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ABSTRACT 

 Surface enhanced Raman scattering (SERS) is a vibrational spectroscopy method that enables the 
quantification of the concentration of small molecules. SERS sensing has been demonstrated in a wide variety 
of applications, from explosive and drug detection, to monitoring of bacteria growth. Underpinning SERS 
sensing are the sensor surfaces that are composed of vast quantities of metal nanostructures which confine light 
into small gaps called “hotspots”, enhancing Raman scattering. While these surfaces are essential for increasing 
Raman scattering intensity so that analyte signal may be observed in small concentrations, they introduce signal 
variations due to spatial distributions of Raman enhancement and hotspot volume. In this work, we introduce 
a convolutional neural network model that improves concentration regressions in SERS sensors by learning 
the distributions of sensor surface dependent latent variables. We demonstrate that this model significantly 
improves predictions compared to a traditional multilayer perceptron approach, and that the model uses analyte 
spectral information and is capable of reasonable interpolations. 
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INTRODUCTION 

Vibrational spectroscopies hold enormous promise as chemosensors due to the “fingerprint” spectral 
region – roughly from 400 cm-1 to 1700 cm-1 – that can be used to uniquely identify small molecules. Yet 
traditional vibrational spectroscopies like infrared spectroscopy and Raman spectroscopy have insufficiently 
large adsorption and scattering crossections, respectively, for use in sensing at small concentrations.1 Surface 
enhanced Raman spectroscopy (SERS) has emerged as a promising method for enhancing Raman scattering to 
the point where small concentrations of analyte molecules can be quantified.2 SERS relies on the near electric 
field enhancement of light due to scattering with metal nanostructures,3 which can result in increases in Raman 
scattering by factors as large as 109.4 

SERS has many attractive qualities for sensing. Large SERS EFs eschew the need for labeled 
detection schemes as even nonresonant molecules with small Raman cross-sections can be directly sensed.5 
SERS has been used for the detection of explosives,6 drugs,7 and toxins.8 Additionally, the fingerprint spectral 
window enables highly multiplexed sensing.9 Finally, SERS surfaces enable real time, in-line measurements 
for longitudinal monitoring of molecules, making it ideal for monitoring infections.10 

Fabrication methods compatible with nanomanufacturing, specifically chemical self-assembly, have 
advanced to the point where the sub-nanometer gaps between nanostructures used in SERS can be reliably 
produced.11–14 In the context of plasmonics these gaps, called hotspots, yield unprecedented enhancements of 
light matter interactions.15 We have recently demonstrated a chemical assembly method – 2-dimensional 
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physically activated chemistry (2PAC) – capable of obtaining a SERS EF exceeding 109 with just 10% relative 
standard deviation over a 1 mm2 area.16 This advance has enabled the collection of large, uniform datasets that 
enable a big data, machine learning approach to SERS sensing.17 Traditional methods of calibrating SERS 
surfaces’ quantitative response only track a single Raman band, an analysis termed univariate linear regression, 
and discard the remaining rich spectral information.18,19 We have recently shown that this technique may be 
greatly improved upon with multilinear regression, due to fluctuations in band enhancements relative to one 
another.20 

The complexity in quantitative, predictive SERS has led to the adoption of machine learning methods 
such as partial least squares,10 support vector machines,21 and artificial neural networks (ANNs).22 Of these 
ANNs have several properties uniquely advantageous for SERS. As a nonlinear method, ANNs are well suited 
for deviations from Langmuir adsorption dynamics.23 ANNs also have the universal approximation property 
that enables them to approximate any latent random variable, an essential property for multiplexed SERS.24 
Finally, they naturally denoise complexly varying signals.23 

Yet ANNs are not perfectly suited for predicting analyte concentration from maps of SERS spectra. 
Underlying spatial variation of Raman enhancement and hotspot volume from the SERS sensing surface leads 
to variance in predictions.20 Indeed, consider that at low concentrations, analyte molecules will not be 
uniformly distributed across the surface.25,26 In this work, we obviate these challenges by employing 
convolutional neural networks (CNNs). 1D CNNs, which have been shown to perform well on data having 
spatial relations in a single dimension, such as stock price,27 electroencephalograms (EEGs),28 audio signals.29 

Here, we bundle multiple Raman spectra into a 1D line with channels representing the wavenumber 
features of each spectrum. This strategy enables the network to learn the underlying distribution of Raman 
enhancement and hotspot volume within sensor surfaces. Thus, each input is given as a sparse distribution of 
these latent variables in addition to the analyte information. In a complex biological fluid, we train models to 
predict concentrations of pyocyanin, an important biomolecule.30 We demonstrate that this approach 
significantly improves prediction accuracy, yielding an r2 of 0.95, compared to the ANN r2 of 0.89. Further, we 
demonstrate that this model uses the important spectral information from the analyte and is capable of making 
reasonable interpolations between trained concentrations. 

 

RESULTS AND DISCUSSION 

2-dimensional physically activated chemistry (2PAC) is used to self-assemble high quality surface 
enhanced Raman scattering (SERS) sensing surfaces. Figure 1a depicts a schematic of the 2PAC assembly, 
which is a seeded growth of close-packed nanoparticle assemblies. 2PAC is described in more detail 
elsewhere.16 Briefly, nanoparticle seeds are driven to a copolymer coated Si electrode by electrophoresis. EDC 
activates the carboxylic acid functionalized nanospheres, enabling a crosslinking reaction to amine 
functionalized domains of the copolymer. At the surface, the interaction between the electric double layers of 
the electrode and the nanoparticles drives electrohydrodynamic (EHD) flow. This lateral, attractive flow 
entrains nearby particles, forming close-packed nanosphere assemblies. The close proximity of the nanospheres 
within oligomers gives rise to repeated collisions, enabling a carbodiimide-mediated crosslinking between 
carboxylic acid groups on adjacent nanoparticles that results anhydride linked gaps of ~0.9 nm. 

A scanning electron microscopy (SEM) image of a 2PAC assembled sensing surface is depicted in 
Figure 1b. One may observe discrete, close-packed assemblies. Importantly, the resonance wavelength of such 
oligomers is dictated by the number of particles along a given axis. Assembled as they are here, this corresponds 
primarily to 3-4 particles along a line, which was shown to have a resonance wavelength (for 40 nm spheres) 
near the excitation wavelength used in this work, 785 nm.  Discrete oligomers have greater field enhancements 
than 2-D close packed assemblies, while still having a relatively dense collection of hotspots for analyte 
molecules to reside. The reproducibility of the gap spacings due to chemical crosslinking and the rotational 
invariance of the close-packed oligomers enables the surfaces to be optically uniform within the laser spot size 
across large sample surfaces.  
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Raman spectra used to train and validate our models are acquired from concentrations gradients of 
the biomolecule pyocyanin. To simulate biosensing environments, pyocyanin is dissolved in LB broth, a 
bacterial nutrient solution. Figure 2 depicts representative Raman spectra of pyocyanin where characteristic 
Raman bands are observed at 552, 1353, 1602, and 1620 cm−1, among other spectral regions.  SERS 
spectroscopy is performed on the surfaces by acquiring 16 x 24 µm maps with 2 µm spacings between 
acquisitions. Spectra are acquired for 0.1 s at a laser power of 760 µW at 785 nm with a 1.2 NA water immersion 
objective. 

 

Figure 1. a) Schematic of 2PAC self-assembly. Electrophoresis drives carboxylic acid functionalized nanoparticle 
“seeds” to collide with the amine functionalized block copolymer coated electrode where EDC crosslinks them to the 
surface. Inset: seeds drive electrohydrodynamic flow that entrains nearby particles enabling a second EDC activated 

crosslinking between particles yields anhydride linked two-dimensional close-packed assemblies. b) SEM micrograph of 
close-packed nanoparticle assemblies. 

 

In this work, we seek to demonstrate that grouping multiple measurements together as inputs into a 
regression model significantly improves concentration predictions. To this end, we evaluate several methods 
for quantifying concentration from Raman spectra. A 20/80 test/train split is performed, and the models are 
evaluated based on its test r2. Early stopping based on r2 is used on all neural network models as a regularization 
method. Principal component analysis (PCA), just fit to the training dataset, is used for all methods to reduce 
the dimension of the 1011 wavenumber features to 60 features. Analyte hotspot occupation is expected to 
follow the Langmuir isotherm, which predicts a log-linear relationship between concentration and hotspot 
occupation. Due to this, all regressions are performed on a log-linear scale with the blank (water) dataset 
manually set to 10 fold smaller concentration than the next smallest concentration, 0.1 ng/mL. 

Figure 3 depicts two models that use one spectra to infer one concentration, partial least squares 
regression (PLSR) and a multilayer perceptron (MLP). First, we consider PLSR, which is used to give a 
baseline performance for the problem of inferring analyte concentration from Raman spectra. In Figure 3 a), 
one may observe an mean squared error of 0.85 and an r2 of 0.88, indicating significant bias and variance in 
the predicts. Bias in the predictions is interpreted as deviation from the Langmuir isotherm, while variance 
indicates fluctuating Raman enhancement and analyte hotspot occupation from the underlying SERS sensing 
surface. Using a nonlinear model like MLP, deviations from Langmuir adsorption behavior can be captured 
upon model training. Further, this model more effectively uses the spectral information to infer the Raman 

Proc. of SPIE Vol. 11089  1108907-3



enhancement of each spectra, reducing variance. A mean squared error of 0.74 and r2 of 0.89 is observed for 
this model, whose predictions are plotted in Figure 3 b). 

 

Figure 2 depicts representative Raman spectra acquired from 2PAC assembled surfaces with pyocyanin concentrations of 
i) 0 ng/mL ii) 100 ng/mL  iii) 1 µg/mL and iv) 10 µg/mL. Spectra are offset by 500 units for visual clarity. 

  

 

 

Figure 3. a) depicts the concentration predictions of the PLS model for spectra obtained from the test dataset.  b) depicts 
the concentration predictions of the MLP model for spectra obtained from the test dataset. 
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 Due to the use of a sensing surface, SERS necessarily introduces signal fluctuations that emerge from 
spot to spot variations in Raman enhancement and hotspot volume. While the MLP seems to be able to infer 
these parameters to some degree from one spectra, significant improvements to predictions could be made by 
taking into account the distribution of these fluctuations while making predictions about concentration. 
Convolutional neural networks (CNNs) are well suited for identifying distributions within pixels of an image. 
We implement a CNN for concentration quantification, depicted in figure 4, by encoding five spectra as pixels 
within a one dimensional image, where each pixel has 60 channels to encode the pca components. 

 

 

Figure 4. A schematic representation of the convolutional neural network model used in this work. 

 

 Figure 5 a) depicts the concentration predictions of the 1D CNN. We find this model achieves a mean 
squared error of 0.29 and an r2 of 0.95, significantly better than either the PLSR or MLP models. In the 
regression problem, interpolation is critical. Often, increased model complexity reduces variance, but at the 
expense of the ability of the model to interpolate. Yet we find, despite the complexity, the 1D CNN is still 
capable of making good interpolations. Figure 5 b) is produced by removing two concentrations from the 
training dataset, 102 ng/mL, and 105 ng/mL, and plotting the predictions of the test dataset with the 
concentrations included. We find the model predicts these concentrations with reasonable accuracy. 
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Figure 5. a) depicts the concentration predictions of the CNN model for spectra obtained from the test dataset. b) depicts 
the concentration predictions of the CNN model for spectra obtained from the test dataset with 102 and 105 ppb removed 

from the training dataset. 

 

 While challenging, interpreting neural network models is critical to ensuring that decisions are being 
made using features for which there is a causal relationship with the output. In Raman sensing, this amounts to 
ensuring that the network is using spectral information associated with pyocyanin vibrations. Here, we 
implement gradient assisted class activation mapping, gradCAM,31 to interpret what spectral information is 
being used. Gradcam identifies network attention by determining how much the output changes with respect 
to the derivative of the input into the final fully connected layer. We implement this by omitting PCA 
dimensionality reduction and averaging the gradCAM values in each wavenumber channel over all of the 
spectra. Thus, we visualize the attention on a given wavenumber value. We find the network uses the 1353, 
1602, and 1620 cm−1 to make its predictions, corresponding to prominent pyocyanin vibrational energies. 

 

 

Figure 6 depicts a heat map of the spectral averaged gradCAM score of the wavenumber features. A Raman spectrum is 
plotted for reference. 
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CONCLUSION 

 In this work, we have demonstrated the use of 1D convolutional neural networks (CNNs) to learn the 
distribution of underlying, sensor based signal fluctuations to reduce variance in concentration predictions. We 
have shown this method yields an improvement in r2 from 0.89 to 0.95, for the multilayer perceptron and 1D 
CNN, respectively. We have shown that the 1D CNN model uses analyte spectral information for its 
predictions, and the ability of the model to interpolate between concentration values. This method is broadly 
applicable to any sensing platform where it is unnecessary to predict concentration from each measurement, 
and where variance arises from latent distributions of intensity enhancement that emerge from spatial variations 
on the sensor surface. 

METHODS 

Materials 

Random copolymer poly(styrene-co-methyl methacrylate)-α-hydroxyl-ω-tempo moiety (PS-r-
PMMA) (Mn = 7400, 59.6% PS) and diblock copolymer poly(styrene-b-methyl methacrylate) (PSb-PMMA) 
(Mn = 170-b-144 kg mol−1 ) were purchased from Polymer Source, Inc. (Dorval, Canada). Si(001) wafers 
with a resistivity of 0.004 ohm-cm were purchased from Virginia Semiconductor (Frederickburg, VA, USA). 
Hydrofluoric acid (HF) was purchased from Fisher Scientific (Pittsburgh, PA, USA). 2-(N-
morpholino)ethanesulfonic acid (MES) 0.1 M buffer, 1-ethyl-3-[3- (dimethylamino)propyl]carbodiimide 
hydrochloride (EDC), and N-hydroxy sulfosuccinimide (s-NHS) were purchased from Pierce (Rockford, IL, 
USA). Rhodamine 800, Methylene Blue, dimethyl sulfoxide (DMSO), ethylenediamine, toluene, ethanol, 
isopropyl alcohol (IPA), potassium carbonate, and 52-mesh Pt gauze foil were all purchased from Sigma-
Aldrich (St. Louis, MO, USA). Nanopure deionized water (DI) (18.2 MΩ cm−1 ) was obtained from a Milli-
Q Millipore System. 

2-Dimensional Physically Activated Chemical (2PAC) Assembly 

Assembly is performed as in previous work. Random PS-b-PMMA block copolymer is spin-coated 
onto a HF-cleaned (the potential of HF to cause severe injury mandates extreme caution during usage), heavily 
doped Si wafer and annealed at 1980 C for three days. The sample is rinsed with toluene and lamella-forming 
PS-b-PMMA block copolymer is spin-coated onto the sample. PMMA regions are selectively functionalized 
with amine end groups by immersing the entire substrate in DMSO and then in ethylenediamine/DMSO 
solution (5% v/v), both for 5 min without rinsing between steps. The surface is rinsed with IPA and dried under 
nitrogen. Au nanosphere solution (0.1 mg/mL, 3 mL) is added to a 10 mL glass beaker. Freshly prepared s-
NHS (20 mM) in a MES (0.1 M) buffer (35 µL) is added to the beaker and swirled. Next, freshly prepared 
EDC (8 mM) in a MES (0.1 M) buffer (35 µL) is added to the beaker and swirled. The solution then is brought 
to 60 °C. A 1 cm × 1 cm functionalized copolymer-coated Si substrate is placed into the solution vertically. 
One millimeter away from the substrate, a 1 cm × 1 cm Pt mesh is placed into the solution vertically. A dc 
regulated power supply is used to apply a voltage of 1.2 V for 10 min. This process is then repeated with the 
same substrate and fresh nanosphere solution as described above, but with 25 µL of EDC and s-NHS solution. 

Characterization 

SEM Images are collected with a Magellan XHR SEM (FEI). Raman spectroscopy measurements are 
conducted using a confocal Renishaw InVia micro Raman system with a laser excitation wavelength of 785 
nm. All measurements are taken at 7.3 µW with exposure of 0.5 s and use a 60× water immersion objective 
with a 1.2 NA. 
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