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Theory of Alpha Decay of Spheroidal Nuclei
John O. Rasmussen; Jr.
Department of Chemistry and Radiation Laboratory

University of California,. Berkeley, California

December 10, 1953

ABSTRACT

Various effects of. spheroidal nuclear distortion on .the alpha decay
process are considered theoretically.

Differential equations governing alpha decay in the region beyond
the maximum nuclear radius are derived. They consist of ordinary radial
Schrgdinger equations for alpha decay to various nuclear states with the
addition of quadrupole interacﬁion terms_cﬁupling the wvarious équations.

The significance of wave amplitudes of various angular momentum
alpha groups .as. Fourier compbnents of the total wave function is pointed
out, and experimental alpha decay rate data for even-even nuclei are dis-

cussed in these terms.
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barrief. An important fact to realize, though, is that if such "directed"
alphé emission takes place, it necessarily implies the presence of a
mixture of different éngular'momentum waves of alpha emission.& Further-
‘more , the relative amounts‘of various angular momentum components may
change with radial distance through the coupling influence of the intrinsic
electric quadrupole moment of the daughter nucleus. The influence of

such noncentral electric interactions between the nucleus and alpha
particle has been treated theoretically by Preston,E.andjthe treatment of
coupling in the present paper will be seen to pafallel his in many impor-
tant respects. A |

E&en-even nuclides of the heaviest elements (2>88) are observed6-
generally to decay by aipha emission to ground and excited states that are
interpreted by the unified nuclear“mgdel as members of a rota’qional7 band
sequence with even pariﬁies, spins of 0, 2, 4,...and energies
(ﬁz/z IYI(T + 1). {(fﬁz/z &) = the rotational quantum energy.} The
different angular momentum states of tﬁe outgoing alpha particle wave
necessary for a description in tefms of directed emission will involve the
above states of the nucleus.

.In order to gain.fromtexperimental-alpha decay rate data a real
understanding of the fundamental nature of the process it is necessary
first to solve the well-defined quantum-mechanical problem of the outgoing
waves in the region béyond'the.range of short range nuclear forces. The
separate‘applicatidn of simple barrier penetration formulas tQ the various
alpha groups may gi&e misleading information as to the true magnitudes of

the wave functions near the nuclear radius. Preston8'has stated the

problem clearly. One might assume reasonable values for the various alpha
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| INTRODUCTION

The dependence of alpha decay rates of even-even nuclldes upon decay
energy and atomlc number has been remarkably well explalned by coulomblc
‘barrier penetration treatm.ents.l Some of these treatments have dlffered
Widely in their specific.assumpt;ons about the "llfetlme in the absencevof
a barrier,“ but by the choice of‘somewhat different values for the nuclear
radiuskln the various cases'good agreement withbenperimental decay rates of
veven—eyen nuclides are secured *

The nucleus is generally assumed to have a.spherlcally symmetric dis-
tribution of charge. The nuclear model of A Bohr ‘and B. R Mottelson,2
»lhowever,.attributes large”spher01dal dlstortlonsbto nuclel lylng in
regions much.removed from closed neutron or‘proton shells. Such distortims
can be present forbeveneeven nucler and glve rise to an 1ntr1ns1c electrlc
quadrupole moment, Q Reference 2 Wlll be referred to‘as A hereafter

One effect of 1ntroduc1ng spheroidal dlstortlon is to br1ng some nuclear
matter out to greater radial dlstances Hlll and Wheeler3 have suggested

that the above effect mlght lead to 1ncreased alpha decay rates by v1rtue

of a thinner potentlal barrler, and they estlmate thls effect by calculatlng

the one-dimensional penetration factor‘through the thlnnest part of the

*The nuclides PoZlO P0208 andEm,z12 are exceptlons, decaylng more slowly

by factors of: 5~ ZO They: have 126 or less neutrons..

B v_3._
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groups near the nucleus, 1ntegrate the wave equation outwards to large_
'dlstances, and compare the magnltudes of the varlous out201ng waues with
the experlmental 1nten51t1es.- Preston states that small errors in the
initial boundary condltlons or dn the 1ntegratlon.m1ght lead to- the{
spurlous appearance of con51derable amounts of 1ncom1ng waves at 1nf1n1ty
and thus 1nvalldate the results. Preston chooses, rather, to let the
experlmental 1ntens1t1es of the N alpha groups prov1de N restrlctlve
boundary conditions on the Waves'at»large dlstances.and 1ntegrates 1ne
ward toward the nucleus. The'phases of: the. N waves must be‘chosen so as

to satisfy boundary conditions at the nuclear surface.

EORMULATION OF‘THE EQUATIONS‘QOVERNING_THE’EXTERNAL SOLUTION

The use of nuclear wave functionsufrom”the strong—coupling-approximaw
tion of the unified nuclear model permits. the ‘alpha particle-recoil
nucleus_system.to,he_treated-as a simple{mechanical.systemvand.permits a -
great specilalization of the generalized system of alpha decay radial
equations of Preston, The strong coupling wave functions for the ground
state rotational ‘band 1n even-even nucle1 reduce. 51mply to the rotatlonal
wave functions of a symmetrlc top (A, P. 20), w1th quantum numbers I, M,
and K. I is the total angular‘mpmentuquuantum_number, M,.its projection
along an axis fixed in space, and K, its projection along.the nuclear
symuetry axis. For all levels of the ground. state band the quantum number
K is zeroi_hence, the wave functions reduce to a particularly simple form,

9

normalized spherical harmonics -of -even order.”.

Ve = Yr(81507), (1)
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where 8' and @' dendte the direc¢tion of “the nucleér‘Symmetry axis with
respect to a sﬁhefical polar coSfdinate systém fixed ih space. Pince thé
nucleus is assumed to héve.axial symmetry, the two moments of inertia
perpendicular to the symmetry axis will be €qual and will be designated &
The only part of the stfictly nuclear Hamiltonién which concerns this
alpha decay formulation is that corresponding to tﬁé kinetic energy of

the symmetric top with K = O, namely,

%?

. 2
u = - 9 (sin 6" 0 ) + l,l, B 0 Al (2)
nuc - 2 2
2% 138" 98! sin“g" ap'j

The eigenfunctions are those given by (1) with eigenvalues

EI=fliI(I+i). )

28
The complete Hamiltonian for the alpha decay problem will also in-
clude the usual kinetic and coulombic potential energy terms (center of
mass system),
2 2 2

il ) 2 3 d ) 1 9 zZe
B, == —|— (; 4~) + — (sing ——)'+ — =]+ —— (4)
2mr~ | dr or 06 o6 sin”~6 & T

where r; 6, and @ are the-~relative COSfdinates of alpha particle and
reccil nucleus with respect to the coordinate systém fixed in space; e
is the electrostatic unit charge; z, the charge of the alpha particle,
i.e., 2; Z the charge of the daughter nucleus, and m the reduced mass.

Finally, an interaction term must be included in the Hamiltonian

to account for the electric quadrupole interaction.

2 - ’
_ zQe :
Hy o = —3 Pz(cos ) (5)
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where m is the angle between the nuclear symmetry axié (6',p') and the
relative position vector (e,w) of the alpha particle-recoil nucleus
system. Pz(cos ®) is the Legendre polynomialiqusgcgnd order. Q is the
intrinsic electric quadrupole moment of the dauéhter'nucleus given in

A, Equation V.3 for a uniformly charged spheroidal nucleus as

3 2 . Co
Q=———-ZRan. (6)

V5

The nuclear surface to second order in a, is given by

. v .

R(n) = R_[1 + a P, (cos q) = —]
o oz A 5

with 7 the ahgle measured from the-nudlear symmeﬁry axis,

Thus, the problem is to-fihd the solufionvof the SchrSdinger equation

'(Hnuc

+H, +H_)v=Ey (D
that asymétbtically approaches at 1argé r the ou%going waves of the
various alpha groups in‘their proper reiative intensities and thét behaves

properly as outgoing waves at the nuclear surface. .

Let us congider the equation without the‘qpadrupole interaction first.

(Hmm + BV =By

The variables can be separated in the usual manner by -substitution of

v = R(r)s(0,9)P(0',0" ). -

e fﬁz 1[0 3 1 52
E=w———=|—— (s8in 6' ) + = = —| P
2. 3P Log! 39’ sin“9  Xp!
A% 1 [a ( d ) 3 52]
-~ | —(8in6 — ) + ——= == | S
z;mjz s L 30 sin® 37

£ 1T 23 , O | z7e?
- —3 - | = (r — )R +
2mr~" R Lor dr J4 | T
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The angular eigenfunctions S and P are just spherical»sufface harmoniqs,
and on substitutibn of
5(6,9) = ¥')(6,0)
P(6',0") = ¥)(6",0")
one obtains the radial.equéﬁion

2 2 2 2
zZe” A el 1) ’ﬁ 1
E - = + 27),;(1 + 1) + onr? ,e(_,g.+_ 1) - v [?(r 5_)]

r

Any product or linear -combination of products of surface harmonics
XE(Q,@)Y;(G',Q') is a satisfactory eigenfunction 6f the angular variables.
However, in the‘physical problem restrictiops are imposed, since the total
angular momentum L and its component M along'a-fixed axis in space must be
conserved (i.e.? bé the‘same as in the initiéi nucleus) . |

Thus, oniy pérticular liﬁéar combinafioﬁsfof'the produéts
Y“(e @)YV(G',w') are allowed, The desired linear combinations are dis-
cussed by Blatt and Weisskopf 10 and d651gnated.yg{£1 These functlons are

related- to the surface harmonlcs in the following way:
0, = Y y (m,uv)Y“(e,cp)gI(e CDP

where the %E(LM;pv) are Clebsch-Gordan or vector addition coefficients in
the notation of Blatt and Weisskopf.lo The summation is actually a single
summation, since the Clebsch-Gordan coefficients vanish unless ' pu + v = M,

Thus defined, the Y functions are orthonormal.



o UCRL-2431
.='9_

f ‘j sin 0d6dPsing'de'dy!
;o Ll‘elll YLZ’ZZI‘Z S

iS4

. In this paper only even=even nuclei are considered sy 80 that L =M = O,

The Lj functions take the simple form

i 0 1 .
| (jOJJ W E Y“(e,m)Y H(o',0") - (8)
=-JSJ,<J . s . .

‘Let the solutlon to the complete equatlon (7), ve expressed by a series

expansion in 70 y Where the coefflc:Lents p,g are func’clons of r,
OJJ :

. ., o) s S o
V=) i) doysemetien), (9)
d=0 ‘
- Jeven
Substituting (9) into (7), multipiying by jo* (complex congugate of
oLL
)0

oLL
second order linear differential equatiodns in “bh'e'pL'é , coupled by the

) and integrating over all angular space one obtains a set of ordinary

quadrupole interaction,

PG ( a) we  mP ) L 27e% ]
o o (T =)+ — L(L + 1) + -
omr? dr dr "L 28 omr? - r "L
2 - . : ' . X , B N .
= - «3— W f%o* Pz(cos o) ° dodg! . : (10)
r - oLL * . . F£o3i 5 o
J even

Making the '»s'ubstitutionfuL =W.L/r and reafrangirig one ob‘tain»s,
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«10=
dZWL 2m <ZZe2 ) (m+ l) ( |
2 e (= - B+ 2T =L@+ 1) W

ar?  |mf \ ¢ P -
11

Zerz ?D . & o o

S EE) M JY g Tl ol s
j=0

J even

i‘he integrals on the right hand side of (11) are equal to the Racah
coefficients ™ (LL.OO le(cosw) |§j00). They vanish here if L and j differ
by more than two units. The case L = O, j = O also vanishes. From the
general formula of Racah it may be deduced that the nonvanishing

coefficients in (11) are given as follows:

p(p + 1)
(1190 [P, (cos w) [upo0) = — (12a)
(2w + 3)(2n - 1)
(12v)
(100 2, (cos @) | ) -2 S A
vv00 [P {cos ) |vi+ 2, Vv + 2,00) = ~ = S EWC
2 ’ ’ 2 (2v + 3)(2v & 5)7 %2y + 1)1/?
The explicit equations for the first four waves are
mze?  ouE 2mae® [ v 130
wn_ i W = S 138.
o] hzr hz o ﬁ2r3 V-’;
- -2 . 2
w | 4mZe”, 2mE ( m 1 ) ‘ 2mQe” [ 1 2 6 ( )
w, = — - —— + 6| 2t =W, =~ | =+ W, —W 13b
2 szl2 72 o rzdz 7,273 (-5-0 72 7V-5'h

ymZe®  omE m 1\ oMae®[ 6 20 15
wh" - — ( = |, + =)+ g (13c)

e+ 20—+ =\ W, =
22y a8 & B T 423 752 Tt i3
h-mZez 2mE (m 1 )- : Zer2 [ 15 1k (130)
w' - -+ 42 =+ W, = - —y) 4 134
6 72 72 & 2]1"6 22,3 _ 11413 N 55 6
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RELATION OF WAVE AMPLITUDES TO A CORRELATION FUNCTION
- - INVOLVING THE ANGULAR VARIABILES

'If one were to plot a correlatiOanrobability’funcﬁion between the
nuclear~orientation,and the angular position:bf’the alpha particle at some
particular distance Just beyond the distanée of maximum nuclear radius,
one would surely expect to find a correlation favoring location of the
alpha particle at those angles where it is neéfest t0 the spheroidal
nuclear surface. For prolate distortion the correlation function in
angle o (cf. equation 5) should be a maximum at o = O and . For oblate
distortion the cérrelation should favor o = /2.

Leaving aside for the moment the‘estimation of“the precise form of
“the correlation function, let us'considér the relation between the
correlation probability function and the ampiitudes of“the various alpha
waves. Letting the correlation probability function be 4f(cos'm)|2,
there is defined an angular wave function f(cos @) involving the four
angulér variables Bgcp, 8'; ¢',;“This function can be expanded in the

orthonormal set of -functions %Vo._ ‘discussed earlier. The symmetry of"

043
f(cos aQ about @ = n/z insures that the odd j terms vanish in the expansion.,
Let : .
0 v o _ , : :
f(cos w) = z bjyo . o (1)
.j': O

Jj even

The coefficients bk-are~determined in the usual manner by multiplying
both sides of the equation by“e}?' ‘and integrating over all angular space.
‘ ‘ 4 okk -
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To evaluate the coefficients expand f(cos ) in a series of Legendre

polynomials in ¢os w.

®
f(cos ) ='z “a,P,(cos w) : Lo (16)
1=0 ' ' '
i even
and
2n + 1 T .
ay = —ézfa;- J[%(cos aﬂsPhchs_m)sin @dw ' (17)
, J ‘
Substituting (16) into (15)
© o :
o % ( J dnds o (18)
b=y a, -J {4y P,(cos w)dpdin' . " -- 10) -
K E 1f%om 1
i=0 : e L B
i = even

bk = hni f‘j P, »(cos m) % 000 ando .

even

" The integrals are now simply equal to Racahbcoefficients, and all

terms in the summation vanish except i = k.‘

= hnak(kkOOIPk(cos w) |00 00) . (19)
These partlcular coefflc1ents can be shown from.Racah's general formulall
to be equal to (2k % 1) 1/2. Hence the expan51on coeff1c1ents b are related '

uniquely to the ctoefficients 8 by the simple expression

b, = linf(2k 1)-L/2 a.; o (20)
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Combining (20) and (17),
x

bk = 2n(2k + l)l/z;]r'f(cos w)Pk(cos w) sin odm | (21)

¢]

A TRANSFORMATION OF THE ALPHA DECAY PROBLEM TO A
SPHERICAL POLAR COORDINATE SYSTEM FIXED IN THE NUCLEUS

Solutions of the radial equations (13) méy be found for all space
where the radial distance exceeds the maximumlfédial excursion of
nuclear matter (or morelstrictly speaking, the maximum distance at which
the short range nuclear forces on the alpha;partiéle are of importance).
A serious problem seems to be presented in bringing thé éolutions,in to
all parts of'the nuclear surface fof the imposition of boundary conditions,
since the boundary is defiﬁed not by r-alone, but‘depends on all five
variables in the problem. ‘ |

An interesting possibility iS"suggestéd By the ﬁniqpe dependence of .
the expansion coefficients ay and £k of fhe pre%ious éection on one anotﬁer,
as given by (20). One might formulate'ﬁhe alpha decaybproblem in two
variableévr and o such that the problem is completely equivalent-to the
“five variable problem given by (7).
In this alternative formulafion one relates the angular functions by

equating (14) and (16).

Ejv- (o) Ke») ‘
' bjg{ojj = f(cos' w) = §j aiPi(cos w) - (22)
J=0 "~ X

. . i

= 0

Substituting from (20) giﬁééf
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}: bx(25 + l)-l/zaj e¢o = E? aiPi(cos w) - (23)
O,jj ; M ) o
J =0 T i=0

Since (23) is true for any values éj’ the following must be

identities:

b (25 + i)_l/é (#oiu‘s Pj(cos w)
ojj

| o 1 2j+1 ' 1 - }
(;lojj ) (8ﬁ2)l72 .'( - ) Pj(Cos w) = zg;g;i7§ Sj(p) (2k)

. 1/2 .
Sj(u) =,<§Q§i—29 Pj(u) are orthonormal functions on the interval -1 to +1,

as ;1 SjSkdp = 6jk , where p = cos w.

| These ideﬁtities can also readily be derived from the addition
theorem of spherical harmonics? and (8). The terms in the Hamiltonian of
(7) which represent rotational kinetic energy must be’replaced by suitable

operators on m'that'will'give the same angular eigénvalues; i.e.,

C h?/Zmr%L(L +1).

The operator
H o= %28 + 2% em?) stwd)
w o e ‘

satisfies this fequirement with (8n2)_l/ZSL(u) tﬁe corresponding eigen-
functions. The operator Hm is interesting in that it representé the kinetic
energy operator of a symmetric top (K = O) with what might be called a
"reduced moment of inertia" equal to the product of & and mr2 divided by
their sum. The rest of the Hamiltonian in (7) may be left unchanged. The

four angular cogrdinates of the original formulation have been transformed
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to a system of four cogrdinates, one of which is w, the angle between the
0,9 and 6',¢' directions, and the other three of which‘might be thé three
Eulerian angles specifying the spatial orientation df the system as a whole.
(The system as a whole will in general be an asymmetric top with two of
the moments of inertia functions of w.) (This transformation to relative
rot4tional coordinates is expected to‘yield such simplification only
when total angular momentum is zero.) |

The derivation of radial equations from the two dimensional Schrgdinger
equation proceeds analOgously.tO-that of the five dimensional equation and ~
leads to the same radiéﬁﬁéquatiqns.(l3)g

In the two dimepsionai problem the intégrals appearing in equatidns (10)
and (11) may be simplified by substitution of the identity (25) and trans-
formétion of the differéntial voiume element to the "relative and total”
rotational‘cogrdiﬁate systém. - The integrand is a function only of the
relative rotational cogrdinate ® and is independent of. the Eulerian angles
pertaining to rotation as a whole.‘vTﬁus, ihtegratioh over the three
Eulerian angles Jjust gives a constant'Bﬁz; which divides out with the

normalization factor in (24). Thus,
' ‘ 6* v T o KA
I = [ P, (cos w){/~ ‘dodn' = | S_ (cos w)P,(cos w)S,.(cos w)sin udw
L, 2 oy s L T2 J »
J oLL 03] d

(2L + l)l/z(zj + 1)1/2 . g o . B “ : |
= - — f Py (cos w)P,(cos w)PJ(C?S w)sin adw . (25)

@)
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These integrals over triple products of Legendre polynomials have been
evaluated numerically for specific cases by Shortley and Fried13 and a
general formula given by Racah.llL Fofmulgs (12) of this paper have been
cross checked with Racah's above-mentioned formula. The integrals are
also simply related to Clebsch-Gordan coefficients (by Racah's equation
(50') and Blatt and Weisskdpfs'lo equation (5.8) p. 791 as follows:

1/2

(2L + Y225 + 1) )
i " [CLj(zo;oo)] ~(26)

I =
Lj .
dJ 5-

BOUNDARY CONDITION CONSIDERATTONS

Valuable light might indeed be shed upon the fundamental role of the
nucléus.in alpha decay if one COuldvin%egrate inward equations (13) with
bounaary conditions based on exﬁerimental alpha group intensities, carryA
ing the solutions up to all parts of the nuclear surface. The magnitude
and angular variation of the solution at the nuclear surface might in
turn suggest a nuclear model giving an internal solution to match this
external one.

Experimental alpha group intensities establish half the necessary

15

boundary conditions at large distance. Assuming trial values for the
phases one could integréte the imaginary égmponent of the solution inward
tryingtdifferent phase angles of the Qaves at large r until the phases
were found which made the imaginary component become vanishingly small
within the barriervregion. With these phases tﬁe ﬁbtal necessary Boundary

conditions except for an ambiguity in sign, discussed below, would be

known, and the real components of the waves could be integrated in to Rmaxo
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/

Then one might in principle.(considering;the two dimensional analogous
problem) Jjoin the solution smoothly to a solution in a spheroidal
coordinate system fixed in the nucleus and carry the solution on o0 the
spheroidal nuclear surface.

A simpler aﬁproximate,procedUre might be merely to bring the wave
from Rmaxito the nuclear surface by considering the wave to behave roughly
as given by the one-dimensional solutions at fixed angle w.

Tt should be pointed out that the. trial and error method for establish-
ing the proper phase boundary conditions does not give a single unidue set
of phases. The condition for acceptibility was that the imaginary com-
ponents tend to zero in the barrier region. Insbfar*as the different Lewaves
may tend to zero with positive or negative sigps an ambiguity is present.
The several possible cases would need tovbe considered separately, each
leading to different behavior of the éolution at, the nucleus. Only one of

these cases will represent the actual physical behavior.

DISCUSSION

The correlation probability function with single peaks at w-0 and
‘' is composed of Fourier components of like.sign, while the function with
a single peak at n/z has Fourier components of alternating sign.
Assuming ‘the quélitative correctness of the Hill and’Wheeler3
proposal that alpha decay preferentially seeks the thinnest portion of the
barrier and that the alpha wave is of roughly equal amplitude at all parts
of the nuclear surface, it follows that the solutions of (13) would near

the nucleus be all of like sign for prolate distortion and of alternately

-opposité sign for oblate distortion. The sign of the quadrupole coupling
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terms in (13) will be seen in either case to give an increased dissipation

of the waves when the solution is peaked at the thinnest part of the

barrier. Such merely corresponds to the fact.that the quadrupole potential

is a maximum in the direction of maximum radial excursion of the nucleus.

The quadrupole potential by its coupling action will generally tend to
cause the peaks of the wave function near the nucleus to migrate toward

angles n/2 removed from the initial peaks. The general behavior of

individual L-waves during such migration might qualitatively be appreciated

from a simple example. Consider the correlation function to consist of

Dirac d-functions at two angles

flw) = %ﬁ(m) + %S(K - ) ' (27)

Expanding in normalized Legendre functions Sn(cos w) [cf. equation

(24)] and evaluating coefficients f(w) = ZCiSi(cos w) (28)
. i
7 v o
1 N
- £ . - : .
C, = ‘/P 2[6((.0) + 8(n - w)] Sn(cos n)sin ndn
o
c {9 poaa | (29)
n 0 JE 1
Sﬁ(cos ) n even

Figure 1 shows the variation of the first three Cn's as a function

of .
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Table T gives the ratio of £ = 2 and £ = 4 waves to £ = 0 at the
nucleus as calculated from experimental data* assuming no quadrupole
- coupling effects. The approximate expressionl6 for the WKB penetration
factor P when differentiated giveé dloglOP/dE = 0.854(z ~ Z)E-3/2 (where
Z is the atomic number of the alpha emitter and E is the alpha energy in
Mev). The energy differeénce effect was calculated from this formula,>aﬁd
the centrifugal barrier effect was calculated using formulas derived:by
Preston.,l The centrifugal reduction factors of the'penetrability;are
calculated to be nearlyjthe same for all alpha emittérs of Table I and
equal on the average 0.64 for £ = 2 and 0.23 for L = 4%

*Data are taken from the Table of Isotopes (Hollander, Perlman, and
Seaborg, Revs. Modern Phys. 25, 469 (1953)) except for the following
(privately communicated by Asaro, Stephens, and Perlman for Table A;
privately communicated by Dunlavey for Table B).

Table A
Alpha Emitter Energy of 4+ State of Alpha Group Abundance
Daughter (kev) (% of total alpha)

Ra 22 region ~280-88Y <0.1
Thggg | 297 2.1
253 0.2

230 it
(210) ((0.8)
Uggg 230 ~0.5
U23h— 189 ! 093
233 (170) (0.5)
P 146 0.1
2&0 151 Qol

Intensities in parentheses are from gamma measurements; all other, from
alpha spectroscopy.

Table B
Alpha Emitter Energy of 2+ State Al@ﬁa Group Abundance
: (kev) . _ (% of total alpha)
py234 7 | 15 -3
ce2Ho : ~43 , = 12

Energies and intensities determined from conversion electron coincidence
counting in nuclear emulsions.

*¥*There is an unexplained discrepancy with the calculations of
Devaney, who obtains 0.37 and 0.0368 for £ = 2 and £ = 4 groups, respec-
tively.
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Table I
Alpha Emitter Apparent Relative Wave Amplitudes at Zi/Eé/z
1.1 x 10-12 cm
(neglecting -quadrupole coupling effects)
AN fr, ¢ o, |
Razgg 1.2 22 5.53
Ra 1.4 — 6.27
Thggg 1.2 1.8 8.1k
Th230 1.3 0.6k 9.56
Th232 1.2 (1.h4) 10.7
Th™- 1.2 -a 11.9
230
U232 1.1 0.7 10.8
U23h 1.2 0.5 11.8
Ué36 1.1 (0.7) 13.1
U238 1.2 T 12.7
U 1.1 - 13.4
Puggg 0.7 - 13.4
Pu238 0.8 - 13.°7
Puzuo 1.0 0.22 13.7
Pu 1.0 0.25 13.9
242

c 1.0 0,11 1.2
nguh 1.0 “o 1%.3
o246 0.6 - 14.6

17

The most striking behavior seen from Table I is the sharp decrease
in the 4:0 ratio with increasing Z, while the 2:0 ratio remains nearly
constant (decreasing slighﬁly)° While the explanation for this behavior
may also imply a change in relative amplitudes at the nucleus, the general
trend of the 4:0 and 2:0 ratios is at least partly explained simply in terms .
of the external quadrupole coupling effects. It is seen from Figure 1 that
the operation of the coupling terms in equations (13) on simple peaked

angular distributions is such that the various L-waves (except L = 0)
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actually go through nodes. The ihtrinsic quadrupolé'ﬁoment is increasing

with mass number in the heavy region (cf. Ford18)tand’perhaps to sufficient

magnitude to bring the Jf::h'wave nearly to its first node, Over this

région the £ = 2 wave will only be decreéased slightly telative to -

£ =2, its first node being further removed from the initial conditions.
| This explanation in terms of quadrupole coupling‘on.the external

solution would predict that for nuclei of still “greater quadrupole:

moments than the heaviest in Table T the £ = L alpha group should go to

zero and then become more abundant again. ‘The low 2:0 ratio in Cf2h6 is .

perhaps evidence that the 2:0 ndde. is being~ap§roached;"

In the absence of lifetime measwfements or coulomb excitation’ cross
sections directly determining intrinsic gquadrupole moments in the heavy
region, let us deduce an approximate dependence-of QO on -atomic-number,
mass number, and the energy of thé first excited state. From equations
(v.7) (VI.1) and (II.6a):of Reference A it can'be ééterminéd that

. _IQO]H;L(éonSé’i°‘ ZE;l/Zéml/é “ BN 1“ ‘i   (36)

where Z is the atomic_numbep) E, the energy ofiibhe,. . oo ol ol

2
first excited state and A, the mass number.

From lifetime data in the 160-176 mass region as given in Table XXVII
of A the constant in (30) has the value of about 2.9 (E2 being -expressed

in kev). As a first guess then, one might take (for mass numbers near 230)

the expression

lag | » 2,9/2301/6ZE21/2 =“1,2ZE21/2 (31)

where QO is in lOthcm? and E2 in kev,
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The last column of Table I gives the values of the parameter ZE2 5

which should be approximately proportional to the intrinsic quadrupole -
moment., . Of course, the coupling~effect«will depend not -only upon the
quadrupole moment but upon the energies.and’ energy differences of the
alpha groups. The sign of the quadrupole moment is a matter for -
speculation.

Superimposed on the ‘general decrease are erratic variations., The
great differences between various thorium and uranium isotopes differing ..
by only a pair of neutrons suggests that specific nuclear effects
depending on nucleon configurations may play a significant role. One
observes from Table I that along with the high-low alternation of the
wu:wo‘ratio in thorium and uranium isotopes there is an oppesing high-low

alternation of the Vot but the significance is obscure. Tt should be

9

O}
pointed out that Asaro, Stephens and Perlmanl have found an additional
alpha decay group in Th228'going*t0'a spin one, odd parity state of energy
slightly lower than the 4+ state. A negative parity state cannot belong
to the rotation-vibration=-spectrum based on the even parity ground state
in the strong surface coupling'mOdel but muét‘repregent a different
particle configuration. The additional complexity of the situationiin
Th228'sounds a note of caution regarding any aetailed interpretation éf
the values of Table I,

From considerations set forth earlier in this paper, one might hope
to relate the relative values of the -ecmmweS‘at a particular radial
distance to a simple angular correlation.function between alpha position

and nuclear orientation, One might assume, for eiample, that there is

equal probability of alpha emission frdﬁ a1l parté'of the nuclear sufface,
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Simple coﬁsiderafioﬂéfdfcgié disgipatidh of‘élpha'waves in the barrier

regioﬁ ﬁouid then 1é$é’§hér£$ éibééé.vefy sﬁarply péaked coffelations at
the angles of ma#imﬁﬁ radial excursion of.nuciear‘-mz‘a‘fcter° ‘A‘delta func-
tion.aistributibn liké'(27):ﬁ5ﬁldsiéad £o the fOilbwing initial relative

values for positive and negative deformations:

 Table IT

Initial Fourier Components of Delta Function Correlations -

Wave Positive (prolate) S . Negative (oblate)
@ = O,m. . . - : w = /2
Yo 1 [ A 1
20’2 B ’ - “'lol_
W, 3.0 - 12

Fbr distributibns of finite Width ﬁhe-higher cbmponents will be!d.'ey-=
creased, but for even half ‘the distortions given by'Fordl8 for this rggion
the distributions would still be narrow enough that the relative ampli-
tudes of'wh ahd WE'would probabiy.nét be épﬁféciabiy iess'fhan their‘
delta function values. The ratios in'Table~I for radium aﬁd>fhbrium N
isotopes would be expected to approaéh ﬂearest to the éCtual ratioézat
the nucleus, since the neglected quadfupole cduﬁliﬁg~effects ﬁili‘bé smallest
‘for them. (The quadrupole coupling would be expected to decrease the
ratios from initial peaked values.) |

.The fact thét the ratios exceed in sevefal.cases the maximum values
eipected with oblafe distortion is a point-favoring prolate diétortidhrin

these heavy'nuclei.H The approach to tﬁe limiting values of Table II for
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prolate distortion‘ié in no case very close. Thus, the assumption of
equal wave amplitude at all parts of the nuclear surface may not corres-
pond to reality. TIndeed, it seems plausible that internallnuclear factors
might lead to a node in the alpha wave at w = 0, giving a zero amplitude
at the nuclear surface at the angle of thinnest barrier. Perhaps the
alpha emission probability is proportional to the probability that the
four nucleons of the most loosely'bound neufron and proton pairs are at
a certain position on the nuclear surféééL ‘That'is;:the alpha wave
function at the nuclear surface might be foughly-proportional to a
product of'the nuclear'wave functions of its constituent nucleons. In
the Bohr-Mottelson strong coupling‘model all nucleon wave functions in
the spheroidal well except those with quantum number ¢ = 1/2 will have
nodes along the nuclear symmetry axis.

The radial correlation function near the nucleus may then be sharply
peaked but at some angle greater than w = 0. It is also possible that
multiple=-peaked correlation functions may result,

Other e&idence supporting the idea of general occurrence of the axial
node at the nuclear surface comes from the studies of absolute alpha decay
rates, Various alpha decay correlations of even=even nuclei'using the
conventional sphgrical nucleus formulas,have»shown the decay rates to be
consistent with effective nuclear radii from ordinary radius formulas,
the three nuclei POZOB, POZlO, and Elez constituting the only exceptions;
being slower than expected by a factor of ~20\fdr the poloniums and
~5 for Em?lga Hill and Wheeler3 suggested that the explanation for these
exceptions might be simply in their having less quadrupole distortion and

hence thicker barriers than the other nuclei. Carrying this argument out
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in detail would lead one to eXpect that the various alpha decay corfelationsl
should have shown the effective nuclear ra&ius to increase rapidly going

from radium isotbpes to curium, since the decréasing"first excited states
imply greatly increasing>quadrupole distortion. That this is not thé case
could be evidence for the general occurenée of an axiai_node, pre§eﬁting'b
the alpha decay process from taking full advantage of the thinner barrief

in the axial direction.

The reason for the hindrance of P0208, POZlO, and Em.z:Lz is more likely

due to. .a relatively large change in nuclear shape between initial and
final nuclei. Such hindrance effects aﬁalogous td the‘Ffanck;Conddh(

principle in molecular spectra have béen discussed by both Hill and

Wheeler3 and by Bohr and Mottelson.2 POZlO, having just two protons beyond

a clogsed shell must have an oblate shape, while its alpha decay daughter

Pb206'with two neutron holes in the closed shell structure mﬁst have é

prolate shape. Similarly Em212

szol+ of pfblate shape. P0208 having two protons and two neutron holes

would be of intermediate shape between Em212 and szoh‘

would be probably of oblate shape and

It does not seem worth-while pursuing much further any speculations
~based on the ratios of Table I, where the-quadrupole coupling tefms in
alpha decay have been ignored. The éoupling'ﬁerms may be important if

‘quadrupole moments of the order of the estimate (31) obtain. For Cm.zlL2

alpha decay (31) gives a moment of IQOI ~ 17 % lO_zucmz, and the various
quantities of -equations (13) take on the following valués (with unit
distance 10713 cm): v

ymze? /8% = 51.0 emE/ME = 1,179

m/§~ = 0.00Lk em]q|e? /B2 = 60 .
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It was found for these numerical values that the perturbation methods

5

derived by Preston” are nof applicable, because of the large coupling and
small energy differences between states. Other methods are being investi-
gated.

Of the greatest importance to the application of the fhoery outlined
here would be lifetime measurements for the E2 gamma transitions of even=
even nuclei, measurements of cross sections for coulomb excitation, and
measurements of spectroscopic Quadrupole moments of odd nuclei, even the
sign dlone being of considerable importance.

Finally, it is to be emphasized that despite the use of éohr=Mottels§n
strong coupling nuclear wave functions the quddrupcle coupling effect in
alpha decay as expressed in equations (13) is not dependent upon the
validity of their nuclear model. The derivation could have proceeded from
simple consideration of the E2 transition probabilities between the nuclear
states. The coupling of different alpha decay groups is an inevitable
consequence of the electromagnetic transition field Jjust as is the internal
conversion process for gamma rays. The magnitude of the coupling is
directly related to the gamma transition probability. The effect thus
would be of most importance for fast transitions. Lifetime measurements in
the heavy rare earth region have showed that many E2 transitions are of this
especially fast nature. If the E2 transitions connecting excited states of
e?en nuclei in the heavy region are also of this fast nature, the possible
special importance of quadrupole coupling. in alpha decay follows.

Also the phenomenon of interference of &ifferent alpha waves near
the nucleus to produce peaked correlation functions is not specially

dependent upon nuclear models with stable spheroidal distortions. If,



UCRL-2431

-27-

for example, the angular momentum in the "rotational" excited states were
carried_by a single proton in a spherical nucleus, the cprrelation fﬁnction
~would relate the angular positions of the proton and the alpha particle,
Similarly, if the angular momentum were thought to reside in a group of
nucleons in a spherical well, the correlation function could be
appropriately defined. However, despite the fact that the coupled alpha
decay description of this paper could be generalized fo_nuclear models
other than those giving actual spheroidal distortion, the greaf usefulness
of the strong surface coupling model in visﬁalizing and formulating the
alpha decay treatment is clearly evident; The sjstematié decreaae with
atomic number of the alpha transition rate to the 4+ state is not easily
explainad with assumption of a spherical nuclear shape, but thé‘stable |

spheroidal shape allows the simple explanation discussed earlier.
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Fig. 1. Fourrier Components of a delta function distribution.
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