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Abstract

We present a new structure preserving Lanczos algorithm for approximating the
optical absorption spectrum in the context of solving full Bethe–Salpeter equation
without Tamm–Dancoff approximation. The new algorithm is based on a structure
preserving Lanczos procedure, which exploits the special block structure of Bethe–
Salpeter Hamiltonian matrices. A recently developed technique of generalized averaged
Gauss quadrature is incorporated to accelerate the convergence. We also establish the
connection between our structure preserving Lanczos procedure with several existing
Lanczos procedures developed in different contexts. Numerical examples are presented
to demonstrate the effectiveness of our Lanczos algorithm.

Keywords: Bethe–Salpeter equation, Tamm–Dancoff approximation, optical absorp-
tion spectrum, Lanczos procedure, structure preserving algorithm, matrix functional, Gauss
quadrature.

MSC2010: 65F15, 65F60

1 Introduction

Optical absorption and emission processes provide invaluable information to characterize
the electronic properties of solids and molecules. At the same time, an accurate microscopic
theory is also highly valuable to predict optical behavior of materials and help design
more efficient photovoltaic and light-emitting devices. Physically, the optical spectra of
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materials can be understood in terms of correlated electron–hole pairs known as excitons.
When a photon gets absorbed by a molecule or solid, an electron can be promoted form an
occupied to an unoccupied state [25, 30] in a process that creates both a negatively charge
particle (known as quasielectron, or simply electron), and a positively charged particle
(known as quasihole, or hole). The excitation energy required to produce such an electron–
hole pair, or exciton, is directly related to the optical absorption and emission spectrum
of the material. A two-particle collective excitation can be described by a two-particle
Green’s function, of which the real part of the poles give excitation energies. Since the
two-particle Green’s function satisfies the so called Bethe–Salpeter equation (BSE) [26, 30],
the excitation energies can be obtained by solving the Bethe–Salpeter equation.

Under an appropriate discretization scheme, the Bethe–Salpeter Hamiltonian (BSH)
matrix, which is the discrete representation of the Bethe–Salpeter Hamiltonian operator,
has the block structure

H =

[
A B

−B −A

]
∈ C2n×2n, (1)

where
AH = A, B

H
= B. (2)

We can rewrite H as H = CnΩ where

Cn =

[
In 0
0 −In

]
, Ω =

[
A B

B A

]
. (3)

For most physical systems, Ω is Hermitian positive definite (see, e.g., [35]), which we will
denote by

Ω � 0. (4)

We define a BSH matrix H that satisfies the condition (4) a definite Bethe–Salpeter Hamil-
tonian matrix. Throughout this paper, we assume that the BSH matrix H is definite, that
is, (4) is always assumed.

The matrices A and B are of size n = nvncnk, where nv, nc, and nk are the numbers of
valence states, conduction states, and k-points, respectively. Both nv and nc are propor-
tional to the number of electrons ne in the system. Therefore, the dimension n = O(n2

enk)
can be very large for systems of practical interest.

The optical absorption spectrum, which can be measured in optical absorption ex-
periments, provides a global picture of all excitation states. Mathematically, the optical
absorption spectrum is a matrix functional of the form dHr f(H;ω)dl, where f(H;ω) is a
function of H depending on a parameter ω, and dl, dr ∈ C2n. The peaks in the optical
absorption spectrum correspond to the excitation energies.

Accurate computation of the optical absorption spectrum can be obtained by fully
diagonalizing the BSH matrix [27]. However, when the problem size n grows, diagonalizing
the BSH matrix, whose complexity is O(n3), becomes increasingly expensive and eventually
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unaffordable. In this paper we shall discuss how to quickly estimate the absorption without
diagonalizing H.

In practice there is actually no need to accurately locate all peaks and determine the
corresponding heights in the optical absorption spectrum—a reasonable approximation is
often sufficient. Therefore Krylov subspace-based methods, such as the Lanczos algorithm,
becomes very attractive for this purpose. In the context of Tamm–Dancoff approximation
(TDA) [6, 31], which sets the off-diagonal blocks B in H to zero, Haydock’s recursive
algorithm [12, 13, 14, 15], which is essentially based on the symmetric Lanczos algorithm,
can be used to solve this problem. For full BSE calculations, the non-symmetric Lanczos
algorithm [21] can be applied, while the structure of H is not taken into account. Recently
a structure preserving Lanczos algorithm that is applicable to full BSE has been proposed
in [11]. In this paper we shall develop a new structure preserving Lanczos algorithm
to quickly estimate the optical absorption spectrum. Our new algorithm incorporates a
recently developed technique of generalized averaged Gauss quadrature [19, 29] and largely
improves the algorithm in [11] with negligible additional cost.

The rest of the paper is organized as follows. In Section 2, we review some basic
properties of the definite Bethe–Salpeter Hamiltonian and the optical absorption spectrum.
In Section 3, we describe how the standard Lanczos algorithm can be used to estimate the
absorption spectrum in the context of TDA. Then in Section 4 we discuss how the Lanczos
algorithm can be modified when it is applied to a full BSH. We compare several variants
of the Lanczos algorithm. Finally, computational examples are presented in Section 5 to
demonstrate the effectiveness and efficiency of the Lanczos algorithm.

2 Preliminaries

2.1 Properties of definite Bethe–Salpeter Hamiltonian matrices

We first briefly review some basic spectral properties of definite BSH matrices. Detailed
discussion on these properties can be found in [3, 27, 28].

Although a definite BSH matrix H defined in (1) is in general non-Hermitian, it is
diagonalizable and has real spectrum. Moreover the special structure of the BSH leads to
a structured spectral decomposition as stated in Theorem 1 below.

Theorem 1 ([27, Theorem 3]). Let H be a definite Bethe–Salpeter Hamiltonian matrix.
Then the spectral decomposition of H is of the form H = Z diag {Λ+,Λ−}Z−1 where

Z =

[
X Y

Y X

]
, Z−1 = CnZ

HCn =

[
X −Y
−Y X

]H
, (5)

Λ+ = diag {λ1, λ2, . . . , λn}, and Λ− = diag {λn+1, λn+2, . . . , λ2n} with

λ1 = −λn+1 ≥ λ2 = −λn+2 ≥ · · · ≥ λn = −λ2n > 0.

3



Since the eigenvalues of H appear in positive and negative pairs ±λj , we use λ+
j ≡ λj

and λ−j ≡ −λj , for 1 ≤ j ≤ n, in the following to emphasize on the signs of these eigenvalues.

Let X = [x1, . . . , xn], Y = [y1, . . . , yn] ∈ Cn×n be the submatrices in (5). Theorem 1
suggests that the right and left eigenvectors associated with the positive eigenvalue λ+

j

are zj = [xHj , y
H
j ]H and Cnzj = [xHj ,−yHj ]H respectively, and the right and left eigenvectors

associated with λ−j are zn+j = [yHj , x
H
j ]H and −Cnzn+j = [−yHj , xHj ]H respectively. The

normalization condition (CnZCn)HZ = I2n implies that

xHj xj − yHj yj = 1

for j = 1, . . ., n. As long as the right eigenvectors associated with the positive eigenvalues
are properly normalized, other eigenvectors can be easily recovered.

From (5), we observe that the right eigenvectors of H are orthonormal with respect
to the C-inner product, 〈u, v〉C = vHCnu, which is an indefinite inner product. Another
observation is

ZHΩZ = ZHCnZ diag {Λ+,−Λ+} = Cn diag {Λ+,−Λ+} = diag {Λ+,Λ+} , (6)

indicating that the right eigenvectors of H are also orthogonal with respect to the Ω-
inner product 〈u, v〉Ω = vHΩu. These orthogonalities are crucial for developing structure
preserving Lanczos procedures. By structure preserving, we mean that the positive and
negative pairing of the eigenvalues is preserved in the approximations to the eigenvalues of
BSH.

2.2 Optical absorption spectra

Let (zr)j and (zl)j be the right and left eigenvectors of H, respectively, associated with the
eigenvalue λj , (1 ≤ j ≤ 2n). We denote by ε2(ω) the imaginary part of the macroscopic
dielectric function; ε2(ω) is also proportional to the optical absorption spectrum of a mate-
rial, and can be computed in a straightforward way from the eigenvalues and eigenvectors
of the BSH as

ε2(ω) =
8π2e2

Vxtal
ε(ω),

ε(ω) := dHr δ(ωI2n −H)dl =
2n∑

j=1

(dHr (zr)j)((zl)
H
j dl)

(zl)
H
j (zr)j

δ(ω − λj),
(7)

where Vxtal is the crystal volume, e is the elementary charge, and

dr =

[
d

−d

]
and dl =

[
d

d

]
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Figure 1: A typical curve for the imaginary part of the dielectric function. This curve is
obtained from a single-wall (8, 0) carbon nanotube.

are the right and left optical transition vectors, respectively. Because the dr and dl depend
solely on d, we will simply refer to d as the optical transition vector. The coefficient,
(dHr (zr)j)((zl)

H
j dl)/((zl)

H
j (zr)j), of the Dirac delta function δ(ω−λj) in (7) is known as the

oscillator strength associated to the excitonic state j. Figure 1 shows a typical curve for
the imaginary part of the dielectric function. In order to produce this plot, each Dirac
delta function was broadened by a Gaussian function, as we will discuss below. The height
of each peak in the spectrum is determined by the oscillator strength associated to each
eigenvalue λj and the number of eigenvalues clustered around an energy. Since the optical
absorption spectrum is proportional to ε2(ω), which is in turn proportional to ε(ω), in this
work we will broadly refer to both ε(ω) and ε2(ω) as the optical absorption spectrum of a
material.

If H can be fully diagonalized, we can compute ε(ω) using the eigenpairs of H. How-
ever, diagonalizing H is often costly, especially when the dimension of H becomes large.
For instance, for many low dimensional systems such as monolayer MoS2, n is on the order
of 360,000 [18]. Similarly, large n’s are required to fully converge calculations on semicon-
ducting carbon nanotubes and to obtain the correct order of the excited excitonic states in
bulk semiconductors, for example. Therefore, it is natural to seek alternative approaches.

Using the structure of the eigenvectors of the BSH matrix H, we can simplify the
expression of the absorption spectrum. For positive eigenpairs, we can choose (zr)j = zj
and (zl)j = Cnzj so that (zl)

H
j (zr)j = 1. Then we have

(zl)
H
j dl = (Cnzj)

H(Cndr) = zHj dr = dHr zj .

5



It follows that

ε+(ω) :=

n∑

j=1

(dHr (zr)j)((zl)
H
j dl)

(zl)
H
j (zr)j

δ(ω − λj)

=
n∑

j=1

|dHr zj |2δ(ω − λ+
j )

=
n∑

j=1

∣∣dHxj − dHyj
∣∣2δ(ω − λ+

j ).

We remark that the oscillator strength |dHr zj |2 is nonnegative. Similarly, for negative
eigenpairs, we have

(zl)
H
j dl = (−Cnzj)H(Cndr) = −zHj dr = −dHr zj

and

ε−(ω) :=−
2n∑

j=n+1

|dHr zj |2δ(ω − λj) = −
n∑

j=1

∣∣dHxj − dHyj
∣∣2δ(ω + λ+

j ) = −ε+(−ω).

Therefore, the absorption spectrum

ε(ω) = ε+(ω) + ε−(ω) = ε+(ω)− ε+(−ω)

can be viewed as an odd function of the frequency ω in the distribution sense.
In practice, it is not desirable to plot the imaginary part of the polarizability as a sum

of Dirac delta functions. A broadened peaked function, such as the Lorentzian function

Lσ(ω) :=
1

π
· σ

ω2 + σ2
=

1

π
Im

1

ω − iσ

or the Gaussian function

Gσ(ω) :=
1√
2π σ

e−ω
2/(2σ2),

is used to replace the Dirac delta function, where the broadening factor σ > 0 is a small
number. The first reason for doing so is because there is physically a lifetime associated to
each excitonic state. The second reason is due to discretization procedures in performed
in the calculations, such as employing a finite number of k-points in calculations on ex-
tended systems. If a calculation could be carried with infinitely many k-points, the optical
absorption spectrum would consist of a few isolated low-energy sharp peaks, but the delta
functions merge at higher energy and form a continuum spectrum. On the other hand,
a calculation performed with a finite number of k-points only samples a finite number of
transitions in this continuum region.
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Therefore, we wish to plot the imaginary part of the dielectric function using a generic
peaked function gσ(ω) (either Lσ(ω) or Gσ(ω)) characterized by a typical small width σ
instead of δ(ω). The imaginary part of the dielectric matrix can be expressed now in terms
of

εσ(ω) = dHr gσ(ωI2n −H)dl =

n∑

j=1

∣∣dHxj − dHyj
∣∣2[gσ(ω − λ+

j )− gσ(ω + λ+
j )
]
, (8)

which is an odd function in ω, that is, εσ(−ω) = −εσ(ω). Thus it suffices to compute the
function value for ω > 0.

Note that (8), which is a scalar function of ω, can be viewed as an expected value of a
matrix function. We are interested in the positions and heights of the major peaks of this
function, which are given by the eigenvalues and eigenvectors of the BSH. However, the
precise position and height of each peak is seldom required, especially since the underlying
theories employed to obtain these spectra are already themselves approximate. Therefore,
efficient methods that can provide estimates of (8) without computing each individual
eigenpair of H are of great interest. In Sections 3 and 4, we discuss how to use Lanczos
algorithms to estimate εσ(ω) efficiently.

3 Tamm–Dancoff approximation

Tamm–Dancoff approximation (TDA) [6, 25, 31] is a technique often used to in practice to
reduce the computational cost of the absorption spectrum calculation. For many systems,
especially on bulk semiconductors and metals, the TDA incurs a very small error in the
optical absorption spectrum, and for that reason it has been a widely used approximation
in condensed-matter physics. In this section we discuss how to estimate the absorption
spectrum with a Lanczos procedure within the TDA.

However, we remark that for many systems, including systems with reduced dimension-
ality optically excited with light polarized along a confined direction, the TDA may incur
in large errors for the optical absorption spectrum. We shall discuss full BSE solvers in
Section 4.

3.1 Lanczos algorithm

In TDA, the off-diagonal block of H, B, is set to zero. We denote the resulting block
diagonal BSH by HTDA = diag

{
A,−A

}
, which is a Hermitian matrix. It follows that the

absorption spectrum associated with HTDA becomes

ε(ω) = dHr δ(ωI2n −HTDA)dl = dHδ(ωIn −A)d− dHδ(ωIn +A)d.

As dHδ(ωIn ± A)d is real and nonnegative, we can omit the complex conjugation in the
second term. In practice, we compute

εσ(ω) = dHgσ(ωIn −A)d− dHgσ(ωIn +A)d=: dHf(A;ω)d (9)

7



for ω > 0, where f(t;ω) = gσ(ω − t)− gσ(ω + t).
Since A is Hermitian and positive definite, the matrix functionals in (9) can be estimated

using the Lanczos algorithm. Starting with u1 = d/‖d‖2, a k-step Lanczos procedure
produces

AUk = UkTk + βkuk+1e
H
k , UH

k+1Uk+1 = Ik+1, (10)

where

Tk = tridiag





β1 · · · βk−1

α1 · · · · · · αk
β1 · · · βk−1



 (11)

is a real symmetric, tridiagonal, positive definite, and componentwise nonnegative matrix.
Here we use the convention Uj = [u1, . . . , uj ] (for 1 ≤ j ≤ k + 1) to represent the Lanczos
vectors, and ej is the jth column of the identity matrix. Then the absorption spectrum
can be estimated by

dHf(A;ω)d = ‖d‖22uH1 f(A;ω)Uke1 ≈ ‖d‖22uH1 Ukf(Tk;ω)e1 = ‖d‖22eH1 f(Tk;ω)e1. (12)

As long as k � n, the matrix function of the projected matrix Tk, f(Tk;ω), can be easily
evaluated by diagonalizing Tk. Moreover, there is no need to explicitly store the whole
history of the Lanczos vectors because eventually only Tk is used in (12). However, it is
important to ensure columns of the generated Uk+1 matrix are orthonormal. A desired
feature here is that the estimated absorption spectrum in this approach is nonnegative for
ω > 0. Clearly, the Lanczos algorithm possesses this desired feature.

Finally, we remark that when the Gaussian functions are replaced by Lorentzian func-
tions Haydock’s recursive algorithm [12, 13, 14, 15] is mathematically equivalent to the
Lanczos algorithm. As the Lanczos algorithm is more general—it can handle any approx-
imation to the Dirac delta function, it is a simple and flexible replacement of Haydock’s
recursive method in this context. Another advantage of the Lanczos algorithm will be
discussed in the next subsection.

3.2 Generalized averaged Gauss quadrature

It is well known that the Lanczos algorithm for estimating matrix functionals can be
interpreted as Gauss quadrature [8, 9]. In [19], a recently developed generalized averaged
Gauss quadrature rule [29] has been adopted to improve the accuracy of the Lanczos
algorithm with little extra effort. In the following we briefly describe the procedure of this
approach.

After the k-step Lanczos procedure is performed, we can construct a (2k−1)× (2k−1)
symmetric tridiagonal matrix T̂k as

T̂k = tridiag





β1 · · · βk−1 βk βk−2 · · · β1

α1 · · · · · · αk αk−1 · · · · · · α1

β1 · · · βk−1 βk βk−2 · · · β1



 . (13)

8



Then we replace eH1 f(Tk;ω)e1 in (12) by eH1 f(T̂k;ω)e1,1 that is,

dHf(A;ω)d ≈ ‖d‖22eH1 f(T̂k;ω)e1. (14)

When k is not very large, the cost of computing f(Tk;ω) or f(T̂k;ω) is negligible com-
pared to that of forming Tk. As the spectrum of T̂k is a superset of that of Tk−1, and
Λ(T̂k)\Λ(Tk−1) interlaces with Λ(Tk−1), (14) should be a better approximation compared
to (12) with negligible computational overhead. We refer the readers to [19, 29] for detailed
discussions.

If the Lanczos procedure breaks down at kth step, that is, βk = 0, then (12) holds
exactly instead of approximately. In this lucky breakdown, (14) also holds exactly because
T̂k decouples into two tridiagonal submatrices. We remark that an extra benefit of using
the generalized averaged Gauss quadrature is that, for the same number of quadrature
points, the generalized averaged Gauss quadrature requires fewer Lanczos steps, hence the
risk of loss of orthogonality among the Lanczos vectors is reduced.

Certainly the generalized averaged Gauss quadrature can be adopted here for the es-
timation of absorption spectrum. Similar to the Lanczos algorithm with standard Gauss
quadrature, the generalized averaged Gauss quadrature also produces nonnegative oscilla-
tor strengths. Thus the estimated absorption spectrum is also nonnegative for ω > 0 when
T̃k is positive definite. However, T̂k as defined in (13) can sometimes has one nonpositive
eigenvalue. (The second smallest eigenvalue of T̂k is always positive since Λ(T̂k)\Λ(Tk−1)
interlaces with Λ(Tk−1).) Such a nonpositive eigenvalue may violate the property εσ(ω) ≥ 0
for ω > 0. A simple remedy is to redefine f(t;ω) as

f(t;ω) =

{
gσ(ω − t)− gσ(ω + t) if t > 0,

0 if t ≤ 0.

Then in the resulting generalized averaged Gauss quadrature (14) we can simply discard
the term involving the nonpositive eigenvalue of T̂k, if there is any. In fact, dropping the
nonpositive eigenvalue does not affect the accuracy, because the eigenvalues of Tk−1, as
the common Gauss quadrature nodes for both (12) and (14) (assuming in (12) we use the
approximation from a (k−1)-step Lanczos procedure instead of a k-step one), have the same
weights (up to scaling) in both quadrature rules [29]. We summarize the Lanczos algorithm
with generalized averaged Gauss quadrature in Algorithm 1. The utility of generalized
averaged Gauss quadrature provides another advantage of the Lanczos algorithm over
Haydock’s recursive algorithm.

4 Absorption spectrum for full BSE

In this section we investigate how to estimate the absorption spectrum without using
the Tamm–Dancoff approximation. Like the Lanczos algorithm in the TDA setting, the

1The vector e1 is of length k in eH1 f(Tk;ω)e1, and is of length 2k − 1 in eH1 f(T̂k;ω)e1.
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Algorithm 1 Lanczos algorithm for estimating the absorption spectrum under TDA.

Input: A Hermitian positive definite matrixA ∈ Cn×n, an optical transition vector d ∈ Cn,
a broadening factor σ > 0, the number of Lanczos steps k, and a set of frequencies
{ωi}mi=1.

Output: The estimated absorption spectrum εσ(ω) sampled at ωi (for 1 ≤ i ≤ m).
1: Perform k Lanczos steps using d as the starting vector.
2: Formulate T̂k as defined in (13).

3: Compute the spectral decomposition T̂k = Ŝk diag
{
θ̂1, . . . , θ̂2k−1

}
ŜH
k , where ŜH

k Ŝk =

I2k−1.
4: Evaluate

εσ(ωi) = ‖d‖22
2k−1∑

j=1

θ̂j>0

|Ŝk(1, j)|2
[
gσ(ωi − θ̂j)− gσ(ωi + θ̂j)

]

for i = 1, . . ., m.

following features are desired.

1. Any breakdown in the Lanczos procedure is a lucky breakdown.

2. The computed absorption spectrum is real and nonnegative for ω > 0.

3. The full history of Lanczos vectors is not required.

4. The technique of generalized averaged Gauss quadrature can be applied.

We shall demonstrate that all these features are feasible for full BSE calculations.

4.1 Lanczos algorithm for real BSE

We first examine a simpler case in which both A and B are real symmetric matrices, and

H =

[
A B
−B −A

]
∈ R2n×2n (15)

is real also. Such an H results from systems with real-space inversion symmetry. It is not
difficult to verify that the condition (4) is equivalent to the following conditions:

M :=A+B � 0, K :=A−B � 0. (16)

We also assume that the optical transition vector d is real. A Lanczos algorithm that can be
used to estimate ε(ω) for BSH matrices of this type has been studied in [5], in the context
of linear response time-dependent density functional theory (TDDFT) based calculations.
In the following, we briefly summarize this algorithm.

10



Using the spectral decomposition of H as shown in Theorem 1, we can verify that

M = (X − Y )Λ+(X − Y )T, K = (X + Y )Λ+(X + Y )T,

and
(X − Y )T(X + Y ) = In.

Then we have

ε(ω) =
n∑

j=1

[
dT(xj − yj)

]2[
δ(ω − λ+

j )− δ(ω + λ+
j )
]

= 2 sign(ω)
n∑

j=1

λ+
j

[
dT(xj − yj)

]2
δ
(
ω2 − (λ+

j )2
)

= 2 sign(ω)dT(X − Y )Λ+(X − Y )T(X + Y )δ(ω2In − Λ2
+)(X − Y )Td

= 2 sign(ω)dTMδ(ω2In −KM)d.

Therefore, we reduce this problem size from 2n× 2n to n× n. Although KM is nonsym-
metric in general, it is symmetric and positive definite with respect to the M -inner product
because 〈

x,KMy
〉
M

= yTMKMx =
〈
KMx, y

〉
M
.

A Lanczos procedure in which standard Euclidean inner product is replaced with an M -
inner product reads

KMUk = UkTk + βkuk+1e
T
k , (17)

with u1 = d/‖d‖M and UT
k+1MUk+1 = Ik+1. Algorithm 2 outlines the computational

procedure of calculating (17). We remark that in [5] full orthogonalization is used to retain
numerical stability of the Lanczos procedure. In contrast, Algorithm 2 uses a careful
formulation of short recurrence. The numerical stability is observed to be comparable with
full orthogonalization if k is reasonably small.

It follows from (17) and the identity

δ(ω − |λ|)− δ(ω + |λ|) = 2|λ| sign(ω)δ(ω2 − λ2)

that ε(ω) can be approximated through

ε(ω) = 2 sign(ω)dTMδ(ω2In −KM)d

≈ 2 sign(ω)dTMUkδ
(
ω2Ik − Tk

)
UT
kMd

= ‖d‖2MeT1
[
δ
(
ωIk − T 1/2

k

)
− δ
(
ωIk + T

1/2
k

)]
T
−1/2
k e1

≈ ‖d‖2MeT1
[
gσ
(
ωIk − T 1/2

k

)
− gσ

(
ωIk + T

1/2
k

)]
T
−1/2
k e1. (18)
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Algorithm 2 Lanczos procedure in M -inner product for real full BSE.

Input: A definite Bethe–Salpeter Hamiltonian matrix H ∈ R2n×2n; a starting vector u1 ∈
Rn satisfying uT1 (A+B)u1 = 1; the number of Lanczos steps, k.

Output: α1, . . ., αk, β1, . . ., βk ∈ R, and u1, . . ., uk+1 ∈ Rn satisfying (17) and UT
k+1(A+

B)Uk+1 = Ik+1.
1: β0 ← 0, u0 ← 0, v0 ← 0.
2: v1 = (A+B)u1.
3: for j = 1, . . ., k do
4: x← (A−B)vj − βj−1uj−1.
5: αj ← vTj x.
6: x← x− αjuj .
7: y ← (A+B)x.
8: βj ←

√
xTy.

9: uj+1 ← x/βj , vj+1 ← y/βj .
10: end for

Here Tk is a real symmetric tridiagonal matrix as in (11). Similar to the Lanczos algorithm
in the TDA setting, the approximate εσ(ω) is nonnegative for ω > 0, which is a desired
property. There is also no need to keep the whole history of Lanczos vectors.

We have already seen in Section 3.2 that the generalized averaged Gauss quadrature
can be incorporated in the Lanczos algorithm. This is also the case for (18). Let

f(t;ω) = t−1/2
[
g(ω − t1/2)− g(ω + t1/2)

]
.

Then the generalized averaged Gauss quadrature replaces eT1 f(Tk;ω)e1 in (18) by eT1 f(T̂k;ω)e1,
that is,

εσ(ω) ≈ ‖d1‖2MeT1 f(T̂k;ω)e1, (19)

where T̂k ∈ R(2k−1)×(2k−1) is as defined in (13). It is expected that (19) in general provides a
better approximation to εσ(ω) compared to (18). Similar to the discussions in Section 3.2,
T̂k can sometimes has one nonpositive eigenvalue. But in (18) T̂k needs to be positive

definite so that T̂
1/2
k is also positive definite. The remedy is to extend the definition of

f(t;ω) as

f(t;ω) =

{
t−1/2

[
gσ(ω − t1/2)− gσ(ω + t1/2)

]
if t > 0,

0 if t ≤ 0,

and discard the term involving the nonpositive eigenvalue of T̂k, if there is any. Algorithm 3
summarizes the Lanczos algorithm for real full BSE incorporated with the generalized
averaged Gauss quadrature.

We should point out that ε(ω) can be obtained by computing the eigenpairs of KM or
H directly. If one is only interested in the low energy region of the absorption spectrum,
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Algorithm 3 The Lanczos algorithm for estimating the optical absorption spectrum for
real full BSE.
Input: Real symmetric positive definite matrices M , K ∈ Rn×n, an optical transition

vector d ∈ Rn, a broadening factor σ > 0, the number of Lanczos steps k, and a set of
frequencies {ωi}mi=1.

Output: The estimated absorption spectrum εσ(ω) sampled at ωi (for 1 ≤ i ≤ m).
1: Perform k Lanczos steps in M -inner product using d as the starting vector.
2: Formulate T̂k as defined in (13).

3: Compute the spectral decomposition T̂k = Ŝk diag
{
θ̂2

1, . . . , θ̂
2
2k−1

}
ŜH
k , where ŜH

k Ŝk =

I2k−1 and θ̂2k−1 ≥ · · · ≥ θ̂2 > 0.
4: Evaluate

εσ(ωi) = dTMd
2k−1∑

j=1

θ̂j>0

|Ŝk(1, j)|2
gσ(ωi − θ̂j)− gσ(ωi + θ̂j)

θ̂j

for i = 1, . . ., m.

iterative methods such as the ones proposed in [1, 20, 33] can be used to compute the first
few eigenpairs. However, these methods can become costly when the absorption spectrum
window becomes large, and more eigenpairs need to be computed.

4.2 Structure preserving Lanczos procedure for complex BSE

In this subsection we discuss how to develop a structure preserving Lanczos procedure for
complex BSE. Just like the real case, we will try to reformulate the problem so that only
n-dimensional matrices and vectors are involved. To this end, let us define

Uφ =

{[
u

eiφu

]
: u ∈ Cn

}
, (φ ∈ R).

It can be easily verified that HUφ = Uφ+π and H2Uφ = Uφ. However, we remark that
Uφ is not an invariant subspaces of H2 as it is not a subspace of C2n over C; it can only
be regarded as a linear space over R. To approximate dHr δ(ωI2n − H)dl using a Lanczos
procedure, it is natural to use dl as the starting vector. Note that dl and dr are structured
because dl ∈ U0 and dr ∈ Uπ. In the following, we discuss how to preserve this type of
structure in a Lanczos procedure.

It was observed in [10] that H = CnΩ is self-adjoint with respect to the inner product
defined by Ω in (3), because

〈x,Hy〉Ω = yHΩCnΩx = 〈Hx, y〉Ω.

13



We make another observation that H2 = (CnΩCn)Ω is Hermitian and positive definite
with respect to the Ω-inner product. Thus there exists a Lanczos procedure associated with
H2 that is defined in terms of the Ω-inner product. If we start with the vector q1 ∈ U0,
the recurrence relationship among the Lanczos vectors is characterized by the following
theorem.

Theorem 2. Let H = CnΩ be a definite Bethe–Salpeter Hamiltonian matrix. Suppose that
u1 ∈ Cn satisfies Re(uH1Au1 + uH1Bu1) = 1. Then for k < n, applying a k-step Lanczos
procedure to H2 in the Ω-inner product with the starting vector [uH1 , u

H
1 ]H produces

H2

[
Uk
Uk

]
=

[
Uk
Uk

]
Tk + βk

[
uk+1

uk+1

]
eHk , (20)

where Uk = [u1, . . . , uk] ∈ Cn×k, Tk ∈ Rk×k is as defined in (11). The tridiagonal matrix Tk
is positive definite and componentwise nonnegative, and βk > 0, if the Lanczos procedure
does not break down. The Lanczos vectors satisfy the orthogonality condition

[
ui
ui

]H
Ω

[
uj
uj

]
= 2δij , (1 ≤ i, j ≤ k + 1), (21)

where δij is the Kronecker delta notation.

Proof. In the generic case (i.e., assuming no breakdown occurs), the Arnoldi procedure
using the orthogonality condition (21) with starting vector q1 = [uH1 , u

H
1 ] reads

H2Qk = QkTk + βkqk+1e
H
k ,

where Tk is an upper Hessenberg matrix with positive subdiagonal entries, and βk > 0.
Multiplying from the left by QH

kΩ, we obtain that

2Tk = QH
kΩH2Qk = (CnΩQk)

HΩ(CnΩQk)

is Hermitian positive definite. Consequently the diagonal entries of Tk are real and pos-
itive. Hence we conclude that Tk is real symmetric, tridiagonal, positive definite, and
componentwise nonnegative. The Arnoldi procedure is in fact a Lanczos procedure.

Let us denote by αi and βi, respectively, the ith diagonal and subdiagonal entries of
Tk, i.e., Tk is of the form (11). Notice that q1 ∈ U0 implies H2q1 ∈ U0. From the Lanczos
procedure we have

q2 =
1

β1
(H2q1 − α1q1) ∈ U0,

because both α1 and β1 are real. By induction, we have

qi+1 =
1

βi
(H2qi − αiqi − βi−1qi−1) ∈ U0

for i = 2, . . ., k, as the linear combination on the vectors from U0 involves only real
coefficients. This completes the proof.

14



In Section 4.4 we show that this Lanczos procedure reduces to the one given in Sec-
tion 4.1 for real BSE. The additional factor of two in (21) is introduced to make the two
Lanczos procedures identical.

It may appear that the Lanczos procedure associated with H2 only provides one of the
two sets of vectors required to construct approximations to the oscillator strength. The
following observation shows that the other set of vectors can be easily recovered. Let

[
Vk
V k

]
= Ω

[
Uk
Uk

]
, (22)

or, equivalently, [
Vk
−V k

]
= H

[
Uk
Uk

]
.

The Uk and Vk matrices can also be generated together from the following recurrence

H

[
Uk Vk
Uk −V k

]
=

[
Uk Vk
Uk −V k

] [
0 Tk
Ik 0

]
+ βk

[
uk+1

uk+1

]
eH2k. (23)

The orthogonality condition (21) becomes

[
Uk
Uk

]H [
Vk
V k

]
= 2Ik. (24)

However, this condition is not sufficient for constructing the (oblique) projector associated
with the subspace

span

[
Uk Vk
Uk −V k

]
.

We show a stronger result in the following theorem.

Theorem 3. Under the same assumption given in Theorem 2. Let Uk and Vk be as defined
in (22) and (23). Then

[
Vk Uk
V k −Uk

]H [
Uk Vk
Uk −V k

]
= 2I2k. (25)

Proof. Since

[
Vk Uk
V k −Uk

]H [
Uk Vk
Uk −V k

]
=

[
2Ik V H

k Vk − V H
k Vk

UH
k Uk − UH

k Uk 2Ik

]
,

it suffices to show that uHi uj and vHi vj are both real for all i and j. The proof is based on
the fact that

[
u
±u

]H
(HH)`1CnH

`2

[
u
±u

]
=

[
u
∓u

]H
(CnΩ)(`1+`2)/2Cn(ΩCn)(`1+`2)/2

[
u
∓u

]
= 0
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holds for any u ∈ Cn and any nonnegative integers `1, `2 as long as `1 + `2 is even.
From (20) it can be verified that [uHj , u

H
j ]H can be expressed as

[
uj
uj

]
= pj(H

2)

[
u1

u1

]
,

where pj(·) is a polynomial of degree j with real coefficients. Then we obtain

2i · Im(uHi uj) =

[
ui
ui

]H
Cn

[
uj
uj

]
=

[
u1

u1

]H
pi(H

2)HCnpj(H
2)

[
u1

u1

]
= 0

by expanding pi(H
2)HCnpj(H

2) as the sum of monomials. Similarly, [vHj ,−vHj ]H can be
expressed as

[
vj
−vj

]
= H

[
uj
uj

]
= Hpj(H

2)

[
u1

u1

]
= pj(H

2)H

[
u1

u1

]
= pj(H

2)

[
v1

−v1

]
,

and then

2i · Im(vHi vj) =

[
vi
−vi

]H
Cn

[
vj
−vj

]
=

[
v1

−v1

]H
pi(H

2)HCnpj(H
2)

[
v1

−v1

]
= 0.

From Theorem 3, we conclude that

1

2

[
Uk Vk
Uk −V k

] [
Vk Uk
V k −Uk

]H

is the projector we seek, and

[
0 Tk
Ik 0

]
=

1

2

[
Vk Uk
V k −Uk

]H
H

[
Uk Vk
Uk −V k

]
.

is indeed a projected form of H.
The recurrence given by (23) is more desirable than that given by (20) because it

removes the ambiguity introduced by squaring the eigenvalues of the projected matrix

[
0 Tk
Ik 0

]
,

which appear in pairs ±θi, where θ2
i is the eigenvalue of Tk. We regard (23) as a structure

preserving Lanczos procedure as the spectrum of the projected matrix is real and symmetric
with respect to the origin. Algorithm 4 outlines the structure preserving Lanczos procedure
for complex BSE. Similar to Algorithm 2, a careful formulation of short recurrence instead
of full orthogonalization is used to largely retain numerical stability.
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Algorithm 4 Lanczos procedure in Ω-inner product for complex full BSE.

Input: A definite Bethe–Salpeter Hamiltonian matrix H ∈ C2n×2n; a starting vector u1 ∈
Cn satisfying

[
uH1 , u

H
1

]H
Ω
[
uH1 , u

H
1

]H
= 2; the number of Lanczos steps, k.

Output: α1, . . ., αk, β1, . . ., βk ∈ R, and u1, . . ., uk+1, v1, . . ., vk+1 ∈ Cn satisfying (22)–
(24).

1: β0 ← 0, u0 ← 0, v0 ← 0.
2: v1 = Au1 +Bu1.
3: for j = 1, . . ., k do
4: x← Avj −Bvj − βj−1uj−1.
5: αj ← Re(vHj x).
6: x← x− αjuj .
7: y ← Ax+Bx.
8: βj ←

√
Re(xHy).

9: uj+1 ← x/βj , vj+1 ← y/βj .
10: end for

Finally, we remark that this Lanczos procedure can be extended to have a starting
vector from Uφ. Let Dφ = diag

{
In, e

iφIn
}

. Notice that DH
φHDφ = Cn(DH

φΩDφ) is also a

definite BSH matrix. Thus, the Lanczos procedure of DH
φHDφ,

(DH
φHDφ)

[
Uk Vk
Uk −V k

]
=

[
Uk Vk
Uk −V k

] [
0 Tk
Ik 0

]
+ βk

[
uk+1

uk+1

]
eH2k,

is equivalent to

H

[
Uk Vk

eiφUk −eiφV k

]
=

[
Uk Vk

eiφUk −eiφV k

] [
0 Tk
Ik 0

]
+ βk

[
uk+1

eiφuk+1

]
eH2k.

4.3 Estimation of the absorption spectrum

In the following we describe how to use the Lanczos procedure defined by (23) to estimate
the absorption spectrum. It follows from (23) and the orthogonality condition (25) that

εσ(ω) = dHr gσ(ωI2n −H)dl

=
1

2
‖dl‖2Ω

[
u1

−u1

]H
gσ(ωI2n −H)

[
u1

u1

]

≈ 1

4
‖dl‖2Ω

[
u1

−u1

]H [
Uk Vk
Uk −V k

]
gσ

(
ωI2n −

[
0 Tk
Ik 0

])[
Vk Uk
V k −Uk

]H [
u1

u1

]
. (26)

In the proof of Theorem 3, we showed that UH
k u1 is real. As a result, we obtain that

[
u1

−u1

]H [
Uk Vk
Uk −V k

]
= 2

[
0
e1

]H
,

[
Vk Uk
V k −Uk

]H [
u1

u1

]
= 2

[
e1

0

]
.
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These equations allow us to further simplify the expression given in (26). The simplification
removes Uk and Vk in the approximation of εσ(ω). Hence these vectors do not need to be
explicitly stored. Let Tk = SkΘ

2
kS

H
k be the spectral decomposition of Tk, where Θk =

diag {θ1, . . . , θk} � 0. By simple calculation, we obtain

f

([
0 Tk
Ik 0

])
=

[
Sk 0
0 Sk

]
f

([
0 Θ2

k

Ik 0

])[
Sk 0
0 Sk

]H

=
1

2

[
Sk 0
0 Sk

] [
Θk −Θk

Ik Ik

] [
f(Θk) 0

0 f(−Θk)

] [
Θ−1
k Ik

−Θ−1
k Ik

] [
Sk 0
0 Sk

]H

and [
0
e1

]H
f

([
0 Tk
Ik 0

])[
e1

0

]
=

1

2
eH1 Sk

[
f(Θk)− f(−Θk)

]
Θ−1
k SH

k e1 (27)

for any smooth function f(t). Substituting f(t) = f(t;ω) = gσ(ω − t), we finally arrive at

εσ(ω) ≈ 1

2
‖dl‖2ΩeH1 Sk

[
gσ(ωIk −Θk)− gσ(ωIk + Θk)

]
Θ−1
k SH

k e1

= Re
(
dHAd+ dHBd

) k∑

j=1

|Sk(1, j)|2
gσ(ω − θj)− gσ(ω + θj)

θj
. (28)

Again we have the desired property that εσ(ω) ≥ 0 always holds for ω > 0.
The technique of generalized averaged Gauss quadrature can also be adopted here.

Notice that (27) can be interpreted as

[
0
e1

]H
f

([
0 Tk
Ik 0

]
;ω

)[
e1

0

]
= eH1 h(Tk;ω)e1, (29)

where h(t;ω) = t−1/2
[
f(t1/2;ω)−f(−t1/2;ω)

]
. We expect to obtain a better approximation

by replacing Tk in (29) with T̂k defined in (13). Certainly, the identity matrix Ik needs to
be replaced by I2k−1 accordingly. Let T̂k = ŜkΘ̂

2
kŜ

H
k be the spectral decomposition of T̂k,

where Θ̂k = diag
{
θ̂1, . . . , θ̂2k−1

}
has at most one nonpositive eigenvalue. The generalized

averaged Gauss quadrature produces

εσ(ω) ≈ Re
(
dHAd+ dHBd

) 2k−1∑

j=1

θ̂j>0

|Ŝk(1, j)|2
gσ(ω − θ̂j)− gσ(ω + θ̂j)

θ̂j
, (30)

which is expected to be better than (28) in general. Algorithm 5 summarizes the Lanczos
algorithm with generalized averaged Gauss quadrature for complex full BSE. All of the
four desired features listed in the beginning of this section are satisfied.
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Algorithm 5 The Lanczos algorithm for estimating the optical absorption spectrum for
complex full BSE.

Input: A definite Bethe–Salpeter Hamiltonian matrix H ∈ C2n×2n, an optical transition
vector d ∈ Rn, a broadening factor σ > 0, the number of Lanczos steps k, and a set of
frequencies {ωi}mi=1.

Output: The estimated absorption spectrum εσ(ω) sampled at ωi (for 1 ≤ i ≤ m).

1: Perform k Lanczos steps in Ω-inner product with starting vector [dH, d
H

]H using Algo-
rithm 4.

2: Formulate T̂k as defined in (13).

3: Compute the spectral decomposition T̂k = Ŝk diag
{
θ̂2

1, . . . , θ̂
2
2k−1

}
ŜH
k , where ŜH

k Ŝk =

I2k−1 and θ̂2k−1 ≥ · · · ≥ θ̂2 > 0.
4: Evaluate

εσ(ωi) = Re
(
dHAd+ dHBd

) 2k−1∑

j=1

θ̂j>0

|Ŝk(1, j)|2
gσ(ωi − θ̂j)− gσ(ωi + θ̂j)

θ̂j

for i = 1, . . ., m.

4.4 Connection with other Lanczos procedures

In this subsection, we establish the connection among several variants of the Lanczos pro-
cedures. The comparison includes the Lanczos procedures we have discussed in Sections 4.1
and 4.2, as well as that proposed in [32] and [11]. The connection with a variant of the
symplectic Lanczos procedure from [34] is also discussed.

Lanczos procedures for real BSE In [32, Section 3], a Lanczos procedure that pro-
duces

ÛT
k V̂k = Ik, KÛk = V̂ T̂k, MV̂k = ÛkD̂k (31)

is studied for real BSE, where T̂k is symmetric tridiagonal, and D̂k � 0 is diagonal. By
rescaling Ûk, V̂k and T̂k in (31) as

Uk = ÛkD̂
1/2
k , Vk = V̂kD̂

1/2
k , Tk = D̂

1/2
k T̂kD̂

1/2
k ,

we obtain
UT
k Vk = Ik, KUk = V Tk, MVk = Uk,

which is identical to the Lanczos procedure (17) in the M -inner product. As the rescaling
is invertible, (31) and (17) are mathematically equivalent. Since there is no need to keep
an additional diagonal matrix, (17) is slightly simpler compared to (31).
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If both H and the optical transition vector d are real, the Lanczos procedure (23)
simplifies to

KMUk = UkTk + βkuk+1e
H
k .

The orthogonality condition (24) becomes

Vk = MUk, V H
k Uk = Ik, (32)

or simply UH
k MUk = Ik. Thus (23) and (17) are identical for real BSE. In the computation

of the absorption spectrum for real BSE, (28) and (30) also reduce to (18) and (19),
respectively. Therefore, Algorithm 5 can be regarded as a generalization of Algorithm 3 to
complex BSE.

Lanczos procedures for complex BSE In [10], a Lanczos procedure defined in terms
of the Ω-inner product, which produces

HQ̃k = Q̃kT̃k + β̃kq̃k+1e
H
k , Q̃H

k+1ΩQ̃k+1 = Ik+1, (33)

is presented. However, the projected symmetric tridiagonal matrix T̃k does not necessarily
have a real spectrum that is symmetric with respect to the origin. Thus (33) is not struc-
tured preserving in general. In a subsequent paper [11], it was proposed that a structured
starting vector q̃1 ∈ U0 should be used in (33). With such a structured starting vector,
it can be shown that T̃k is a real tridiagonal matrix whose diagonal entries are zeros. In
addition the nonzero eigenvalues of T̃k appear in pairs ±θ. Hence (33) with q̃1 ∈ U0 can
be regarded as structure preserving. In the following we shall show that this Lanczos
procedure is mathematically equivalent to (23).

We have shown that the real symmetric tridiagonal matrix Tk in (20) and (23) is positive
definite and componentwise nonnegative. Therefore it admits a Cholesky decomposition
Tk = LkL

H
k where

Lk = tridiag





0 · · · 0

β̃1 · · · · · · β̃2k−1

β̃2 · · · β̃2k−2





is a bidiagonal lower triangular matrix, which is also componentwise nonnegative. Multiply
diag {Ik, Lk}−H from the right to (23) yields

H

[
Uk VkL

−H
k

Uk −VkL−H
k

]
=

[
Uk VkL

−H
k

Uk −VkL−H
k

][
0 Lk
LH
k 0

]
+ βk

[
uk+1

uk+1

] [
0

L−1
k ek

]H
.

Notice that L−1
k ek is parallel to ek. By setting

Ũk =
1√
2
Uk, Ṽk =

1√
2
VkL

−H
k , β̃2k =

√
2 ekL

−1
k ek, (34)
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we arrive at a Lanczos procedure of the form

H

[
Ũk Ṽk

Ũk −Ṽ k

]
=

[
Ũk Ṽk

Ũk −Ṽ k

] [
0 Lk
LH
k 0

]
+ β̃2k

[
ũk+1

ũk+1

]
eH2k. (35)

Let

q̃2j−1 =

[
ũ2j−1

ũ2j−1

]
, q̃2j =

[
ṽ2j

−ṽ2j

]
.

Applying the permutation matrix [e1, ek+1, e2, ek+2, . . . , ek, e2k] from the right to (35) yields

HQ̃2k = Q̃2kT̃2k + β̃kq̃2k+1e
H
2k,

where

T̃2k = tridiag





β̃1 β̃2 · · · β̃2k−2 β̃2k−1

0 0 · · · · · · 0 0

β̃1 β̃2 · · · β̃2k−2 β̃2k−1



 .

To obtain the orthogonality condition in terms of Q̃k, we multiply (35) from left by

[
Ũk Ṽk

Ũk −Ṽ k

]H
Cn.

Using (25) and simple algebraic manipulation, we obtain

[
Ũk Ṽk

Ũk −Ṽ k

]H
Ω

[
Ũk Ṽk

Ũk −Ṽ k

]
= I2k.

Thus we have derived (33) from (23), assuming the number of Lanczos steps in (33) is even.
As the transformation (34) is invertible, the two Lanczos procedures are mathematically
equivalent.

The Lanczos procedure (33) can be used to approximate the absorption spectrum as
follows:

εσ(ω) = dHr gσ(ωI2n −H)dl

≈ dHr Q̃2kgσ(ωI2n − T̃2k)Q̃
H
2kΩdl

=
1

2
‖dl‖2ΩeH1 gσ(ωI2n − T̃2k)T̃

−1
2k e1. (36)

The derivation of the last step requires similar effort compared to the proof of Theorem 3.
The expression (36) is also mathematically equivalent to (28). The main difference between
them is that the spectral decomposition of T̃2k instead of that of Tk is needed. However, we
remark that there exist subtle differences when the technique generalized averaged Gauss
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quadrature is adopted. A direct application of generalized averaged Gauss quadrature
replaces T̃2k by a (4k − 1)× (4k − 1) tridiagonal matrix

̂̃T 2k = tridiag





β̃1 · · · β̃2k−1 β̃2k β̃2k−2 · · · β̃1

0 · · · · · · 0 0 · · · · · · 0

β̃1 · · · β̃2k−1 β̃2k β̃2k−2 · · · β̃1



 .

The positive eigenvalues of ̂̃T 2k are not quite the same as the those of T̂
1/2
k , although the

number of positive Gauss nodes in the generalized averaged Gauss quadrature is 2k− 1 for
both case. We shall see from the numerical experiments the generalized averaged Gauss

quadrature based on ̂̃T 2k is in general slightly worse than that based on T̂k in terms of
accuracy.

We remark that in the discussion above we always assume that an even number of
Lanczos steps is performed in (33). In fact, for an odd number of Lanczos steps, T̃2k+1

always has a zero eigenvalue. In the view of Gauss quadrature for estimating the absorption
spectrum, such a zero eigenvalue is not a very useful Gauss quadrature node because
εσ(0) = 0 is known trivially. Therefore, an even number of Lanczos steps should be

performed when computing (33). Similarly, the zero eigenvalue of ̂̃T 2k is not very helpful.

Thus we only consider the 2k−1 positive eigenvalues of ̂̃T 2k to be useful in the generalized
averaged Gauss quadrature.

Connection with symplectic Lanczos procedure We have shown that our new Lanc-
zos procedure (23) is essentially equivalent to the one proposed in [11], and both are equiv-
alent to (17) and the one in [32] when applying to real BSE. There exists other equivalent
formulations. We present these formulations in this section, and exploit more properties
of the Lanczos procedure.

Let

X̃k =
Uk + Vk

2
, Ỹk =

Uk − V k

2
, Ãk =

Ik + Tk
2

, B̃k =
Ik − Tk

2
.

Then we reformulate (23) as

H

[
X̃k Ỹ k

Ỹk X̃k

]
=

[
X̃k Ỹ k

Ỹk X̃k

] [
Ãk B̃k
−B̃k −Ãk

]
+

1

2
βk

[
x̃k+1 ỹk+1

ỹk+1 x̃k+1

] [
0 eHk
0 eHk

]
. (37)

The orthogonality condition (25) becomes

(
Cn

[
X̃k Ỹ k

Ỹk X̃k

]
Ck

)H [
X̃k Ỹ k

Ỹk X̃k

]
=

[
X̃k −Ỹ k

−Ỹk X̃k

]H [
X̃k Ỹ k

Ỹk X̃k

]
= I2k. (38)
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Although (23) is derived from (20), which uses the Ω-inner product, the equivalent for-
mulation (37) is a Lanczos procedure in the C-inner product. As a result, the projected
matrix is a 2k× 2k BSH matrix. As we have discussed in Section 2, the eigenvectors of H
are orthogonal in both the Ω-inner product and the C-inner product. This suggests that
our Lanczos procedure largely preserves properties of H. As a byproduct of this observa-
tion, we obtain the Cauchy interlacing property as stated in Theorem 4, which provides an
estimate on the location of quadrature nodes in the Gauss quadrature. This can be viewed
as a generalization of [32, Lemma 3.5]. A proof of Theorem 4 can be found in [28].

Theorem 4. Let Tk be defined as in (20) and suppose that the eigenvalues of H and Tk
are ±λ1, ±λ2, . . ., ±λn, and θ2

1, θ2
2, . . ., θ2

k, respectively, with 0 < λ1 ≤ λ2 ≤ · · · ≤ λn,
0 < θ1 ≤ θ2 ≤ · · · ≤ θk. Then, under the assumption given in Theorem 2, we have

λi ≤ θi ≤ λn−k+i, (1 ≤ i ≤ k).

It has been shown in [27] that the matrix

iQH
nHQn = Jn

[
Re(A+B) Im(A−B)
−Im(A+B) Re(A−B)

]
=: JnM̃

is a real Hamiltonian matrix with M̃ � 0, where

Jn =

[
0 In
−In 0

]
, Qn =

1√
2

[
In −iIn
In iIn

]
.

Using the same unitary transformation, the Lanczos factorization (37) becomes

JnM̃

[
Re(Uk) Im(Vk)
−Im(Uk) Re(Vk)

]
=

[
Re(Uk) Im(Vk)
−Im(Uk) Re(Vk)

] [
0 Tk
−Ik 0

]
+ [rank 1], (39)

and the orthogonality condition (38) becomes

[
Re(Uk) Im(Vk)
−Im(Uk) Re(Vk)

]H
Jn

[
Re(Uk) Im(Vk)
−Im(Uk) Re(Vk)

]
= Jk. (40)

Since (40) indicates that the Lanczos vectors associated with JnM̃ are symplectic, the
Lanczos factorization (39) yields in fact a symplectic Lanczos procedure (see, e.g., [2, 4, 34])
for the real Hamiltonian matrix JnM̃ . Such a variant of symplectic Lanczos procedures has
been discussed in [34]. Therefore, (23) can also be interpreted as a variant of symplectic
Lanczos procedure. Finally we remark that for the purpose of computing the absorption

spectrum, the starting vector in (39) should be chosen parallel to
[
Re(d)H,−Im(d)H

]H
if (39) is adopted.
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4.5 Structure preserving Lanczos algorithm with paired starting vectors

Besides several equivalent structure preserving Lanczos procedures, there are also other
structure preserving Lanczos procedures with paired starting vectors. Actually, when
‖u1‖2 6= ‖v1‖2, Lanczos procedures of the form

H

[
Uk V k

Vk Uk

]
=

[
Uk V k

Vk Uk

] [
Ak Bk
−Bk −Ak

]
+

[
uk+1 vk+1

vk+1 uk+1

] [
βke

H
k 0

0 −βkeHk

]
(41)

can be constructed, where Ak and Bk are tridiagonal, and the orthogonality condition on
the Lanczos vectors is either2

[
ui vi
vi ui

]H
Ω

[
uj vj
vj uj

]
= δijI2 (42)

or

C2

[
ui vi
vi ui

]H
Cn

[
uj vj
vj uj

]
=

[
ui −vi
−vi ui

]H [
uj vj
vj uj

]
= δijI2. (43)

As the eigenvalues of the projected matrix

Hk =

[
Ak Bk
−Bk −Ak

]

occur in pairs ±θ, (41) is regarded as structure preserving. In fact, from the discussion in
the previous subsection, we also see that the condition (43) for BSH matrices is equivalent
to the symplecticity condition for real Hamiltonian matrices.

When estimating the absorption spectrum using (41), we use u1 = d, v1 = 0 as the
starting vectors because dl does not satisfy the condition ‖u1‖2 6= ‖v1‖2. If (42) is used,
the computed absorption spectrum is not guaranteed to be real. Hence, we do not consider
Lanczos procedure (41) in the Ω-inner product for computing the absorption spectrum.
If the orthogonality condition (43) is adopted, the projected matrix Hk is a definite BSH
matrix. Let the spectral decomposition of Hk be

Hk =

[
S1 S2

S2 S1

] [
Θ 0
0 −Θ

] [
S1 −S2

−S2 S1

]H
,

where Θ = diag {θ1, . . . , θk} � 0. It can be shown that

εσ(ω) ≈ ‖d‖22(e1 − ek+1)Hgσ(ωI −Hk)(e1 + ek+1)

= ‖d‖22
k∑

j=1

∣∣S1(1, j)− S2(1, j)
∣∣2[gσ(ω − θj)− gσ(ω + θj)

]
. (44)

2If (42) is used, orthogonalization within each two dimensional subspace is required.
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This formulation possesses the second and third features listed in the beginning of this
section. However, theoretically Lanczos procedure in the C-inner product may sometimes
break down due to C-neutral vectors.3 Such a breakdown is not a lucky breakdown. It
is also not very clear how to incorporate the technique of generalized averaged Gauss
quadrature in (44).

We remark that in general (44) is not as good as (28) even if generalized averaged
Gauss quadrature is not used. Our numerical experiments suggest that (44) typically
requires about twice as many as Lanczos steps to achieve the same accuracy level compared
to (28).4 A brief explanation is that for the same number of Lanczos steps k, H has been
raised to the power H2k in (23), while H has only been raised to the power Hk in (41). A
higher polynomial degree potentially provides better approximation quality.

5 Computational examples

In this section we present several examples to demonstrate the accuracy and efficiency of
the Lanczos algorithm for computing the optical absorption spectrum. We implemented
the Lanczos algorithms in the BerkeleyGW [7] software package. All tests were performed
on the Linux cluster Edison at the National Energy Research Scientific Computing Cen-
ter (NERSC).5 Each computational node on Edison consists of 64 GB DDR3 1866 MHz
memory and two sockets, with a 12-core Intel “Ivy Bridge” processor at 2.4 GHz on each
socket. The computational nodes are connected by a Cray Aries network with Dragonfly
topology, with 23.7 TB/s global bandwidth. Our tests make use of 10 computational nodes
and 24 MPI processes per node. The Fortran 90 implementation of algorithms is compiled
by the Intel Fortran compiler, and linked with the Cray LibSci and Cray MPI libraries.
No multithreading feature is utilized.

For our calculations, we use a benchmark system consisting of a single-wall (8, 0) carbon
nanotube with 32 atoms, 128 electrons, and 64 Kohn–Sham spin-degenerate bands in the
unit cell. As depicted in Figure 2, this system is periodic along the “c” axis, but confined
along the other directions labeled by the axes “a” and “b”, which makes this an interesting
benchmark system. In particular, as we will discuss, the TDA may or may not be a good
approximation depending on the direction of optical excitation in this particular system.

In general, crystal states can be written in a Bloch form as Ψnk(r) = eik·runk(r), where
n is a band index, k is a k-point, and unk(r) is a cell-periodic complex-valued function.
Because “c” is the only periodic direction, we only need to sample k-points along that
axis. When solving the BSE, we include nv = 10 valence states, nc = 12 conduction states,
and nk = 256 k-points, so that n = nvncnk = 30,720, and we picked gσ as a Gaussian
function with σ = 100 meV. The matrices A and B are both dense. We did not perform a

3A C-neutral vector is a vector v ∈ C2n which satisfies vHCnv = 0.
4A similar behavior has been observed in [33] when solving the linear response eigenvalue problem.
5http://www.nersc.gov/users/computational-systems/edison/
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Figure 2: Single-wall (8, 0) carbon nanotube benchmark system. The black region repre-
sents the unit cell of the system, which is periodic along the “c” axis.

systematic convergence test with respect to the number of conducting bands. However, the
use of nc = 12 conducting bands already produces main physical features in the absorption
spectrum also observed when a larger number of conduction bands are used.

Full BSE vs. TDA. In our first experiment, we calculate the absorption spectrum for
two different directions for the light polarizations using both full BSE and TDA solvers. To
exclude other sources of errors, we fully diagonalize the matrices H and A, with dimensions
61,440 and 30,720, respectively. We can see from Figure 3 that even within the same system,
the TDA can either be a valid approximation or give a qualitatively wrong absorption
spectrum depending on the polarization direction of light. When the polarization of the
optical excitation is along the “c” axis, which is a direction along which the system is
periodic, the TDA is a good approximation for low-energy optical spectrum. However, if
the light polarization is along any confined direction spanned by the “a” and “b” axes, a
large difference between the two spectra can be observed. This can be understood from
a large exciton–plasmon hybridization which couples to light polarized along the confined
direction, and which can not be well-described within the TDA [10].

Thus this example confirms the necessity of developing full BSE solvers for absorp-
tion spectrum calculation. In the subsequent tests the light polarizations is chosen to be
perpendicular to the tube so that using a full BSE solver is necessary.

Effectiveness of the Lanczos algorithm. In Figure 4 we plot the approximate absorp-
tion spectra obtained by running 32 steps of different variants of the Lanczos algorithm.
We use the result obtained from full diagonalization as the “exact” solution to measure
the accuracy of these Lanczos algorithms. The paired Lanczos algorithm described in
Section 4.5 (Figure 4(a), abbreviated as PL) is clearly worse than the one with a single
structured starting vector (Figure 4(b), abbreviated as SVL). The Lanczos algorithm pro-
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Figure 3: The absorption spectrum for a single-wall (8, 0) carbon nanotube for two different
directions for the light polarizations. The label “Full BSE” refers to spectrum obtained
from solving the full BSH in (7), and “TDA” refers to the spectrum obtained within the
Tamm–Dancoff approximation.

posed in [11] (abbreviated as GMG) is equivalent to ours with a single structured starting
vector and is hence omitted here. The technique of generalized averaged Gauss quadrature
(abbreviated as GAGQ) clearly improves the accuracy of the Lanczos algorithm. With
such a small number of Lanczos steps, our Lanczos algorithm with generalized averaged
Gauss quadrature (i.e., Algorithm 5) already produces very satisfactory result. Though
not very clear from this figure, our Algorithm 5 (Figure 4(d)) is slightly better than the one
proposed in [11] with generalized averaged Gauss quadrature (Figure 4(c)) in this example.

To measure the accuracy of approximate absorption spectrum, we introduce the con-
cept of angle between two functions as follows. Let ξ(ω) and ζ(ω) be sufficiently smooth
functions of ω over an interval I. Then the angle between ξ(ω) and ζ(ω) is defined as

∠(ξ, η) = arccos
〈ξ, ζ〉√
〈ξ, ξ〉〈ζ, ζ〉

, (45)

where

〈ξ, ζ〉 =

∫

I
ξ(ω)ζ(ω) dω

is the usual L2-inner product. The angle ∠(ξ, η) is in fact the principal angle (also known
as canonical angle) between two subspaces, span {ξ(ω)} and span {η(ω)}, of L2(I). A
small angle between two functions implies similar shapes of their curves. This allows us to
measure the error of the approximate absorption spectrum compared to the “exact” one in
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Figure 4: Comparison of the absorption spectra obtained from different variants of the
Lanczos algorithm with the spectrum obtained from the full diagonalization of the BSH
matrix.

terms of the angle between them. This measure is similar to the cross-correlation measure
between two curves. In Figure 5 we plot the errors of different variants of the Lanczos
algorithm, with the integrals in (45) approximated by rectangular rules using the sampling
points of ε2(ω)’s. It confirms our observation from Figure 4, not only for a single snapshot
after 32 Lanczos steps, but also consistently throughout the whole iterative procedure. The
difference between the two different variants with generalized averaged Gauss quadrature
becomes more clear in Figure 5. Overall Algorithm 5 is better than the variant from [11]
combined with generalized averaged Gauss quadrature. We remark that there are about
10% cases in this example involving nonpositive definite T̂k in Algorithm 5. Figure 5 shows
that dropping the nonpositive eigenvalue of T̂k does not harm the accuracy.

It takes 62 iterations and 4.1 seconds for Algorithm 5 to achieve the accuracy level 10−3

(in terms of angles), which is more than sufficient for practical use. This is over 500 times
faster compared to full diagonalization (2125.8 seconds). If the multiplications of A and B
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Figure 5: The convergence history of different variants of the Lanczos algorithm. The
error is measured by the angle (45) between the approximate absorption spectrum and the
one obtained from full diagonalization. The algorithms used here are the same as those in
Figure 4.

with vectors can be implemented more efficient by further exploiting the structures of A
and B, the improvement is expected to be more significant.

In our test, the number of Lanczos steps is always prescribed by the user. We remark
that it is possible to instead specify the desired accuracy in the input, and automatically
determine the required number of Lanczos steps in the calculation. One strategy proposed
in [19] is to estimate the error using the difference between the results obtained with and
without generalized averaged Gauss quadrature. However, since this strategy relies on the
result without generalized averaged Gauss quadrature, which is in a relatively low accuracy
as we have shown in Figure 5, the estimate is in general too pessimistic. A better strategy
is to use the difference between two consecutive iterations (i.e., (k − 1)th and kth steps)
instead in the stopping criterion.

Systems with real-space inversion symmetry. Our last example uses another system
which has real-space inversion symmetry. When a system has real-space and time-reversal
symmetry, the wave functions in reciprocal space, and thus the BSH matrix, can be written
as real numbers [7]. We use bulk silicon for this benchmark, with nv = 4, nc = 6, and
nk = 1,000, so that the dimension of the A and B blocks of BSH is n = 24,000. We also
use a Gaussian broadening in this system, but with σ = 150 meV. Since the BSH matrix
is real, both Algorithms 3 and 5 are applicable, and are identical as discussed in Section 4.
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Figure 6: The convergence history of Algorithms 3 and 5 for bulk silicon. The error is
measured by the angle (45) between the approximate absorption spectrum and the one
obtained from full diagonalization.

Our experiment confirms the theoretical prediction. In Figure 6 we plot the convergence
history (in terms of angles) of the two algorithms. The curves of convergence history are
indeed on the top of each other in the left plot. As for the execution time, the real solver
is faster than the complex one, due to some additional operations involving the imaginary
parts in the complex solver when applying to real matrices.

6 Concluding remarks

In this paper we developed a simple structure preserving Lanczos procedure for definite
Bethe–Salpeter Hamiltonian matrices and combined it with the recently developed tech-
nique of generalized averaged Gauss quadrature to estimate the optical absorption spec-
trum. Our Lanczos procedure possesses several attractive features, such as no serious
breakdown, and preserving nonnegativity of the absorption spectrum. The use of alter-
native inner products based on the orthogonalities of the eigenvectors plays a key role
in preserving the structure. By some theoretical analysis we established the equivalence
between our Lanczos procedure with several existing Lanczos procedures in the literature,
including the ones in [11, 32] for random phase approximation, and one variant of sym-
plectic Lanczos procedure in [34]. Numerical experiments demonstrate that the Lanczos
algorithm can provide accurate approximation of the absorption spectrum with a relatively
small number of Lanczos steps. In addition, the technique of generalized averaged Gauss
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quadrature largely improves the accuracy of the Lanczos algorithm. When this technique
is applied, our Lanczos algorithm is more efficient and more accurate compared to other
variants.

In this work the blocks A and B in the BSH matrix H are formed as dense matrices.
However, the Lanczos algorithm does not require these matrices to be explicitly formed.
An implicit representation that allows to perform matrix–vector multiplication suffices.
Efficient ways of constructing and applying the BSH matrix have been described in [16, 17,
22, 23, 24]. The development of other approximation and compression strategies is planned
as future work.
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