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ABSTRACT 

UCRL-2431 

Various effects of.spheroidal nuclear distortion on the alpha decay 

process are considered theoretically. 

Differential equations governing alpha decay in the region beyond 

the maximum nuclear radius are derived. They consist of ordinary radial 

It 

Schrodinger equations for alpha decay to various nuclear states with the 

addition of quadrupole interaction terms.coupling the various equations. 

The significance of wave amplitudes of various angular momentum 

alpha groups .as Fourier compon~nts of the total wave function is pointed 

out, and experimental alpha decay rate data for even-even nuclei are dis-

cussed in these terms. 
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barrier. An important fact to realize, though, is that if such "directed" 

alpha emission takes place, it necessarily implies the presence of a 

mixture of different angular momentum waves of ~?-lpha emission.lj. Further-

·more, the rel~?-tive amounts of various angular momentum components may 

change with radial distance through the coupling influence of the intrinsic 

electric quadrupo~e moment of the daughter nucleus. The influence of 

such noncentral electric interactions between the nucleus and alpha 
I 

particle has been treated theoretically by Preston, 5 andthe treatment of 

coupling in the present' paper willbe seen to parallel his in many impor-

tant respects. 

6 
Even-even nuclides of the heaviest elements (Z;::88) are observed 

generally to decay by alpha emission to ground and excited states that are 

interpreted by the unified nuclear model as members of a rotational7 band 

sequence with even parities, spins of 0, 2, 4, ..• and energies 

(112/2~)I(I + 1). ((112/zJ-') =the rotational quantum energy.) The 

different angular momentum states of tne outgoing alpha particle wave 

necessary for a description in terms of directed emission will involve the 

above states of the nucleus. 

In order to gain from experimental alpha decay rate data a real 

understanding of t:P.e fundamental nature of the process it is necessary 

first to solve the we~l-defined quantum mechanical ~roblem of the outgoing 

waves in the region beyond the.range of short range nuclear forces. The 

separate .application of simple barrier penetration formulas to the various 

alpha groups may give misleading information as to the true magnitudes of 

the wave functions near the nuclear radius. 
8 

Preston has stated the 

problem clearly. One might assume reasonable values for the various alpha 
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INTRODUCTION 
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The dependence of alpha decay rates of even-even nuclides upon decay 

energy and atomic number has been remarkably well explained by coulombic 

barrier penetration treatments. 1 Some of these treatments have differed 

widely in their specific assumptions about the "lifetime in the absence of 

a barrier, 11 but by the choice of somewhat different values for the nuclear 

radius in the various cases good agreement with experimental decay rates of 

even-even nuclides are sectired.* 

The nucleus is generally assumed to have a spherically symmetric dis-

tribution of charge. 2 The nuclear model of A. Bohr and B. R. Mottelson, 

however, attributes large spheroidal distortions to nuclei lying in 

regions much removed from closed neutron or proton shells. puch distortims 

can be present for even-even nuclei and give rise to an intrinsic electric 

quadrupole moment, Q
0

• Reference 2 will be referred to as A hereafter •-

One effect of introducing spheroidal distortion is to bring some nuc~r 

matter out to greater radial distances. Hill and Wheeler3 have suggested 

that the above effect might lead to increased alpha decay rates by virtue 

of a thinner potential barrier, and they estimate this. effect by calculating 

the one-dimensional penetration factor through the thinnest part of the 

*The nuclides Po2i6, Po208, and :Em212 are exceptions, decaying more slowly 

by factors of 5 -~0. · They have. 126 or less neutrons. 

-3-
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groups near the nucleus, integrate the wave equation outwards to large 
. ' ! 

distances, and compare the magnitudes o£ the various outgoing waves with 

the eXperimental intensities. Preston states that small errors in the 

spurious appearance of' conside.rable amounts o£ incoming waves at inf'inity 

and thus invalidate the results. Preston chooses, rather, to let the 

eXper:i,mental intensities of' the N alpha groups provide N restrictive 
. ,-:r 

boundary conditions on the waves at large distances and integrates in-

ward toward the nucleus. The phases of, the N· waves must be chosen so as 
. . \. . \ " -~ 

to satisf'y boundary conditions at the nuclear surface. 

FORMULATION OF THE EQUATIONS GOVERNING THE EXTERNAL SOLUTION 

The use of nuclear wave functions fromthe strong-coupling approxima-

tion of' the unified nuclear model permits the alpha p_a:r;ticle-recoil 

nucleus system to be treated as a s.imple· mechanical system and. permits a 

great specialization of the generalized system of alpha decay radial . ' 

equations of' Preston. The strong coupling wav-e f'unctions f'or the ground 

stme rotational band in even-even nucleireduce simply to. the rotational -. .. . . . . . . . . ' 

wave £unctions of a symmetric top (A, p. 20), vdth"quantum numbers I, M, 

and K. I is the total angula:r_ m9ment.U!ll quantum numb~r, M,, it-s projection 

along an axis f'ixed in space, and K, it~ prpjec-:tion along the nuclear 

symmetry axis . For all levels of the ground. state band the qu~ntum number 
..· -· . : · .. ' . 

K is z~ro; hence, the wave f'unctions reduce to a p~rticularly simple fo:r'ID, 

9 normalized spherical harmonics of even order .. _ 

-

1lrnuc = Yi(e' ,cp')' (l) 
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where 8 1 and cp 1 denote the direction of the nuclear symmetry axis with 

11 

respect to a spherical polar coordinate system fixed in space. Since the 

nucleus is assumed to have axial symmetry, the two moments of inertia 

perpendicular to the symmetry axis will be equal and will be designated ~. 

The only part of the strictly nuclear Hamiltonian which concerns this 

alpha decay formulation is that corresponding to the kinetic energy of 

the symmetric top with K = o, namely, 

Hnuc = -112 [_!_ (sine I ~) + 

2.3- oe I · oe I 

l ;\] (2) 

The eigenfunctions are those given by (l) with eigenvalues 

2 
E1 = ~ I(I + l). (3) 

2~ 

The complete Hamiltonian for the alpha decay problem will also in-

elude the usual kinetic and coulombic potential energy terms (center of 

mass system), 

2 
zZe 

+-,.......... 
r 

(4) 

where r, e, and cp are· ther-relative co~rdinates of alpha particle and 

11 

recoil nucleus with respect to the coordinate system fixed in space; e 

is the electrostatic unit charge; z, the charge Gf the alpha particle, 

i.e., 2; Z the charge of the daughter nucleus, and ·m the reduced mass. 

Finally, an interaction term must be included in the Hamiltonian 

to account for the electric quadrupole interaction. 

Q 2 
= ~ P2(cos m) 

2r.J 
(5) 
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where m is the angle between the nuclear symmetry axis (e 1 ,~ 1 ) and the 

relative position vector (e,~) of the alpha particle-recoil nucleus 

system. P2(cos m) is the Legendre polynomial of seco1;1d order. Q is the 

intrinsic electric quadrupole moment of the daughter ·nucleus given in 

A, Equation V.3 for a uniformly charged spheroidal nucleus as 

3 2 
Q = --·- ZR o: J5; 0 0 

The nuc1ear surface to second order in o:
0 

is given,by 

with ~the angle measured from the nuclear symmetry axis. 

(6) 

Thus, the problem is to find the solution of the Schrodinger equation 

(7) 

that asymptotically approaches at large r the outgoing waves of the 

various alpha groups in their proper relative intensities and that behaves 

properly as outgoing waves at the nuclear s.urfac.e. 

Let us consider the equation without the quadrupole interaction first. 

(H + H ) 1jr = E1jr 
nuc ex 

The variables can be separated in the usual manner by substitution of 

1Jr = R(r)s(e,~)P(e',~ 1 ) .• 

Thus; 
"11

2 
1 [ d "2 I () l 

E = --- -(sin B 1 ) + p 

sin2e 
I 

d:pj2 2-:JP . ce I eel 

• -h

2 

_:[~(Sine~)+~ ":J 
2mr2 s ()e ()e sin~ Cltp 

s 

'2 
l 

[ d d J zze2 -11 
- ---2-:' ~ (:r 2

-) R + 
2mr R Clr Clr . · r 
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The angular eigenfunctions S and P are just spherical surface harmonics, 

and on substitution of 

s(e,cp) · = y~(e,cp) 

P(e',cp') =Ii(ei,cp•) 

one obtains the radial equation 

E - z~2 ~ + ~~I(I + 1) + 2~2 £(£ + 1) - 2~2 ~ [ },:(r2 ~)1 R . 

Any :product or linear combination of :products of surface harmonics 

Yf(e,cp)Y~(e' ,cp') is a satisfactory eigenfUnction of the angular variables. 

However,_in the :physical :problem restrictions are imposed, since the total 

angular momentum L and its component M along a-fixed axis in space must be 

c·onserved (i.e., be the same as in the initial nucleus). 

Thus, only :particular linear combinations of the :products 

Y_i(e,cp)Y;(e' ,cp') are allowed. The desired linear combinations are dis­

c·ussed· by Blatt and Weissko:pf10 and de-signated 'J!i..e, I. These functions are 

related to the surface harmonics in the following way: 

~.er = r L: c..ei(LM;~v)~(e,cp),~(e',cp'), 
1-l v 

where the ~(LM;IJ.V) are Clebsch-Gordan or vector addition coefficients in 

10 the notation of Blatt and Weissko:pf. The summation is actually a single 

sunnnation, since the Clebsch-Gordan coefficients vanish unless 1-l + v = M. 

Thus defined, the Y functions are orthonormal. 
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In this paper only even~even nuclei are considered, so that L = M = o. 

The Lj functions take the simple form 

(8) 

Let the solution to the complete equation (7), be expressed by a series 

expansion in ~ 0 where the coefficients ~,j are functions of r •. 
( ojj' 

00 

1Jr == L l)d(r) ~~jj(e,~j7' ;~') 
j = 0 
j even 

(9) 

·Substituting (9) into (7), multiplying by 
* .· 4 ° (complex conjugate of 

(/ oLL 
L/ 0 

) and integrating over all angular space one obtains a set of ordinary 
foLL 

second order linear differential ec!uatidns in the 11r.,'s, coupled by the 

quadrupole interaction. 

= 

l£12 0 0 [ ('112 lfl.2 )' . . .. 
- ~- (r2 ..._:.)u... + -- + - 2 L(L + 

2mr2 or or . L 23'- 2mr 

2 00 

~e. \ 
- r 3 L 

j = 0 
j even 

~. (.;{ . P 2 (cos en) ·a.a<m' J o* ~o 
J f oLL ... - .. · ojj . 

Making the· substitutiol1~L =){L/r and rearranging one obtains, 

(10) 
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= ~2r3 L 
j = 0 
j even 

•10-

(ll) 

The integrals on the right hand side of (ll) are equal to the Racah 

coefficients11 (LLOOjP
2

(cos(.l)) jjjOO). They vanish here if Land j differ 

by more than two units. The case L = o, j = 0 also vanishes. From the 

general formula of Racah it may be deduced that the nonvanishing 

coefficients in (ll) are given as follows: 

ll(ll + l) 
(llll¢>¢1P2 (cos (.l)) llllloo) = -----­

(21-! + 3)(21l - l) 

3 (v+2)(v+l) 

(l2a) 

(l2b) 

(vvoo IP
2

(cos m) lvc+ 2, v + 2,00) - ..... · · · · · · · 7 · 1; 2 
2 (2v + 3)(2v ~ 5) 1 2(~v + l) . 

The explicit equations for the first four waves are 

(l3a) 

_ [ 4roZe
2 

2mE (m l~l 2MQe
2 
~ 6 20 15 ] w 11 - ·-·- + 20 i- + r2 w4 = 1i2r3 7rJw2 + Tlw4 + lll[lj w6 (l3c) 

4 fl
2

r 112 

{4mZe
2 

] 2 [ ] 
2mE m l 2mQe 15 14 

w 11 

- -n2 + 42(J' + r2) "6 = 'l\2r3 no/13"4 + 55"6 (l3d) 6 
fl2r 
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RELATION OF WAVE .AMPLITUDES TO A CORRELATION FUNCTION 
INVOLVING THE ANGULAR VARIABLES , 

If one were to plot a correlation· probability function between the 

nuclear orientation and the angular positionof the alpha particle at some 

particular distance just beyond the distance of maximum nuclear radius, 

one would surely expect to find a correlation favoring location of the 

alpha particle at those angles where it is nearest to the spheroidal 

nuclear surface. For prolate distortion the correlation function in 

angle ID (cf. equation 5) ~}:lould be a maximum at ID = 0 and :rc. For oblate 

distortion the c6rrelati~n s}Wuld favor en= rc/2. 

Leaving aside for the moment the estimatiQn of the precise form of 

the correlation function, let uE;· consider the relation between the 

correlation probability function and the amplitudes· of- the various alpha 

wave:s. Letting the correlation probability function be .-If( cos m) 12 , 

there is defined an angular wave function f(cos m) involving the four 

angular variables e, cp, e•; cp'; ·(·.This function can be expanded in the 

orthonotmal set of functib~s U 0 
.j. discussed earlier. The symmetry of or OJ . 

f(cos m) about m = :rc/2 insures tha.t the odd j terms vanish in the expansiono 

Let 
00 

f(cos m) = L 
j = 0 
j even 

(14) 

The coefficients bk are determined in the usual manner by multiplying 
' . * 

both sides of the equat~on by ·i..f :kk and integrating over all angular space. 

bk = JU-'3 f(cos m)Md.O 1 
• 

. /okk 
(15) 
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To evaluate the coef'f'icients expand 'Of( cos en) in a series of Legendre 

polynomials in cos w. 

and 

CD 

f(cos en) = L 
i = 0 
i even 

a.P.(cos w) 
). ). 

2n "+ _1 Ire( ). ( ) a:ri = 2 . f cos en f:P IT cos w sin CJXko 

0 

Substituting (16) into (15) 

CD 

bk ~ r ai J ~ ~kk pi (cos w)tl!ldtl' • 

i = 0 
i = even 

~
0 Since 
000 

= l/4rc, (18) _,is equivalent to' the -following: 

(16) 

(17) 

(18)-

bk = 4·r 
i 0 

* . ' 0 

a.J~o P.(cos_w)~ dndn' ). ). 000 
okk · 

= 
i = even 

The integrals are now simply equal to Racah coefficients, and all 

terms in the summation vanish exceFt i = k. 

(19) 

- 11 
These Farticular coefficients can be shown from Racah's general formula 

'· 1/2 
to be equal to (2k s- 1)- . Hence the expansion coefficients bk are related 

uniquely to the--coefficients~ by the sim:ple_expression 

(20) 

t ,,. 

·~ 
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Combining (20) and (17), 

:rr 

l/2! bk = 2:rr(2k + l) · f(cos co)Pk(cos co) sin crom 
0 

A TRANSFORMATION OF THE ALPHA DECAY PROBLEM TO A 
SPHERICAL POLAR COORDINATE SYSTEM FIXED ,IN THE.NUCLEUS 

(21) 

Solutions of the radial equations (13) may be found for all space 

where· the radial distance exceeds the maximum1.radial excursion of 

nuclear matter (or more strictly speaking, the maximum distance at which 

the short range nuclear forces on the alpha particle are of importance). 

A serious problem seems to be presented in bringing the solutions in to 

all parts of the nuclear surface for the imposition of boundary conditions, 

since the boundary is defined not by r'alone, but depends on all five 

variables in the problem. 

An interesting possibility is suggested by the unique dependence of 

the expansion coefficients ak and bk of the previous section on one another, 

as given by (20). One might formulate the alpha decay problem in two 

variables r and (l) such that the problem is completely equivalent-to the 

five variable problem given by ( 7) . 

In this alternative formulation one relates the angular functions by 

equating (14) and (16). 

co 

I' 0 

0 bj~ojj = f(cos·co) 

j = 

Substituting from (20) gives 

= 

i = 0 

a. P. (cos ro) . 
1 1 

(22) 
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4l1 (2j + l) -l/2a. U o 
J (ojj 

a. P. (cos ill) . 
J. J. 

j = 0 i = 0 

Since ( 23) is true for any values a., the following must be 
J 

identities: 

4l1 (2j + l) -l/2 U 0 = P.(cos ill). 

(ojj J 

l 
0 

LJ ojj = (8n2) 1f 2 . 

2. 1)1/2 . 
( J : Pj(cos w) = 

l 

l/2 s .(!-1) 
(8n2) J 

(23) 

(24) 

s. ( ) = ( 2j + 
J 1-i . 2 )

l/2 ' 1 P/1-1) are orthonormal functions on the interval -1 to +1, 

as f S .Skdi-i 
-1 J 

= ojk where 1-i = cos ill. 

These identities can also readily be derived from the addition 

theorem of spherical harmonics12 and (8). The terms in the Hamiltonian of 

(7) which represent rotational kinetic energy must be replaced by suitable 

operators on ill that will give the same angular eigenvalues, i.e., 

2 2 2, 
('fi /2 :t" + h /2mr )L(L '+ 1) . 

The operator 

satisfies this requirement with (8n2)-l/2sL(!-1) the corresponding eigen-

functions. The operator H is interesting in that it represents the kinetic 
ill 

energy operator of a symmetric top (K = 0) with .what might be called a 

"reduced moment of inertia" equal to the product of :r' and mr2 divided by 

their sum. The rest of the Hamiltonian in (7) may be left unchanged. The 

" four angular coordinates of the original formulation have been transformed 
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II 

to a system of four coordinates, one of which is m, the angle between the 

e,~ and e·,~· directions, and the other three of which might be the three 

Eulerian angles specifying the spatial orientation of the system as a whole. 

(The system as a whole will in general be an asymmetric top with two of 

the moments of inertia functions of m.) (This transformation to relative 

rotlitional cobrdinates is expected to yield such simplification only 

when total angular momentum is zero.) 

II 

The derivation of radial equations from the two dimensional Schrodinger 

equation proceeds analogously to that of the five dimensional equation ana -

leads to the same radia]tequations (13). 

In the two dime~sional problem the integrals appearing in equations (I(D} 

and (II) may ·be simplified by substitution of the identity (25) and trans-

formation of the differential volume element to the "relative and total" 

II 
rotational coordinate system. The integrand is a function only of the 

• II relat1ve rotational coordinate m and is independent of the Eulerian angles 

pertaining to rotation as a whole. Thus, integration over the three 

Eulerian angles just gives a constant Bn2 , which divides out with the 

normalization factor in (24). Thus, 

m)F2 (cos m)P.(cos m)sin cuim . 
J. 

(25) 



UCRL_-2431 

-16-

These integrals over triple products of Legendre polynomials have been 

evaluated numerically for specific cases by Shortley and Fried13 and a 

14 general formula given by Racah. Formulas (12) of this paper have been 

cross checked with Racah's above-mentioned formula. The integrals are 

also simply related to Clebsch-Bordan coefficients (by Racah' s equation 

(50') and Blatt and Weisskopfs• 10 equation (5.8) p. 791 as follows: 

(2L + l) 1/ 2 (2j + 1) 1/ 2 

+---'-------- . [CL/20;00) ]
2 

5 

BOUNDARY CONDITION CONSIDERATIONS 

(26) 

Valuable light mi'ght indeed be shed upon the fundamental roie of the 

nucleus in alpha decay if one could integrate inward equations (13) with 

boundary conditions based on experimental alpha group intensities, carry-

ing the solutions up to all parts of the nuclear surface. The magnitude 

and angular variation of the solution at the nuclear surface might in 

turn suggest a nuclear model giving an internal solution to match this 

external one. 

Experimental alpha group intensities establish half the necessary 

boundary conditions at large distance. 15 Assuming trial values for the 

phases one could integrate the imaginary component of the solution inward 

tryihgt.different phase angles of the waves at large r until the phases 

were found which made the imaginary component become vanishingly small 

within the barrier region. With these phases the total necessary boundary 

conditions except for an ambiguity in sign, discussed below, would be 

known, and the real components of the waves could be integrated in to R o max 
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Then one might in principle (considering.the two dimensional analogous 

problem) join the solution smoothly to a solu~ion in a spheroidal 

II 

coordinate system fixed in the nucleus and carry the solution on to the 

spheroidal nuclear surface. 

A simpler approximate procedure might be merely to bring the wave 

from Rrn.ax to the nuclear surface by considering the wave to behave roughly 

as given by the one-dimensional solutions at fixed angle m. 

It should be pointed out that th~: t.rial and error method for establish-

ing the proper phase boundary conditions does not give a single unique set 

of phases. The condition for acceptibility was that the imaginary com-

ponents tend to zero in the barrier region. Insofar as the different L-waves 

may tend to zero with positive or negative sigps an ambiguity is present. 

The several possible cases would need to be considered separately, each 

leading to different behavior of the solution at" the nucleus. Only one of 

these cases will represent the actual physical behavior. 

DISCUSSION 

The correlation probability function with single peaks at m-0 and 

1( is composed of Fourier components of like .. sign, vfuile the function with 

a single peak at 1(/2 has Fourier components of alternating sign. 

Assuming·the qualitative correctness of the Hill and Wheeler3 

proposal that alpha decay preferentially seeks the thinnest portion of the 

barrier and that the alpha wave is of roughly equal amplitude at all parts 

of the nuclear surface, it follows that the solutions of (13) would near 

the nucleus be all of like sign for prolate distortion and of alternately 

opposite sign for oblate distortion. The sign of the quadrupole coupling 



UCRL-2431 

-18-

terms in (13) will be seen in either case to give an increased dissipation 

of the waves when the solution is peaked at the thinnest part of the 

barrier. Such merely corresponds to the fact that the quadrupole potential 

is a maximum in the direction of maximum radial excursion of the nucleus. 

The quadrupole potential by its coupling action will generally tend to 

cause the peaks of the wave function near the nucleus to migrate toward 

angles n/2 removed from the initial peaks. The general behavior of 

individual L-waves during such migration might qualitatively be appreciated 

from a simple exampleo Consider the correlation function to consist of 

Dirac a-functions at two angles 

1 1 
f(w) ~ -o(w) + -o(n - w) 2 2 

(27) 

Expanding in normalized Legendre functions S (cos ro) (cf. equation 
n 

(24)] and evaluating coefficients f(w) ~ ~C.S.(cos w) 
i l l 

n 

en ~ J ~[o(w) 

c 
n 

0 

+ o(n- w)] s (cos ~)sin ~d~ 
n 

-, "1 
n even 

(28) 

(29) 

Figure 1 shows the variation of the first three C 's as a function 
n 

of w. 
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Table I gives the ratio of J,:::: 2 and f = 4 waves to -l = 0 at the 

nucleus as calculated from experimental data* assuming no quadrupole 

·coupling effects. The approximate expression16 for the WKB penetration 

factor P when differentiated gives dlog10PjdE = 0.854(Z - 2)E-3/2 (where 

Z is the atomic number of the alpha emitter and E is the alpha energy in 

Mev). The energy difference effect was calculated from this formula, and 

the centrifugal barrier effect was calculated using formulas deri ve·d by 

Preston. 1 The centrifugal reduction factors of the penetrability~are 
calculated to be nearly-~the same for all alpha emitters of Table I and 

equal on the average 0.64 for .£ = 2 and 0.23 for .-l = 4.** 

*Data are taken from the Table of Isotopes (Hollander, Perlman, and 
Seaborg, Revs. Modern Phys. 25, 469 (1953)) except for the following 
(privately communicated by Asaro, Stephens, and Perlman for Table A; 
privately communicated by.Dunlavey for Table B). 

Table A 

Alpha Emitter Energy of 4+ State of Alpha Group Abundance 
Daughter (kev) (% of total alpha) 

Ra224 region ---280-884 <0.1 

T~~~ 297 2.4 
Th230 253 0.2 
Th (210) ((0.8) 
u23o 230 ---o .5 
u232 189. 0.3 
u234 (170) (0.5) 

238 146 0.1 Pu240 
Pu 151 0.1 

Intensities in parentheses are from gamma measurements; all other, from 
alpha spectroscopy. 

Alpha Emitter 

Table B 

Energy of 2+ State 
(kev) 

Alpha Group Abundance 
(% of total alpha) 

15 ± 3 

12 

Energies and intensities determined from conversioh electron coincidence 
counting in nuclear emulsions. 

1**There is an unexplained discrepancy with the calculations of 
Devaney, who obtains 0.37 and 0.0368 for ~ = 2 and ~= 4 groups, respec­
tively. 
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Table I 

Alpha Emitter Apparent Relative Wave Amp~itudes at Ztf/E~/2 
1.1 x 10-12 em 

(neglecting quadrupole coupling effects) 

lw2 1: lw0 I lw4l: lw0 l 

224 
1.2 5.53 Ra226 

Ra 1.4 6.27 

Th226 1.2 1.8 8.14 
Th228 1.3 0.64 9·56 
Th230 1.2 (1.4) 10.7 
Th232 1.2 11.9 

u23o 1.1 0.7 10.8 
U232 1.2 0.5 11.8 
u234 1.1 (0.7) 13.1 236 
u238 1.2 12.7 
u 1.1 13.4 

234 
0.7 13.4 Pu236 

Pu238 0.8 13.7 
Pu240 1.0 0.22 13.7 
Pu 1.0 0.25 13.9 

c 242 1.0 0.11 14.2 c~44 1.0 ..,_ 14.3 

Cf246 0.6 14.6 

The most striking behavior seen from Table I is the sharp decrease17 

in the 4:0 ratio with increasing z, while the 2:0 ratio remains nearly 

constant (decreasing slightly). While the explanation for this behavior 

may also imply a change in relative amplitudes at the nucleus, the general 

trend of the 4:0 and 2:0 ratios is at least partly explained simply in terms 

of the external quadrupole coupling effects. It iS seen from Figure 1 that 

the operation of the coupling terms in equ~ions (13) on simple peaked 

angular distributions is such that the various L-waves (except L = 0) 



actually go through nodes. The intrinsic quadrupole morrient is increasing 

with mass number in the heavy region (cf. Ford
18

) 'and ·perhaps to sufficient 

magnitude to bring the 1 = 4 wave nearly to its first node. Ove'r this 

region the i = 2 wave will only be decreased slightly relative to · 

L = 2, its first node being further removed from the initial conditions. · 

This explanation in terms of quadrupole coupling on the external 

solution would predict that for nuclei of still ·'greater quadrupole· 

moments than the heaviest in Table I the 1, ~- 4 alpha group should go to 

zero and then become more abundant again. The low 2:0 ratio in Cf
246 

is 

perhaps evidence that the 2:0 node is being· approached.· 

In the absence of lifetime measurements or coulomb excitation cross 

sections directly determining intrinsic quadrupole moments in the heavy 

region, let us deduce an approximate dependence of Qo on atomic number, 

mass number, and the energy of the first excited state. · From equations 

(V.7) (VI.l)· and (II.6a) of Reference A it can'be determined that 

I Q0 I ;; ( c onst • ) • 
~- . . . 

where Z is. the atomic number_, E
2 

the anergy. ofdthe. 

first excited state and A, the mass numqer. 

J .• -,_, __ ,. ~ 

(30) 

From lifetime data in i;;_he 160~176 m,ass region as given in Table XXVII 

of A the constant in (30) has the value of about 2.9 (E2 being,,expressed 

in kev)., As a first guess then, one might take (for mass numbers near 230) 

the expression 

(31) 

where ~ is in l0-24cm
2 

and ~2 in kev. 
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-1/2 The last colunm of Table I gives the values of the parameter ZE
2 

, 

which should be approximately proportional to the intrinsic quadrupole 

moment. Of course, :the coupling effect·will depend not only upon the 

quadrupole moment but upon the energies.and"energy differences of the 

alpha groupse The sign of the quadrupole moment is a matter for 

speculation. 

Superimposed on the general decrease are erratic variations. The 

great differencef? between various thorium and uranium isotopes differing 

QY only a pair of neutrons suggests that specific nuclear effects 

depending on nucleon configurations may pl;?.y a f')ignificant role. One 

observes from Table I that along with the highclow alternation of the 

w4 :w0 
.ratio in thoriUm and. uranium isotopes there is an opp0sing·high-low 

alternation of tp.e w2 :w0
, ht~t the signif;icance is obscure. It should be 

pointed out that Asaro, Stephens and Perlman19 have ,found an additional 

alpha decay group in Th228 going to a spin one, oddparity state of energy 

slightly lower than the 4+ state. A negative parity stat·e cannot belong 

to the rotation-vibration-spectrum based on the even parity ground state 

in the strong surface coupling model but must repret3ent a different 

particle configuration. The additional complexity of the situation<.in 

228 
Th sounds a note of caution regarding any detailed interpretation of 

the values of Table I. 

From considerations set forth earlier in this· paper 7 one might hope 

to relate the relative values of the l-waves at a particular radial 

distance to a simple 8l_lgular correlation function 't)etween alpha position 

and nuclear orientation. One might assume, for example, that there is 

equal probability of alpha emission fram all parts of the nuclear surface. 
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... , ., :··.~·_;r~ _,. 
Simple considerations of the dissipation of alpha waves in the barrier 

--
region would then lead one to expect very sharply peaked correlations at 

the angles of maximum radial excursion of nuclear matter. A delta func~ 
.'. . . 

tion distribution like (21) would lead to the following initial relative 
' ; ~ . 

values for positive and negative deformations: 

Table II 

Initial Fourier Components of Delta Function Correlations -

Wave Positive (prolate) Negative (oblate) 

CD= o,1( (I)= 1(/2 

wo 1 1 

w2 2.2 -1.1 

w4 3.0 1.1 

For distributions of finite width the higher components will be de-

- . 18 
creased, but for even half the distortions given by Ford for this region 

the distributions would still be narrow enough that the relative ampli­

tudes of w4 and w2 would probably not be -appreciably less· than their. 

delta function values. The ratios in Table I for radium and thorium 
: . . 

isotopes would be expected to approach nearest to the actual ratios at 

the nucleus, since the neglected quadrupole coupling-effects will be smallest 

for them. (The ~uadrupole coupling would be expected to decrease the 

ratios from initial peaked values.) 

The fact that the ratios exceed in several cases the maximum values 

expected with oblate distortion is a point favoring prolate distortion in 

these heavy nuclei.' The approach to the limiting values of Table II for 
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prolate distortion is in no case very close. Tb,us, the assumption of 

equal wave amplitude at all parts of the nuclear surface may not corres-

pond to reality. Indeed, it seems plausible that internal' nuclear factors 

might lead to a node in the alpha wave at oo = o, giving a zero amplitude 

at the nuclear surface at the angle of thinnest barrier. Perhaps the 

alpha emission probability is proportional to the probability,that the 

four nucleons of the most loosely bound neutron and proton pairs are at 

a certain position on the nuclear surface: That is, the alpha wave 

function at the nuclear surface might be roughly proportional to a 

product of the nuclear wave functions of its constituent nucleons. In 

the Bohr-Mottelson strong coupling model all nucleon wave functions in 

the spheroidal well except those with quantum number n = l/2 will have 

nodes along the nuclear symmetry axis. 

The radial correlation function near the nucleus may then be sharply 

peaked but at so:q~,e angle greater t.han w = o. It is also possible that 

multiple-peaked·correlation functions may result. 

Other evidence supporting the idea of general occurrence of the axial 

node at the nuclear surface comes from the studies of absolute alpha decay 

rates. Various alpha decay correlations of even-even nuclei using the 

conventional sph~rical nucleus formulas have sho~ the decay rates to be 

consistent with effective nuclear radii from ordinary radius formulas, 

the three nuclei Po208, Po210 , and Em212 constituting the only exceptions, 

being slower than expected by a factor of "'20,for the poloniums and 

212 3 "'5 for Em • Hill and Wheeler suggested that the explanation for these 

exceptions might be simply in their having less quadrupole distorti9n and 

hence thicker barriers than the other nuclei. Carrying this argument out 
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in detail would lead one to expect that the various alpha decay correlations
1 

should have shown the effective nuclear radius to increase rapidly going 

from radium isotopes to curium, since the decreasing first excited states 

imply greatly increasing quadrupole distortion. That this is not the case 

could be evidence for the general occurence of an axial node, preventing 

the alpha decay process from taking full advantage of the thinner barrier 

in the axial direction. 

The reason for the hindrance of Po208 , Po210 , and Em212 is more likely 

due to a relatively large change in nuclear shape between initial and 

final nuclei. Such hindrance effects analogous to the Franck-Condon 

principle in molecular spectra have been discussed by both Hill and 

Wheeler3 and by Bohr and Mottelson.2 Po210 , having just two protons beyond 

a closed shell must have an oblate shape, while its alpha decay daughter 

Pb206 with two neutron holes in the closed shell structure must have a 

prolate shape. Similarly Em212 would be probably of oblate shape and 

Pb204 of prolate shape. 
. 208 
Po having two protons and two neutron holes 

would be of intermediate 212 204 shape between Em and Pb • 

It does not seem worth-while pursuing much further any speculations 

based on the ratios of Table I, where the ··quadrupole coupling terms in 

alpha decay have been ignored. The coupling terms may be important if 

quadrupole moments of the order of the estimate (31) obtain. For cm242 

alpha decay (31) gives a moment of IQ0 I ::::: 17 x lo-24cm2 ~ and the various 

quantities of equations (13) take on the following values (with unit 

distance 10-l3 em): 

4mZe
2 /n2 = 51.0 

m/_J- = 0.0014 

2mE /..fl2 
== l.l 79 

2 2 
2miQ le /~ = 460 • 



It was found for these numerical values that the perturbation methods 

derived by Preston5 are not. applicable, because of the large coupling and 

small energy differences between states. Other methods are being investi= 

gated. 

Of the greatest importance to the application of the thoery outlined 

here would be lifetime measurements for the E2 gamma transitions of even­

even nuclei, measurements of cross sections for coulomb excitation, and 

measurements of spectroscopic quadrupole moments of odd nuclei, even the 

sign a1k0:ne being of considerable importance. 

Finally, it is to be emphasized that despite the use of Bohr=Mottelson 

strong coupling nuclear wave functions the quadreydl.e coupling effect in 

alpha decay as expressed in equations (13) is not dependent upon the 

validity of their nuclear model. The derivation could have proceeded from 

simple consideration of the E2 transition probabilities between the nuclear 

states. The coupling of different alpha decay groups is an inevitable 

consequence of the electromagnetic transition field just as is the internal 

conversion process for gamma rays. The magnitude of the coupling is 

directly related to the gamma transition probability. The effect thus 

would be of most importance for fast transitions. Lifetime measurements in 

the heavy rare earth region have showed that many E2 transitions are of this 

especially fast nature. If the E2 transitions connecting excited states of 

even nuclei in the heavy region are also of this fast nature, the possible 

special importance of quadrupole coupling" in alpha decay follows. 

Also the phenomenon of interference of different alpha waves near 

the nucleus to produce peaked correlation functions is not specially 

dependent upon nuclear models with stable spheroidal distortions. If, 
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for example, the angular momentum in the "rotational" excited states were 

carried by a single proton in a spherical nucleus, the correlation function 

would relate the angular positions of the proton and the alpha particle. 

Similarly, if the angular momentum were thought to reside in a group of 

nucleons in a spherical well, the correlation function could be 

appropriately defined. However, despite the fact that the coupled alpha 

decay description of this paper could be generalized to nuclear models 

other than those giving actual spheroidal distortion, the great usefulness 

of the strong surface coupling model in visualizing and formulating the 

alpha decay treatment is clearly evident. The systematic decrease with 

atomic number of the alpha transition rate to the 4+ state is not easily 

explained with assumption of a spherical nuclear shape, but the stable 

spheroidal shape allows the simple explanation discussed earlier. 
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