
UC Irvine
ICS Technical Reports

Title
Annotating the Java bytecodes in support of optimization

Permalink
https://escholarship.org/uc/item/1n06p1c8

Authors
Hummel, Joseph
Azevedo, Ana
Kolson, David
et al.

Publication Date
1997

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1n06p1c8
https://escholarship.org/uc/item/1n06p1c8#author
https://escholarship.org
http://www.cdlib.org/

vSL SAP-

Annotating the Java Bytecodes
in Support of Optimization

TECHNICAL REPORT 97-01

Joseph Hummel*,
Ana Azevedo^,
David Kolson^,

Alexandru Nicolau^

April 1997

Abstract

The efficient execution of Java programs presents a chalienge to hendware and software designers alike. The difficulty
however lies with the Java bytecodes. Their model of a simplistic, platform-independent stack machine is well-suited
for portability, though at the expense of execution speed. Various approaches are being proposed to increase the speed
of Java bytecode programs, including: (1) on-the-fly compilation to native code (also known as JIT or "just-in-time"
compilation); (2) traditional ("ahead-of-time") compilation of bytecodes to some higher-level intermediate form and
then to native code; and (3) translation of bytecodes to a higher-level language and then use of an existing compiler
to produce native code. Speedups on the order of 50 over standard bytecode interpretation have been claimed.

All of these approaches rely upon bytecode analysis (of varying sophistication) to extract information about
the program, which is then used to optimize the native code during the translation process. However, extracting
information from a bytecode representation is expensive, and in general does not collect all the information originally
available at the source-level.

In this paper we propose an optimization approach based on bytecode annotations. The bytecodes are anno
tated during the original source code to bytecode translation, allowing both traditionjil interpretation by a JVM and
aggressive optimization by an annotation-aware bytecode compiler. Annotations do not hinder portability not com
patibility, while preserving optimization information that is (1) expensive to recompute and (2) sometimes impossible
to recompute. Preliminary results yield bytecode with C-like performance using JIT technology.

"This work supported in part by ONR grant N00014-93-1-1348. Correspondence should be directed to this author via email
to jhuinmel@ics.uci.edu

^This work supported in part by CAPES
^Dept. of ICS, UC-Irvine.
SDept. of ICS, UC-Irvine.

Notice: This Material
may be protected
by Copyright Law
mtle17U.S.GT

Annotating the Java Bytecodes in Support of Optimization

Joe Hummel"Ana AzevedoJ David Kolson, and Alex Nicolau
University of California, Irvine

USA

April 1997

Abstract

The efficientexecution of Java programs presents a challenge to hardware and software designers alike.

The difficulty however lies with the Java bytecodes. Their model of a simplistic, platform-independent

stack machine is well-suited for portability, though at the expense of execution speed. Various approaches

are being proposed to increase the speed of Java bytecode programs, including: (1) on-the-fly compilation

to native code (also known as JIT or "just-in-time" compilation); (2) traditional ("ahead-of-time") com

pilation of bytecodes to some higher-level intermediate form and then to native code; and (3) translation

of bytecodes to a higher-level language and then use of an existing compiler to produce native code.

Speedups on the order of 50 over standard bytecode interpretation have been claimed.

All of these approaches rely upon bytecode analysis (of varying sophistication) to extract information

about the program, which is then used to optimize the native code during the translation process.

However, extracting information from a bytecode representation is expensive, and in general does not

coUect aU the information originally available at the source-level.

In this paper we propose an optimization approach based on bytecode annotations. The bytecodes are

annotated during the original source code to bytecode translation, allowing both traditional interpretation

by a JVM and aggressive optimization by an annotation-aware bytecode compiler. Annotations do not

hinder portability nor compatibility, while preserving optimization information that is (1) expensive to

recompute and (2) sometimes impossible to recompute. Preliminary results yield bytecode with C-like

performance using JIT technology.

1 Introduction and Motivation

On modern CPUs, direct interpretation of all but the simplestJava bytecode programs is horribly inefficient.

Speedups of 5 to 10 over interpretation are commonplace [DS96, HGH96], while speedups of 50 have been

•Please direct correspondence to this author at Dept of ICS, UC-Irvine, Irvine, CA, 92717. Ptnail; jhuinmel®ic8.uci.edu.
This work supported in part by ONR grant N00014-93-1-1348.

^This work supported in part by CAPES.

claimed [Inca]. The inefficiencies lie not with Java itself, but with the definition of the Java bytecodes.

Their model of a simplistic, platform-independent stack machine is well-suited for portability, though at the

expense of execution speed.

The problem is that a stack machine model does not map directly onto today's CPUs, which rely heavily

upon registers, caches, and sophisticated instruction scheduling to achieve high performance. Firstly, the

Java bytecode virtual machine (JVM) provides no operand registers and instead requires the use of a stack.

In addition, the JVM stack model sequentializes computation and prevents the reuse of values, since operands

must always be pushed (copied) onto the top of the stack. In fact. Sun Microsystemsconservativelyestimates

that 40% of all instructions executed are loads and stores to ajid from the stack [Way96]. Secondly, the Java

bytecodes provide no means for expressing the result of many common and important optimizations. For

example, register allocation is a critical optimization that is expressed in the native code produced by most

compilers. However, bytecodes provide no means for referencing registers, thus preventing the expression of

register allocation. Other important optimizations which cannot be expressed include:

1. instruction scheduling: access to only top of stack prevents reordering;

2. elimination of run-time checks: all checks are implicit in the bytecode;

3. strength reduction: e.g. no shift bytecode, so cannot strength reduce multiplies;

4. automatic reclamation of memory: bytecodes provide no explicit free.

For example, consider the following single line of Java code inside a method loo:

public void foo(int a[], int b[], int i)

aCi] ss (2 » a[i]) + bfi];

>

In essence, this code loads two array elements, performs a multiply and an add, and stores the result. Now

consider the corresponding bytecode stream shown in Figure 1, modified slightly to increase readability

(variable references are written using actual variable names, e.g. "aloadjO" appears as "aload a"). Of

particular interest are the columns denoting the number of loads, stores, and run-time checks performed

by each bytecode instruction. Firstly, observe that every instruction writes to memory, and all but one

instruction reads one or more values from memory. Secondly, note that every array access (iaload and

iastore) conceptually requires three run-time checks as per the JVM specification: (a) the array reference

is not Null, (b) the array index is greater than or equal to 0, and (c) the array index is less than the

length of the array. Since these run-time checks are implicit in the bytecode, the JVM must perform these

checks unless it can prove they are superfluous (which requires run-time overhead to track the necessary

BYTECODE

aload a

iload i

iconst 2

aload a

iload i

iaload

imul

aload b

iload i

iaload

iadd

lastore

COHHENTS LOADS STORES R-T CHECKS

// push ref to a 11
// push i 11
// push const 2 1
// push rei to a 11
// push i 11
// run-time checks performed by iaload:
// if a == Null throw NullPointerException;
// if unsigned(i) >= a.length throw ArrayIndexOutOfBoundsException;
// pop» pop. push aCi] 312
// pop, pop, push 2«a[i] 2 1
// push ref to b 11
// push i 11
// run-time checks performed by iaload:
// if b Null throw NullPointerException;
// if unsigned(i) >= b.length throw ArraylndexOutOfBoundsException;
// pop, pop, push b[i] 3 12
// pop, pop, push (2*a[i])+b[i] 2 1
// run-time checks performed by iastore:
// if a " Null throw NullPointerException;
// if unsigned(i) >= a.length throw ArraylndexOutOfBoundsException;
// pop, pop, pop, store into aCi] 31 2

Figure 1: Java bytecodes for aCi] = (2 * aCi]) + b[i];

information). Since JVMs currently do not perform this optimization, each array access adds a hidden cost

of two conditionals and one load^.

As a result, our single line of Java code produces a bytecode stream with a sum total of 22 memory

loads, 12 memory stores, 6 conditionals, and a few miscellaneous instructions. In all fairness, note that this

is not the best possible bytecode stream—it is possible to reorder the code and then replace two consecutive

instructions by a single dup2 instruction. This "improved" bytecode sequence however still requires the same

number of loads, stores, and conditionals.

The goal of our work is to achieve C-like performance, while retaining bytecode's advantage of instant

portability and remaining backward compatible with existing JVMs. Our approach is based on bytecode

annotation. During the initial compilation from source program to bytecode^, the compiler behaves like a

traditional optimizing compiler: it builds an intermediate form, performs various analyses, applies numerous

optimizations, and then generates bytecodes. However, in our approach, for each emitted bytecode instruc-

^Even though there axe conceptually three run-time checks that must be performed, note that the two index checks can

be performed using a single unsigned compare. Thus, a total of only two conditionals are needed. The load is necessary to

retrieve the array's length.

^Ciirrently Java and Ada95 compilers exist for generating bytecode.

tion the compiler also emits a corresponding annotation. This annotation contains information concerning

such things as register allocation, memory disambiguation, memory reclamation, and run-time checking—a

concise summary of the same information that if lost, would have to be recomputed (if at all possible).

The annotation stream thus parallels the bytecode stream, though it is stored separately to enable exist

ing JVMs to process the bytecodes without incident. However, an annotation-aware compiler, armed with

this precomputed stream of annotation information, can now generate high-performance native code. Our

preliminary results demonstrate this claim, achieving C-like performance from traditional bytecodes with

on-the-fly technology. Furthermore, we expect that existing approaches will alsofind the annotations useful,

since they offer information that is both precomputed and potentially unavailable otherwise.

The format of this paper is as follows. In the next section we discuss existing and related work, followed

by a detailed discussion of our approach in Section 3. In Section 4 we present some preliminary results,

followed by our conclusions in Section 5.

2 Existing and Related Work

To counter Java's bytecode inefficiencies, various approaches are being proposed. Existing approaches all

perform some degree of bytecode analysis, followed by a translation to native code. The e^ential difference

between these approaches is when, where, and how much time is spent in performing these steps.

The most popular approach is on-the-fly compilation, also known as "just-in-time" (or JIT) compilation

[Incc, Incd, Inch, Wil, USCH92, GR83, Fra94]. Analysis and translation are done online, typically during
run-time as each method (subroutine) is first called. However, analysis and translation can also be done

at load-time (e.g. during the bytecode verification process), or lazily on a per-bytecode basis [Jon]. The

native code is cached for reuse during the seme execution run, but is generally not saved for reuse across

execution runs. Though most JIT technology is proprietary and the resultingnative codecannot be captured,

commonly discussed approaches [Jon] include:

1. using machine's native stack in place of JVM stack,
2. using registers to hold top-most n stack values.

The advantage ofa JIT approach is improved performance while retaining "instant" portability, the ability to

download and run immediately. Though not important in traditional execution environments, this feature is

critical in the world of networks and ever-changing bytecode streams. The performance improvement is also

significant; a recent study of a number of JIT systems found speedups of 2-15 over direct interpretation; e.g.

Microsoft's JIT compiler achieved a 15-fold improvement on an FFT benchmark [DS96]. The disadvantage

of JIT compilers is that they cannot spend nearly enough time on analysis and optimization, otherwise

translation time may well dominate execution time. JIT compilers generally perform only local or basic-

BYTECODE HATIVE CODE

aload a load a»RO

iload i load i,Rl

iconst 2 move «2.R2

aload a load a,R3

iload i load i,R4

// aCi] = (2 ♦ aCi]) + b[i];

iaload

imul

aload b

iload i

iaload

iadd

iastoro

// 2 mn-time checks:

if R3 == Hull throw...

if un8igned(R4) >= length(R3) throw...
Ishift #2,R4,R4 // index»4 to access elem
load (R3)R4,R3

mult R2, R3, R2

load b,R3

load i,R4

// 2 similar run-time checks...
Ishift #2,R4,R4 // index'^4 to access elem

load (R3)R4,R3
add R2,R3,R2

// 2 similar run-time checks...

Ishift #2,R1,R1 // index*4 to access elem

store R2,(R0)R1

Figure 2: Postfix-based native code for 3-address, load/store RISC machine.

block optimizations, and thus cannot perform global (method-level) analyses and optimizations (e.g. data

and control flow, register allocation, instruction scheduling). Thisseverely limits the impact ofoptimization.

Thesecond approach follows that of a more traditional or ahead-of-time (AOT) compiler [HGH96, Inca,

PHT+, vV]. These systems view the bytecodes as a source language, and produce native code as their

output. Thesource is translated into some intermediate form, after which various analyses and optimizations

are performed. All this is done offline, before the bytecode program is loaded for execution. The obvious

advantage is that the compiler now has timeto more fully analyze andoptimize the bytecode stream. This has

the potential to yield native code with better performance than code produced by a JIT compiler. Speedups

of 5 (PHT+], 20 [HGH96], and even 50 [Inca] over direct interpretation have been reported; speedups on
the order of 6 have been claimed over current JIT systems [Inca]. The disadvantage of ahead-of-time

compilation is three-fold: (1) instant portability is now lost, (2) analysis information must be recomputed,
and (3) recomputing from a lower-level representation is more difficult as compared to computing the same

information at the source-level. Note that in general it is impossible to recompute all information originally
available at the source-level; for example, one cannot recompute algorithmic-level assertions inserted by a
programmer and then lost in the translation.

One ahead-of-time strategy is to map each JVM stack location to a machine register, and then generate

BYTECODE NATIVE CODE

aload a load a,RO

iload i load i,Rl

iconst 2 // nop
aload a // nop
iload i // nop

// aCi] = (2 ♦ a[i]) + bCi];

iaload

imul

aload b

iload i

iaload

iadd

iastore

// 2 nui-time checks:

if RO == Null throw...

if unsigned(Rl) >= length(RO) throw...
Ishift #2,R1,R2 // index*4 to access elem

load (R0)R2,R3
Ishift #1,R3,R3

load b,R4

// nop
// 2 run-time checks...
if R4 == Null throw...

if R1 >= length(R4) throw...
load (R4)R2,R4
add R3,R4,R3

// no run-time checks needed...

store R3,(R0)R2

Figure 3: Infix-based native code for 3-address, load/store RISC machine.

native code using these registers instead of the stack [HGH96]; a similar approach maps each JVM stack

location to a C variable, and then generates equivalent C code [PHT"'"]. For discussion purposes, we call

this strategy a posifix-hased approach to generating native code. For example, tracing the bytecodes shown

in Figure 1, the reader will discover that at most 5 stack locations are needed. Assigning these locations to

machine registers R0-R4, it is straightforward to generate the native code shown in Figure 2. The benefit is

obvious: though the code contains the same number ofconditionals asbefore (6), it requires only 11 memory

loads (versus 22) and 1store (versus 12). Note that it is possible to further improve upon this native code,

e.g. by performing copy elimination and register renaming as discussed in [HGH96]. However, this approach

is handicapped by its poor initial register allocation, which for example commonly assigns the same value

to multiple registers (i is loaded into registers R1 and R4) and places constants in registers (which hinders

strength reduction such as replacing mult by Ishift). In general the compiler must work significantly harder

to undo the effects of this initial register allocation; in the presence of complicated control flow, this will

likely lead to less effective optimization.

A more general strategy adopted by other ahead-of-time compilers is to recover as much of the original

source program as possible—its "infix" style and control flow—and then optimize [Inca]. The approach then

reduce to one of optimizinga more traditional intermediate form, a problem that has been well-studied and

with known techniques. For example, starting once again with the bytecodes of Figure 1, the native code

shown in Figure 3 can be produced using this approach. The resulting code is what one normally expects

from the compilation of our original line of Java source: a few memory loads and array calculations, some

run-time checks, some arithmetic, and a store. Altogether, this final (optimal) code sequence requires 7 loads

(2 due to run-time checks which cannot be safely eliminated in this example), 1 store, 4 conditionals, and

no multiplies (replace with a shift). Note that 2 run-time checks can, and were, safely eliminated.

Finally, instead of annotating the existing Java bytecode, another approach is to use an entirely different

intermediate code. Various proposals include UNCOL [Con58], ANDF [BCD'̂ 89], and slim binaries [Fra94].

Though these approaches may yield better performance than plain bytecodes, none attempt to include

higher-level program information. Furthermore, each represents a radical change from the existing bytecode

format, and is thus incompatible with existing JVMs.

3 Our Approach: Bytecode Annotation

Our approach is based on the general observation that compilers typically discard high-level information

during the translation from source code to intermediate code [NHN96]. As a result, during the generation

and optimization of the final machine code, the compiler has to not only (a) recompute information that was

already available at the higher-level, but also (b) accept the fact that some higher-level information cannot

be recomputed. This leads to missed opportunities for optimization, as well eis longer compilation times than

is strictly necessary—a particularly critical problem in the context of Java as mentioned earlier.

We propose a new approach for optimizing the Java bytecodes, based on the notion of annotations. This

system is summarized by Figures 4 and 6. The information collected by the compiler during the original

source to bytecode translation is encoded in the bytecode stream (Figure 4). This informationmay comefrom

sophisticated analysis, as well as from programmer directives. For each method loo in the source program,

the aiirihuit $$anno<a<ions is added to its list of attributes. Each bytecode of loo has a corresponding entry

in the data portion of ^^annotations-, these entries denote our annotations. When the bytecode stream is

eventually loaded for execution, the underlying JVM (which may or may not include a JIT compiler) is free

to ignore or use the annotations (e.g. Figure 6).

Thus, our approach remains backward compatiblewith existing JVMs, while enabling emnotation-aware

JIT compilers to perform more sophisticated optimization without expensive analysis. The result is very

good performance without a loss of instant portability. The annotations are also useful in more traditional,

ahead-of-time compilation systems, since their availability can reduce the need for expensive analysis while

potentially providing information that cannot be recomputed. The obvious disadvantage is that the presence

of annotations will lengthen the bytecode.

source code

optimizer

generator

bytecode

annotations

Figure 4: An annotation-generating compiler.

Another potential disadvantage concerns security, since incorrect or malicious annotations can cause

erroneous native code to be generated. However, the Digital Signature Initiative recently proposed by the

World Wide Web Consortium (along with similarschemes such as Microsoft's Digital Certificates) can be

used to digitally sign and authenticate bytecodes and their annotations. This will help eliminate security

problems resulting from malicious or untrusted code. One cannot of course eliminate all chance of error,

since even existing JIT compilers can potentially generate incorrect code.

3.1 A Simple Example

Each annotation contains a concise summary of information necessary for generating optimized native code.

Currently, this includes information about register allocation, run-time checking, and memory disambigua

tion. With a single pass and minimal bookkeeping (tracking physical register usage and assignments), an

annotation-aware JIT compiler will be able to process the annotations and produce quality native code.

Consider once again our running example from Figure 1. In Figure 5 weshow this same code, along with

our annotations. The src, inter, dest, and last use columns denote a virtual register allocation performed

during the original source to bytecode translation. Virtual register vO should be mapped to physical register

RO, vl to Rl, and so on until the number of physical registers is exhausted. The remaining virtual registers

are then mapped to memory locations. The inter column informs the JIT compiler to save intermediate

BYTECODE

1

1 src inter dest

last

use

1 r-t

1 check memory rel tag

aload a 1 vO /stack/objref/a
iload i 1 vl /stack/int/i

iconst 2 1

aload a 1 vO vO /stack/objref/a
iload i 1 vl vl /stack/int/i

iaload 1 vO.vl v2 v3 1 111 /heap/array/int/*
imul 1 2.v3 v3

aload b ! v4 /stack/objref/b
iload i I vl vl /stack/int/i

iaload 1 v4,vl v2 v4 1 101 /heap/array/int/#
iadd 1 v3,v4 v3 v4

iastore 1 v0,vl,v3 v2 v3 v3 1 000 /heap/array/int/*

Figure 5: Annotated Java bytecodes for aCi] =(2*a[i!])+b[i3.

values in the specified register(s) if possible; in this exeimple, inter is used to retain information from array

index calculations. The last use column denotes when a register becomes dead, though it is also overloaded

to denote when a store back to memory is necessary—e.g. iastore in Figure 5. In particular, if the src

register that contains the value to be stored also appears in the last use column, then the store must be

performed. Note that the virtual registers in the src column appear in the order in which they are pushed

onto the stack in the bytecode; thus, given any bytecode instruction it is always possible to determine which

src register contains which operand.

The r-t check column specifies which run-time checks should be performed. For array acceases, at most

three possible checks are required:

1. is the array reference = Null?
2. is the array index < 0?
3. is the array index >= the length of the array?

Each check is assigned a bit in r-t check; if the bit is 1, then code must be generated to do the check. Note

once again that if both (2) and (3) are required, only a single unsigned compare is actually needed.

The last column, memory ref tag, provides memory reference information suitable for performing disam

biguation. This in turn enables other forms of optimization such as instruction scheduling. Each bytecode

that may yield native code containing a memory reference is annotated with a "memory reference tag."

This tag denotes an imaginary path through the memory hierarchy of a machine, where provably different

memory locations are assigned different paths. For example, in Figure 5 the array reference (i.e. pointer)

a is given the tag /stack/objref/a since it is an object reference variable allocated on the stack, and is

known to represent the unique memory location named "a". On the other hand, note that references to aCi]

are tagged with /heap/array/since aCi] denotes any elementin an unnamed heap-allocated integer

array. The array is unnamed because heap-allocated objects can possibly alias one another in this example;

recall the bytecodes are derived from the foo method of Section 1, which takes two array arguments that

could in fact refer to the same array. Thus, references to bCi] are likewise tagged with /heap/array/int/*.

Using these tags, it becomes trivial to disambiguate memory references; e.g. a and i clearly denote different

memory locations, as do a and b. However, a[i] and bCi] may refer to the same memory location.

From these annotations, an annotation-aware JIT compiler can produce the same optimal native code

shown earlier in Figure 3.

3.2 Compile-time Production and Run-time Usage

During the initial compilation from source language to bytecode stream, our compiler (see Figure 4) behaves

like a traditional optimizing compiler: it builds an intermediate form, executes various analyses, applies

numerous optimizations (such as common subexpression elimination and loop invariant code removal), per

forms a virtual register allocation, and then generates the bytecodes. However, instead of discarding analysis

information once the bytecodes are generated, the compiler instead emits this information in the form of

annotations. Each instruction thus has an associated annotation, stored in the method's ^^annotations

attribute.

At run-time, an annotation-aware JIT compiler can safely ignore the annotations, or process them in

a single pass as it performs code generation. Enough information is supplied to assign physical registers

and track their lifetimes; this is the only bookkeeping required of the run-time system. Virtual registers

are mapped directly to physical registers, until the number of physical registers is exhausted; any remaining

virtual registers are then mapped to memorylocations. The onlyexception is that depending on the flexibility

of the target machine's instruction set, it may be necessary for the the JIT compiler to reserve a physical

register for scratch purposes (e.g. reloading spilled virtual register values).

4 Results

Our results revolve around four benchmarks: Heighbor, which performs a nearest-neighbor averaging across

all elements of a two-dimensional array; EM3D, a code that creates a graph and then performs a 3D elec

tromagnetic simulation [CDG''"93]; Huffman, a character stringcompression and decompression application;

and Bitonic Sort, which builds a binary tree and then performs bitonic sorting (recursively) [BN86].

Tomeasure the impact ofour annotations, we collected results usinga varietyof tools fromSun, Microsoft,

and Asymetrix. We compared th^e against a hand-simulated AJIT (Annotation-aware JIT) system, an

overview ofwhich isshown in Figure 6. All codes were run on a Pentium 200MHz 32MB PC (Windows 95).

secure bytecode

verify

bytecode

annotations

code gen

local instr

scheduler

native

Figure 6: The AJIT {Annotation-aware JIT) system.

4.1 Benchmark Timings

Table 1 presents the results for running each benchmark in a number of different environments, Note that

the times do not include translation nor compile time; timings thus represent the quality of the generated

code only. The codes were compiled using Sun's javac Java compiler, eind then executed in a number

of ways: Sun's java interpreter, Microsoft's jview JIT compiler, Asymetrix's SuperCede sclOjava AOT

compiler, our AJIT system, and finally the native code generated by compiling an unsafe C version using

Microsoft Visual The latter is "unsafe" in the sense that C does not perform run-time checking, a

feature required as part of the JVM specification. However, the C version does serve as a rough measure of

the best possible case.

A summary of Table 1 is presented in Tables 2 and 3. JIT and AOT offer speedups ranging from 5.3

to 23.8 over direct interpretation, but on average are still a factor of 2.0 (JIT) and 2.9 (AOT) slower in

comparison to C. Our annotation-based approach however offers speedups the same or better than both JIT

and AOT, and even more importantly runs on average only 1.1 times slower than C. Note that these results

are acheived without any loss in safety; all necessary run-time checks are still being performed.

A few notes. The execution times shown for Bitonic sort in Table 1 are roughly all the same; this

is due to the heavily recursive nature of the code, in which subroutine calling overhead overwhelmed all

other optimizations. The JIT system did quite well in all cases except EM3D; the difference is that EM3D is

a pointer-based code, while Neighbor and Huffman are array-based. The AOT system performed just the

Benchmarks Interpreter JIT AOT AJIT C

Neighbor
Array Size = 256x256

Iterations = 1500

554 47 104 19 18

EM3D

Tree Size = 1300 nodes

Iterations = 200

468 60 32 32 28

Huffman

Array Size = 30000
Iterations = 288

506 28 49 22 20

Bitonic Sort

Tree Size = 4096 nodes

Iterations = 512

500 23 21 20 20

Table 1: Benchmarks results, in seconds.

opposite; it did well for EM3D, and worse than JIT for Heighbor and HuJfman. Since the AOT system is

running ofHine, it has the potential to do much better in all cases. Its uneven results are most likely due to

an immature product.

Benchmarks Interpreter

Neighbor 1
EH3D i
Huffman 1

Bitonic Sort 1

JIT I AOT I AJIT I C
11.78 I 5.32 I 27.7 | 36.93
7.80 14.625 14.625 16.71

18.07 10.33 23 25.3

21.74 23.81 25 25

Table 2: Speed-up over direct interpretation.

Benchmarks Interpreter JIT AOT AJIT C

Neighbor
EM3D

Huffman

Bitonic Sort

36.93 3.13 6.93 1.33

16.72 2.14 1.15 1.15

25.3 1.40 2.45 1.10

25 1.15 1.05 1

Table 3: Slow-down in comparison to C.

4.2 The Neighbor Benchmark

To gain some insight into the power of the annotations, we will consider the Neighbor benchmark in more

detail. The corresponding Java code is shown below:

public void neighbor(double a[][])
•C

int i, j;

lor (i = 1; i < a.length-l; i++)
for (j = 1; j < a[i].length-l; j++)

al!i][j] = (aCi-1] Cj] + a[i+l][j] + aCi]Cj-l] + aCi]Cj+l]) / 4;

In the case of Feighbor, the annotations specified 10 virtual registers, 8 integer and 2 floating-point.

Even though not all the virtual registers were physicallyavailable (only 5 of the Pentium's 8 integer registers

are available for use within the JVM), the AJIT system was able to eliminate nearly half the bytecodes

from the final native code. For example, all bytecode load instructions with identical src and dest columns

denote register reuse, and thus can be skipped (as discussed in Section 3.1). Likewise, all writes to memory

can be skipped if they are annotated such that the src register being stored does not appear in the last use

column; e.g. in Neighbor, the index variables i and j never really need to be written to memory. Finally,

the annotations also allowed the number of static run-time checks in the code to be greatly (and safely)

reduced from 35 to 6, with none appearing in the inner loop. Dynamically, the total number of checks thus

dropped from 0{N'̂) to 0{N) for an A^-by-iV array. Note that it is not possible to eliminate all the run-time

checks, since 2D arrays are implemented as an array of (references to) arrays, and the sub-arrays are not

necessarily rectangular. Thus, each sub-array reference must be checked against Null, while the lengths of

the i-1 and i+1 sub-arrays must also be compared to the length of sub-array i. Since Sun's javac compiler

currently does very little source-level optimiztion, in order to be fair to the other tools we hand-optimized

the Neighbor source code to cache references to sub-arrays.

An interesting aspect of the annotations is that they allowthe compiler to generate explicit bytecodes to

perform run-time checking, and then disable the implicit checks that otherwise form a part of every array

access. For example, in Neighbor 34 of the 35 run-time checks are by default performed in the innermost

loop. However, all these checks can in fact be hoisted out of the inner loop, which is profitable if there also

exists a mechanism for disabling the run-time checks performed inside the loop; our annotations represent

such a mechanism, one that can be efficiently applied by any JIT or AOT compiler. The analysis otherwise

required to disable these checks can be prohibitively expensive in the case of JIT systems.

4.3 The Impact of Different Types of Annotations

Table 4 summarizes the contribution of each annotation on the overall efficiency of the native code produced

by our AJIT system. The biggest impact by far is found in AJIT column 1, which shows the effect of using

native code with good register allocation. The second AJIT column shows the impact of also eliminating

unnecessary run-time checks; the speedups are less dramatic, but still significant (a reduction of 2 to 9

Benchmarks | Interpreter

Neighbor

EH3D

Huffman

Bitonic Sort

AJIT

Reg. Alloc.
All RT Checks

Reg. Alloc.
RT Checks

Reg. Alloc.
RT Checks

w/o Instr. Sched. w/o Instr. Sched. with Instr. Sched.

Table 4: Breakdown of each annotation's contribution; times in seconds.

seconds in execution time). The final column summarizes the impact of our memory reference tags, an

annotation that is used primarily to aid in aggressive instruction scheduling. This annotation adds little

benefit, reducing execution time in only two cases (and even then by at most only 4 seconds). The reason is

that the instruction scheduling being performed is only a local, basic-block form of scheduling. This is the

best one can reasonably expect from a JIT system, which does not have the resources (time nor space) to

devote to more aggressive techniques such as software pipelining. However, we know the memory reference

tags are quite useful; for a simulated VLIW CPU, we achieved near 5-fold speedup on the same EM3D

benchmark, due solely to aggressive instruction scheduling enabled by better memory reference information

[NHN96].

5 Conclusions

The principal argument against the useof portable bytecodes is their lack ofefficient execution. However, we

have shown that efficiency does not need to suffer in relation to portability. Our annotation-based approach

is the first to achieve C-like performance while requiring only JIT technology. Using our approach, one

retains the advantage of instant portability of bytecode streams, remains backward compatible with existing

JVMs, and enables highly-efficient bytecode execution on modern CPUs. Our approach can also benefit a

more traditional ACT compilation system, since the annotations provide information that is expensive (if

not impossible) to recompute.

References

[BCD'*"89] M.E. Benitez, P.Chan, J.W. Davidson, A.M. Holler, S. Meloy, and V. Santhanam. ANDF: Finally
an UNCOL after 30 years. Technical Report TR-9I-05, University of Virginia, Department of
Computer Science, Charlottesville, VA, March 1989.

[BN86] G. Bilardi and A. Nicolau. Adaptive bitonic sorting: An optimal parallel algorithm for shared
memory machines. Technical Report TR86-769, Cornell University, 1986.

D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick.
Parallel programming in Split-C. In PTOceedings of Supercomputing 1993, pages 262-273, Novem
ber 1993.

M. Conway. Proposal for an uncol (universal computer object language). Communicaiions of the
ACM, l(I0):5-8, October 1958.

R. Dragan and L. Seltzer. Java speed trials. PC Magazine, October 22, 1996.

M. Franz. Code-Generation On-The-Fly: A Key to Portable Software. PhD thesis, ETH Zurich,
February 1994. See http://www.ics.uci.edu/ franz.

A. Goldberg and D. Robson. Smallialk-80: the language and its implementation. Addison-Wesley,
1983.

C. Hsieh, J. Gyllenhaal, and W. Hwu. Java bytecode to native code translation: The caffeine pro
totype and preliminary results. Proceedings of the 29th Annual Workshop on Microprogramming,
December 1996.

Asymetrix Inc. The asymetrix supercede virtual machine. See
http://www.asymetrix.com/nettools.

Borland Inc. Jbuilder. See www.borland.com/jbuilder.

Microsoft Inc. The microsoft virtual machine for Java. See
www.microsoft.com/java/sdk/default.htm.

Symantec Inc. Just in time compiler for windows 95/NT. See
http://www.symantec.com/jit/mdex.html.

J. Jones. Summary of java just-in-time compilers. Compiled from various postings on the web,
see http://www.cen.uiuc.edu/ jjones/jit.html.

S. Novack, J. Hummel, and A. Nicolau. A simple mechanism for improving the accuracy and
efficiency of instruction-level disambiguation. In C. Huang, P. Sadayappan, U. Banerjee, D. Gel-
ernter, A. Nicolau, and D. Padua, editors. Eighth International Workshop on Languages and
Compilers for Parallel Computing, volume 1033 of Lecture Notes in Computer Science, pag^
289-303. Springer-Verlag, 1996.

T. Proebsting, J. Hartman, G. Townsend, P. Bridges, T. Newsham, and S. Watter-
son. Toba: A java-to-c translator. Part of the U. of Arizona's Sumatra project; see
http://www.cs.arizona.edu/sumatra/toba.

D. Ungar, R. Smith, C. Chambers, and U. Holzle. Object, message, and performance: how they
coexist in Self. IEEE Computer, 25(10):53-64, October 1992.

Hanpeter van Vliet. Mocha: The java decompiler. See
http://web.inter.nl.net/users/H.P.van.Vliet/mocha.htm.

P. Wayner. Sun gambles on Java chips. BYTE, November 1996.

Tim Wilkinson. Kaffe: A free JIT virtual machine to run java code. See
web.8oi.city.ac.uk/homes/tim/kaffe/kafTe.htm.

