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ABSTRACT OF THE THESIS
Large Language Models for Programming Industrial Control Systems

and Mitigating Real-World Software Vulnerabilities

By

Rahul Dharmaji

Master of Science in Electrical and Computer Engineering

University of California, Irvine, 2024

Professor Mohammad Al Faruque, Chair

This manuscript is comprised of two sections – automated code generation for Programmable

Logic Controllers and vulnerability repair for Common Vulnerabilities & Exposures (CVEs)

with Large Language Models (LLMs).

The application of LLMs to Industrial Control Systems (ICS) is a relatively unexplored area.

State-of-the-art LLMs such as GPT-4 and Code Llama fail to produce valid programs for

ICS operated by Programmable Logic Controllers (PLCs). As a result, there is abundant po-

tential to incorporate the use of Large Language Models into the PLC programming process

to achieve end-to-end automation of common ICS tasks. We propose LLM4PLC, a user-

guided iterative pipeline leveraging user feedback and external verification tools – including

grammar checkers, compilers, SMV verifiers – as well as Parameter-Efficient Fine-Tuning

and Prompt Engineering, to guide the LLM’s generation. We run a complete test suite on

GPT-3.5, GPT-4, Code Llama-7B, a fine-tuned Code Llama-7B model, Code Llama-34B,

and a fine-tuned Code Llama-34B model. Ultimately, we demonstrate that the LLM4PLC

pipeline improves the generation success rate from 47% to 72%, and the Survey-of-Experts

code quality from 2.25/10 to 7.75/10.

Software vulnerabilities continue to be ubiquitous, even in the era of AI-powered code assis-
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tants, advanced static analysis tools, and the adoption of extensive testing frameworks. It

has become apparent that we must not simply prevent these bugs, but also eliminate them

in a quick, efficient manner. Yet, human code intervention is slow, costly, and can often

lead to further security vulnerabilities, especially in legacy codebases. The advent of highly

advanced Large Language Models (LLM) has opened up the possibility for many software de-

fects to be patched automatically. We propose LLM4CVE – an LLM-based iterative pipeline

that robustly fixes vulnerable functions with high accuracy. We examine our pipeline with

State-of-the-Art LLMs, such as GPT-3.5, GPT-4o, Llama 3 8B, and Llama 3 70B, along

with fine-tuned variants of selected models. We achieve an increase in ground-truth code

similarity of 20% with Llama 3 80B.
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Chapter 1

Introduction

In this chapter, a brief overview of Large Language Models, Industrial Control Systems,

Programmable Logic Controllers, and Automated Vulnerability Repair is provided.

1.1 Large Language Models

The advent of highly capable Large Language Models (LLMs) has the potential to trans-

form how Industrial Control Systems are programmed, as well as how software vulnerabilities

are rectified. However, it is known that LLMs often produce flawed, uncompilable code [89].

Even then, state-of-the-art LLMs such as GPT-4o [113] and Llama 3 [132] have spurred signif-

icant changes in software engineering practices. Moreover, specialized models tuned for code

generation have appeared [135], further increasing the potential for automated software aug-

mentation and creation. Techniques such as Parameter-Efficient Fine-Tuning (PEFT) [87]

and Low-Rank Adaptations (LoRAs) [60] extend the capabilities of these models, leading

to an increase in performance while simultaneously streamlining the model training pro-

cess [86, 179]. More recently, models incorporating a “Mixture-of-Experts” (MoE) have
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enabled significant gains in LLM performance [68]. Researchers have also studied “Prompt

Engineering” – a method of refining LLM input to measurably improve the relevancy, ac-

curacy, and quality of responses [32, 149, 185]. These advances in Large Language Models

have created a unique opportunity for not only programming Industrial Control Systems, but

also for combination with existing vulnerability repair techniques to automatically rectify

common software bugs.

The popularization of Large Language Models has catalyzed significant interest in their use

in many disparate fields. Specifically, the success of automated code generation has been

greatly accelerated by improvements in the logical reasoning ability of these models [121].

State-of-the-art models like GPT-4o [113] have revolutionized the landscape compared to

their predecessors such as CodeBERT [43]. Moreover, further advances in code synthesis

have led to the refinement of methods for generating correct, understandable code from

these models.

In addition to general-purpose models such as the aforementioned GPT-4o, specialized LLMs

for code synthesis have emerged, such as CodeX [23], Code Llama [135], WizardCoder [95],

and CodeGen [107]. For example, many of these models, including Code Llama, CodeX,

and WizardCoder are trained on publicly available software repositories, which enhances

their code generation abilities. Specialized systems such as CodeGen employ a multi-point

synthesis scheme, where the user is periodically prompted for feedback on the generated

code.

As the code generation abilities of LLMs improve, advanced evaluation metrics are needed to

assess the viability of automated code synthesis methods. While existing code automation

tools have studied the reliability of commercial products such as Microsoft Copilot [160],

we focus on the evaluation of the models themselves. Benchmarks such as EvalPlus [89]

have been created to more accurately measure the performance of LLMs on code generation

tasks. These metrics build upon existing works such as HumanEval [23], and are better

2



suited toward evaluating LLM-synthesized code. Other works have suggested using a litany

of benchmarks to rank LLMs by performance [181].

1.2 Industrial Control Systems & Programmable Logic

Controllers

Programmable Logic Controllers (PLCs) are an integral component of modern Industrial

Control Systems (ICS). These controllers operate essential infrastructure such as oil pipelines

[129], electric grids [92], and factories [174]. PLCs are real-time computers optimized for a

domain-specific task, often programmed under the IEC 61131-3 standard [64]. We focus on

the language defined by Part 3 of the IEC 61131-3 standard - Structured Text (ST). This

language is the one that most closely resembles traditional programming languages in the

standard. Then, we apply Large Language Models to generate PLC code that is efficient,

safe, and verifiable from natural language specifications.

It is important to note that PLCs are Cyber-Physical Systems (CPSs), which places them

in a unique risk category regarding cyberattacks. Then, it is important to follow existing

best practices in securing these devices against malicious actors [41]. It has been shown

that detecting security flaws in Cyber-Physical Systems as soon as possible is beneficial

to the overall security and usability of a CPS product [164]. However, when Industrial

Control Systems are networked – which is often the case [81] – a unique set of problems arise

when faced with the challenge of security networked real-time PLCs [138]. As the rise of the

Industry 4.0 paradigm marks a shift towards connected, always-on devices – especially in the

manufacturing industry – new security methods are sorely needed to mitigate the potential

threats enabled by these innovations [29]. Techniques aimed to preserve the confidentiality,

integrity, and security of CPSs have been developed, with special emphasis on securing

3



the supply chain and product lifecycle of the manufacturing system [28]. Other methods

focus on the Cyber-Physical System itself, taking the approach of checking for cyber-kinetic

vulnerabilities by incorporating the underlying physics of the CPS into the software analysis

scheme [159]. Ultimately, these techniques all aim to secure CPSs and prevent malicious

actors from extracting proprietary data or taking control of these sensitive devices.

1.3 Automated Vulnerability Repair

The automatic rectification of software vulnerabilities has remained a strong area of interest

over multiple decades. Numerous methods have been developed to assist in rectifying these

dangerous bugs [25, 47, 48, 50, 55, 90, 100, 102, 123, 124, 186, 192, 193, 194, 195]. One central

technique to these works is their reliance on code analysis to repair code, often relying on

an external compiler or static analysis tools [73]. However, these methods are unable to

detect certain types of software problems. For example, bugs in the Java Reflection API are

difficult to detect using these traditional techniques [78].

Other techniques have also been created to automatically fix software bugs. For example,

a method using Generative Adversarial Networks (GANs) is effective for vulnerability re-

pair [55]. This method allows for the repair of defective code without requiring a dataset

of labeled training examples. However, unlike LLM4CVE, the model is evaluated on only

synthetic code samples instead of real-world vulnerabilities.

Transfer Learning also been investigated for automated software repair. Researchers have

demonstrated significant improvement over state-of-the-art methods, with the VRepair frame-

work achieving almost a 50% increase in repair rate [25]. The use of the transformer archi-

tecture is also notable, even though the size of the VRepair model is significantly smaller

than that of modern LLMs such as GPT-4o [113].
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Similarly, Vision Transformers are also capable of rectifying code vulnerabilities. By using

special queries to locate vulnerable code snippets, the model can generate more accurate

and relevant repair suggestions [47]. This innovative model not only performed better than

previous state-of-the-art models but also was reviewed positively by industry practitioners.

Code understanding models such as CodeT5 [166] have allowed for further improvements

in the quality of generated fixes. As a precursor to modern Large Language Models such

as GPT-4o and Llama 3, the CodeT5 architecture has enabled researchers to once again

improve the total repair rate for software vulnerabilities [48]. The proposed framework –

VulRepair – outperforms VRepair on several metrics due to extensive pre-training and the

usage of Byte-Pair Encoding.

1.4 Additional Work

Appendix A contains a discussion regarding work on cross-domain security completed at the

same time as the other works presented in this thesis.
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Chapter 2

Large Language Models for Industrial

Control Systems & Programmable

Logic Controllers

Although Large Language Models (LLMs) have established predominance in automated

code generation, they are not devoid of shortcomings. The pertinent issues primarily relate

to the absence of execution guarantees for generated code, a lack of explainability, and

suboptimal support for essential but niche programming languages. State-of-the-art LLMs

such as GPT-4 and LLaMa2 fail to produce valid programs for Industrial Control Systems

(ICS) operated by Programmable Logic Controllers (PLCs). We propose LLM4PLC,

a user-guided iterative pipeline leveraging user feedback and external verification tools –

including grammar checkers, compilers and SMV verifiers – to guide the LLM’s generation.

We further enhance the generation potential of LLM by employing Prompt Engineering and

model fine-tuning through the creation and usage of LoRAs. We validate this system using a

FischerTechnik Manufacturing TestBed (MFTB), illustrating how LLMs can evolve

from generating structurally-flawed code to producing verifiably correct programs for

6



industrial applications. We run a complete test suite on GPT-3.5, GPT-4, Code Llama-

7B, a fine-tuned Code Llama-7B model, Code Llama-34B, and a fine-tuned Code

Llama-34B model. The proposed pipeline improved the generation success rate from 47%

to 72%, and the Survey-of-Experts code quality from 2.25/10 to 7.75/10.

To promote open research, we share the complete experimental setup, the LLM

Fine-Tuning Weights, and the video demonstrations of the different programs

on our dedicated webpage.1

2.1 Introduction

Programmable Logic Controllers (PLCs) are indispensable in the landscape of Industrial Au-

tomation – a market valued at $180 billion US Dollars in 2022 [109] – and these controllers

drive essential infrastructure and industry such as oil pipelines [129], electric grids [92],

manufacturing sites [174], and nuclear power plants [45]. PLCs are domain-specific real-

time computers, integrating an “Input-Compute-Output” execution loop and running spe-

cialized programs created with one of five programming paradigms standardized under IEC

61131-3 [64]. Out of these five approaches, only Structured Text (ST) resembles conven-

tional programming languages in regards to its syntax and structure. This property allows

for automated code generation targeting the ST language using state-of-the-art techniques.

Moreover, the usage of formal verification schemes for IEC 61131-3 programs [116] enables

generated code to meet strict safety, complexity, and timing requirements.

Software in critical infrastructure and machinery are required to operate within a narrow

safety margin and typically necessitate extensive testing and verification. In the

typical project lifecycle, engineers and domain experts extensively analyze and design po-

tential solutions before any programming effort is made, followed by dedicated synthesis
1https://sites.google.com/uci.edu/llm4plc/
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and verification steps before deployment [37]. A visualization of this workflow is shown in

Figure 2.1. Therefore, the governance of PLC control programs by strict guidelines and

requirements, adds complexity to engineering tasks, resulting in hundreds of extra hours

of expert-level effort, often even requiring Reverse Engineering [188] to recover the initial

intent of the programmer. The primary goal of our proposed pipeline is expediting the en-

gineering effort by offloading a sizeable majority of PLC-related problem-solving tasks to

a dedicated LLM-Agent that assists engineers in their jobs. Our approach contrasts sharply

with existing automated programming approaches, where the engineer is required to create

the model design, synthesize code, and verify their solution manually.

Although some techniques exist to automate the synthesis of IEC-61131-3 PLC programs

[54, 162] given a specification and synthesis paradigm – such as Linear Temporal Logic [76],

or novel software-implemented frameworks such as MODI [16] – the engineering challenge of

combining all parts of the PLC programming pipeline into a single unified model remains.

Recent developments in Large Language Models (LLMs) offer an alternative to legacy au-

tomation methods. However, given the irregularities in LLM code generation [143], naive use

of LLMs in the Engineering Workflow – signified by inefficient prompting and blind execu-

tion of unverified output code – leads to unsafe operation [119], as showcased in Figure 2.1.

Yet, foundational models such as GPT-4 [113] and LLama 2 [158] are challenging tradi-

tional approaches to automation and programming. Especially noteworthy is these models’

instructional (i.e., “chat-instruct”) capabilities, which allow for dynamic prompting based

on a conversational input paradigm, opening the door for automated feedback mechanisms.

Additionally, with the application of Parameter-Efficient Fine-Tuning (PEFT), Low-Rank

Adaptations [61] have made domain-specific training easier and significantly reduced com-

pute and data requirements for these tasks [86, 180]. Lastly, the LLM research community

has pioneered “prompt-engineering” – a practice of optimizing prompts resulting in more

accurate and relevant LLM responses [147, 150]. These advances offer a unique opportunity
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for combination with LLM-based code generation techniques for Industrial Control Systems,

forming the basis of our automation pipeline.

Analyse Design Synthesize DeployVerify

Typical  Workflow: High Engineering Effort

Natural 
Language

Specification

LLM4PLC: Loop Until Solve

Deploy
LLM: 

Design
SMV

Verification
User

Feedback

Naive LLM Generation: Catastrophic Failure

LLM4PLC: Engineer-Guided Automation

Analyse
Prompt LLM 
inefficiently

Bad
Program

Fails
Verification

Unsafe
Operation

LLM: 
Synthesize

Figure 2.1: Our proposed LLM-augmented workflow automates the high-effort stages of the
PLC programming methodology

We introduce LLM4PLC, an automated pipeline that integrates Large Language Models

(LLMs) with industry-standard PLC systems, employing automated verifiers and optional

human feedback to ensure safe and efficient code deployment. After receiving an initial

Natural Language Specification for the specified PLC system, the LLM Agent enters an

automated iterative loop: generating a design schematic, synthesizing Structured Text (ST)

code, and undergoing a sequential verification process that includes syntax checking [108]

and model checking via the NuXmv software suite [18]. On a verification-stage success,

the code can be immediately deployed; otherwise, errors from the verification stage are fed

back to the LLM Agent for refinement of the erroneous ST code, with the option for human

intervention during this process. This workflow is illustrated in Figure 2.1. Therefore, we

summarize our key contributions as follows:

• Our work proposes and implements an automated language-driven system to verifiably

program PLC devices from natural language descriptions of industrial plants.

9



• To the best of our knowledge, our work is the first to propose augmenting Large

Language Models with automated external code verifiers to converge toward a solution

iteratively.

• We present a detailed study of the generation potential of prevalent LLM models:

GPT-3.5, GPT-4, Code Llama, and our fine-tuned Code Llama. We measure each

configuration’s generation success rate and average expert-appointed score.

The remainder of this chapter is organized as follows: Section 2.2 offers a literature re-

view to ground our research within the existing academic landscape. Section 2.3, creates a

framework for the foundations of PLC systems and identifies the issues our solution aims

to address in LLM generation. This section also addresses background knowledge for other

stages of our pipeline, including LoRA creation, syntax checking, and formal verification. In

Section 2.4, we expand on the methodology behind LLM4PLC, detailing the design, imple-

mentation, and verification stages of our automated pipeline. Section 2.5 and Section 2.6

presents the experimental setup and results, showcasing the efficacy and reliability of our

approach through quantitative evaluations. Finally, Sections 2.7, 2.8, and 2.9 discuss the

broader implications of our findings, potential limitations, future directions, and conclude

the chapter.

2.2 Related Works

Our work is primarily related to two fields of prior research: automated PLC programming

and LLM Augmentation.

Automated PLC Code Generation has previously been explored by methods that do not

utilize LLMs. In [140] the authors present a technique to translate GRAFCET – a graphical

modeling language – into IEC 61131-3. Their editor binds GRAFCET elements to user-
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specific shapes with the ability to customize the behavior of each shape. Then, the graph

is translated into an internal object model that is parsable by the GRAFCET toolchain,

yielding code that might be executed in parallel [17]. The designer is required to provide a

reference graphical solution, in contrast to our LLM-driven approach, which requires a set

of natural-language instructions that define the desired operation of the machine.

Alternatively, previous works have developed an organization-level automation assistant.

[127] proposes using a web service agent to assist production processes. Their methodology

requires that each machine operating on the factory floor is accessible via a web interface

implementing a well-defined API. Using OWL-S [96] and SPARQL [1], a world model is

built according to the organization of web interfaces, and the internal states of the system

are frequently updated due to Service Monitor invocations. OWL-S provides prescriptive

commands to processes based on production goals created by SPARQL. Their tool only

abstracts away the physical component of the program automation – a system design without

physical access to the machines will still require that design and engineering tasks be handled

by an adept engineer.

The use of LLMs in Industrial Automation has already been attempted in previous

works. The team behind [33] created an intelligent assistant to assist in tasks such as process

execution and troubleshooting. First, a knowledge graph based on information gleaned

from user manuals is created. Experts then enhance the graph with their domain-specific

knowledge. For each query, the information retrieval system extracts relevant text from

the graph database, achieved in part by representing text passages as dense vectors using

language models such as BERT or GPT. A limitation of this approach is that language

models typically fail to return domain-specific information. As a result, the researchers

trained a separate model to alleviate this shortcoming and then combined their results with

a pre-trained language model. Afterward, the selected text passages are ranked by order of
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helpfulness, desirability, and relevancy. While this approach is helpful for maintenance and

operations, it does not automate any part of the design and implementation phases.

LLM Finetuning for Code Review Automation has also been attempted by [93]

through the use of LoRA-based methods to improve the Llama LLM. The authors’ approach

uses a

LoRA-Augmented LLM as an automated Code Review agent and forwards its feedback into

the code-generation agent to enable better quality code output. Their findings show that

LoRA is the preferred method for fine-tuning code generation in this context. Supplying

stricter feedback in this process has also been explored in CodeRL [79], where the LLM is

finetuned using Reinforcement Learning techniques by leveraging the pass rate on generated

unit tests and compilers as a reward function. These two methods require a paired dataset

of candidate code and automated feedback, which is difficult to acquire and may introduce

biases into the framework. Rather than focusing on refinement in the training stage, our

approach explores iterative refinement in the inference stage.

Dataset Preparation is also a crucial stage for code generation. Foundational Large-

Language Models such as GPT-4 or Llama 2 are trained on a large and varied corpus of

text [113, 158]. Recent efforts have focused on improving code generation or completion

from LLMs through fine-tuning these models on specific input data. For instance, Thakur

et al. focused on automatically generating hardware description language (specifically Ver-

ilog) using LLMs [154]. They fine-tuned various LLMs on a large Verilog corpus, which

they assembled from project files on Github and numerous academic textbooks. Finetuning

involved sharding the optimizer states across GPUs instead of using a quantized model or

LoRAs. Other attempts at finetuning for specific output domains include natural language

response [91, 167] and the esoteric language Hansl [153].

The authors in [53] present UniXCoder, an ML model incorporating Abstract Syntax Trees

(ASTs) and comments into the generation scheme to create better output. Specifically, they
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are extracting the AST during the generation process so that the ML model can consider it

while generating code. They also use comments as a source of guidance, as they are a helpful

tool for understanding the underlying details and assumptions of a function, program, or

algorithm. Similar to our approach, the authors create separate code completion and code

generation datasets to validate their claims.

Other research groups have opted to build externally augmented language models – Tang

et al. target software development languages by developing a database-equipped language

model for domain adaptive code completion without fine-tuning [152]. They retrieve infor-

mation from a database separate from the language model and therefore avoid excessive

reliance on the weights of the language model. The next step is to use Bayesian inference

for interpolating between the results of this database and the language model. Experimen-

tal results show improved performance of both CodeGPT [94] and UniXCoder [53]. Their

method, while useful, does negatively impact completion speed. Ultimately, their conclusion

indicated that fine-tuning was superior in terms of accuracy and code quality.

Code Verification is an important step for evaluating the LLM. There have been various

methods for code verification in the literature, including control flow analysis, dynamic

symbolic execution, and model checking.

[126] introduces the necessary software to perform static analysis of PLC programs. They

cover rule-based approaches, syntax checking, and other techniques commonly accepted by

the scientific community. [125] describes more complex techniques, such as generating an

AST and performing control flow analysis to enable the creation of detailed insights regarding

the logic flow of a PLC program. In our method, we build upon accepted static analysis

knowledge in our verification pipeline, ultimately using this pipeline to verify the LLM-

generated code.

Other works, such as [56], employ dynamic symbolic execution to generate test cases given
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a PLC code sample. Incorporating dynamic symbolic verification into a verification pipeline

simplifies the process of proving functional correctness. Automating test generation removes

human errors induced via manual test generation, such as missing test cases or redundant

branch checking.

Model checking is a technique for verifying that the specifications defined for a model are

met. [116] covers model checking as a verification scheme for PLC programs. The authors

include SMV-based checking as a means to validate PLC software. We draw ideas from this

paper regarding the usage of an SMV toolchain to perform formal model-based verification.

2.3 Background

The methodology adopted to develop our proposed pipeline builds upon the existing wisdom

on PLC Software Engineering, Formal Verification Methods, and State-of-the-Art techniques

in LLM prompting as well as Parameter Efficient Fine-Tuning (PEFT) using Low-Rank

Adaptations (LoRAs). In this section, we provide the reader with the necessary prerequisite

knowledge of each domain, while also setting up our motivation for the design choices adopted

in the proposed method. First, we showcase the prevailing approaches for efficiently querying

LLMs and the fine-tuning methods for injecting knowledge into LLMs, and then we delve

into the formal verification techniques used extensively in PLC programming.

2.3.1 Large Language Models

Large language models (LLMs) leverage the attention mechanism in the Transformer archi-

tecture[161] to model sequences of increasing lengths. At the core of the Transformer model

lies the self-attention mechanism, which computes attention scores for each pair of tokens
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in a sequence, allowing for long-range dependencies and relationships between tokens across

long distances within the sequence.

All major LLMs use a Next-Token-Prediction (NTP) scheme to generate one token at a time.

Formally, given a dictionary of possible tokens T = {T1, T2, ..., TN}, and a sequence of tokens

S = {Ts1 , Ts2 , ...Tsm} ∈ Tm, an LLM model M ∈ RN attempts to model the likelihood of

the next token Tsm+1 given:

P (sm+1 = i|S) = M (S)i (2.1)

Therefore, the probability of sampling a continuation sequence Ŝ =
{
Tsm+1 , Tsm+2 , ..., Tsm+M

}
is expressed as:

P
(
Ŝ|S

)
=

M∏
i=0

M
(
Ts1 , Ts2 , ..., Tsm+i

)
sm+i+1

(2.2)

LLMs have gained substantial traction since the release of OpenAI’s models, GPT-2 and

GPT-3. At its release, GPT-2 stood out for its large size of 1.5 billion parameters [128].

Almost a year and a half later, GPT-3 came out with a staggering 175 billion parameter

model. Larger models benefit from enhanced learning and the ability to store more in-

formation about complex relationships in data. While the results of OpenAI’s models are

remarkable, the model weights are not open-source, therefore eliminating the possibility of

LLM fine-tuning2 and creating a data privacy issue.

One of the first open-source models was Llama, released by Meta [157]. Contemporary

results show that the 70B parameter Llama model performs comparably to GPT-3.5 on

most benchmarks [157]. The most recent Llama release and the one most pertinent to
2After the writing of the original paper that comprises portions of this chapter, OpenAI introduced

fine-tuning support for their language models.
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our research is Code Llama [134], whose base model is Llama 2 fine-tuned on code-specific

datasets [134].

Prompt Engineering

Once the LLM architecture has been selected, one can begin prompting the LLM as part of

training and inference. Prompt engineering refers to creating prompts instructing the LLM

to produce a desired response. Prompts are meant to provide context, thereby facilitating

LLM response generation. For example, in writing code for a specific language, one could

create a prompt that provides context by including an example program written in the

language and then asking the LLM to fix a piece of code. This is exactly how our approach

goes about prompting the LLM during training. During inference, the prompt is simply a

command that asks the LLM to complete unfinished code.

Formally, a prompt P is a sequence of tokens {Tp1 , Tp2 , ..., TpK} that is inserted as a prefix

for any sequence S. Different prompts naturally lead to varied degrees of success, with

“self-guidance” prompts achieving the best results [169]. Self-guidance prompts decompose

a thought process into steps. We leverage self-guidance when we attempt compilation of the

code outputted by the LLM and use any resulting errors as feedback to the LLM so that it

can make the necessary corrections.

Parameter-Efficient Fine-Tuning (PEFT)

PEFT aids in adapting an LLM to a particular task. LLMs typically have billions of parame-

ters and training them on new tasks can be computationally demanding and time-consuming

[105, 137, 156]. PEFT encompasses techniques that improve model performance on a specific

predefined task without compromising resource efficiency or training duration. Of the many
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approaches to PEFT, Low-rank Adaptation (LoRA) is a popular, performant one, and our

pipeline heavily incorporates this technique.

LoRAs help address the common issue of over-fitting and catastrophic forgetting [30, 183].

The LoRA technique is applied to reduce the memory that is used up by the update weights,

∆W. This process involves low-rank decomposition of the update weight matrices [61] as can

be seen in Equation 2.3, where W0 ∈ Rdxk, B ∈ Rdxr, A ∈ Rrxk, and r � min(d, k). The

process is visualized in Figure 2.2, where the tokens are passed as an input, x with dimension

d.

W0x+∆Wx = W0x+ α ∗BAx (2.3)

Instead of using a very large matrix, the update matrices are broken down into two smaller

X

d{ Domain-aware
Embedding

Augmented
Embedding

Original
Embedding

int x;

if (...)

break;

Figure 2.2: LoRAs create domain-specific embeddings that are aggregated into the original
knowledge base

matrices through low-rank decomposition. Our work further exploits the benefits of this

technique by training multiple LoRAs in parallel. In essence, the additional domain-specific

knowledge is injected into the auxiliary network, offering augmented problem-solving capabil-

ities without a degradation in latency. The size of these auxiliary passes is controlled by the

rank r, a tunable parameter that controls the size of the LoRA. This parameter controls both

the model’s efficacy at incorporating new knowledge as well as its training time and required

dataset size. Lastly, the LoRA injection is controlled by a strength scale α, which dictates

the extent to which the auxiliary network influences the primary model. Then, α serves as a
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tunable hyperparameter, allowing for a calibrated trade-off between domain-specific exper-

tise and generalization performance. By adjusting α, we can fine-tune the model’s reliance

on the LoRA, effectively balancing the incorporation of specialized knowledge against the

risk of overfitting to a particular domain.

2.3.2 Model-Based Design

Model-Based Design (MBD) is an engineering paradigm that leverages mathematical and

graphical modeling to facilitate the analysis, implementation, and simulation of complex sys-

tems. Originating from control engineering and systems theory [101], it has been successfully

applied across diverse domains, including automotive[103], aerospace [11], cyber-physical sys-

tems [67], and industrial automation [148].

In traditional design methodologies, each development stage – requirements engineering,

architecture design, implementation, and verification – is often isolated, requiring manual

and often error-prone intervention to transition between stages. MBD, on the other hand,

emphasizes an integrated framework where predefined models serve as a formal and com-

prehensive representation of the system, eliminating these transition-induced errors. These

stages are standardized in [101]. An example of MBD can be seen in Figure 2.3.

Lastly, verification and validation processes are tightly integrated into the typical MBD

design flow. Because the model serves as the golden reference for the system, it can be

used to rigorously test the final implementation, ensuring that it meets the agreed-upon

requirements and constraints.

Model-based design is a holistic approach to system development that offers significant effi-

ciency, reliability, and maintainability benefits. Its emphasis on early-stage simulation and

analysis enables proactive problem-solving, making it an increasingly essential technique for
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Figure 2.3: An example of a Model-Based Design process

designing and implementing complex systems. The typical engineering workflow previously

presented in Figure 2.1 adheres to this paradigm. LLM4PLC uses these successive stages as

guidelines for querying the LLM as we present in section 2.4.

2.3.3 Syntax Checkers and Formal Verification

Without a methodology in which human-generated or LLM-generated code can be evaluated

for safety, completeness, and accuracy, several bugs and other undesirable behavior may

persist in the code. In environments such as nuclear power plants, or satellite control systems,

correctness is not only desirable but wholly necessary for operation [45]. It is well known

that LLMs often produce code that does not conform to language specifications [143]. There

are several ways in which software can be checked for these deficiencies, many of which

vary in complexity and effectiveness. We are primarily concerned with syntax checkers and

compilers, which provide a first step towards ensuring the correct operation of the program.
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Then, syntax checkers and compilers help alleviate this issue by providing feedback on LLM-

generated code.

Syntax Checkers

The first step in transforming candidate code to a working program is to check that it

conforms to the standards of the programming language used. Without this step, the code

will not compile, and remedial action is required to be taken. Automated approaches to fix

syntax errors exist [3], but integrating syntax checkers into an LLM code generation pipeline

enables the repair of errors previously unaccounted for. Using these tools over multiple

cycles of the LLM4PLC pipelines provides a deeper insight into code deficiencies, and better

prepares the LLM to take corrective action.

Formal Verification

Formal verification of programs and algorithms through Symbolic Model Checking is an

essential step toward deploying PLC code in hazardous environments. These tools take in

the candidate code as well as strict constraints on the operation - for example, the upper

temperature limit permitted. Approaches using interactive theorem provers [14], or Symbolic

Model Checking [14] have become widely used for this purpose. The focus of LLM4PLC is

on the usage of these tools to formally verify LLM-generated code using an SMV model

generated from a plant specification document. Then, the generated PLC code is verified

using the SMV model as the reference.
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2.4 Methodology

LLM4PLC is a user-guided iterative pipeline designed to help LLMs generate code for In-

dustrial PLCs. We aim to address the limitations of current state-of-the-art Large Language

Models (LLMs) in this domain. Our pipeline integrates user feedback loops and incorporates

a suite of external verification tools: grammar checkers and a nuXmv verifier. The pipeline

is optimized via Prompt Engineering and model fine-tuning mechanisms utilizing LoRAs.

:LLM4PLC

Syntax Check

Logic Verifier

:LLM

Model Based Design
ST/SMV Code

OK

ST/SMV Code

Natural Language

Specification

Feedback

Hand-

Crafted

Model

Feedback

Model Based Design

Model Based Design

:User

Auto. Syntax

Feedback
Syntax Errors

ST/SMV Code

Auto. Logic

Feedback

Constrain Violations

ST/SMV Code

Solution

Figure 2.4: UML Representation of proposed engineering pipeline

The approach of the implementation follows a top-down view of the typical workflow in
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industrial settings where the engineer’s effort is showcased in a representative UML diagram

in Figure 2.4. Additionally, for better clarity on how blocks are interconnected, we present

all modules used in LLM4PLC in Figure 2.5. We discuss the flow in the following sections.

Natural 
Language 
Spec.

Engineer

Interactive Feedback Session

Generate SCL
(LLM)

Generate 
Model-Based 
Design

Trained
LoRAs

Automated Feedback Loop

Syntax Check
(MATIEC)

Generate SMV 
(LLM)

Verify 
Execution 
(NuXMV)

Compile 
Feedback and 

repeat 
Generation

Figure 2.5: Summary of all blocks used in LLM4PLC

2.4.1 Model-Based Design

Model-Based Design (MBD) in the context of industrial PLC programming introduces

a structured, systematic approach that enhances both the efficiency of the development

process and the reliability of the resultant code. By following task-specific prompt guidelines

for planning, the LLMs can sift through given specifications and requirements to create

a comprehensive plan for the subsequent pipeline stages. The first step in LLM4PLC is

to generate complete function and block declarations and their corresponding signatures,

serving as an executable blueprint that ensures alignment between the development process

and the defined natural language specifications. Moreover, the detailed planning phase

can highlight any ambiguities in user requirements, providing an opportunity for prompt

clarification and thereby minimizing the risk of deviations or errors in the subsequent code

implementation phase. An example MBD plan generated by our pipeline exists on our

dedicated website.3

Finite State Machines (FSMs) provide a significant advantage for our development

methodology. Explicit planning around FSM states not only allows for a clear roadmap
3https://sites.google.com/uci.edu/llm4plc/home
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but also optimizes the PLC scan cycle. Because PLC logic does not follow the traditional

loop-based execution model, using a state variable to track the system state is crucial. Each

state in the FSM is responsible for a single operation, making the execution predictable and

easier to debug. In the MBD prompt used alongside the Natural Language Specification, we

constrain the LLM to follow an FSM design for the design solution.

2.4.2 Syntax Checkers

Using LoRAs, we transform the MBD plan into its associated Structured Text representation

in Siemens’ Structured Control Language. Then we use an open-source IEC 61131-3 Struc-

tured Text compiler to perform syntax checking of LLM-generated code. Specifically, we use

MATIEC [108] to search for syntax errors in the generated code. If any error is detected,

the output of MATIEC is then fed into our pipeline to create a ’correction prompt’ for the

LLM in the next stage of the pipeline. We feed only one compiler error and its associated

generated prompt per cycle for several reasons. Firstly, we want a targeted fix from the LLM

for each error, rather than continuously prompting to fix multiple errors at once. Moreover,

for each compiler error, subsequent errors can be dependent on the original error. Take for

instance a missing semicolon which directly causes another compiler error on a subsequent

line. By feeding only one error and correction prompt at a time, we work to minimize the

total number of prompts and pipeline iterations needed. Note that this would also allow for

multiple errors to be fixed in one iteration cycle (i.e. when one error is wholly caused as a

result of a preceding error).

2.4.3 Formal Verifiers

Upon generating compilable PLC code through our pipeline, the next step requires ver-

ification using nuXmv, a symbolic model checker based on the SMV paradigm [18]. This
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verification process is crucial to verify that the produced code adheres not only to syntactical

standards but also to functional and safety requirements intrinsic to industrial automation

scenarios.

To conduct this verification, we translate the constraints from Natural Language to SMV

using a feedback loop similar to the one used for ST. The provided plant specification out-

lines the behavior, constraints, and requirements of the industrial process the PLC code is

intended to control. The SMV specification file, on the other hand, encapsulates the formal

properties and conditions that the PLC code must satisfy. We use these two elements in

conjunction with nuXmv as a means to perform formal verification on the PLC code. This

approach ensures that the generated code is not only compilable but also reliable and safe

for deployment in a real-world industrial setting. Through this verification mechanism, any

discrepancies between the intended and actual behavior of the PLC code can be promptly

identified and rectified before deployment, enhancing the robustness and credibility of our

pipeline.

2.5 Experimental Setup

For the purposes of our study, we target GPT-3, GPT-4, Code Llama 7B, and Code Llama

34B, motivated by several considerations towards a comprehensive evaluation. GPT-3 [184]

and GPT-4 [113] represent state-of-the-art general-purpose language models, serving as ef-

fective benchmarks for general text-to-code translation tasks. Code Llama 7B and Code

Llama 34B [157] are specifically designed for code generation: Their respective 7-billion

and 34-billion parameter counts offer a gradient of computational complexity, enabling the

investigation of the trade-offs between performance and computational resources.
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2.5.1 Prompting

Two prompt types, Zero-Shot and One-Shot, were employed to generate outputs from the

LLMs. The One-Shot prompt incorporates a representative sampling of Structured Text

syntax and code elements, thereby providing contextual cues for improved code generation.

In contrast, the Zero-Shot prompt simply requests code generation without any contextual

guidance. For each model we assess its performance against both prompt types.

2.5.2 LLM Fine-Tuning

We fine-tune the Code Llama 7B and Code Llama 34B through the creation of Low-Rank

Adaptions (LoRAs). GPT-3.5 and GPT-4 do not provide an interface for the training of

LoRAs, so we use these models in their default configurations. Then, we leverage this

knowledge to train a set of four LoRAs for both code completion and code fixing tasks –

two for each of Code Llama 7B and Code Llama 34B. We deploy training and inference on

a compute node equipped with an Nvidia A100 as well as 128GB of main system memory.

2.5.3 Dataset

We generate a training, validation, and testing dataset from the OSCAT IEC 61131-3 Library

[114]. Specifically, we run automated tests to cull deficient ST files in the OSCAT dataset,

then create three separate datasets to test our pipeline’s capabilities extensively.

Automated Tests

We attempted to compile each ST file in the aforementioned dataset to validate our testing

data and discarded all files that did not successfully compile. MATIEC is chosen as the ST
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compiler for this task. This left us with 636 viable ST files to create our dataset from. We

use 596 samples for Training and 40 samples for testing (95/5 Train/Test split).

Dataset Generation

We derive three datasets from the original OSCAT Dataset: (1) Generation, (2) Comple-

tion, and (3) Fixing. The generation dataset is simply the OSCAT dataset after culling all

non-compilable files. We build the Completion dataset by randomly truncating files in the

Generation Dataset. This allows us to simulate the code-completion abilities of the LLM

and test the ability of our pipeline to aid in the code-completion task. The Fixing dataset is

created by removing random lines from the Generation dataset until the resulting ST file is

no longer compilable. This dataset aims to test the LLM’s ability to synthesize solutions to

specific syntax errors within the code. Once again, we use MATIEC in order to verify the

compilation status of each file during this process.

LoRA Training

As described previously, we finetune a pair of LoRAs for each model: one for completion

and one for fixing. Section 2.3 presents several parameters relevant for training LoRAs. We

choose rank r = 64, strength scale α = 128, and Batch_Size = 256 and we run our training

procedure over 5 epochs. These parameter choices were made according to prevalent wisdom

in the LLM community as well as our team’s experience in training and deploying such

models.
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2.5.4 Metrics

Our metrics involving the experimental dataset include pass rate, compiler error count, and

a human evaluation of code quality. Pass rate is evaluated using the pass@k metric, as

outlined in [22]. For each of the 40 test files, a single output is generated (k=1), yielding

statistically significant results. Finally, we compare the amount of Engineer-Hours required

for each of the configurations.

The pass rate, assessed via the pass@k metric, serves as an indicator of the method’s accu-

racy in code generation. A high pass rate indicates the procedure’s reliability in producing

syntactically and semantically correct code.

The compiler error rate offers insight into the robustness of our approach. A lower

rate signifies a reduced likelihood of generating syntactically flawed code, highlighting the

method’s precision in adhering to language-specific rules. We track the number of detected

syntax errors per generated files and compute the average errors per file.

The pass rate and error rates are not individually indicative of success. Since LLM4PLC

rejects all code that contains errors, an increase in error count does not necessarily imply a

failure of the pipeline. This metric serves as an auxiliary measure to examine after the pass

rate has been considered. For example, if a pipeline stage has a higher pass rate but also an

increase in compiler error count, this is still beneficial as only the successful iterations (i.e.

those with zero errors) are forwarded to the verification stage of the pipeline. Additionally,

if a pipeline stage has a lower pass rate but a low compiler error count it does not indicate

success, since success is firstly measured by compiler pass rate.

The human code quality evaluation provide a nuanced evaluation of the generated

code’s readability and maintainability. High scores in this dimension underscore the practi-
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cality of our method, emphasizing its potential for seamless integration into existing human-

driven development processes.

2.5.5 Testbed

Our lab has deployed the FischerTechnik Manufacturing Testbed (MFTB)[46] – an integrated

platform that simulates a miniaturized version of common manufacturing processes. The

MFTB serves as a sophisticated test environment for studying and validating various aspects

of automation, digital control systems, and operational efficiency in a manufacturing setting.

The testbed is a complex cyber-physical system integrating various inputs and different types

of outputs as follows:

• Digital Inputs: 22

• Analog Inputs (0-10V DC): 1

• Fast Counting Inputs: 10 (for direction detection)

• Outputs (24V): 35

Functional Modules in the MFTB serve four distinct purposes, and are summarized as

follows:

1. Sorting Line With Color Detection

2. Multi Processing Station With Oven

3. Automated High-Bay Warehouse

4. Vacuum Gripper Robot
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These modules interact in a closed-loop fashion, allowing for a self-contained material cycle.

Items are retrieved from the Automated High-Bay Warehouse, undergo processing at the

Multi Processing Station With Oven, sorted by color using the Sorting Line With Color

Detection, and are ultimately returned to the Automated High-Bay Warehouse for storage.

The setup can be seen in Figure 2.6. We write a simple natural language description of the

specifications of the HighBay module and we run the corresponding prompt through our

pipeline. We deploy the formally verified code on the MFTB to verify its operation on phys-

ical hardware. The specification, results and demonstration videos are included in

our website.4

Siemens S7-
1500 PLC

Workstation High-Bay 
Storage

Processing Modules

I/O Connections

Figure 2.6: The FischerTechnik Manufacturing Testbed (MFTB) deployment in our lab

2.6 Results

In this section, we present the outcomes of our empirical evaluations. We measure the efficacy

of our method – LLM4PLC – in terms of three critical metrics: pass rate, compiler error
4https://sites.google.com/uci.edu/llm4plc/home
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count, and a human evaluation of code quality. We also compare the needed engineering-

hours needed to set up each of the solutions. These metrics offer a comprehensive assessment

of our approach, covering aspects such as accuracy, robustness, and practical utility in code

generation processes. The experimental setup for each of these metrics is outlined in the

following subsections.

2.6.1 Pass Rate

For evaluating the pass rate, we pass the set of 40 dedicated test files through various

configurations of LLM4PLC pipeline stages. For each of the resulting 40 input files, we

determine the pass rate as defined in Section 2.5.4. The results are presented in Figure 2.7,

+4.76%

+31.81%
Increase in 

performance with each 
stage

Figure 2.7: Pass rate for each model and configuration type

where Zero-Shot has results for the Zero-Shot prompt, One-Shot has results for the One-Shot
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prompt that includes SCL code as an example, LoRA has results for the LoRA-Finetuned

Models and One-Shot prompt, and syntax incorporates the grammar checker in addition to

the LoRA and the One-Shot prompt. As more components are added to our pipeline as we

progress through the stages, the compilation pass rate increases, reflecting the efficacy of

our proposed method, specifically in the final stage, which includes the One-Shot prompt,

a LoRA, and a grammar checker. Each added component makes a positive contribution

to the pass rate. The most significant increase can be seen when the grammar checker is

incorporated, which when used with the optimized prompt and LoRA, results in a 72.5%

pass rate for the Code Llama 34B model.

2.6.2 Compiler Error Count

Next, we compute the number of compiler errors generated for each output code file as per

the procedure defined in Section 2.5.4. We then average the number of errors over the set of

test files to normalize the results. The average errors per test file is then the final metric we

obtain. The results are presented in Figure 2.8. The errors for LoRA and syntax are larger

than that of just the One-Shot. However, as evidenced by the Pass Rate over each successive

configuration, our pipeline can correct these errors such that the compilation rates are higher

for LoRA and syntax compared to just One-Shot. One pattern we observed is the tendency

for the LLM in this setting to expand variable definition blocks well beyond their intended

size. These blocks often contained multiple syntax errors per line, and combined with the

excessive generation of them in some files led to the abnormally high compiler error rate for

this configuration. Note that the naive prompt generation for the Code Llama models had

a 0% pass rate its error rate was omitted from the graph for that reason.
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Figure 2.8: Cumulative syntax errors recorded over the dataset for each model configuration

2.6.3 Human Quality Metrics

The human quality metrics are assessed using a panel of experts of various experience with

PLC programming. The panel evaluates the generated code based on predefined criteria:

correctness, maintainability, and conformance to industry coding standards. The experts

were informed of the purpose of this study but they were not informed which model created

which code. We asked the participating individuals to score the criteria by answering the

following questions:

• Correctness: On a scale of 1-10, how accurately does the generated code perform the

intended function without errors?
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• Maintainability: On a scale of 1-10, how easy is it to understand, modify, and extend

the code?

• Conformance to Industry Coding Standards: On a scale of 1-10, how well does the

code adhere to established best practices and coding standards?

This qualitative evaluation complements our quantitative metrics, providing a multi-faceted

view of the system’s performance. High scores in this area would signify that the generated

code is not only accurate and robust but also practical for real-world applications. The

results are presented in Table 2.1. Notably, the use of LLM4PLC enhanced the perceived

quality of the code.

Model Correctness Maintainability Best Practices
LLama-34B Naive 2.25 3.25 2.5
LLama-34B LLM4PLC 6.5 4.75 4.0
GPT-4 Naive 2.25 3.75 2.75
GPT-4 LLM4PLC 7.75 6.125 6.0

Table 2.1: Average Expert-Appointed score

2.6.4 Engineering Effort

The question of engineering effort is critical when choosing between GPT-based solutions,

LoRA-augmented LLMs, and traditional hand-programming techniques for PLCs. Our em-

pirical studies show marked differences in the time required for each approach, offering

insights into their practical applicability.

For GPT models, the setup is remarkably efficient, often taking only a matter of minutes

to integrate the API and commence code generation. In contrast, setting up a LoRA for an

existing open-source model like Code Llama entails a considerable amount of time to collect

data and train.
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Hand-programming of PLCs, while a well-understood method, is by far the most time-

consuming, often requiring orders of magnitude more time than the iterative LLM-based

approaches we present. While this method provides the highest degree of control and speci-

ficity, it also demands the most significant investment in terms of time and specialized human

resources. For this metric, we take the average time it took for each member of our team to

set up the program for the high-bay module.

We present the table of effort needed in Table 2.2.

Approach Setup Time Run-Time
Hand-Coding - 12 hours
Lora-Based 32 Hours 6 minutes

Out-Of-The-Box - 2 minutes

Table 2.2: Engineering-hours required for each approach

2.7 Discussion

This section delves into the broader implications of our proposed pipeline, LLM4PLC. We

explore its conceptual and practical impacts. Then, we examine how the pipeline accelerates

the development iteration cycle, thereby allowing for more efficient Industrial Automation

workflows. We include an excerpt from an example of the MBD Plan generated for the

MFTB High Bay in Listing 2.1, an example of an erroneous generation in Listing 2.2, and

its corresponding correction after the nuXmv and Compiler Checks in Listing 2.3.

1 LIST THE TRANSITIONS BETWEEN STATES:

2 STATE 0 -> STATE 1: IF "RED BTN" = TRUE AND NO COMPONENT IN HAND

3 STATE 1 -> STATE 2: IF xpos = 734 AND ypos = 405

4 STATE 2 -> STATE 3: ONCE ARM EXTENDED AND COMPONENT LIFTED

5 [...]

Listing 2.1: Excerpt of a generated MBD Transition Logic
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1 componentHomeSlot: TUPLE OF (INT, INT);

2 [...]

3 IF xPos < 1950 THEN

4 [...]

5 IF "RED BTN" THEN

6 IF xPos < 734 THEN

7 [...]

Listing 2.2: Excerpt of a generated erroneous Structured Text Code

1 componentHomeSlot: ARRAY[1..2] OF INT;

2 [...]

3 IF xPos < 1900 THEN

4 [...]

5 IF "RED BTN" AND NOT componentInHand THEN

6 IF xPos < 734 THEN

7 [...]

Listing 2.3: Excerpt of a generated corrected Structured Text Code

2.7.1 Impact

Our proposed pipeline accelerates the iteration cycle, from model training to code verifi-

cation. This acceleration improves not only development speed but also the quality and

reliability of the generated code, thus having a substantial impact on the end application.

Moreover, the pipeline’s speed enables real-time or near-real-time code adaptation, making it

possible to apply updates or patches in time-constrained environments. This responsiveness

is particularly invaluable in critical systems where failure to correct an issue promptly could

result in substantial economic losses or safety risks.
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2.7.2 GPT vs Code Llama

In our experiments, the fine-tuned Code Llama 34B model with the use of a grammar

checker outperformed the general-purpose GPT models like GPT-3.5 and GPT-4 on several

key metrics. Even with our grammar checker, the GPT models underperform compared

to Code Llama 34B. This can largely be attributed to the fact that fine-tuning allows the

LLM to learn the nuances of Structured Text, which GPT models have not been exposed to

before. Note that due to the closed-source nature of the GPT models, fine-tuning is not a

possibility. Moreover, our experiments showcased the efficacy of LoRAs for increasing model

performance. It is important to note that an increase in model size (i.e. the total number

of parameters) can affect the performance of a model, as a larger number of parameters

allows for richer context-awareness, which improves output accuracy. We attribute the better

performance of GPT-4 with the grammar checker compared to Code Llama 7B with the

LoRA and grammar checker to this reason. Even so, Code Llama 34B with the LoRA and

grammar checker, despite having fewer parameters than GPT-4, outperforms GPT-4 with

the grammar checker, demonstrating the strength of LoRAs when it comes to improving the

quality of an LLM’s output on specific output domains.

Furthermore, The closed-source nature of GPT models restricts auditability and customiza-

tion, creating potential barriers for applications requiring rigorous verification or specialized

features. This opacity not only hinders the research community from fully understanding the

limitations of these models but also inhibits collective efforts to improve upon these short-

comings. Models that allow fine-tuning can be customized, which evidently can improve

performance and generalization to unseen data.
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2.8 Industry Challenges

As automation and digitalization increasingly pervade industrial settings, several emergent

challenges must be addressed.

The fast advancement of technology creates major challenges in the industry to maintain a

sufficiently skilled workforce that can, on the one hand, leverage new technologies quickly,

and on the other, preserve the industrial know-how that has been acquired from years of

practical and hands-on experience. The use of LLMs to collect relevant technical knowledge

and leverage it for automating engineering tasks and for guiding engineers is therefore of

special interest in the industry, as it can accelerate the process of knowledge gain for new

staff, reduce the negative effect of knowledge loss from staff rotation, and lessen the influence

of staff skillset on engineering efficiency and quality. In addition, the overall engineering cost

is expected to be reduced as a consequence of increased automation of the engineering tasks.

Another challenge is the issue of explainability and trust. Industrial applications often have

stringent safety and reliability standards. Incorporating machine learning solutions that pro-

vide not just high performance but also interpretability will be crucial. The ability to under-

stand and trust the decisions and actions of an AI system is a non-negotiable requirement in

critical infrastructures where errors can lead to significant economic or human loss. Although

our study shows that the code achieves a good degree of interpretability, un-regulated use

of such methods will inevitably lead to unverified and unmoderated deployments in critical

systems.
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2.9 Conclusion

In summary, our research introduces the LLM4PLC framework, a user-guided iterative

pipeline designed to improve the automated code generation capabilities of Large Language

Models, specifically for Industrial Control Systems operated by Programmable Logic Con-

trollers. By incorporating user feedback and leveraging external verification tools, we sig-

nificantly enhance the model’s output validity. This pipeline is further refined by Prompt

Engineering techniques and model fine-tuning methods like LoRAs. Empirical validation

on a FischerTechnik Manufacturing TestBed demonstrates notable improvements in both

the rate of successful code generation and the quality of the generated code, as rated by

experts. Our contributions pave the way for more reliable and efficient applications of LLMs

in industrial settings, inching us closer to achieving verifiably correct program generation in

these critical domains.
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Chapter 3

Large Language Models for Few-Shot

Vulnerability Repair

Software vulnerabilities continue to be ubiquitous, even in the era of AI-powered code assis-

tants, advanced static analysis tools, and the adoption of extensive testing frameworks. It

has become apparent that we must not simply prevent these bugs, but also eliminate them

in a quick, efficient manner. Yet, human code intervention is slow, costly, and can often

lead to further security vulnerabilities, especially in legacy codebases. The advent of highly

advanced Large Language Models (LLM) has opened up the possibility for many software

defects to be patched automatically. We propose LLM4CVE – an LLM-based iterative

pipeline that robustly fixes vulnerable functions in real-world code with high accuracy. We

examine our pipeline with State-of-the-Art LLMs, such as GPT-3.5, GPT-4o, Llama 3

8B, and Llama 3 70B. We achieve an increase in ground-truth code similarity of 20% with

Llama 3 80B. To promote further research in the area of LLM-based vulnerability repair, we

publish our testing apparatus, fine-tuned weights, and experimental data on our website.1

1https://sites.google.com/view/llm4cve
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3.1 Introduction

Human developers are prone to costly mistakes when designing software systems. Often,

these are not simple errors, but a fundamental misunderstanding of cybersecurity con-

cepts [163]. These vulnerable programs are targets for criminals to steal credentials, assets,

and other valuable items from end-users [20]. Moreover, the frequency of these types of

attacks is steadily increasing [65]. As a result, the ability to quickly and efficiently rectify

software bugs has become more critical than ever before.

Legacy Code: Catastrophic Failure

LLM4CVE: Automated Vulnerability Repair

Bugs Found

Bugs Found Patches Applied Safety Ensured

Data StolenBugs Exploited

Figure 3.1: How LLM4CVE assists in preventing bug exploitation

Already, we have seen the significant impacts of these bugs – billions of dollars in lost

economic value [63, 65, 110], countless man-hours spent on bug resolution [115], and the

leakage of sensitive user data to malicious actors [74, 130]. Cyberattacks – like the one done

to the company SolarWinds in 2020 [122] – are an example of this phenomenon. This attack

infiltrated computers in both the U.S. government and private sector, leading to the leakage

of millions of classified and confidential documents to foreign adversaries.
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The proliferation of cyberattacks is not simply limited to one specific application domain.

The Internet-of-Things (IoT) revolution has led to the adoption of embedded systems in an

ever-growing variety of devices [5]. However, these systems are dangerously prone to critical

security vulnerabilities [21, 31, 72]. An attacker could feasibly extract personal information

or confidential credentials by exploiting these bugs. Many such attacks have been deployed

in the real world, leading to the proliferation of botnets [7] and power grid disruptions [145].

As manufacturers race to incorporate new devices and features into their IoT products –

often without regard for the security and privacy of the end user – these types of attacks are

poised to proliferate in the future.

Even worse, autonomous vehicles are also vulnerable to many types of common security

vulnerabilities [51]. These types of bugs are even more serious, as errors in control software

can endanger the lives of pedestrians, passengers, or other drivers. While automatic testing

suites have been created to verify the robustness of these autonomous systems [71] in the

physical world, they are still prone to traditional software-driven attacks, much like any

other safety-critical computer system. Therefore, these vehicles must be secured against

vulnerabilities and bugs.

The shared link between the aforementioned vulnerable systems is their usage of common

open-source software – often written in C. These massive projects – like the Linux kernel [85],

OpenSSL [155], and FFmpeg [44] – are frequently targeted by hackers. As a result, these

large software projects contain a disproportionate amount of Common Vulnerabilities and

Exposures (CVEs) [136]. A CVE informs the public about a known security vulnerability

and serves as a centralized repository of information regarding the exploit [99]. However, a

CVE entry does not facilitate the automated repair of vulnerabilities on its own.

Several existing methods have been created to patch vulnerable software with minimal human

input [35, 47, 48, 55, 124, 193]. These techniques allow for the rectification of costly bugs

with a comparatively lesser human cost. Yet, even these advanced systems are prone to
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mistakes. While these techniques often help rectify real-world bugs, automated vulnerability

repair methods are known to generate invalid code [90] or introduce additional bugs [102].

More pressingly, these techniques often require analysis from a developer experienced with

the program’s codebase to fully implement [192]. This presents challenges when security

vulnerabilities are identified in old, unmaintained code – or where the subject-matter experts

for a particular product are no longer accessible. As a result, cybercriminals would be

able to exploit these bugs, potentially leading to the leakage of sensitive user data. We

demonstrate in Figure 3.1 how our pipeline can mitigate the risks caused by abandoned or

poorly maintained legacy code.

As an increasing amount of software governs critical real-world systems, the importance

of program maintenance has grown drastically. The proportion of engineers devoted to

maintaining legacy code systems has risen significantly [57]. Even then, the average time-

to-fix of software vulnerabilities is only increasing [6]. This presents a growing threat to

end-users, especially when these bugs may take far longer to be patched in downstream

code.

The advent of highly capable Large Language Models (LLMs) has the potential to trans-

form how software vulnerabilities are rectified, especially in older codebases. However, it

is known that LLMs often produce flawed, uncompilable code [89]. Even then, state-of-

the-art LLMs such as GPT-4o [113] and Llama 3 [132] have spurred significant changes in

software engineering practices. Moreover, specialized models tuned for code generation have

appeared [135], further increasing the potential for automated software augmentation and

creation. Techniques such as Parameter-Efficient Fine-Tuning (PEFT) [87] and Low-Rank

Adaptations (LoRAs) [60] extend the capabilities of these models, leading to an increase in

performance while simultaneously streamlining the model training process [86, 179]. More

recently, models incorporating a Mixture-of-Experts (MoE) have enabled significant gains

in LLM performance [68]. Researchers have also studied Prompt Engineering – a method
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of refining LLM input to measurably improve the relevancy, accuracy, and quality of re-

sponses [32, 149, 185]. These advances in Large Language Models have created a unique

opportunity for combination with existing vulnerability repair techniques to automatically

rectify common software bugs.

We introduce LLM4CVE, an iterative pipeline that integrates Large Language Models with

already-existing CVE data to fix common classes of software vulnerabilities with minimal

human input. Given a snippet of code identified as faulty, our pipeline iterates until a

viable candidate is obtained. LLM4CVE begins generating a candidate fix, evaluating the

viability of the fix, and applying required changes to increase the viability of the synthesized

code. This iterative loop is further enhanced by the incorporation of LoRA fine-tuning

into our pipeline. We also use prompt engineering to create a set of optimized prompts to

enhance the quality of the generated code. Ultimately, LLM4CVE is capable of synthesizing

a viable replacement code snippet, automating the vulnerability repair process for real-world

examples of candidate CVEs. We summarize our key contributions as the following:

• We present a novel, automated method for fixing security vulnerabilities in real-world

programs that require minimal intervention from a skilled domain expert. Moreover,

our approach is capable of preserving application security even in codebases with few

or no maintainers.

• To the best of our knowledge, we create the first iterative process for a Large Language

Model to automatically correct vulnerabilities in code, improving on current automated

vulnerability correction tools.

• We present a detailed study of the effectiveness of our iterative pipeline for fixing

various classes of CVE/CWEs across multiple foundational models. Our methodology

is tested on several mainstream LLMs – including GPT-3.5, GPT-4o, Llama 3 8B, and

Llama 3 70B.
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The remainder of this paper is organized as follows: in Section 3.2, we examine existing

approaches to vulnerability repair – including both manual and automated solutions. A dis-

cussion of the benefits of LLM4CVE over the current State-of-the-Art works follows. Next,

we provide the reader with a brief background on both Large Language Models and au-

tomated vulnerability repair in Section 3.3. We discuss the foundations of LLMs and the

methods for fine-tuning them, as well as general methods of repairing software vulnerabil-

ities without human intervention. A presentation of the LLM4CVE methodology follows

in Section 3.4, where each pipeline stage is thoroughly detailed. Our experimental setup

and results are then displayed in Sections 3.5 and 3.6. Finally, Sections 3.7, and 3.8 discuss

the potential applications of our findings, known limitations and future improvements. The

paper concludes with a public release of the LLM4CVE pipeline in Section 3.9.

3.2 Related Works

Our work draws upon two bodies of existing research work: (1) automated vulnerability

repair, and (2) code generation with Large Language Models. We also compare our proposed

pipeline to existing works on LLM-driven vulnerability repair.

3.2.1 Automated Vulnerability Repair

Interest in automatically rectifying software vulnerabilities has been consistently strong for

decades. Several methods have been created over the years to assist in fixing software

bugs [25, 47, 48, 50, 55, 90, 100, 102, 123, 124, 186, 192, 193, 194, 195]. Many of these

methods rely on program analysis to extract code, such as with the help of an external

compiler or static analysis tool chain [73]. Yet, static analysis cannot find certain types of
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software problems. For example, bugs in the Java Reflection API are difficult to detect using

these traditional techniques [78].

Other advanced techniques have also been developed to automatically fix software bugs. For

example, a method using Generative Adversarial Networks (GANs) is effective for vulnera-

bility repair [55]. Importantly, this method allows for the repair of problematic code without

the need for labeled training examples. However, unlike LLM4CVE, the model is evaluated

on only synthetic code samples instead of real-world vulnerabilities.

Transfer Learning also been investigated for automated software repair. Researchers have

demonstrated significant improvement over state-of-the-art methods, with the VRepair frame-

work achieving almost a 50% increase in repair rate [25]. The use of the transformer archi-

tecture is also notable, even though the size of their model is significantly smaller than that

of modern LLMs like GPT-4o [113].

Similarly, Vision Transformers are also capable of rectifying code vulnerabilities. By using

special queries to locate vulnerable code snippets, the model can generate more accurate

and relevant repair suggestions [47]. This innovative model not only performed better than

previous state-of-the-art models, but also was reviewed positively by industry practitioners.

Code understanding models such as CodeT5 [166] have allowed for further improvements

in the quality of generated fixes. As a precursor to modern Large Language Models such

as GPT-4o and Llama 3, the CodeT5 architecture has enabled researchers to once again

improve the total repair rate for software vulnerabilities [48]. The proposed framework –

VulRepair – outperforms VRepair on several metrics due to extensive pre-training and the

usage of Byte-Pair Encoding.
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3.2.2 LLM-Driven Code Generation

The popularization of Large Language Models has catalyzed significant interest in their use

in many disparate fields. Specifically, the success of automated code generation has been

greatly accelerated by improvements in the logical reasoning ability of these models [121].

State-of-the-art models like GPT-4o [113] have revolutionized the landscape compared to

their predecessors such as CodeBERT [43]. Moreover, further advances in code synthesis

have led to the refinement of methods for generating correct, understandable code from

these models.

In addition to general-purpose models such as the aforementioned GPT-4o, specialized LLMs

for code synthesis have emerged, such as CodeX [23], Code Llama [135], WizardCoder [95],

and CodeGen [107]. For example, many of these models, including Code Llama, CodeX,

and WizardCoder are trained on publicly available software repositories, which enhances

their code generation abilities. Specialized systems such as CodeGen employ a multi-point

synthesis scheme, where the user is periodically prompted for feedback on the generated code.

However, this method requires active human intervention, as opposed to the completely

automated feedback loop provided by LLM4CVE.

As the code generation abilities of LLMs improve, advanced evaluation metrics are needed to

assess the viability of automated code synthesis methods. While existing code automation

tools have studied the reliability of commercial products such as Microsoft Copilot [160], we

focus on the evaluation of the models themselves. Benchmarks such as EvalPlus [89] have

been created to more accurately measure the performance of LLMs on code generation tasks.

These metrics build upon existing works such as HumanEval [23] and are better suited to

evaluating LLM-synthesized code. Other works have suggested using a litany of benchmarks

to rank LLMs by performance [181].
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Ultimately, LLM4CVE draws from these innovations in both code synthesis and code eval-

uation to further the robustness and viability of our pipeline.

3.2.3 Vulnerability Repair with LLMs

Recently, Large Language Models have been identified as a key component for automatically

rectifying software vulnerabilities. This is motivated by the ability of modern LLMs to

generate consistently viable code snippets for many common programming languages [181].

Even for programming languages with relatively little toolchain support, augmented LLMs

perform remarkably well [39]. A notable integration of these two methods is the use of LLMs

to provide code suggestions for fixing potential bugs in real-time to a programmer [82, 172].

However, this novel technique requires extensive human-computer collaboration, which is

not true for the LLM4CVE pipeline.

Furthermore, a significant amount of literature exists regarding the use of LLMs for auto-

mated program repair [2, 66, 69, 70, 120, 144, 173, 176, 177, 178, 182, 198]. One of the first

works on this subject involves using zero-shot prompting to fix security vulnerabilities in a

synthetic dataset [120]. Since this work is from 2021, the LLMs used (Codex and Juras-

sic J-1) are relatively out-of-date. However, the performance of these techniques is already

impressive, with a significant portion of simple, synthetic bugs fixed through the authors’

pipeline.

Using the Codex and GPT-3 LLMs, researchers were able to repair 76.8% of bugs in Java

programs detected with static analysis tools [69]. Notably, these bugs were often security-

related, falling into categories such as Null Pointer Dereferences and Thread Safety Viola-

tions. However, this tool is limited to the C# and Java programming languages, whereas a

majority of critical system software is written in languages such as C and C++ [58, 133].
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There is an existing precedent for providing feedback for the LLM-driven code repair process.

However, existing implementations require an extensive test suite [177], which is often not

available for real-world software. When given representative test cases, this framework can

repair the majority of bugs automatically.

More recently, researchers have been able to incorporate advanced LLM augmentation tech-

niques such as Low-Rank Adaptations (LoRAs) to fine-tune their code repair models [144].

These methods are similar to our proposed LLM4CVE pipeline and they are known to work

effectively, as evidenced by the double-digit improvement over the non-LoRA baseline. The

datasets used in this work are not security-focused, and they instead cover a wide variety of

bugs present in everyday software. In comparison, we fine-tune our models on a dataset of

real-world security vulnerabilities, as demonstrated in Section 3.5.1.

3.3 Background

The LLM4CVE pipeline builds upon accepted wisdom in the field of Automated Vulner-

ability Repair, as well as incorporating state-of-the-art LLM augmentations – including

Parameter-Efficient Fine-Tuning (PEFT) and Low-Rank Adaptations (LoRAs) – while also

incorporating more traditional LLM techniques such as Prompt Engineering. In this sec-

tion, we provide the reader with sufficient background knowledge for each domain, while also

providing context for the design choices implemented in our pipeline.

3.3.1 CVEs & CWEs

The reporting of bugs to centralized online repositories has become increasingly common.

Entities such as the National Vulnerability Database [104] and MITRE’s Common Vulnera-

bilities and Exposures [99] provide up-to-date access to bug reports and mitigation measures.
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Often, when a security vulnerability is discovered in widely-used software, a description is

listed on one or more of these databases [20]. Since CVEs often target a specific software

problem instead of describing a broad vulnerability class, the Common Weakness Enumera-

tion (CWE) system was created to fulfill this purpose [59]. Ultimately, both the CVE and

CWE identifiers are useful in our analysis for rectifying vulnerabilities.

3.3.2 Vulnerability Analysis & Repair

The common goal of every vulnerability repair technique is to in some way rectify underlying

software bugs that would otherwise lead to undefined or unsafe behavior. While formal

models defining types of software deficiencies – such as faults, errors and failures – exist [9],

we focus on the most simple definition – the detection and repair of problems that result in

unexpected output.

Automated vulnerability repair often targets a specific class of bugs [100]. This may be due

to their heightened potential for exploitation, frequency in real-world code, or their ease

of detection and subsequent patching, among other factors. These classes are commonly

represented in CVEs and CWEs, as explained in Section 3.3.1.

Common characterizations of vulnerability repair break the process into three sections – (1)

bug detection, (2) patching, and (3) patching [124]. The detection phase involves scanning

source code using static analyzers [197], machine learning [19, 83], or other methods [146].

Here, potentially faulty sections of code are identified for correction. Next, the deficient code

is rectified through a variety of algorithmic [100] and deep-learning [193] methods. Before

the patch is complete, a verification stage must confirm the reliability and robustness of the

fix. This is often done through validation with a test suite [90, 177], static analysis [187], or

by expert verification [50].
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These methods are similar to industry-standard best practices regarding the software vul-

nerability life cycle [118]. An overview of these practices and how LLM4CVE is positioned

in this cycle is shown in Figure 3.2.

Report

Discover
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ReactVerify LLM4CVE enables
fast repairs in

legacy codebases

Fix

CVEs or
other bugs

Insufficient
Maintainence

Few Domain
Experts

Iterative
LLM Pipeline

Code Verification
& Validation

Figure 3.2: Rectification of software vulnerabilities often follows a predefined cycle
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3.3.3 Large Language Models

Large Language Models are fundamentally driven by the attention mechanism [161], which

allows for the comprehension of lengthy inputs with ease. Moreover, these models can

capture the syntax and structure of their input, allowing for the comprehension of de-

pendencies between tokens that are spatially distant in the input sequence, but semanti-

cally linked [141, 190]. These methods are further extended by methods such as Retrieval-

Augmented Generation, which references an external knowledge base at generation-time to

better provide factually correct information [80].

The rise of LLMs has been fueled by the success of OpenAI’s GPT-2, GPT-3, and most

recently GPT-4 and GPT-4o [113] family of highly-performant and extensible models. As

these models advance, their parameter counts have grown exponentially. While GPT-3 stood

at a “modest” 175 billion parameters [15], it is theorized that GPT-4 has ballooned to almost

ten times its predecessor – 1.76 trillion parameters [97]. The expansion in model size has

not only increased performance – it has been hypothesized that previously unknown abilities

emerge from this scaling [168], although the impact of this phenomenon is still not fully

understood [139].

Yet, many leading LLMs – including those from OpenAI – are not open-source, creating

difficulties for fine-tuning and opening a proverbial “can of worms” regarding data privacy.

Although OpenAI provides a fine-tuning API, it is licensed restrictively and monetarily

expensive [112]. As a result, several open-source LLMs been publicized, including Llama

3 [132], Code Llama [135], and Mixtral (MoE) [68].
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LLM Augmentation

While LLMs can provide excellent code synthesis on their own, several techniques have been

developed to further improve their abilities on a diverse range of tasks. We focus on two

methods – (1) Parameter-Efficient Fine-Tuning/Low-Rank Adaptation (PEFT/LoRA), and

(2) Mixture-of-Experts.

The increasingly large size of modern LLMs leaves them requiring tremendous amounts of

computational resources to train. Parameter-Efficient Fine-Tuning (PEFT) helps alleviate

this issue by reducing the complexity of fine-tuning an LLM to a specific task [49, 88, 191].

A popular approach to PEFT is the Low-Rank Adaptation (LoRA), which freezes almost

all model parameters and performs fine tuning using injected rank decomposition matri-

ces [60]. Further performance improvements have been achieved through quantization [34],

and applying LoRAs to a Mixture-of-Experts model [42]. A description of the LoRA training

process is given in Figure 3.3.

X

d{ Domain-aware
Embedding

Augmented
Embedding

Original
Embedding

int x;

if (...)

break;

Figure 3.3: LoRAs enable the fine-tuning of LLMs with a comparatively low computational
cost

Another approach to improving LLM performance is through the Mixture-of-Experts (MoE)

paradigm. This methodology involves training multiple smaller “expert” models – specialized

for a subset of the input domain – and using a router to select the optimal submodels to

evaluate a query at inference time [199]. It has already been demonstrated that these types of

LLMs scale better [36] and perform better than a compute-equivalent single-expert model [8].
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Prompt Engineering

The quality of a prompt provided to an LLM directly influences the quality of the output.

Refining the initial prompt to the model, known as Prompt Engineering, has been shown

to improve performance on basic logic problems [32], object annotation [142], general rea-

soning tasks [175], and even the generation of prompts themselves [185]. Common Prompt

Engineering techniques include Chain-of-Thought reasoning, where a complicated process

is broken into individual steps for an LLM to process individually [170]. We use a similar

method of few-shot prompting in the LLM4CVE pipeline, driven by automated compiler and

metric-based feedback. LLMs are also capable of zero-shot reasoning simply by prompting

the model to think in a step-by-step fashion [75].

CWE Title Count
CWE-125 Out-of-bounds Read 452
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 363
CWE-20 Improper Input Validation 289
CWE-787 Out-of-bounds Write 179
CWE-476 NULL Pointer Dereference 176
CWE-190 Integer Overflow or Wraparound 156
CWE-120 Buffer Copy without Checking Size of Input (’Classic Buffer Overflow’) 121
CWE-416 Use After Free 120

Table 3.1: An overview of selected CWEs for the LLM4CVE pipeline

3.4 Methodology

LLM4CVE is an iterative pipeline that intends to automatically rectify common software

vulnerabilities through the use of augmented Large Language Models. In this section, we

aim to describe the structural and theoretical motivations behind the implementation of the

pipeline. A visualization of the LLM4CVE pipeline is given in Figure 3.4.

53



Feedback Suite
Code Refinement

LLM

+LoRA
Novice Developer

Begins Repair
Legacy Codebase

Affected
Vulnerability

Found

CVEs

Domain-Specific
Experts Unavailable

Legacy Codebases Often Lack
Domain-Specific Experts

LLM4CVE 

GPT-4o
GPT-3.5
Llama 3 8B
Llama 3 70BVulnerable 

Code Snippet

CVE Details
CWE Details

Candidate
Function Patch

{ Format
Errors

if (1 {

CVE Details
CWE Details

Figure 3.4: A visualization of how the LLM4CVE pipeline can automatically fix common
software vulnerabilities

3.4.1 CVE Selection

We select eight of the most common CWEs for our analysis. A brief description of these

CWEs along with their relative frequency in our dataset is provided in Table 3.1. Details on

the filtration of vulnerability examples for our pipeline are provided in Section 3.5.2.

3.4.2 Prompting

We employ both zero-shot and few-shot prompting for generating code snippets from an

LLM. In few-shot prompting, guidance is provided to the model over multiple rounds of

code iteration, and the LLM is then able to incorporate feedback into the final code. On

the other hand, in zero-shot prompting, no contextual guidance is provided to the model.

Therefore, the LLM generates a code snippet without guidance or feedback. All LLMs in

our study are tested with both types of prompting.

3.4.3 Prompt Engineering

The LLM4CVE pipeline employs two types of prompts, classified as ’guided’ and ’unguided’,

respectively. The ’guided’ prompt provides the name of the CVE and CWE, a description
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of both, and specific instructions to further facilitate valid repair. The ’unguided’ prompt

only instructs the model to repair the code – no vulnerability details are provided. We also

require the LLM to output code surrounded by delimiters to further optimize the extraction

of code from the model output. Moreover, we instruct the model to create compilable code,

use proper syntax and make the minimal amount of changes required to fix the target bug,

as well as requiring it to synthesize all modifications itself without asking for user input.

Importantly, while CVE descriptions often provide a specific reference to a problem com-

ponent in a function, CWE descriptions instead categorize the issue into a broad set of

vulnerabilities. As a result, the “guided” prompt offers a more thorough description of the

problem, which we posit allows for the LLM to generate superior candidate patches.

3.4.4 Code Analysis

To enable the automated evaluation of the LLM code output, an automated metric is re-

quired. For this purpose, we choose CodeBLEU, a widely accepted method for calculating

the semantic similarity of two pieces of code [131]. Like its predecessor BLEU [117], which

is often used for determining the quality of machine-translated text, CodeBLEU allows us

to determine how similar the ground truth fixed code is to the LLM-generated fix. This

tool provides scores in the range of 0-100 (we use an implementation that scales these values

to 0-1), with a higher score implying the candidate code snippet is similar to the reference

snippet. CodeBLEU incorporates the n-gram match from BLEU, in addition to in-depth

analysis of code semantics via Dataflow Graphs and Abstract Syntax Trees.
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3.4.5 Iterated LLM Generation

One of the most important parts of the LLM4CVE pipeline is the automated feedback loop

between analysis tools and the LLM. This allows for the LLM to generate improved code

over multiple iterations, greatly increasing the quality of the final output. To implement

this mechanism, we have used the difference in CodeBLEU scores between the broken input

code and the LLM-generated output code.

The feedback provided conforms to two guiding principles – (1) the output code should not

be dramatically different than the input code, and (2) the output code should be valid C

code. Our use of CodeBLEU scoring helps the model achieve both goals, as we can safeguard

against excessive semantic changes to the code. Any faults found will automatically trigger

another iteration of our pipeline. Then, if any new faults are found in the generated code

(perhaps due to a failure of the model to synthesize a valid snippet), this process will be

repeated. Ultimately, we collect output from both of these stages, along with the previously

generated code and feed it into the LLM in the same context session for each iteration. We

impose a limit of two iterations on the pipeline and select the second output as the candidate

patch for evaluation.

3.4.6 Evaluation Process

Unlike many other approaches to automated vulnerability repair with Large Language Mod-

els, LLM4CVE targets real-world bugs instead of synthetic vulnerabilities. As a result, the

evaluation of code correctness is a significantly more complicated problem. Many vulnerable

code snippets are not self-contained, which means that external context is required to im-

prove generation performance. We tailor of evaluation suite with this fact in mind, focusing

on metrics highlighting improvements in code quality, and comparing the semantic similarity

of our candidate patches to real-world ground truth solutions. In addition, we perform a
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selection of end-to-end compilation steps using our generated patches to confirm the viability

of our pipeline. We believe this methodology offers a balance between theoretical evaluation

and real-world applicability.

Importantly, we note that the nature of extracting function-level vulnerabilities from real-

world codebases implies that these snippets are not fully self-contained. Therefore, it is

infeasible to perform traditional static analysis, which necessitates our use of alternative

techniques to generate feedback for the iterate steps of our pipeline.

There are multiple valid methods in which to fix a bug. For critical code, it is often more

important for a vulnerability to be fixed immediately – even if functionality is impacted.

Therefore, a priority in our evaluation scheme is measuring the ability of our pipeline to fix

the provided vulnerability. There are scenarios where the ground truth patch differs from

our candidate patch, but we are concerned foremost with whether or not the bug is resolved.

Then, both patches in this scenario would pass our evaluation method.

3.5 Experimental Setup

In this section, we discuss the design of our experimental apparatus and provide details on

the preprocessing, testing, and evaluation schemes of our work. It is important to note that

we use multiple compute nodes equipped with one Nvidia A100, 48 CPU cores, and 256GB

of system memory throughout our study.

3.5.1 Datasets

Our primary dataset of interest is CVEFixes – a repository containing metadata, commit

history, CVE/CWE classification, and most importantly: a before-and-after representation
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of vulnerable code [13]. This dataset contains over 10,000 vulnerable functions, a majority

of which have labeled pairs of vulnerable (before) and non-vulnerable (after) code snippets.

We use the provided SQL database to extract these labeled pairs, and we further filter them

by language. We target the C programming language for the extraction of vulnerable code

snippets.

3.5.2 Dataset Preparation

As provided, the CVEFixes dataset does not lend itself to easy extraction of candidate

before-and-after pairs corresponding to each CVE. Therefore, we implement a preprocessing

pipeline to extract this information from the dataset. First, we obtain all function-level

changes for the target programming languages ordered by CVE and function name, excluding

CVEs with an associated CWE with minimal information such as “NVD-CWE-noinfo” and

“NVD-CWE-other”. We then filter out all CVE+name pairs that do not match our desired

pattern of one vulnerable “before” code snippet, and one non-vulnerable “after” code snippet.

After obtaining a feasible set of before-and-after code snippets, we further trim these candi-

dates by removing all pairs where at least one of the code snippets has a token count greater

than 500. This ensures that we are not at risk of exceeding the context length of the Large

Language Models used in our testing. After our dataset filtration stage, we are left with

eight CWEs with at least 100 candidate pairs, representing 697 unique CVEs.

3.5.3 Large Language Models

For this study, we target the following Large Language Models: GPT-3.5, GPT-4o, Llama

3 8B, and Llama 3 70B. Notably, these models represent state-of-the-art performance in the

categories of closed-source and open-source models. Importantly, the open-source nature of
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the Llama 3 family of LLMs enables the training of LoRAs to boost model performance,

as explained in Section 3.5.4. The range in parameter counts also offers an opportunity to

explore the performance gradient between the selected models. It is also important to note

that GPT-4o is a multimodal LLM, although our pipeline uses only text-based input.

Our selection of LLMs is also motivated by the maximum context length supported by each

model. A longer context length enables the LLM to incorporate more information during

the generation process, which is especially important during iterative generation, as each

iteration builds on top of the existing context. Therefore, a sufficiently large context window

is required for our pipeline to function, which is provided by all tested LLMs. This value

was derived from the OpenAI documentation for GPT models [111] and the implementation

specifications for the Llama 3 [132] models. Note that the GPT-3.5-Turbo and GPT-4o

models available from OpenAI represent the GPT-3.5 and GPT-4o models in our study. A

table describing the context length for each model is provided in Table 3.2.

Model Context Length (Tokens)
GPT-3.5 16,385
GPT-4o 128,000
Llama 3 8B 8,192
Llama 3 70B 8,192

Table 3.2: Context lengths of selected Large Language Models

3.5.4 LLM Augmentation

We train a Low-Rank Adaptation on the Llama 3 70B LLM using a portion of our created

dataset. We employ an 90/10 train/test split to ensure sufficient data is available for our

evaluation. We train on labeled “broken”/“fixed” pairs, corresponding to the pre-fix and

post-fix ground truth data. Then, we evaluate the LLM+LoRA on the test set by requesting

for the set of broken code samples to be rectified. A complete description of our evaluation

metrics is provided in Section 3.5.8.
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3.5.5 Pipeline Configurations

We use three pipeline configurations – (1) “unguided”, (2) “guided”, and (3) “guided+feed-

back”. The third configuration also includes the trained LoRA for the Llama 3 80B model.

An explanation of the prompting scheme and the feedback mechanism is shown in Sec-

tion 3.4.3 and Section 3.4.5, respectively. Across our five tested models, this results in 15

potential model/configuration combinations. Note that we use a random sample consist-

ing of 50% of the full dataset for the “guided+feedback” configuration. We provide a full

model/configuration diagram in Table 3.3.

Model “unguided” “guided” “guided+feedback”
GPT-3.5 X X X
GPT-4o X X X
Llama 3 8B X X X
Llama 3 70B X X X

Table 3.3: Models & pipeline configurations used in our study

3.5.6 Automated Pipeline Feedback

The LLM4CVE pipeline implements a “guided with feedback” configuration which employs

both Prompt Engineering and iterative generation to synthesize higher-quality candidate

vulnerability patches. We restrict the pipeline to two iterations as a means to balance

performance and computing power/throughput.

One important consideration is that our iterative process must not exceed the context window

of the LLM, as to prevent catastrophic forgetting. We employ two factors to mitigate this

concern. Each prompt and vulnerable code snippet is roughly 500 tokens long, ensuring that

even after incorporating the token length of the output as well, we can stay within the model’s

context limit. It is important to consider that our feedback prompts are approximately the

same size as the initial prompt, as we include the in-progress code at each iteration step.
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Once we obtain an output from the LLM, if we have not reached our iteration limit as

defined in Section 3.4.5, we extract the code from the response and submit it for testing.

We use the change in CodeBLEU score between this code and the previous round’s code,

as explained in Section 3.4.4. Using these metrics, we identify issues in the candidate patch

to include in the prompt for the next iteration. For example, if the CodeBLEU score has

diverged significantly, it is likely an erroneous condition has been encountered, and so we

inform the LLM that the candidate patch may be incorrect. Importantly, we never compare

the CodeBLEU score of the candidate patch and the ground truth in this step, as our pipeline

would not have the ground truth fix during real-world use.

A complete description of our pipeline’s iterative generation step is provided in Figure 3.5.
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Figure 3.5: LLM4CVE uses iterative generation to improve the overall quality of patch
synthesis
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3.5.7 Candidate Patch Extraction

After obtaining an output from the LLM, we must extract only the code from it, discard-

ing any delimiters or extraneous commentary. From our analysis, approximately 95% of

responses are well-formed, following the code block formatting specified in the prompt. For

these responses, we simply extract the candidate patch from the code block. The remain-

ing responses require nontrivial logic to extract patches from, which we implement as well.

In the case where we detect no code has been generated (<1% of samples), we output no

candidate patch instead.

3.5.8 Metrics

We use three principal metrics for evaluation – CodeBLEU scores, end-to-end compilation,

and required engineering effort. We employ a pass @ k scheme, with k = 1, as described

in [23]. Detailed descriptions of our chosen metrics are provided below.

CodeBLEU Scores

We evaluate the final output code from all configurations and model types against the ground

truth non-vulnerable code snippet. As a higher CodeBLEU score implies greater semantic

similarity between two pieces of code, a large (i.e. near 1.00) score between the ground

truth and the output code implies greater potential for valid bug correction. Importantly, a

candidate patch with a CodeBLEU score less than 1.0 can still be a viable fix, as there are

often multiple solutions to the given vulnerability.
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End-to-End Compilation

Next, we test our pipeline’s generated patches in real-world codebases. We directly apply

the result of our pipeline to the codebase affected by the vulnerability. Then, we compile

the entire project and determine the validity of the fix. This metric measures the ability

for the LLM4CVE pipeline to fix real-world security vulnerabilities. It also ensures that the

pipeline output is compliant , compiliable code.

Engineering Effort

Finally, we analyze the engineering effort required between traditional approaches and our

pipeline. We compare setup times, the level of experience required, and the technical com-

plexity of the proposed technique.

3.6 Results

In this section, we present the results of our evaluation of the LLM4CVE pipeline. We

measure three key metrics – CodeBLEU Scores, End-to-End Compilation Success Rate,

and required Engineering Effort. These metrics enable a multifaceted assessment of the

practicality, functionality, and effectiveness of the LLM4CVE pipeline. We provide visual

comparisons between the various configuration of our pipeline over the five Large Language

Models described in Section 3.5.3. Moreover, we compare pipeline results between all three

configurations and eight CVEs used.
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3.6.1 CodeBLEU Scores

For this metric, we compare the CodeBLEU scores between the pipeline output and the

ground truth fix. Our CodeBLEU software tool generates semantic similarity ratings in the

range of 0.0-1.0. A score of 1.0 implies an exact match when considering n-grams, syntax,

and dataflow between the two samples. An important consideration to keep in mind is

that there may be multiple ’valid’ fixes for a CVE, so an inexact match is not necessarily

indicative of invalid code. Therefore, we treat this metric as a probabilistic estimate of the

likelihood of generating a viable candidate fix. We extend this evaluation with real-world

evaluation of selected candidate patches in Section 3.6.2.
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Figure 3.6: Semantic similarity scores across all pipeline configurations and model types

We include results for all three pipeline configurations – “unguided” (zero-shot), “guided”

(one-shot), and “guided+feedback” (few-shot) – and the semantic similarity scores are pre-

sented in Figure 3.6. Importantly, the full configuration of the LLM4CVE pipeline –

“guided+feedback” (few-shot) – demonstrates a remarkable performance improvement across

all models, with the Llama 3 80B LLM peaking at a 20% increase in semantic similarity

scores.
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3.6.2 End-to-End Compilation

For this test, we focus on evaluating the pipeline’s effectiveness in fixing real-world bugs.

We begin by initializing our pipeline with a vulnerable function and associated prompt.

As an example, the cJSON_DeleteItemFromArray function from the iperf3 tool is chosen.

This tool is a TCP, UDP, and SCTP network bandwidth measurement tool, and uses the

library cJSON, in which this vulnerability lies. The software is affected by CVE-2016-4303

(CWE-120).

Once a candidate patch is obtained, we move to evaluation of its viability. We create a

testing harness that exploits the vulnerability at hands and compile the program with and

without the candidate patch. Our harness poses as a malicious actor trying to crash the

software by providing a malformed cJSON object with invalid lengths. Then, we run both

programs and note which program crashes. Through this evaluation, it was confirmed that

the candidate patch prevented the malicious actor from exploiting this vulnerability by

rejecting the malformed object, demonstrating the effectiveness of the LLM4CVE pipeline.

We provide the details of our testing harness in our public release of the pipeline, which can

be found in Section 3.9.

3.6.3 Engineering Effort

Every potential software solution must be evaluated on the basis of its efficiency and real-

world practicality. As a result, we compare the ease of use and complexity of traditional

human repair, GPT-based solutions, and open-source LLMs. We estimate the human cost

to repair security bugs from various compilations of data published on this subject. Other

statistics are measured directly from our pipeline.

The setup of GPT models is relatively efficient, as OpenAI provides a simple API for infer-
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ence. Moreover, the user does not need access to compute resources, unlike many open-source

LLMs. On the other hand, open-source models provide data security, as the entire train-

ing and inference process can be run on-site. Open-source LLMs require significantly more

setup time, as the user must manually configure their pipeline before obtaining valid output.

Moreover, several factors may influence the speed of generation, such as the user’s access to

GPU compute resources.

Trained engineers are the slowest of all three methods, as skilled human labor is required

to fix security vulnerabilities. While our pipeline does not require domain-specific experts

to function, manual code intervention often does. In legacy codebases, this problem is

exacerbated, as the requisite skilled labor is often inaccessible or simply missing. Several

studies have estimated the average time taken for human engineers to repair a security

vulnerability to be between several days [151], and one month [13]. Note that we combine

the setup and execution time into one statistic for this category.

The time values provided for the LLMs are based on the average time taken for members of

our team to set up a basic version of the GPT/Llama pipeline and output a single candidate

patch. We note that the LoRA training process requires access to a relevant dataset of

vulnerable functions (like CVEFixes), and we incorporate an estimate of the training time

into our evaluation. A comparison of the average time cost between these three approaches

is given in Table 3.4.

Technique Setup Time Execution Time
Human Intervention × 28 days [13]

Open-Source LoRA+LLMs 24 hours 10 minutes
GPT LLMs 1 hour 5 minutes

Table 3.4: Comparison of engineer-hours required for selected vulnerability patching tech-
niques
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3.7 Discussion

Our proposed pipeline lowers the barrier to entry for repairing critical security vulnerabilities,

especially in legacy codebases. Significantly less engineering effort is required in these types

of projects with deteriorating knowledge bases and few active maintainers. Moreover, the

speed and efficiency of our pipeline enable these fixes to be made with haste, lessening the

time between the discovery of a bug and its associated patch.

3.7.1 Impact

The LLM4CVE pipeline enables the quick repair of vulnerabilities in critical system software.

Moreover, our tool is of increased relevance to legacy codebases, where devoted maintainers

are often in short supply, and turnaround times are often long. By lessening the dependence

on these domain-specific experts, our pipeline enables critical security vulnerabilities to be

patched faster, increasing the overall safety of these programs.

These benefits are further enhanced by the speed of our pipeline, as demonstrated in Ta-

ble 3.4. Applying patches in time-sensitive environments – such as when a new vulnerability

is discovered – is desirable to maintain system integrity and robustness.

3.7.2 Candidate Patch Assessment

It is of interest to compare a patch generated by the LLM4CVE pipeline to the original

vulnerable function. We provide a candidate patch for the snmp_ber_decode_type function

affected by CWE-125 and CVE-2020-12141. Below, Listing 3.1 is the original vulnerable

code, while Listing 3.2 is generated by GPT-4o using our fully-featured pipeline.
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1 unsigned char * snmp_ber_decode_type(unsigned char *buff, uint32_t *buff_len ,

uint8_t *type)

2 {

3 if(*buff_len == 0) {

4 return NULL;

5 }

6

7 *type = *buff++;

8 (*buff_len)--;

9

10 return buff;

11 }

Listing 3.1: The original vulnerable function

1 unsigned char* snmp_ber_decode_type(unsigned char *buff, uint32_t *buff_len ,

uint8_t *type) {

2 if(buff == NULL || buff_len == NULL || type == NULL || *buff_len == 0) {

3 return NULL;

4 }

5

6 *type = *buff++;

7 (*buff_len)--;

8

9 return buff;

10 }

Listing 3.2: A candidate patch generated by GPT-4o

We see that the LLM output checks the validity of the input variables buff, buff_len, and

type, while the vulnerable code only attempts to validate buff_len (and that too with a

blind dereference). Then, it is evident that our pipeline was able to patch the vulnerability

in a viable, non-destructive manner.
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3.7.3 GPT v. Llama

Throughout our experiments, the Llama 3 70B model consistently matched or outperformed

other LLMs, especially using the full LLM4CVE pipeline. Even the relatively smaller Llama

3 8B model can compete with the GPT models once fine-tuning is performed. This demon-

strates the effectiveness of Parameter-Efficient Fine-Tuning techniques like LoRAs, as with-

out these adapters the GPT and Llama models perform roughly equivalently in the “guided”

(one-shot) pipeline configuration. The largest gains in generation ability were derived from

the few-shot iterative configuration of our pipeline, and this can be attributed to our fine-

tuning of open-source models. Some LLMs such as GPT-4o are not fine-tunable, and so we

are unable to apply all techniques mentioned in Section 3.4 to these models.

3.7.4 Ethical Considerations

Our tool serves to rectify vulnerabilities in codebases where the maintainers would otherwise

be unable to do so themselves. As a result, we expect that: (1) public usage of our tool will

serve the security community by keeping the end-user better protected from cybercriminals,

and (2) there are no significant ethical risks posed by our pipeline.

In addition, all vulnerabilities studied were already publicly disclosed by nature of being a

known CVE. Therefore, no further vulnerability disclosure is necessary.

3.8 Conclusion

The LLM4CVE pipeline serves to fix security vulnerabilities in critical system software with

minimal human input. By combining traditional bug repair methods with state-of-the-art

Large Language Model techniques, we improve the robustness and viability of automated

70



program repair. Our iterative pipeline allows for gradual refinement of the generated code,

which increases the likelihood of obtaining a viable candidate patch. We further extend

LLM4CVE with automated code analysis tools, LLM fine-tuning, and Prompt Engineering.

A thorough evaluation of real-world vulnerabilities through both automated and human-

centered means has shown the efficacy of our approach, and we believe our contributions

to the field will pave the way towards achieving automated program repair without any

intervention from trained experts.

3.9 Code Availability

We publish our testing apparatus, fine-tuned weights, and experimental data on our website.2

2https://sites.google.com/view/llm4cve
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Appendix A

Cross-Domain Security

This section contains a discussion regarding work on cross-domain security for Cyber-Physical

Systems completed at the same time as the other works presented in this thesis.

The interconnectedness of the growing digital economy has spurred radical growth in sensor

integration. Now, thousands of sensors are easily accessible in a plethora of widespread

consumer devices. However, attacks on the computer systems that control these sensors are

effective at stealing privileged information [10, 24, 40, 52, 62, 77, 84, 98]. With the further

integration of these technologies into consumer-facing products, the attack surface is poised

to expand significantly.

One domain where side-channel attacks have been particularly effective is with Additive Man-

ufacturing systems. For example, it has been demonstrated that sensitive Intellectual Prop-

erty (IP) can be extracted using only the acoustic emanations of a standard 3D printer [4, 27].

Even potentially sensitive information such as a user’s IP address has been leaked through

similar attacks [26]. However, methods to mitigate the stealing of proprietary IP have been

implemented as well [189].
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Additive Manufacturing is not the only domain where side-channel attacks are effective.

It has been shown that Neural Networks are vulnerable to information leakage as well.

By exploiting context switching between users of a shared GPU, attackers have extracted

hyperparameters and layer composition from common Deep Learning models [171]. Even

remote FPGAs are vulnerable to these types of attacks, where sensitive model information

is leaked by an intelligent adversary [196]. Other systems at risk to data extraction include

automotive wireless networks [165], DNA synthesis machines [38], and solar inverters [12].

As a concluding remark, a selected example of my research in security for Cyber-Physical Sys-

tems is presented. The distribution of phoneme frequency versus perceived loudness in Figure

A.1 is described by otolaryngologists and speech pathologists [106] as a Speech Banana.

Figure A.1: The Speech Banana
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