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Discrete stochastic analogs of Erlang epidemic models

Wayne M. Getza,b and Eric R. Doughertya

aDepartment of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley,
CA, USA; bSchool of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa

ABSTRACT
Erlang differential equation models of epidemic processes provide
more realistic disease-class transition dynamics from susceptible (S)
to exposed (E) to infectious (I) and removed (R) categories than
the ubiquitous SEIR model. The latter is itself is at one end of the
spectrum of Erlang SEmInR models withm ≥ 1 concatenated E com-
partments and n ≥ 1 concatenated I compartments. Discrete-time
models, however, are computationally much simpler to simulate
and fit to epidemic outbreak data than continuous-time differen-
tial equations, and are also much more readily extended to include
demographic and other types of stochasticity. Here we formulate
discrete-time deterministic analogs of the Erlang models, and their
stochastic extension, based on a time-to-go distributional principle.
Depending on which distributions are used (e.g. discretized Erlang,
Gamma, Beta, or Uniform distributions), we demonstrate that our
formulation representsbothadiscretizationof Erlangepidemicmod-
els and generalizations thereof. We consider the challenges of fitting
SEmInRmodels and our discrete-time analog to data (the recent out-
break of Ebola in Liberia). We demonstrate that the latter performs
much better than the former; although confining fits to strict SEIR
formulations reduces the numerical challenges, but sacrifices best-fit
likelihood scores by at least 7%.
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Introduction

An SEIR epidemic modelling framework, where S, E, I and R represent the named suscep-
tible (S), exposed (E: infected but not yet infectious), infectious (I), and removed (R: either
dead or recovered andnow immune) disease classes – and italicized letters S,E, I, andR rep-
resent the number of individuals in each of these classes – underpins all infectious disease
modelling at the population level [27,52]. This holds whether themodels are continuous or
discrete-time [21], deterministic or stochastic [2,10], or framed at the compartmental- or
individual-level formulation [1,11,24]. Fitting epidemiological models to real data possess
significant challenges becausemost epidemics do not conform to the assumptions underly-
ing the basic SEIR formulation. In particular, populations are rarely spatially homogeneous
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[25,30,32], and disease transmission varies with age [55] and other individual-level factors,
including behaviour [16]. An additional acknowledged weaknesses of the SEIR formula-
tion is that if a group of n individuals enter class X (X = E or I) at time t and exit at rate
γ , then the number of individuals still in state X at time t + τ is given by the exponen-
tial function n(t + τ) = n(t) e−γ Xτ [56]. This approach has been shown from outbreak
data to underestimate the basic reproductive ratioR0 of an epidemic process [56]. Amore
reasonable assumption is that individuals will mostly exit around a characteristic disease-
class-specific residence time ρX, which corresponds to the latent period and infectious
period for any disease [49,56]. Models that address deviations from the above assumptions
have been proposed. For example, one way to modify the standard SEIR continuous-time
formulation so that the modal exit-time of individuals from disease states E and I is close
to empirically measured values, ρE and ρI respectively, is to use either a discrete-time for-
mulation in which individuals take a set number of time periods to move through each
disease state (e.g. as has been done in modelling SARS [23,37]), or to use a continuous
time distributed-delay approach [7,9,13,33]. This latter approach can be modelled using a
so-called boxcar formulation: the process by which individuals pass through each disease
state (i.e. compartment) X is represented by individuals passing through kX concatenated
sub-compartments at a rate γ X in each of the sub-compartments [7,31,33,35] (Figure 1).
In this case, the number of individuals n(t) entering at time t still in state X at time t + τ is
not given by an exponential function, but rather n(t)multiplied by (1 − FErlang(τ , kX, γ X)),
where FErlang(τ , kX, γ X) is the cumulative Erlang distribution with parameters kX and γ X.
Note that the Erlang is a special case of the Gamma distribution when the shape parameter
kX is a positive integer [33]. Further, the fact that a distributed-delay integrodifferential
equation formulation can, under certain assumptions, be turned into an ordinary differen-
tial equation formulation of higher dimension, using the so-called ‘linear chain trick’ has
been known in biological modelling for the past 40 years ([14,40,44], and see [51] for a
more recent treatment).

Beyond individuals emerging from a disease state according to an Erlang distribution,
a more general discrete-time modelling approach can be taken in which any distribution
of emergence can be specified. Here we develop a general discrete-time, distributed-delay
formulation, taking the novel approach of identifying disease subclasses that represent
the number of days individuals have left before they transfer from the current disease class
to the next in the chain (i.e. E to I and I to R, and so on), as depicted in Figure 1.
This permits exponential, Erlang, and Uniform distributions, among others, to be used.
Beyond comparing our discrete-time formulation that corresponds to continuous-time
Erlang formulations, we compare simulation output among the Erlang, Exponential, and
Uniform cases, demonstrating some surprising results. For example, the case that yields
the highest levels of prevalence switches as the values of the reproductive ratios R0
increase from low (R0 = 1.25) to very high (R0 = 20). We also demonstrate how eas-
ily discrete-time formulations can be implemented stochastically, and we compare sample
mean ensembles of stochastic simulations to discrete-time solutions. Finally, we compare
the efficiencies of fitting continuous-time Erlang models and our various discrete mod-
els to real data. To keep our analysis focused, our formulation and simulations ignore
the processes of recruitment and mortality. These, of course, are easily added, as we dis-
cuss, along with other important extensions such as spatial structure usingmetapopulation
networks.
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18 W. M. GETZ AND E. R. DOUGHERTY

Figure 1. The standard continuous-time SEIR compartmental model has individuals flowing through
the E and I compartments at ratesγ E andγ I respectively,with rates of flow fromcompartments S to E and
V to S (V is the immunepart of R, D is the deadpart of R) represented by τ andγ V respectively. The boxcar
or Erlang version divides E into kE and I into kI sub-compartments with the mean time that it takes to
pass through compartments E and I nowgiven byρE = kE/γ E andρ I = kI/γ I, respectively. The discrete
time-to-gomodel canbe regardedas thediscrete-timeanalogof the Erlangmodelwhere theproportions
(deterministic setting) or probabilities (stochastic setting) pEi , i = 1, . . . , nE and pIj , j = 1, . . . , nI follow
Erlang distributions, as described in the text.

Model formulation

Continuous deterministic

The basic equations for the SEIR distributed-delay model [7] are well known. For the sake
of completeness, however, we present these equations here in terms of a general transmis-
sion function T ) that depends on the total number Itot of infectious individuals in the
population. As depicted in Figure 1, if the number of E and I class compartments is kE and
kI, respectively, with associated rate parameters γ E and γ I, then the boxcar models takes
the form:

dS
dt

= −T (Itot)S

dE1
dt

= T (Itot)S − γ EE1

dE2
dt

= γ E(E1 − E2)

...

dEkE
dt

= γ E(EkE−1 − EkE) (1)
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JOURNAL OF BIOLOGICAL DYNAMICS 19

dI1
dt

= γ EEkE − γ II1

dI2
dt

= γ I(I1 − I2)

...

dIkI
dt

= γ I(IkI−1 − IkI)

dR
dt

= γ IIkI ,

where

Etot =
kE∑
i=1

Ei and Itot =
kI∑
i=1

Ii. (2)

The simplest form of the transmission function is T (I) = T (Itot) = βItot. It is convenient
when applying the model to normalize the transmission rate parameter β > 0 in T by
total population size N so that β does not have to be adjusted for populations of different
sizes. This ensures that expressions for the basic reproductive ratio, R0, of the disease is
independent of population size (cf. [4]). This normalization is done by dividing β by N,
where

N(t) = S(t) + Etot(t) + Itot(t) + R(t). (3)

If deaths are ignored during the course of the epidemic, then N(t) is constant and the
transmission function

T (Itot)(t) = βItot(t)
N

, (4)

varies only with Itot(t) over time, otherwise it will vary with N(t) as well. In this latter
case, T (Itot)(t) is referred to as frequency-dependent transmission. This representation
of transmission is particularly appropriate when contact rates are influenced by processes
other than population density, as in sexually transmitted diseases [22]. The ubiquitous
density-dependent form τ(I,N) = βI though is useful when population density is low.
A more general approach that approximates density-dependent transmission at relatively
low populations densities and frequency-dependent transmission at relatively high popu-
lation densities, for some arbitrary constant L>0 (to be estimated when fitting the model
to data), is given by the transmission function [21,41] τ(I,N) = βI/(N + L).

The assumption that the transmission rate parameterβ is time independent is also prob-
lematic. The primary reason that epidemics subside, other than running out of susceptible
individuals (which is linked to the so-called threshold effect [22,38]), is that β(t) precipi-
tously falls due to behavioural changes that influence contact rates as the epidemic proceeds
(e.g. as in the recent Ebola outbreak inWest Africa [12,24]). A remedy for this is to assume
that β has the exponential form β(t) = β0 e−εt (e.g. as in [3]). This approach, however,
implies that β declines most steeply at the start of the epidemic – a highly suspect assump-
tion. Amore likely situation is that β only starts to decline once public awareness of the full
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20 W. M. GETZ AND E. R. DOUGHERTY

potential of the epidemic becomes apparent. In this case, a reverse S-shaped curve, such as

β(t) = β0

1 +
(

t
tc

)ε , (5)

is more realistic, where tc > 0 is that amount of time after the start of the epidemic that it
takes for β(t) to fall to half its original intensity, and ε > 1 is an abruptness parameter for
the onset of this fall (in a manner analogous to the onset of density-dependence discussed
in [20]). In the absence of an independent estimate for tc when fitting models to data, one
can estimate β0 by fitting a constant β model to the early stages of an epidemic, and then
use this value to estimate the reproductive ratio parameterR0 (the number of individuals
that the index case can be expected to infect at the start of the epidemic [15,26]).

Using the simple frequency-dependent transmission rate (Equation (4)) and assuming
thatβ is constant over time, themodel given byEquations (1)–(4) is a five parameter system
(β > 0, γ E > 0, and γ I > 0, as well as positive integers kE and kI) that can be fitted to data
to obtain the best estimate of the transmission rate parameter β , and the mean residence
times

ρE = kE

γ E and ρI = kI

γ I , (6)

in the disease states E and I, respectively. This also implies that the mean residence from
exposure to removal is

ρE+I = kE

γ E + kI

γ I . (7)

Here we make use of the fundamental definition of R0 as the ratio of all newly infected
individuals transferring into disease classes E+I to the net change of individuals across
classes E+I [15,26]. This is formally equivalent to finding the dominant eigenvalue of the
next generation matrix, as defined in [53]. Since we are ignoring births and deaths, this
ratio has the particularly simple form

R0 = βρI = βkI

γ I .

Note that ignoring births and deaths can also be regarded as an approximation to situations
where the epidemiological process is an order of magnitude faster than demographic pro-
cesses. This is, however, an assumption that breaks down once disease-induced mortality
rates become significantly greater than background natural mortality rates.

Discrete time-to-go formulation

In formulating a discrete-time analogue of Equation (1), we take an approach of placing
individuals into subclasses that represent the length of time that each will remain within
the disease class under consideration. Thus, we use the notation Ei(t + 1) to represent the
number of individuals in disease class E at time t+1 who will depart from this class (to
enter class I) at time t+1+i. These individuals were either in compartment Ei+1 at time t or
are newly allocated from the individuals that were infected over the time interval [t, t + 1)
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JOURNAL OF BIOLOGICAL DYNAMICS 21

using the proportions described below. The same process applies to the compartments rep-
resented by the variables Ii(t + 1), with individuals transitioning to disease class R. These
proportions are denoted by 0 < pEi < 1, i = 1, . . . , nE and 0 < pIi < 1, i = 1, . . . , nI, and
represent the proportions of individuals entering the disease classes E and I who only stay
in those classes for i additional periods of time. The integers nE and nI are selected so
that all individuals (essentially > 99% in the case of populations of several thousand or
more individuals) upon entering diseases classes E and I at time t have exited these disease
classes on or before times t + nE and t + nI, respectively. In the context of stochastic mod-
els, these proportions can be used to characterize the cumulative functions F(x; kE, γ E) and
F(x; kI, γ I) of two distributions: namely,

F(0; kX, γ X) = 0, F(j; kX, γ X) =
j∑

i=1
pXi , j = 1, . . . , nX,

F(nX; kX, γ X) = 1, X = E, I.

In our discrete model, we use the variables E0(t) and I0(t) to represent the number of
individuals changing state over the discrete-time interval [t, t + 1] from S to E and E to
I, respectively. We also use Etot(t) and Itot(t) to represent the total number of individu-
als in classes E and I at time t. Over the time interval [t, t + 1), the susceptibles S(t) are
assumed to be exposed to Itot(t) infectious individuals (taken to be constant over the inter-
val, which is generally a reasonable approximation), thereby resulting in the infection of
approximately

E0(t) =
(
1 − e−T (Itot(t−i))

)
S(t), (8)

susceptible individuals. Hence we obtain the equation:

S(t + 1) = S(t) − E0. (9)

Recall that the equations for the compartments Ei(t + 1) need to account for the transfer
of individuals from Ei+1(t), as well as the newly allocated individuals pEi+1E0(t). These
considerations yield the system:

EnE(t + 1) = pEnEE0

EnE−1(t + 1) = EnE(t) + pEnE−1E0
...

E1(t + 1) = E2(t) + pE1E0.

(10)

These newly infectious individuals I0(t) can themselves be distributed so that proportions
pIi , where i = 1, . . . , nI enter the removed class at time t. That is, we obtain the equations:

InI(t + 1) = pInIE1(t),

InI−1(t + 1) = InI(t) + pInI−1E1(t)

... (11)
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22 W. M. GETZ AND E. R. DOUGHERTY

I1(t + 1) = I2(t) + pI1E1(t),

R(t + 1) = R(t) + I1(t).

Finally, we need to compute Etot(t) and Itot(t) by applying Equation (2) with nE and nI
replacing kE and kI to obtain

Etot(t) =
nE∑
i=1

Ei(t)) and Itot(t) =
nI∑
i=1

Ii(t)). (12)

Stochastic implementation

The discrete stochastic formulation results in amodel that is identical to the discrete deter-
ministic model except for the fact that proportions in Equations (10) and (11) are replaced
by random drawings frommultinomial distributions, which approach proportions (i.e. the
discrete formulation) asR0 (i.e.β) increases in size and the number of samples grows large.
In presenting the stochastic model, we use the notation

x ∼ BINOMIAL
[
n, p

]
,

to denote that x is a random variable representing the number of heads that might be
obtained when flipping a biased coin n times, with a probability p of getting heads on each
flip (i.e. a Bernoulli process with probability p). Thus, x is binomially distributed. We will
use the notation X to represent an instance of the number of heads (positive outcomes) of
an actual n-trial sampling of this distributionwith probability parameter p. More generally:

(X̂1, . . . , X̂q) is one instance of (x1, . . . , xq) ∼ MULTINOMIAL
[
n, p1, . . . , pq

]
.

In otherwords, it is the probability of getting X̂i positive outcomes of type i = 1, . . . , qwhen
the probability of getting a positive outcome of type i at any drawing is pi, with

∑q
i=1 pi = 1,

and the total number of drawings is n. To keep our presentation succinct, the convention

(X̂1, . . . , X̂q) := MULTINOMIAL
[
n, p1, . . . , pq

]
,

is adopted in the model formulations below to denote one outcome of a random drawing
from the indicated distribution.

With this above notation, the stochastic equivalent of the deterministic model repre-
sented by Equations (9)–(12) is

Itot(t) =
nI∑
i=1

Ii(t))

Ê0(t) = BINOMIAL
[
S(t), 1 − e−T (Itot(t−i))

]

(
Ê1(t), . . . , ÊnE(t)

)
:= MULTINOMIAL

[
E0(t); pE1 , . . . , p

E
nE

]

S(t + 1) = S(t) − E0(t)
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JOURNAL OF BIOLOGICAL DYNAMICS 23

EnE−1(t + 1) = ÊnE(t)

EnE−2(t + 1) = EnE−1(t) + ÊnE−1(t)

... (13)

E1(t + 1) = E2(t) + Ê2(t)

I0(t + 1) = E1(t) + Ê1(t)(
Î1(t), . . . , ÎnE(t)

)
:= MULTINOMIAL

[
I0(t); pI1, . . . , p

I
nI

]

InI−1(t + 1) = ÎnI(t),

InI−2(t + 1) = InI−1(t) + ÎnI−1(t)

...

I1(t + 1) = I2(t) + Î2(t)

R(t + 1) = R(t) + I1(t) + Î1(t).

Erlang probabilities

If wewant our probabilities to follow truncated Erlang distributions, thenwe can first select
nE such that

nE = argmin
n

⎡
⎣CE(n) =

n−1∑
j=1

enγ
E
(nγ E)j

(j − 1)!
> 0.99

⎤
⎦ .

We can then define the probabilities associated with passage through disease class E as

pEi = 1
CE(nE)

⎛
⎝

nE−1∑
j=1

e(i−1)γ E
(iγ E)j

(j − 1)!
−

nE−1∑
j=1

eiγ
E
(iγ E)j

j!

⎞
⎠ , i = 1, . . . , nE.

Similarly, we select nI such that

nI = argmin
n

⎡
⎣CI(n) =

n−1∑
j=1

enγ
I
(nγ I)j

(j − 1)!
> 0.99

⎤
⎦

and define

pIi = 1
CI(nI)

⎛
⎝

nI−1∑
j=1

e(i−1)γ I
(iγ I)j

(j − 1)!
−

nI−1∑
j=1

eiγ
I
(iγ I)j

j!

⎞
⎠ , i = 1, . . . , nI.

Fitting the discrete Erlang model to data involves estimating five parameters: (kE, γ E, kI,
γ I,β). It also requires constraining kE and kI to be positive integers. In general, however, we
can allow kE and kI to vary continuously on the positive reals, and use gamma functions,
which interpolate the Erlang when kE and kI are not integers. The boxcar version of the
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24 W. M. GETZ AND E. R. DOUGHERTY

distributed-delay model (which, in addition to its formulation in terms of k first-order
differential equations, can also be formulated as a kth order ordinary differential equation),
under assumptions that the rate is constant through all the box cars associated with each
disease class, is known to produce Erlang distribution residence times [29]. This implies
that the distribution of residence times x is given by the probability density function

f Erlang(x; k, γ ) = γ kxk−1 e−γ x

(k − 1)!
,

and, hence, the cumulative distribution function

FErlang(x; k, γ ) = 1 −
k∑

j=0

(γ x)k e−γ x

j!
.

From these we can calculate the probabilities (proportions in the deterministic model)
that individuals entering a k boxcar complex at time t, and exiting this concatenation of
cars during the time interval [t + i − 1, t + i], is

pErlangi =
⎛
⎝

k∑
j=1

e(i−1)γ ((i − 1)γ )j

j!
−

k∑
j=1

eiγ (iγ )j

j!

⎞
⎠ , i = 1, . . . ,∞.

A theoretically simpler, and computationally faster, approach to fitting the discrete model
to data is to use one parameter Uniform distributions fUnif (x; 0, a) rather than two
parameter Erlang. These probabilities are provided in the Appendix.

Simulation study

Initial conditions and cases considered

Various approaches can be taken to setting initial conditions in comparing discrete and
continuous time simulation models. The primary consideration is to have a good way to
match up initial values because the continuous model has kE + kI + 2 states while the dis-
crete model has nE + nI + 2 states (where, typically, nX > 2kX, X=E, I). Further, when
injecting stochastic models into the comparative study, one needs to be cognizant of the
fact that continuous and discrete deterministic simulations are independent of scale – i.e.
the size ofN – and only the stochastic simulations are affected by the size ofN. Specifically,
the influence of demographic stochasticity on simulated values reduces at a rate propor-
tional to 1/

√
N. In our first set of simulations, we selected S(0) = 10, 000, but varied S(0)

from 1000 to 106 in subsequent sets of simulations that explore aspects of demographic
stochasticity and compare the efficiency of fitting discrete versus continuous models to
simulated data. To initiate the start of an epidemic, we placed one individual in the last
Esubcomponent class, which corresponds to setting EkE(0) = 1 in the continuous time
model and E0(0) = 1 in the discrete-time deterministic and stochastic Erlang models. In
all of the simulations, the initial values of the remaining E and I subcomponent states were
set to 0, as was R(0).

For purposes of illustration and comparison of simulations we consider continuous and
discrete-time implementations for cases involving kE and kI equal to 5 and 10, as well
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Table 1. Simulation cases 1–33 are sorted from the shortest (5 days) to longest
(10 days) mean infectious period, and then subsorted within infectious periods
from shortest to longest total duration (exposed plus infected) and within that
from least to most distributed-delay in infected and then exposed.

Cases (γ E, kE, γ I , kI) (ρE, ρ I , ρE+I) β = 0.25, β = 1, β = 2

1, 17, 33 (1, 5, 1, 5) R0 = 20
2, 18 (2, 10, 1, 5)
3, 19 (1, 5, 2, 10) (5, 5, 10) R0 = 1.25,R0 = 5
4, 20 (2, 10, 2, 10)
5, 21 (1, 5, 0.5, 5 )
6, 22 (1, 10, 1, 5)
7, 23 (0.5, 5, 2, 10) (10, 5, 15) R0 = 1.25,R0 = 5
8, 24 (1, 10, 2, 10)
9, 25 (1, 5, 0.5, 5)
10, 26 (2, 10, 0.5, 5)
11, 27 (1, 5, 1, 10) (5, 10, 15) R0 = 2.5,R0 = 10
12, 28 (2, 10, 1, 10)
13, 29 (0.5, 5, 0.5, 5)
14, 30 (1, 10, 0.5, 5)
15, 31 (0.5, 5, 1, 10) (10, 10, 20) R0 = 2.5,R0 = 10
16, 32 (1, 10, 1, 10)

Note: Transmission parameter β = 0.25 in Cases 1–16 and β = 1 in Cases 17–32 producing the
R0 values given in the last column, while β = 2 was used only in Case 33.

as parameterizations involving γ E and γ I equal to 0.5, 1, and 2, and β equal to 0.25, 1,
and 2, as listed in Table 1. Implementation of these cases by the discrete model requires
that we compute probabilities associated with Erlang cumulative distribution functions
FErlang(x; 5, 0.5), FErlang(x; 5, 1), FErlang(x; 10, 1), and FErlang(x; 10, 2). These probabilities
are given in Table 2.

Differences among continuous deterministic solutions

Continuous-time, deterministic simulations of prevalence levels over time (i.e. plots of
Itot(t) against t) for Cases 1–32 are illustrated in Figure 2(a). These 32 cases can be orga-
nized into four groups, each of which yields the same set of (ρE, ρI, ρE+I) values, differing
only in whether 5 or 10 boxcars were used in each of the E and I classes (Table 1). Themain
difference among the four groups corresponding to a particular set of values (ρ̂E, ρ̂I, ρ̂E+I)

is the amount of variation associated with the distributions around ρE and ρI: specifically,
5-boxcar formulations with associated progression rate γ̂ have larger variation around ρX

than 10-boxcar formulations with associated rate 2γ̂ . These four groups of four cases each
were implemented in the context of two values of β to yield corresponding values of the
reproductive ratioR0. The resulting eight sets of four cases fall very neatly into eight sets
of outputs (Figure 2(a)), indicating that the selection of 5 versus 10-boxcar formulations
makes very little difference in terms of the projected levels of disease prevalence associ-
ated with a given (β , ρ̂E, ρ̂I, ρ̂E+I) combination. Clearly, as expected, lower R0 leads to
significantly lower peak prevalence, but as we see in Figure 2(a), it also results in longer
outbreaks.

As expected, smaller values of ρE lead to more rapid outbreaks, as we see in com-
paring the (R0, ρ̂E, ρ̂I) = (10, 5, 10) (cf. Cases 25–28 in Figure 2(b)) and (R0, ρ̂E, ρ̂I) =
(10, 10, 10) (cf. Cases 29–32 in Figure 2(b)) outbreaks, with a noticeably higher peak
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26 W. M. GETZ AND E. R. DOUGHERTY

Table 2. Probabilities associatedwith truncating the four indicated Erlang cumulative distribution func-
tions FErlang(x; k, γ ) (pTrEri ), as well as the truncated exponential distribution (pTrExi : Erlang with k= 1):
truncation involves setting the < 1% cumulative right tail probabilities to 0 and renormalizing the
remaining> 0.99% cumulative probabilities to 1.

(k, γ , ρ) (5, 1, 5) (10, 2, 5) (5, 0.5, 10) (10, 1, 10) (1, 0.2, 5) ρ = 5
x = i pTrEri pTrExi pUnii

1 0.0153 0.0004 0.0008 0.0000 0.1828 0.1000
2 0.0902 0.0265 0.0078 0.0002 0.1496 0.1000
3 0.1680 0.1378 0.0238 0.0027 0.1225 0.1000
4 0.1953 0.2482 0.0455 0.0133 0.1003 0.1000
5 0.1755 0.2502 0.0674 0.0365 0.0821 0.1000
6 0.1338 0.1747 0.0848 0.0693 0.0672 0.1000
7 0.0912 0.0947 0.0952 0.1021 0.0551 0.1000
8 0.0573 0.0426 0.0986 0.1249 0.0451 0.1000
9 0.0337 0.0166 0.0958 0.1326 0.0369 0.1000
10 0.0189 0.0058 0.0885 0.1259 0.0302 0.1000
11 0.0102 0.0019 0.0786 0.1093 0.0247 0
12 0.0053 0.0005 0.0675 0.0879 0.0203 0
13 0.0029 0.0001 0.0564 0.0665 0.0166 0
14 0.0013 0 0.0460 0.0477 0.0136 0
15 0.0006 0 0.0368 0.0326 0.0111 0
16 0.0003 0 0.0289 0.0215 0.0091 0
17 0.0001 0 0.0223 0.0136 0.0075 0
18 0.0001 0 0.0170 0.0084 0.0061 0
19 0 0 0.0128 0.0005 0.0050 0
20 0 0 0.0096 0 0.0041 0
21 0 0 0.0070 0 0.0033 0
22 0 0 0.0052 0 0.0027 0
23 0 0 0.0037 0 0.0022 0
24 0 0 0 0 0.0018 0

Note: The last column is the uniform (pUnii ) distribution for which ρ = 5.

prevalence in the former (roughly 6000 versus 4500). Despite these differences, because
they arise in delays associated with disease class E only, the areas under the prevalence
curves of Cases 25–32 all add up to the same value of 49,651 (units are prevalence-
days when time is in days). For Cases 17–24 the area under the prevalence curves sums
to 99,995. The pattern of lower-delayed peaks when ρE is larger, can be verified from
Figure 2(a), by comparing the other three sets of comparisons: (R0, ρ̂E, ρ̂I) = (5, 5, 5)with
(R0, ρ̂E, ρ̂I) = (5, 10, 5), (R0, ρ̂E, ρ̂I) = (2.5, 5, 10)with (R0, ρ̂E, ρ̂I) = (2.5, 10, 105), and
(R0, ρ̂E, ρ̂I) = (1.25, 5, 5) with (R0, ρ̂E, ρ̂I) = (1.25, 10, 5).

Differences among deterministic andmean stochastic solutions

The discrete Erlang model produces very similar results to its corresponding continuous
Erlang model, as we see in Figure 3 for both Cases 29 and 32, although the discrete peak is
slightly lower. The mean of the corresponding stochastic ensemble for the caseN=10,000
is slightly lower than either deterministic case. Specifically, the [continuous deterministic,
discrete deterministic, stochastic mean] peak values for Case 29 are [4219, 4102, 3987] and
for Case 32 are [4563, 4450, 4262] (rounding to integers, where the stochastic mean is
averaged over 100 Monte Carlo runs).

An ensemble of stochastic simulations can be partitioned into two components
[42,46,47,50], which we designate here as an initial fadeout (IFO) and breakout (BO)
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Figure 2. A. Disease prevalence values obtained from simulation Cases 1–32 (N= 10,000) of our
continuous-time, deterministic SEIR Erlang model are plotted against time. The basic disease reproduc-
tive rates (R0) and mean residence times in the exposed (ρE) and infectious (ρE) classes for each of the
eight groups of four cases, as detailed in Table 1, are provided for clarity. B. An expanded view (cf. time
axis of upper and lower panels) of the four left-most groups of simulations in panel A.

Figure 3. Disease prevalence values are plotted against time for the continuous and discrete-time,
deterministic and the stochastic SEIR Erlang models for Cases 29 and 32, with β = 1, N= 10,000, as
described in Table 1.

component. Instantiations of the stochastic model that belong to the IFO component,
occur with probability PIFO, and those belonging to the BO component occur with prob-
ability 1 − PIFO. It is only the BO component that can be approximately modelled by a
corresponding deterministic system [46], provided N is sufficiently large. The size of the
IFO component is strongly linked to the critical value R0 = 1. For R0 ≤ 1 only the IFO
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28 W. M. GETZ AND E. R. DOUGHERTY

Figure 4. Disease prevalence values are plotted against time for the continuous and discrete-time,
deterministicmodels aswell as themeanof an ensemble of stochastic SEIR Erlang simulations for Cases 1
and4 (N= 10,000), as described in Table 1.Note thatmeanof thenon-fadeout ensemble is averagedover
only those that do not initially fadeout.

component exists, and solutions are referred to as stuttering transmission chains [8,39].
WhenR0 > 1, the size of the IFO stuttering transmission chain component rapidly dimin-
ishes with increasing R0. For example, in generating the prevalence profiles in Figure 3,
which corresponds to the caseR0 = 10 (β = 1), no stuttering chains were evident in our
ensemble of 100 runs. Selectingβ = 0.25 and repeating the exercise for Runs 1 and 4 for the
case N=10,000 – i.e.R0 = 1.25, we obtained the prevalence profiles plotted in Figure 4.
Now, 14 and 9 of the 100 Monte Carlo instantiations for Cases 1 and 4, respectively, were
stuttering transmission chains that faded out before they could break out.

IFO rates vary somewhat among repeated sets of ensemble runs and are also affected by
the size of the population. In particular, IFO rates aremuchmore difficult to assess in small
than in large populations because the sorting of runs into the IFO and BO components is
much more difficult when N is relatively small. This problem is evident from the results
obtained from simulations conducted for varying N, as reported in the next section.

Small and large populations

When the transmission rate is normalized by the value N, as we have in Equation (4),
the solutions to the continuous and discrete deterministic model are scale-independent
with regard to population size N. That is, epidemics in isolated towns of 10,000 individu-
als are per-capita the same as epidemics in isolated mega-cities of 10 million individuals.
This is not the case for stochastic populations because demographic stochasticity is not
scale-independent. Rather, due to sampling processes for which the variance declines in
proportion to sample size, the effects of demographic stochasticity are proportional to
1/

√
N. But even large populations are structured into smaller subpopulations that may

not be well-mixed on the time scale of an epidemic. This is particularly true of local school
populations where the same group of several hundred children aggregate for a substan-
tial portion of the day, on five of the seven days each week. Thus, disease outbreaks in
mega-cities, particularly those associated with children, may behave somewhat like dis-
ease outbreaks in interconnected sets of large villages or small towns, with large population
behaviour depending on suitably high transfer rates of individuals among localities.

To gain insights into the effects of population size, we will consider outbreaks in isolated
groups ofN=500, 2000, and 50,000 individuals. For the scenarioN=500, 90/500 runs (i.e.
18.0%) belonged to the initial fadeout component (IFO), while for the scenarios N=2000
and N=50,000 the IFO contained 21.0% and 18.2% of the runs, respectively.
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Figure 5. Results from 500 Monte Carlo runs of the discrete stochastic Erlang corresponding to Case 1:
(β , γ E, kE, γ I, kI) = (0.25, 1, 5, 1, 5). In the left column, the areas under the prevalence curves (units:
prevalence-days) of each of the 500 runs are plotted from smallest to largest for the scenarios N= 500,
2000, and 50,000. In the latter scenario (bottom left panel), a clear distinction exists between simulations
with< 500 (IFO: initial fadeout component) and> 80, 000 (BO: breakout component) prevalence-days,
with no cases in between. For the remaining two cases, the IFO and BO components are not as eas-
ily identified, and the IFO components were arbitrarily set to< 200 and< 500 prevalence-days for the
scenariosN= 200 andN= 500, respectively. Themiddle columnof the three panels depicts three typical
instantiations of BO component solutions while the right-most column of smaller panels represents the
means of the solutions in the IFO (blue) and BO (red) components. Note that the IFO and BO are plotted
on vastly different scales in the bottom right-hand inset.

Discretemodel convergence

In Figures 3 and 4, and the third column of Figure 5, we have plotted the average of a
number of instantiations of our stochastic Erlang model, which looks relatively smooth
over an ensemble of 100 runs, except when R0 is small (i.e. R0 = 1.25) or N is small
(i.e. N=500). It remains unclear precisely which circumstances enable the convergence
between the mean of an ensemble of stochastic instantiations and the solution of its dis-
crete counterpart. This convergence depends, at least, upon the following three aspects:
(1) the number of simulations n used to generate the mean; (2) the size N of the pop-
ulation involved; and (3) the value of R0 associated with the value of the parameters
used in the model. In particular, in the context of the latter, larger values of β yield
proportionally larger values of R0 for specified (kE, kI, γ E, γ I) configurations of the
model.

The effects of ensemble size n are fairly obvious: for example, compare the middle
panel of individual runs and the left panel of averages depicted in Figure 5. To see
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30 W. M. GETZ AND E. R. DOUGHERTY

Figure 6. The left, middle, and right columns are plots of prevalence obtained from the discrete deter-
ministicmodel (blue curves) and averages over ensembles of 100 runs (n= 100) of thediscrete stochastic
Erlangmodels (red curves; broken lines are± one standard deviation around solid curvemean) for Cases
1, 17, and 33 (cf. Table 1).

the effects of N and R0 on the mean of ensembles of instantiations of the stochastic
model, consider the (γ E, kE, γ I, kI) = (5, 5, 1, 1) configuration of the model for the cases
β = 0.25 (R0 = 1.25), β = 1 (R0 = 5), and β = 2 (R0 = 20), which correspond to, Runs
1, 17, and 33 in Table 1, for scenarios N = 103, 104,and 106. The results obtained are
presented in Figure 6. From these results, we see that ensembles larger than n=100 are
needed to smooth out the curves generated whenR0 and N are both relatively small (e.g.
R0 = 1.25 and N = 103; top left panel), but are quite smooth when either N is relatively
large (e.g.R0 = 1.25 andN = 106; bottom left panel), or whenR0 is somewhat larger (e.g.
R0 = 5 andN = 103; topmiddle panel).WhenR0 = 1.25, the ensemble mean underesti-
mates the deterministic solution (left column of panels) by 25–30%. This falls to just under
10% whenR0 = 5 (centre column of panels), and below 2%whenR0 = 20 (right column
of panels).

Model comparisons

We compared the deterministic solutions obtained from the (kE, kI, γ E, γ I) = (1, 5, 1, 5)
Erlang models (both discrete and continuous) with their R0-equivalent deterministic
Uniform and Exponential discrete-time models for the scenarios R0 = 1.25 (β = 0.25),
R0 = 5 (β = 1) and R0 = 20 (β = 0.4). The prevalence curves obtained, normalized to
proportions (since deterministic solutions do not depend on N) are presented in Figure 7.
Except in cases with a lowR0 value (top panel), the Uniform provides a much better fit to
the Erlang model than the Exponential does.
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Figure 7. The prevalence in the population (normalized to a proportion) is plotted for the continuous
and discrete (kE, kI, γ E, γ I) = (1, 5, 1, 5) Erlang models (dotted and blue curves respectively), as well
as their Uniform (brown curve) and Exponential (green curve) discrete-time counterparts for the cases
β = 0.25, 1 and 4 (R0 = 1.25, 5, and 20 respectively).

Fittingmodels to Ebola data

Using published data from the Ebola outbreak in Liberia during the 74 weeks following
initial reporting in March of 2014 (compiled by [5]), we fitted several of the proposed
formulations to real outbreak data. The models tested on the Ebola data (the discrete and
continuous Erlang) were compared to the discrete and continuous versions of the stan-
dard SEIR formulation (with an exponential distribution governing transitions between
compartments) to judge the utility of the alternative methods for model fitting. Because
the transmission rate was treated as a constant throughout the epidemic, only the initial
quasi-exponential increase was used for the purposes of fitting. In order to fit these mod-
els to the subsequent decline in infections (when the population of susceptible hosts is not
exhausted during the initial increase), assumptions regarding the form of the change in the
transmission parameter (β) must be made. While some have used an exponential decay to
represent this shifting β value over time [3], others have used threshold functions [34] or
related the transmission parameter to environmental covariates like seasonality [43]. Fit-
ting to the initial increase in the epidemic should be informative with regard to the ability
of each alternative formulation to fit to real epidemic data without requiring a potentially
confounding assumption about the form of the change in the transmission rate over time.
As in [3], a total population size of 106 was used for each model, and the epidemic was
initialized with a single infected case.

The standard SEIR formulation, which consists of three parameters (β , γ , and σ ), con-
verged relatively quickly, as indicated by the resultingmultivariate potential scale reduction
factor (PSRF; a metric of MCMC convergence associated with Gelman and Rubin [19],
where values close to 1 indicate success). The negative log-likelihood of the discrete model
was lower than that of the continuous formulation, no matter the number of iterations,
despite being slightly less computationally efficient. TheMCMCsampling algorithmmixed
well in both cases, with acceptance rates between approximately 0.1 and 0.6 generally
treated as suitable (Table 3). Importantly, theR0 values for each of the models were fairly
consistent with one another, ranging from 4.25 to 4.62 (Table 4).
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32 W. M. GETZ AND E. R. DOUGHERTY

Table 3. Diagnostic results of the standard SEIR Model using both discrete and continuous time formu-
lations.

Model Iterations (Burn-In) Time (hrs) Likelihood Mixing Rate Convergence

Discrete SEIR 50,000 (10,000) 0.831 −99.37 0.381 1.47
Discrete SEIR 100,000 (20,000) 1.651 −99.426 0.387 1.15
Discrete SEIR 200,000 (40,000) 3.265 −99.334 0.388 1.12
Continuous SEIR 50,000 (10,000) 0.403 −115.377 0.318 1.3
Continuous SEIR 100,000 (20,000) 0.812 −115.289 0.322 1.51
Continuous SEIR 200,000 (40,000) 1.577 −114.246 0.327 1.16

Note: The computational time required to run six parallel chains, the mixing rate (as determined by the mean acceptance
rate across all chains) and convergence (PSRF), as well as the negative log-likelihood of the best fitting chain are displayed.
Three different sets were run, each with a different number of iterations to illustrate how the diagnostic statistics and fit
changed with additional time.

Table 4. The parameter values associated with the best fitting model (in terms of negative log-
likelihood) are shown for each of the standard SEIR models.

Model Iterations (Burn-In) β σ (days) γ (days) R0

Discrete SEIR 50,000 (10,000) 0.181 22.421 25.415 4.596
Discrete SEIR 100,000 (20,000) 0.196 24.440 23.593 4.622
Discrete SEIR 200,000 (40,000) 0.198 24.621 23.248 4.605
Continuous SEIR 50,000 (10,000) 0.180 18.671 25.036 4.518
Continuous SEIR 100,000 (20,000) 0.192 20.337 23.976 4.594
Continuous SEIR 200,000 (40,000) 0.175 17.135 24.302 4.248

Note: Three of the parameters (σ , γ , and R0) were estimated directly using an MCMC approach, whereas β was derived
based on the other parameter estimates.

Table 5. Diagnostic results of the Erlang formulations using both discrete and continuous time formu-
lations.

Model Iterations (Burn-In) Time (hrs) Likelihood Mixing rate Convergence

Discrete Erlang 50,000 (10,000) 7.905 −108.36 0.231 6.12
Discrete Erlang 100,000 (20,000) 19.428 −98.522 0.244 4.03
Discrete Erlang 200,000 (40,000) 51.943 −92.633 0.275 5.24
Discrete Erlang 500,000 (100,000) 98.625 −92.424 0.232 4.96
Continuous Erlang 50,000 (10,000) 13.368 −120.624 0.193 5.77
Continuous Erlang 100,000 (20,000) 31.038 −118.533 0.235 5.62
Continuous Erlang 200,000 (40,000) 59.164 −118.258 0.218 2.00
Continuous Erlang 500,000 (200,000)* 106.123 −115.815 0.214 2.35

Note: The computational time required to run six parallel chains, the mixing rate (as determined by the mean acceptance
rate across all chains) and convergence (PSRF), as well as the negative log-likelihood of the best fitting chain are displayed.
Four different sets were run, each with a different number of iterations to illustrate how the diagnostic statistics and fit
changed with additional time. The asterisk indicates the fact that final run of the continuous Erlang was analysed using a
longer burn-in period of 200,000 iterations (40%) rather than the 20% used for the other runs.

The Erlangmodels havemore dynamicmodel structures than the standard SEIR formu-
lations due to the complications involved in altering the number of compartments through
which exposed and infected individualsmove. This resulted in substantially longer compu-
tation times for these models compared to the simpler SEIR models (Table 5). The Erlang
formulations also requiredmore iterations to converge consistently on the same parameter
values. Despite nearly optimal mixing rates, the six chains of the discrete Erlangmodel still
had PSRF values substantially higher than 1, indicating that evenmore iterations (and com-
putational resources) were required for the six chains to converge on the same parameter
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JOURNAL OF BIOLOGICAL DYNAMICS 33

Figure 8. The incidence data from the first 155 days of the 2014 Ebola outbreak in Liberia are plotted
together with output from the best fitting continuous and discrete SEIR and SEnImR-Erlangmodels (cor-
responding to the fits that run for the longest number of iterations in each case), with details diagnostic
fitting and parameter value details provided in Tables 3 and 6.

Table 6. The parameter values associated with the best fitting model (in terms of negative log-
likelihood) are shown for each of the Erlang models.

Model Iterations (Burn-In) β kE kI γ E γ I R0

Discrete Erlang 50,000 (10,000) 0.361 5 5 1.889 1.440 3.760
Discrete Erlang 100,000 (20,000) 0.316 5 5 1.468 1.172 4.044
Discrete Erlang 200,000 (40,000) 0.219 5 5 1.825 0.778 4.222
Discrete Erlang 500,000 (100,000) 0.203 5 5 1.887 0.708 4.301
Continuous Erlang 50,000 (10,000) 0.298 7 9 0.336 0.662 4.054
Continuous Erlang 100,000 (20,000) 0.323 7 8 0.307 0.562 4.598
Continuous Erlang 200,000 (40,000) 0.254 8 12 0.425 0.786 3.878
Continuous Erlang 500,000 (200,000)∗ 0.286 7 11 0.387 0.762 4.128

Note: In the discrete case, three of the parameters (β , γ E, and γ I), whereas the shape parameters (kE and kI) were fixed at
5. These shape parameters were multiplied by 3 to determine the number of boxcars in the E and I classes to ensure that
∼ 99% of individuals made it through the E and I states. Finally, theR0 values were derived from the other parameter
values. In the caseof the continuousmodel, fiveparameters (kE, kI ,γ E,γ I , andR0)werefitdirectlywith theMCMCsampler,
while β was derived from the other parameter estimates. The asterisk indicates the fact that final run of the continuous
Erlangwas analysed using a longer burn-in period of 200,000 iterations (40%) rather than the 20%used for the other runs.

estimates. The best fitting chains of the discrete Erlang model (after at least 100,000 itera-
tions) did fitmore closely to the data than the best fittingmodels from the discrete standard
SEIR model (Table 5; Figure 8). This indicates that the discrete Erlang offers a more accu-
rate representation of epidemic dynamics than the simple SEIR model, but the additional
computation time and the failure to converge consistently on the same parameter values
makes the method much more demanding than the approximation offered by the stan-
dard SEIR model. Notably, theR0 values estimated using the Erlang models ranged from
3.76 to 4.60, a slightly larger range than the standard SEIR models (likely due to the lack
of convergence), but similar in magnitude to those obtained using the simpler alternatives
(Table 6). In both cases, theseR0 values are higher than previously published estimates for
Ebola, which have ranged from 1.35 to 3.65 [28].

The discrete stochastic Erlang model was not used to fit the empirical epidemic data
because of the complexities involved in the interpretation of the results. Even when aver-
ages over a substantial number of instantiations are used to calculate the fit associated with
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34 W. M. GETZ AND E. R. DOUGHERTY

a particular parameter set, the uncertainty bounds surrounding this mean may be just as
important in producing the empirical data as the mean itself. A real-world epidemic is
indeed a stochastic process, but it is unclear whether the epidemic represents an instanti-
ation at one of the extremes around the set of parameters that govern the process or the
mean or a realization somewhere in between. This fact hinders model fitting procedures in
epidemiology when using a deterministic model as well. However, due to computational
limitations, the most efficient method likely involves fitting a discrete deterministic model
first, and then exploring the potential spread that an epidemic can exhibit around those
resulting parameters using a stochastic formulation of the model.

Conclusion

Continuous-time Erlang SEnImRmodels may be aesthetically appealing because epidemic
events can arise at any time (i.e. time is continuous), and humped-shaped specific disease-
class residence times provide better fits to real data than the exponentially distributed
residence times associated with the standard single component SEIR model [49,56]. Data,
however, are usually aggregated and binned into discrete-time intervals, not only for con-
venience, but also because the precise times of actual events (e.g. when exactly a particular
individual was exposed to a dose of pathogen, or when exactly a particular individual
became or ceased to be infectious) is not usually known. Thus, continuous models can-
not be regarded as intrinsically more accurate than discrete models, particularly when
noise within the data is taken into account. All else being equal, we should choose mod-
els that are computationally more tractable. This is particularly the case for discrete-time
models where the interval is synchronized with the temporal aggregation of data, typically
daily or weekly for fast epidemics, or monthly or quarterly for slow epidemics. Further,
when extending formulations to incorporate stochasticity, discrete models are more easily
implemented than having to apply a Gillespie or modified Gillespie algorithm to simulate
continuous time stochastic processes, which may also require an unrealistic Poisson pro-
cess assumption [17,18,54]. No matter how little or much stochasticity is associated with
environmental factors, demographic stochasticity always plays a major role in epidemics
because all epidemics start with a small number of infected individuals. This implies that
even for values of R0 comfortably larger than 1 (e.g. in the range 2–4), the fadeout of
an epidemic before it can breakout is an event we can expect to occasionally observe
[2,10,24,45,47,48].

The real challenge in applying epidemic models is to either strategically identify key
factors that lead to outbreaks (thereby providing a guide to reducing the risk of such
outbreaks) or tactically manage ongoing epidemics through appropriate interventions. In
both cases, we should avoid focusing our computational efforts on model fitting at the
expense of numerical simulations to obtain broad comprehension: the imperative to find
the best fitting set of parameters for the model at hand comes at the expense of obtain-
ing a deeper understanding through exploratory simulations. This exploration includes
a full assessment of possible ranges of outcomes due to stochastic factors (both demo-
graphic and environmental). Additional exploration requires that we incorporate factors
that profoundly affect the course of epidemics, yet are not included in our SEIR formu-
lations. Specifically, here we addressed the issue of replacing exponential residence times
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in disease classes with the more realistic distributed-delay residences times. We also over-
come the issue of modelling declining transmission rates over time by fitting our models
only to data from early stages of the epidemic.

Future studies that fit models to data that continue beyond the exponential outbreak
phase need to include time-varying transmission rate functions of the form depicted in
Equation (5). Equally important for many diseases is eliminating the assumption that the
epidemic is occurring in a spatially homogeneous population. In these cases, models need
to include spatial structure. This is most easily done by assuming a metapopulation struc-
ture: i.e. a small network of relatively large homogeneous subpopulations [6,30,36]. In the
context of epidemics, spatial structure typically has two major components. The first is
the way populations are distributed into major population centres, each of which can be
assumed to constitute a homogeneous subpopulation. The second is to appropriately char-
acterize the movement of individuals among subpopulations [32], particularly individuals
who are infected, but still asymptomatic (e.g. individuals who are in class E, but make the
transition to class I once they have moved).

Whatever approach is taken in future studies to modelling epidemics in populations
with notable substructures – whether that substructure depends upon spatial organiza-
tion, age, behavioural, or alternative means of categorizing individuals – computationally
efficient stochastic models are needed. Further, these models should exhibit realistic
residence-time properties for individuals within disease classes. The discrete time-to-go
model formulated here represents a useful step towards satisfying the latter proposition.
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Appendix A1

A Appendices

Uniform Probabilities

A theoretically simpler and computationally faster, approach to fitting the discrete model to data
is to use one parameter Uniform distributions fUnif(x; 0, a) rather than two parameter Erlang or
Gamma distributions in expressing the probabilities pEi and pIi. As we show, this model produces
results not especially different from Erlang models based on five boxcars for each disease state. The
one parameter Uniform distribution on the compact interval [0, a] is defined as:

fUnif(x; 0, a) =

{
1
a 0 ≤ x ≤ a
0 x < 0 or x > a

(A.1)

and its cumulative distribution function thus has the form

FUnif(x; 0, a) =

{
x
a 0 ≤ x ≤ a
1 x > a

(A.2)

Fitting this model to data requires that we select two positive numbers aE and aI such that individ-
uals transition from state E to I within aE units of time after infection and state I to R with aI units
of time after becoming infectious. As will become evident, aE and aI need not be integers, but can
be varied continuously. In particular, if k < aX ≤ k+ 1 ≤ nX, the proportions/probabilities pX:Unif

i

used in the deterministic/stochastic discrete model (using the Floor function bxc and fractional
part {x} notations) for X = E or I are:

pX:Unif
i =


1
aX

i = 1, ..., k where k = baXc
{aX}
aX

i = k + 1

0 i = k + 2, ..., nX
(A.3)

Markov Chain Monte Carlo Sampling Algorithm

To fit the parameters in the various model formulations to real epidemic data, a Markov Chain
Monte Carlo sampling algorithm was used. Because infection incidence is commonly modeled as
a Poisson process, the likelihood of a particular parameter set θ was calculated using a Poisson
probability distribution rather than alternative measures of goodness-of-fit, such as sum-of-squares
residuals. The log-likelihood function, is therefore:

lnL(D|θ) =
t∑
i=1

ln

(
λxii e

−λi

xi!

)
=

t∑
i=1

(
xi lnλi − λi −

xi(xi + 1)

2

)
(A.4)

where λi is the data point at time i and xi is the predicted value at time i.
The fitting procedure was conducted in a Bayesian framework, with uniform priors set on each

of the parameters. The log likelihood of the prior probability of θ with k parameters was calculated
as:



Appendix A2

lnL(θ) =
k∑
j=1

ln

(
1

θj,max − θj,min

)
(A.5)

The posterior probability is then calculated as:

lnL(θ|D) = lnL(θ) + lnL(D|θ) (A.6)

The sampling algorithm itself moved according to an acceptance probability of the θproposed
relative to the θcurrent:

Pr(A) = lnL(θproposed|D)− lnL(θcurrent|D) (A.7)

A random number (r) was generated from a uniform distribution between 0 and 1, and the
θproposed was accepted if ePr(A) > r. Otherwise, the θcurrent formed the basis of the next θproposed,
which was selected according to a truncated normal distribution, with a mean of the previous θ the
and a standard deviation for each parameter such that the average acceptance rate of the resulting
proposed parameter sets were between 0.2 and 0.4 (a more narrow range than the generally accepted
rule for indicating sufficient mixing of an MCMC chain). Due to the different formulations of the
model, different proposal standard deviations were selected for each, but these were consistent
between runs within each model (i.e., the discrete Erlang run for 50,000 and 500,000 had the same
proposal standard deviations, which differed from the proposal distributions of the continuous
Erlang or standard SEIR formulations).
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