Jeremy D. Sanderson, Miquel Sans, Jack Satsangi, Stefan Schreiber,
Lisa A. Simms, Jurgita Sventoraityte, Stephan R. Targan, Kent D.
Taylor, Mark Tremelling, Hein W. Verspaget, Martine De Vos, Cisca
Wijmenga, David C. Wilson, Juliane Winkelmann, Ramnik J. Xavier,
Sebastian Zeissig, Bin Zhang, Clarence K. Zhang, Hongyu Zhao, Mark S.
Silverberg, Vito Annese, Hakon Hakonarson, Steven R. Brant, Graham
Radford-Smith, Christopher G. Mathew, John D. Rioux, Eric E. Schadt,
Mark J. Daly, Andre Franke, Miles Parkes, Severine Vermeire, Jeffrey C.
Barrett, Judy H Cho, and Judy H Cho. Hostmicrobe interactions have
shaped the genetic architecture of inflammatory bowel disease. Nature,
491(7422):119–124, 10 2012.

[JWTV98] RW Johnstone, J Wang, N Tommerup, and H Vissing. Ciao 1 is a novel



111

WD40 protein that interacts with the tumor suppressor protein WT1.
Journal of Biological, 1998.

[KAT+11] Dwi Setyowati Karolina, Arunmozhiarasi Armugam, Subramaniam
Tavintharan, Michael T K Wong, Su Chi Lim, Chee Fang Sum, and
Kandiah Jeyaseelan. MicroRNA 144 impairs insulin signaling by in-
hibiting the expression of insulin receptor substrate 1 in type 2 diabetes
mellitus. PloS one, 6(8):e22839, 2011.

[KG00] M Kanehisa and S Goto. KEGG: kyoto encyclopedia of genes and
genomes. Nucleic acids research, 28(1):27–30, 1 2000.

[KJB+13] Sangwoo Kim, Kyowon Jeong, Kunal Bhutani, Jeong Ho Lee, Anand
Patel, Eric Scott, Hojung Nam, Hayan Lee, Joseph G Gleeson, and
Vineet Bafna. Virmid: accurate detection of somatic mutations with
sample impurity inference. Genome biology, 14(8):R90, 8 2013.

[KK13] Zeid Khitan and Dong Hyun Kim. Fructose: a key factor in the
development of metabolic syndrome and hypertension. Journal of
nutrition and metabolism, 2013:682673, 2013.

[KMP+09] Janne Korhonen, Petri Martinmäki, Cinzia Pizzi, Pasi Rastas, and Esko
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