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Aims—Machine Learning (ML) binary classification in diagnostic histopathology is an area of 

intense investigation. Several assumptions, including training image quality/format and the 

number of training images required, appear similar in many studies irrespective of the paucity of 

supporting evidence.

Methods—We empirically compared training image file type, training set size, and two common 

Convolutional Neural Networks (CNN) using transfer learning (ResNet50, SqueezeNet). Thirty 

H&E slides with carcinoma or normal tissue from three tissue types (breast, colon, prostate) were 

photographed generating 3,000 partially overlapping images (1,000 per tissue type). These lossless 

PNGs were converted to lossy JPGs. Tissue type-specific binary classification ML models were 

developed using all PNG or JPG images, and repeated with a subset of 500, 200, 100, 50, 30, and 

10 images. Eleven models were generated for each tissue type, at each quantity of training images, 

for each file type, and for each CNN, resulting in 924 models. Internal accuracies and 

generalization accuracies were compared.

Results—There was no meaningful significant difference between accuracies in PNG vs JPG 

models. Models trained with more images did not invariably perform better. ResNet50 typically 

outperformed SqueezeNet. Models were generalizable within a tissue type but not across tissue 

types.

Conclusions—Lossy JPG images were not inferior to lossless PNG images in our models. Large 

numbers of unique H&E slides were not required for training optimal ML models. This reinforces 

the need for an evidence-based approach to best practices for histopathologic ML.

Introduction

Many studies have been designed to answer specific analytic questions and test narrow 

analytic hypotheses regarding the tremendous potential of machine learning (ML) and 

artificial intelligence (AI) in histopathologic analysis.1 While there have been calls for 

pathologists to become “information specialists” rather than diagnosticians,2 little attention 

has been paid to understanding the best practices involved in creating ML models for 

pathologic image analysis—that is, the potential generalization of a given model. As a result, 

we know little about the way the analysis by the machine is influenced by the myriad 

choices that go into the pre-analytic phase of model generation.

In this study, we attempt to address the issue of pre-analytic variation in one specific 

domain. Convolutional Neural Network (CNN) platforms do not “see” histologic images in 

the same way that expert pathologists do,3 raising the question of how the input file type and 

quality impact the efficacy of an ML model. Two common image file types, Portable 

Networks Graphics (or PNG) and Joint Photographic Experts Group (or JPG), were 

evaluated to determine whether input from one or the other would generate superior 

predictive models. More than an academic question, PNG files are “lossless” resulting in 

high quality at the expense of large files. JPG files, while grossly similar in appearance and 

quality to their PNG counterparts, are “lossy” and are typically significantly smaller in size. 

Smaller file size means the images are more frequently encountered, easier to transmit 

electronically, cheaper to store, and result in less training time when generating CNN 

models. While previous studies of other CNN architectures suggest that relatively high 
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quality compressed histopathologic JPGs perform well,4 it is unclear whether the additional 

data in the PNG files would result in models with superior accuracy to those trained with 

JPG images with the CNNs and tissue types tested here.

We evaluated three different tissue types and trained two different CNNs using a variable 

number of training images to dichotomize histopathologic image data into benign or invasive 

carcinoma, using either PNG or JPG images as the training data set. In so doing, we created 

and tested 924 distinct models. We then tested the generalization of these models by 

inputting a vast array of images of variable quality obtained from sources distinct from the 

training images. Throughout the study, multiple board-certified pathologists vetted the 

images to ensure each image contained unambiguous diagnostic material that would permit 

a human (and, by extension, a machine) to readily sort the image into benign or invasive 

carcinoma. This rigorous pre-analytic control has allowed us to better understand how real-

world application of machine learning in histopathology can be implemented. We 

hypothesize that leveraging this vigorous approach will provide statistical evidence that 

PNG and JPG training sets produce similar accuracy throughout various CNNs and 

pathology subspecialties.

Methods

IRB approval (IRB ID 1286225–1) was obtained and ten histopathologic slides were 

selected for each tissue type (breast, colon, and prostate). (See Figure 1) All slides were 

scanned at 20× magnification and were scanned using a variety of scanner manufacturers 

(e.g. Leica Biosystems Aperio XT, etc). Five slides for each tissue type showed 

unambiguous benign findings (excluding proliferative or intermediate lesions, and excluding 

benign mimics of carcinoma), and five slides for each tissue type showed unambiguous 

invasive carcinoma. Ten slides for each tissue type were found to produce valid models in a 

prior analysis. Whole slide images were obtained and 100 PNG images from each slide were 

generated, with 50 images taken at 4× magnification and 50 images taken at 10× 

magnification, resulting in 3,000 images total (1,000 images in 3 subspecialties). Images 

were obtained using operating system level screen capture tools. These 3,000 images were 

then evaluated by board-certified pathologists to ensure each image contained unambiguous 

benign or malignant findings. The amount of mesenchymal and epithelial elements varied 

from image to image, but each image was classifiable by a board-certified pathologist as 

showing unambiguous benign or malignant features. Histologic artifacts (e.g. tissue folds, 

microtome chatter, staining irregularities, etc) were not excluded, provided the resulting 

image could be unambiguously categorized by a pathologist.

These 3,000 high-quality PNG images were converted into a set of corresponding medium-

quality (a setting of 2 on a scale from 1 to 4, with 4 being maximum quality) JPG images 

(see Figure 2). The total images from each tissue type (1,000 PNG and 1,000 JPG each for 

breast, colon, and prostate) were used to train 11 models each on two different CNNs, 

ResNet50 and SqueezeNet. The file set was then cut in half (resulting in 500 PNG and 500 

JPG images each for breast, colon, and prostate), ensuring that equal proportions of 4× and 

10× magnification images were in each set, and were used to train 11 models each on the 
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same two CNNs. This process was repeated for 200, 100, 50, 30, and 10 training images. 

This resulted in 924 unique models.

Transfer learning technique was used in our study. Transfer learning allowed us to retrain a 

well-established deep CNN (e.g. ResNet-50, SqueezeNet) to build our new deep CNN, 

specific to our classification task (e.g. a CNN model that is trained on breast cancer to be 

breast cancer specific or one that is trained on prostate cancer to be prostate cancer specific). 

The original CNN is retrained while retaining information on its core trained classes (greater 

than 1000 classes/entities). These core image classes in the original CNN (e.g. cars, trees, 

etc.) serve as the foundation for our new retrained CNN since many of the hidden layers 

within that CNN can be transferred and applied to our models. The idea is that these earlier 

hidden layers in the core CNN are representative of shared features within most images 

regardless of their content (e.g. delineated edge detection, overall shape, etc.).

This approach allows us to keep the aspects of the original CNN that are shared with our 

new classification categories while allowing us to fine-tune our new CNN to render it 

specific to the task at hand. During this retraining process, the training performance is 

measured by cross-entropy loss function to display the learning progress of our new model. 

The parameter that initially measures this task while in the training mode is the model’s 

calculated “training accuracy” which calculates the percentage of accurately labeled images 

on the training batch using a random 5% subset of the images within the training set. The 

training steps used in the transfer learning process were done through the Turi Create python 

script library for retraining the ResNet50 and the SqueezeNet CNNs.

The final weights and the number of optimized steps were saved based on the protocol 

buffer. All of the images were resized to 224×224 dimension (the required dimension for 

ResNet50 and SqueezeNet models within these neural networks). Following this initial 

validation, a “validation accuracy” was then calculated which involved testing another set of 

labeled images that were not used during the training batch. In our study, 80% of the images 

were used in the training batch while a random 20% of the images were set aside during 

training and tested for this validation accuracy step, hereafter known as the Internal 

Validation Accuracy. This approach allowed us to minimize the possibility of overfitting in 

our models which is thought to correlate with its generalization capability.

Subsequently, an external set of images that were completely unknown to our training set 

were used to test each model’s true generalizability. This secondary external training set was 

obtained from public domain images selected via Google search and downloaded through a 

Fatkun batch process. These external test set images were available exclusively in JPG 

format.

These images were treated as unknowns and similarly evaluated by our board-certified 

pathologists to ensure they unambiguously showed either benign tissue or invasive 

carcinoma for each tissue type (breast, colon, and prostate). This resulted in 82 test images 

for breast models, 50 test images for colon models, and 70 test images for prostate models. 

Models were tested against their respective tissue subtypes and the accuracy (hereafter 

referred to as External Validation Accuracy) of each was recorded. Testing each of our fixed 
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optimized retrained CNN models against its respective external test set allowed us to assess 

the generalizability of these models and potential overfitting.

Results

Accuracy results for 924 individual model tests were recorded. Accuracy was compared 

between JPG and PNG files using ANOVA models. These models included effects for file 

type, number of images, ML model, tissue, and all two-, three-, and four-way interactions 

between file type, number of images, ML model, and tissue. Analyses were conducted using 

R, version 3.5.1 (R Core Team, 2018).

PNG vs JPG Overall

The overall combined internal validation mean accuracy of the ResNet50 models (including 

all tissue types and image training quantities) was 91.8% with PNG images and 91.0% with 

JPG images (difference in means: −0.8%; 95% CI: −3% to 1.5%; p=0.493); for SqueezeNet 

models, the mean accuracy was 92.5% with PNG images and 92.9% with JPG images 

(difference in means: 0.3%; 95% CI: −1.9% to 2.6%; p=0.774). (See Table 1 and Figure 3)

The overall combined external test set mean accuracy (i.e. External Validation Accuracy) of 

the ResNet50 models (including all tissue types and image training quantities) was 77.7% 

with PNG images and 78.7% with JPG images (difference in means: 1%; 95% CI: 0.1% to 

1.9%; p=0.025); for SqueezeNet models, the mean accuracy was 72.8% with PNG images 

and 72.5% with JPG images (difference in means: −0.3%; 95% CI: −1.2% to 0.6%; 

p=0.528). (See Table 2 and Figure 3)

PNG vs JPG in Different Training Set Image Quantities

The mean accuracies of models trained with different numbers of images in the training sets 

were evaluated (combining all tissue types and CNNs); internal validation accuracy 

comparisons between PNG and JPG did not achieve significance. (See Table 3) The mean 

accuracies of these models were similarly compared when tested against the external test set. 

One comparison, training with 50 images, achieved statistical significance (p=0.047) with a 

mean accuracy of JPG superior to PNG (74.5% to 72.8%; difference in means 1.7%); 

however, the 95% confidence interval includes zero (95% CI: 0%, 3.4%). (See Table 4)

PNG vs JPG in Different CNNs and Training Set Image Quantities

The mean accuracies of models trained with different numbers of images in the training sets 

were evaluated by CNN (combining all tissue types). Internal validation mean accuracy 

comparisons between PNG and JPG showed a statistically significant difference in one 

group (SqueezeNet 10: PNG, 73.7%; JPG, 84.3%; p=<0.001). External test set mean 

accuracy comparisons between PNG and JPG showed a statistically significant difference in 

one group (ResNet50 50: PNG, 72.6%; JPG, 77.0%; p=<0.001). (See and Table 5 and Table 

6) In both cases, JPG outperformed PNG.
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PNG vs JPG in Different Tissues and CNNs

The mean accuracies of models trained with different tissue types were evaluated by CNN 

(combining all quantities of images in training sets). Internal validation mean accuracy 

comparisons between PNG and JPG showed no statistically significant difference. (See 

Table 7) External test set mean accuracy comparisons between PNG and JPG showed a 

statistically significant difference in colon models with the ResNet50 CNN (PNG: 80.6%; 

JPG: 82.3%; 95% CI: 0.2%, 3.3%; p=0.025). (See Table 8 and Figure 4)

PNG vs JPG in Different Tissues, CNNs, and Training Set Image Quantities

The mean accuracies of models trained with different tissue types, different CNNs, and with 

different quantities of images in the training sets were evaluated. Internal validation 

comparisons between PNG and JPG showed three categories that achieved statistically 

significant differences in mean accuracies, favoring JPG over PNG in 2 out of 3 cases (see 

Table 9 for details). Similarly, external test set comparisons between mean accuracies of 

PNG and JPG models showed four categories that achieved statistically significant 

differences, each favoring JPG over PNG (see Table 10, Figure 5, Figure 6, and Figure 7 for 

details). The highest accuracy for each CNN by tissue type and file type is shown in Figure 

8.

Model Training Specificity by Pathology Subspecialty

Finally, the best and worst models for each tissue type on any CNN, trained with PNG or 

with JPG images were compared against other tissue type external test sets to assess the 

specificity of each model. Models performed substantially better when tested against tissue 

of the type with which they were trained than when compared with other tissue types (i.e. a 

model trained with breast images performed better when tested against the breast external 

image test set than when tested against either colon or prostate test sets). (See Figure 9)

Discussion

Many previous works have tried to answer highly specific analytic questions regarding 

image analysis and histopathology, including tagging images to train neural networks,5 

identifying and classifying mitoses6,7 and other morphologic features,8 distinguishing 

stroma from epithelium,9 identifying lymph node and tissue metastases,10–12 differentiating 

tumor grades,13 whole slide image classification,14–16 pre-screening slides for potential 

cancer,17 interpreting IHC and other biomarkers,18 and even predicting the genetic 

aberration underlying a cancer.19 Many agree that transfer learning techniques provide the 

most useful path forward in CNN image analysis.3,20–22 However, there are few instances in 

the pathology literature that attempt to explain which pre-analytic variables should be 

controlled when creating ML/AI models to evaluate histopathologic image data. While it is 

enticing to generate a single model with impressive internal validation accuracy, each model 

created (even if the same training image set is utilized) generates unique neuron weights and 

testing outcomes (in part due to the randomized generation of the internal validation image 

set from the original training image set). This means that any single model is not likely to be 

exactly reproduceable by researchers using the same CNN and training images. Indeed, we 

found variability in internal validation accuracy scores, which typically increased as the 
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number of images in the training set decreased. We believe that creating 11 models with 

each CNN at each quantity of training images (i.e. 1,000, 500, 200, 100, 50, 30, and 10 

images) helped normalize this random variability.

Further, while internal validation accuracy is useful in determining whether one’s training 

image set is sufficiently distinct (i.e. in this case, the benign images are sufficiently different 

from the invasive carcinoma images), it does not necessarily correlate with accuracy when 

images separate from the training set are evaluated.23 That is, the internal validation 

accuracy does not give a measure of generalization of the model. We attempted to address 

that concern by utilizing completely separate image sets for training and testing, the latter 

coming from various internet sources and of variable magnification, color profiles, and 

quality. To ensure this hodgepodge of images could accurately evaluate the generalization of 

our models, all images were verified by board-certified pathologists as containing 

unambiguous diagnostic features. This allowed us to assess the generalization of our models; 

i.e. how they would perform against a “real world” test. Overall, models showed a drop in 

accuracy, but many subsets continued to perform exceptionally well and approached their 

respective internal validation accuracies.

Finally, to show that our models trained with one tissue type were generalizable only to the 

extent that they could evaluate similar types of tissue, we tested the best and worst 

performing models for each tissue type against test sets from different tissues. The results 

show that models trained with colon histopathologic images, for instance, work well when 

evaluating other colonic histopathology, but not when evaluating breast or prostate 

histopathology. This result held regardless of whether the models were trained with PNG or 

JPG images. The same trend noted in the colon models was also seen in the prostate and 

breast models.

We have attempted to show, through a rigorous approach that resulted in 924 unique ML 

models, whether a difference exists in the accuracy of image analysis based on the file type 

of image used in training. While several of our models’ mean accuracies achieved a 

statistically significant difference when comparing lossless PNG-trained CNNs to lossy 

JPG-trained CNNs, these differences were sporadic, small in magnitude, and often without a 

meaningful clinical difference in actual performance. Additionally, almost all instances of 

statistical significance favored models trained with JPG rather than PNG images, suggesting 

that there is little to no benefit to training models with larger PNG images. This is especially 

beneficial, as the smaller size and increased portability of JPG images makes model 

generation faster and reduces storage requirements. In our image set, the average difference 

in PNG vs JPG file size was an order of magnitude, a significant amount of storage when 

considering the thousands of images involved in training CNNs. This also potentially opens 

doors for more input modalities, as images captured with portable cameras and digital 

microscopy equipment are most frequently JPG.

Limitations of the study include the categorization schema which separated lesions into only 

two categories (i.e. benign or malignant). It is unclear whether categorization into greater 

than two categories could achieve similar levels of accuracy and generalization with the 

approach utilized here. Additionally, there may be data within the lossless PNG files that is 
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not necessary for pathologists or machines to make a benign vs malignant categorization, but 

which may aid in other predictive algorithms (e.g. predicting molecular phenotype, invasive 

potential, categorizing intermediate and proliferative lesions, etc). This study suggests that a 

limited number of slides (i.e. 10) can suffice and can produce a valid model through transfer 

learning for prediction; it is unclear whether including more slides in the training set would 

produce better (or more generalizable) results. It is also unclear whether utilization of 

alternate whole slide scanning hardware and software would produce variant results. Finally, 

it is unclear if similar findings could be obtained using higher magnification (i.e. 40×). 

Further research is necessary to address these and other pre-analytic conditions.

It is our hope that other researchers will continue to evaluate the pre-analytic variables that 

should be considered prior to embarking on a study of the enormous potential ML/AI tools 

can offer pathologists and our patients. When the trust in our diagnostic tools and the safety 

of our patients is at stake, we must ensure that we maintain the high standard of analytic 

rigor we demand in other aspects of our diagnostics toolkit.
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Figure 1: 
Overview of Methods. a. Ten slides, five benign and five invasive carcinoma, were chosen 

for each tissue type (breast, colon, and prostate). b. Lossless PNG images were obtained 

from each slide (100 images per slide, 50 at 4× and 50 at 10×). c. Multiple board certified 

pathologists reviewed the 3,000 captured images to ensure unambiguous diagnostic material 

on each slide. d. Lossless PNG files were converted to medium quality lossy JPG files. e. 
Eleven models using ResNet50 and 11 models using SqueezeNet were generated for the 

1,000 PNG images for each tissue type, and again for 1,000 JPG images for each tissue type. 

Eighty percent of the images were used to train the model, while a random 20% were kept in 

reserve to determine the internal validation accuracy of each model generated. f. This 

process is repeated using 500 PNG and 500 JPG images, with 200 images, 100 images, 50 

images, 30 images, and 10 images. g. The external test set of benign and carcinoma images 

for each tissue type was obtained from an internet search. h. Multiple board certified 

pathologists reviewed the external test set to ensure unambiguous diagnostic material was 

present in each image. i. In all, 82 breast images, 50 colon images, and 70 prostate images 

were used to test 924 independent models.
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Figure 2: 
Representative lossless PNG and medium-quality lossy JPG images from each tissue type. 

While the color profiles differ slightly between the PNG and JPG images, the overall quality 

is not grossly different.
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Figure 3: 
Comparison between difference in mean accuracies with 95% confidence intervals of 

ResNet50 (combined breast, colon, and prostate with all image quantity training sets) and 

SqueezeNet when comparing PNG vs JPG trained models. The difference in mean accuracy 

between PNG and JPG models was significant only for ResNet50 when evaluated against 

the external test images.
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Figure 4: 
Comparison between difference in mean accuracies with 95% confidence intervals of tissue-

specific models (combined 10 – 1,000 image training sets) when tested against external text 

sets comparing PNG vs JPG trained models. Open circles represent ResNet50 CNN; closed 

circles represent SqueezeNet CNN. The difference in mean accuracy between PNG and JPG 

models for Colon ResNet50 with PNGs was 80.6%, while the mean accuracy with JPGs was 

82.3%. This represents a statistically significant but clinically insubstantial difference.
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Figure 5: 
Comparison of mean external test set accuracies for breast models. No significant difference 

in means of PNG and JPG ML models was detected at any quantity of training images.
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Figure 6: 
Comparison of mean external test set accuracies for colon models. A significant difference 

in mean accuracy between PNG and JPG trained models was detected in the ResNet50 

models using 50 and 100 training images.

Jones et al. Page 15

Histopathology. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: 
Comparison of mean external test set accuracies for prostate models. A significant difference 

in mean accuracy between PNG and JPG trained models was detected in the ResNet50 

models using 10 and 50 training images.
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Figure 8: 
Comparison of best mean accuracy for each CNN, tissue type, and file type. No significant 

difference between PNG and JPG trained models was detected.
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Figure 9: 
Cross-discipline comparison of models showing specificty to tissue type. The best 

performing (genarilizable) models in each tissue show clear specificity for tissue type when 

trained with either PNG or JPG images.
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Table 1:

Comparison of accuracy between filetypes by ML Model, Internal Validation Test Set. Includes all tissue types 

and quantities of image training sets.

ML Model Mean with JPG Mean with PNG Difference in Means (95% CI) P-Value

Resnet50 91% 91.8% −0.8% (−3%, 1.5%) 0.493

SqueezeNet 92.9% 92.5% 0.3% (−1.9%, 2.6%) 0.774
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Table 2:

Comparison of accuracy between filetypes by ML Model, External (Google images) Test Set. Includes all 

tissue types and quantities of image training sets.

ML Model Mean with JPG Mean with PNG Difference in Means (95% CI) P-Value

Resnet50 78.7% 77.7% 1% (0.1%, 1.9%) 0.025 *

SqueezeNet 72.5% 72.8% −0.3% (−1.2%, 0.6%) 0.528

Histopathology. Author manuscript; available in PMC 2020 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jones et al. Page 21

Table 3:

Comparison of accuracy between filetypes by Number of Images, Internal Test Set. Includes all tissue types 

and all neural networks.

Image Count Mean with JPG Mean with PNG Difference in Means (95% CI) P-Value

10 72% 68.4% 3.5% (−0.7%, 7.7%) 0.098 .

30 89.6% 93.8% −4.2% (−8.4%, 0%) 0.051 .

50 94.3% 94.7% −0.4% (−4.6%, 3.8%) 0.843

100 95.8% 95.7% 0.1% (−4.1%, 4.3%) 0.954

200 96.4% 96.6% −0.1% (−4.3%, 4%) 0.947

500 97.6% 98.1% −0.5% (−4.7%, 3.7%) 0.818

1000 97.8% 97.9% 0% (−4.2%, 4.2%) 0.990
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Table 4:

Comparison of accuracy between filetypes by Number of Images, External Test Set. Includes all tissue types 

and all neural networks.

Image Count Mean with JPG Mean with PNG Difference in Means (95% CI) P-Value

10 69.4% 69% 0.4% (−1.3%, 2.1%) 0.641

30 73.1% 74% −0.8% (−2.5%, 0.8%) 0.324

50 74.5% 72.8% 1.7% (0%, 3.4%) 0.047 *

100 77.9% 77.4% 0.5% (−1.2%, 2.2%) 0.573

200 78.9% 79.8% −0.9% (−2.6%, 0.8%) 0.291

500 78.4% 77.7% 0.7% (−1%, 2.4%) 0.399

1000 77.1% 76.1% 1% (−0.7%, 2.7%) 0.234
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Table 5:

Comparison of accuracy between filetypes by ML Model and Number of Images, Internal Test Set. Includes 

all tissue types.

ML Model
Image
Count

Mean
with JPG

Mean
with PNG Difference in Means (95% CI) P-Value

Resnet50 10 59.6% 63.1% −3.5% (−9.5%, 2.4%) 0.242

Resnet50 30 90.8% 94.8% −4.1% (−10%, 1.9%) 0.180

Resnet50 50 96.1% 93.6% 2.5% (−3.5%, 8.4%) 0.416

Resnet50 100 95.9% 96.6% −0.7% (−6.6%, 5.2%) 0.818

Resnet50 200 97.6% 97.2% 0.5% (−5.5%, 6.4%) 0.881

Resnet50 500 98.6% 98.4% 0.2% (−5.7%, 6.2%) 0.935

Resnet50 1000 98.5% 98.8% −0.3% (−6.3%, 5.6%) 0.909

SqueezeNet 10 84.3% 73.7% 10.6% (4.7%, 16.5%) <0.001 ***

SqueezeNet 30 88.5% 92.8% −4.3% (−10.2%, 1.6%) 0.156

SqueezeNet 50 92.6% 95.9% −3.3% (−9.2%, 2.6%) 0.274

SqueezeNet 100 95.8% 94.8% 0.9% (−5%, 6.9%) 0.755

SqueezeNet 200 95.2% 95.9% −0.7% (−6.7%, 5.2%) 0.808

SqueezeNet 500 96.5% 97.8% −1.2% (−7.1%, 4.7%) 0.684

SqueezeNet 1000 97.2% 96.9% 0.3% (−5.6%, 6.2%) 0.923
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Table 6:

Comparison of accuracy between filetypes by ML Model and Number of Images, External Test Set. Includes 

all tissue types.

ML Model
Image
Count

Mean
with JPG

Mean
with PNG Difference in Means (95% CI) P-Value

Resnet50 10 65.2% 65.2% −0.1% (−2.4%, 2.3%) 0.944

Resnet50 30 75% 75.1% −0.1% (−2.5%, 2.2%) 0.922

Resnet50 50 77% 72.6% 4.4% (2.1%, 6.8%) <0.001 ***

Resnet50 100 82.1% 80.9% 1.3% (−1.1%, 3.6%) 0.295

Resnet50 200 84.7% 84.8% −0.1% (−2.4%, 2.3%) 0.962

Resnet50 500 83.2% 83.2% 0.1% (−2.3%, 2.4%) 0.959

Resnet50 1000 83.5% 81.8% 1.7% (−0.7%, 4%) 0.169

SqueezeNet 10 73.6% 72.7% 0.9% (−1.5%, 3.2%) 0.466

SqueezeNet 30 71.3% 72.8% −1.6% (−3.9%, 0.8%) 0.195

SqueezeNet 50 71.9% 72.9% −1% (−3.4%, 1.3%) 0.390

SqueezeNet 100 73.6% 73.9% −0.3% (−2.7%, 2.1%) 0.803

SqueezeNet 200 73.1% 74.9% −1.7% (−4.1%, 0.6%) 0.148

SqueezeNet 500 73.5% 72.2% 1.4% (−1%, 3.7%) 0.254

SqueezeNet 1000 70.7% 70.3% 0.4% (−2%, 2.7%) 0.757
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Table 7:

Comparison of accuracy between filetypes by ML model and subspecialty, internal test set. Includes all 

quantities of images in training sets.

Tissue ML Model
Mean with
JPG

Mean with
PNG

Difference in Means (95%
CI)

P-
Value

Breast Resnet50 94% 94.3% −0.3% (−4.2%, 3.6%) 0.888

Breast SqueezeNet 90.7% 89.7% 1.1% (−2.8%, 5%) 0.584

Colon Resnet50 83.1% 84.3% −1.2% (−5.1%, 2.7%) 0.540

Colon SqueezeNet 91% 89.1% 1.9% (−2%, 5.7%) 0.346

Prostate Resnet50 96% 96.8% −0.9% (−4.7%, 3%) 0.666

Prostate SqueezeNet 96.9% 98.8% −2% (−5.8%, 1.9%) 0.322
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Table 8:

Comparison of accuracy between filetypes by ML model and subspecialty, external test set. Includes all 

quantities of images in training sets.

Tissue ML Model
Mean with
JPG

Mean with
PNG

Difference in Means (95%
CI)

P-
Value

Breast Resnet50 75.7% 75.8% −0.1% (−1.6%, 1.5%) 0.904

Breast SqueezeNet 68.6% 68.4% 0.2% (−1.4%, 1.7%) 0.809

Colon Resnet50 82.3% 80.6% 1.8% (0.2%, 3.3%) 0.025 *

Colon SqueezeNet 69.6% 70.3% −0.7% (−2.2%, 0.8%) 0.374

Prostate Resnet50 78.1% 76.7% 1.4% (−0.2%, 2.9%) 0.078 .

Prostate SqueezeNet 79.3% 79.7% −0.4% (−1.9%, 1.2%) 0.655
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Table 9:

Comparison of accuracy between filetypes by ML model, number of images, and subspecialty, internal test set.

Tissue ML Model
Image
Count

Mean
with JPG

Mean
with PNG Difference in Means (95% CI) P-Value

Breast Resnet50 10 84.8% 81.1% 3.8% (−6.5%, 14%) 0.469

Breast Resnet50 30 89.9% 98.5% −8.6% (−18.8%, 1.7%) 0.101

Breast Resnet50 50 95.9% 90.2% 5.7% (−4.6%, 16%) 0.276

Breast Resnet50 100 92.6% 94.9% −2.3% (−12.6%, 8%) 0.660

Breast Resnet50 200 98% 98.6% −0.7% (−10.9%, 9.6%) 0.896

Breast Resnet50 500 98.7% 98.3% 0.4% (−9.8%, 10.7%) 0.937

Breast Resnet50 1000 98.1% 98.4% −0.3% (−10.5%, 10%) 0.957

Breast SqueezeNet 10 90.9% 66.7% 24.2% (14%, 34.5%) <0.001 ***

Breast SqueezeNet 30 81.8% 93.6% −11.8% (−22.1%, −1.6%) 0.024 *

Breast SqueezeNet 50 86.6% 91.7% −5.1% (−15.4%, 5.1%) 0.327

Breast SqueezeNet 100 90.8% 88.3% 2.5% (−7.8%, 12.7%) 0.635

Breast SqueezeNet 200 93.7% 94.5% −0.8% (−11.1%, 9.4%) 0.872

Breast SqueezeNet 500 95.3% 97.2% −1.9% (−12.2%, 8.3%) 0.715

Breast SqueezeNet 1000 96.2% 95.6% 0.6% (−9.7%, 10.8%) 0.915

Colon Resnet50 10 18.2% 26.5% −8.3% (−18.6%, 1.9%) 0.111

Colon Resnet50 30 82.5% 86% −3.6% (−13.8%, 6.7%) 0.494

Colon Resnet50 50 92.3% 90.7% 1.7% (−8.6%, 11.9%) 0.749

Colon Resnet50 100 95% 94.8% 0.2% (−10%, 10.5%) 0.967

Colon Resnet50 200 97.1% 95.2% 1.9% (−8.4%, 12.2%) 0.717

Colon Resnet50 500 97.8% 97.9% −0.1% (−10.3%, 10.2%) 0.990

Colon Resnet50 1000 98.6% 98.8% −0.3% (−10.6%, 10%) 0.955

Colon SqueezeNet 10 72.7% 59.1% 13.6% (3.4%, 23.9%) 0.009 **

Colon SqueezeNet 30 84.8% 84.6% 0.1% (−10.1%, 10.4%) 0.980

Colon SqueezeNet 50 94.4% 95.9% −1.4% (−11.7%, 8.8%) 0.782

Colon SqueezeNet 100 97.1% 96.2% 0.8% (−9.4%, 11.1%) 0.871

Colon SqueezeNet 200 95.6% 95.1% 0.5% (−9.7%, 10.8%) 0.920

Colon SqueezeNet 500 95.7% 97% −1.3% (−11.5%, 9%) 0.806

Colon SqueezeNet 1000 96.6% 96% 0.6% (−9.6%, 10.9%) 0.907

Prostate Resnet50 10 75.8% 81.8% −6.1% (−16.3%, 4.2%) 0.246

Prostate Resnet50 30 100% 100% 0% (−10.3%, 10.3%) 1.000

Prostate Resnet50 50 100% 100% 0% (−10.3%, 10.3%) 1.000

Prostate Resnet50 100 100% 100% 0% (−10.3%, 10.3%) 1.000

Prostate Resnet50 200 97.9% 97.7% 0.1% (−10.1%, 10.4%) 0.977

Prostate Resnet50 500 99.3% 99% 0.4% (−9.9%, 10.6%) 0.940

Prostate Resnet50 1000 98.8% 99.3% −0.5% (−10.7%, 9.8%) 0.930

Prostate SqueezeNet 10 89.4% 95.5% −6.1% (−16.3%, 4.2%) 0.246

Prostate SqueezeNet 30 98.9% 100% −1.1% (−11.4%, 9.1%) 0.828

Prostate SqueezeNet 50 96.7% 100% −3.3% (−13.6%, 6.9%) 0.524
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Tissue ML Model
Image
Count

Mean
with JPG

Mean
with PNG Difference in Means (95% CI) P-Value

Prostate SqueezeNet 100 99.5% 100% −0.5% (−10.8%, 9.8%) 0.923

Prostate SqueezeNet 200 96.3% 98.2% −1.9% (−12.1%, 8.4%) 0.718

Prostate SqueezeNet 500 98.6% 99.1% −0.5% (−10.7%, 9.8%) 0.926

Prostate SqueezeNet 1000 98.8% 99.1% −0.3% (−10.5%, 10%) 0.955
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Table 10:

Comparison of accuracy between filetypes by ML model, number of images, and subspecialty, external test 

set.

Tissue ML Model
Image
Count

Mean
with JPG

Mean
with PNG Difference in Means (95% CI) P-Value

Breast Resnet50 10 64.7% 66.3% −1.6% (−5.6%, 2.5%) 0.457

Breast Resnet50 30 76.4% 77.1% −0.7% (−4.8%, 3.4%) 0.750

Breast Resnet50 50 76.5% 78.1% −1.6% (−5.6%, 2.5%) 0.457

Breast Resnet50 100 78.3% 77.9% 0.3% (−3.8%, 4.4%) 0.873

Breast Resnet50 200 78.6% 76.4% 2.2% (−1.9%, 6.3%) 0.288

Breast Resnet50 500 77.4% 76.5% 0.9% (−3.2%, 5%) 0.671

Breast Resnet50 1000 77.8% 78.2% −0.3% (−4.4%, 3.8%) 0.873

Breast SqueezeNet 10 61.8% 59.1% 2.7% (−1.4%, 6.8%) 0.202

Breast SqueezeNet 30 64.5% 67.2% −2.7% (−6.8%, 1.4%) 0.202

Breast SqueezeNet 50 65% 65.6% −0.7% (−4.8%, 3.4%) 0.751

Breast SqueezeNet 100 72% 70.5% 1.4% (−2.7%, 5.5%) 0.490

Breast SqueezeNet 200 75.3% 74.2% 1.1% (−3%, 5.2%) 0.595

Breast SqueezeNet 500 72.7% 72.4% 0.3% (−3.8%, 4.4%) 0.873

Breast SqueezeNet 1000 69.1% 70% −0.9% (−5%, 3.2%) 0.671

Colon Resnet50 10 59.8% 63.5% −3.6% (−7.7%, 0.5%) 0.082 .

Colon Resnet50 30 70.4% 71.1% −0.7% (−4.8%, 3.4%) 0.727

Colon Resnet50 50 76.4% 67.6% 8.7% (4.6%, 12.8%) <0.001 ***

Colon Resnet50 100 88% 82.7% 5.3% (1.2%, 9.4%) 0.012 *

Colon Resnet50 200 96.9% 98% −1.1% (−5.2%, 3%) 0.601

Colon Resnet50 500 92.4% 92.5% −0.2% (−4.3%, 3.9%) 0.931

Colon Resnet50 1000 92.5% 88.5% 4% (−0.1%, 8.1%) 0.055 .

Colon SqueezeNet 10 82.5% 80.4% 2.2% (−1.9%, 6.3%) 0.296

Colon SqueezeNet 30 70.2% 72.7% −2.5% (−6.6%, 1.5%) 0.223

Colon SqueezeNet 50 70.4% 71.6% −1.3% (−5.4%, 2.8%) 0.542

Colon SqueezeNet 100 66.5% 69.3% −2.7% (−6.8%, 1.4%) 0.191

Colon SqueezeNet 200 66.5% 70.5% −4% (−8.1%, 0.1%) 0.055 .

Colon SqueezeNet 500 67.6% 65.3% 2.4% (−1.7%, 6.5%) 0.257

Colon SqueezeNet 1000 63.6% 62.5% 1.1% (−3%, 5.2%) 0.601

Prostate Resnet50 10 70.9% 66% 4.9% (0.8%, 9%) 0.018 *

Prostate Resnet50 30 78.3% 77.3% 1% (−3.1%, 5.1%) 0.618

Prostate Resnet50 50 78.2% 72.1% 6.1% (2%, 10.2%) 0.004 **

Prostate Resnet50 100 80.1% 81.9% −1.8% (−5.9%, 2.3%) 0.383

Prostate Resnet50 200 78.7% 80% −1.3% (−5.4%, 2.8%) 0.533

Prostate Resnet50 500 80% 80.5% −0.5% (−4.6%, 3.6%) 0.804

Prostate Resnet50 1000 80.1% 78.8% 1.3% (−2.8%, 5.4%) 0.533

Prostate SqueezeNet 10 76.5% 78.7% −2.2% (−6.3%, 1.9%) 0.290

Prostate SqueezeNet 30 79.1% 78.6% 0.5% (−3.6%, 4.6%) 0.803
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Tissue ML Model
Image
Count

Mean
with JPG

Mean
with PNG Difference in Means (95% CI) P-Value

Prostate SqueezeNet 50 80.4% 81.6% −1.2% (−5.3%, 2.9%) 0.575

Prostate SqueezeNet 100 82.2% 81.8% 0.4% (−3.7%, 4.5%) 0.854

Prostate SqueezeNet 200 77.5% 79.9% −2.3% (−6.4%, 1.8%) 0.263

Prostate SqueezeNet 500 80.3% 78.8% 1.4% (−2.7%, 5.5%) 0.493

Prostate SqueezeNet 1000 79.4% 78.4% 0.9% (−3.2%, 5%) 0.661
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