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Abstract

The de novo design of small molecule–binding proteins has seen exciting recent progress; 

however, high-affinity binding and tunable specificity typically require laborious screening and 

optimization after computational design. We developed a computational procedure to design a 

protein that recognizes a common pharmacophore in a series of poly(ADP-ribose) polymerase–

1 inhibitors. One of three designed proteins bound different inhibitors with affinities ranging 

from <5 nM to low micromolar. X-ray crystal structures confirmed the accuracy of the designed 

protein-drug interactions. Molecular dynamics simulations informed the role of water in binding. 

Binding free energy calculations performed directly on the designed models were in excellent 

agreement with the experimentally measured affinities. We conclude that de novo design of 
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high-affinity small molecule–binding proteins with tuned interaction energies is feasible entirely 

from computation.

Molecular recognition underlies catalytic activity of enzymes and drives signaling of 

protein receptors. Although we have an advanced understanding of both protein design and 

molecular interactions, the rational design of de novo proteins that specifically bind small 

molecules with low nanomolar to picomolar affinity is a major challenge (1, 2) that has not 

been achieved in de novo proteins (3, 4) without experimental screening of large libraries 

of variants (5-7). Even with the application of recent advances in artificial intelligence to 

facilitate de novo design (8-10), it has been necessary to screen thousands of independent 

designs to discover binders with low-micromolar to high-nanomolar dissociation constants 

(Kd) directly from design algorithms (3, 11-14). Proteins with higher affinity are often 

desirable. Given the low success rate, screening large numbers of designs often relies on 

biotinylated or fluorescently labeled versions of their small-molecule targets, which restricts 

the region of the molecule available for binding. The cost of synthesizing thousands of genes 

and the necessity of synthetic chemistry for conjugation places a practical limitation on the 

access of these methods to many groups. Moreover, de novo design methods rely heavily on 

structural informatics to guide sampling of protein structure and sequence as well as scoring 

functions that rely on a mix of statistical and physical terms without explicit representation 

of dynamics, conformational entropy, or water (3-7). This dependence leaves open the 

fundamental question of whether our understanding is grounded in physical forces or limited 

exclusively to advanced pattern recognition (15). In this study, we asked whether adherence 

to simple rules based on physical principles might increase the success rate for designing 

drug-binding proteins and whether all-atom molecular dynamics (MD) simulations with 

explicit water might be able to recapitulate the experimentally determined binding affinities 

of high-affinity binders, starting with design models that come directly from computation.

Rationale for design of high-affinity drug-binding proteins

The recognition of polar groups presents a challenge in de novo design of binders because 

the polar groups must lose most or all of their highly favorable interactions with water 

molecules upon binding to the protein. To compensate for this loss in hydration, the polar 

chemical groups of the small molecule must form highly directional and distance-dependent 

hydrogen bonds and electrostatic interactions with atomic groups in the protein. These polar 

interactions are not only required for affinity, but they also provide the specificity of proteins 

for their substrates over other similarly shaped molecules.

We recently developed a design method known as Convergent Motifs for Binding Sites 

(COMBS) to enable sampling of only sequences and structures capable of forming such 

interactions prior to searching for less specific and directional, but energetically favorable, 

van der Waals and hydrophobic interactions that complete the binding site (3). To facilitate 

this process, COMBS uses van der Mers (v to search for preferred spatial positions w 

chemical groups can interact with an amino acid (3). vdMs are similar to rotamers (16), 

which define favorable positions to arrange an amino acid’s sidechain atoms relative to 

its backbone atoms. However, vdMs instead define favorable positions of an interacting 
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chemical group fragment relative to a residue’s backbone atoms. Each amino acid type can 

adopt multiple rotamers, which are widely used in design algorithms to position sidechains 

onto preexisting backbones. In vdMs, we track the positions of chemical groups that can 

interact with a given type of amino acid. For example, a GlnCONH2 vdM consists of a 

glutamine residue that contacts a carboxamide group. Also like rotamers, vdMs can be 

clustered into similar groups with associated probabilities based on their occurrence in the 

Protein Data Bank (PDB). The COMBS algorithm then finds multiple positions on a given 

protein backbone that can simultaneously form favorable van der Waals, aromatic, and/or 

hydrogen-bonded interactions with the chemical groups of a target small molecule. The 

remainder of the sequence is then filled in through flexible backbone sequence design.

COMBS showed promise in identifying protein backbones and creating sites capable of 

binding the drug apixaban. In previous work, we identified one protein that bound with Kd 

= 500 nM and a second with Kd = 5 mM after screening only six designed sequences (3). In 

the process, we learned lessons that could improve the use of COMBS in design pipelines. 

Firstly, during the final steps of sequence design and backbone optimization, sidechains 

were sometimes introduced that ultimately did not form their intended favorable vdMs. 

Structural analysis showed that they were not in optimal orientations to interact with the 

drug, and site-directed mutagenesis showed that they made small or no contributions to the 

free energy of binding. We reasoned that it should be possible to improve binding by using 

backbone ϕ- or y-dependent vdMs and alternating rounds of COMBS with Rosetta flexible-

backbone sequence design. Secondly, binding affinity can be optimized by pre-organizing 

a receptor’s conformation so that it loses minimal conformational entropy upon binding. 

Originally, we analyzed preorganization using Rosetta ab initio folding; now we can more 

reliably determine whether the sequence adopted the desired reorganized structure using the 

AlphaFold2 program (17).

Another important feature is the need to consider the energetically unfavorable loss of 

hydrogen bonds between water molecules and both the drug as well as the protein’s binding 

site, which occurs when the drug binds the pocket. Although COMBS and other algorithms 

(12) consider the need to form hydrogen bonds to compensate for the loss of hydration, we 

strove to form a fuller set of compensatory ligand-protein hydrogen bonds to every buried 

polar atom. We sampled vdMs between the ligand and the first-shell amino acids, as well as 

vdMs between the first shell and a second shell of interacting residues, which also assures a 

favorable geometry for the residues directly contacting the ligand. We also opted to bias the 

orientation of the ligand such that formally charged groups were placed near the surface of 

the protein, thereby minimizing energic penalties due to Born solvation. We evaluated MD 

simulations and free energy calculations, which explicitly consider interactions with bulk 

and bound water molecules that are not fully considered in protein design algorithms, to 

assess the usefulness of physics-based methods for evaluating the affinity of the designs.

To demonstrate the utility of our refined methods, we chose to design binders of poly 

(ADP-ribose) polymerase inhibitors (PARPi), a recently developed class of clinically useful 

anticancer drug (18). De novo–designed binders of PARPi drugs might serve as components 

in detectors, delivery agents, or detoxification agents for these cytotoxic drugs. The pre-

dominant class of PARPi drugs share a tripartite pharmacophore consisting of a fused 5,6-
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bicyclic core, an amide, and a phenyl group bearing a positively charged alkylamine (Fig. 

1A). We chose to target rucaparib, the most structurally complex of several related drugs, as 

our primary target (Fig. 1A), as well as a series PARPi analogs. By considering a series of 

drugs, we at once provide reagents that might be widely useful while simultaneously testing 

our understanding of the essential features required for binding.

De novo design of high-affinity drug-binding proteins

We used a recursive version of the COMBS algorithm to design rucaparib-binding sites in 

a family of mathematically generated four-helix bundle proteins. The key binding residues 

were introduced by using vdMs to identify multiple positions on a given protein backbone 

that could simultaneously interact favorably with the chemical groups of a target small 

molecule (Fig. 1, B and C) (materials and methods). Although vdMs are derived from 

statistics of sidechain and mainchain interactions with one another in the PDB, they can be 

used to identify binding-site residues capable of forming hydrogen bonds and aromatic 

interactions with diverse small molecules in much the same way that natural proteins 

bind a wide variety of small molecules by using a set of 20 amino acids. Although the 

energetics of these interactions can vary depending on the specific small molecule bound, 

the fundamental geometries required to achieve binding often remain relatively constant 

(19). Thus, a common set of vdMs should serve to bind a wide range of compounds. We 

targeted three chemical groups in rucaparib’s structure: the indole NH and the C=O and 

NH2 groups of its carboxamide (Fig. 1C). Additionally, COMBS identified Asp58 as a 

second-shell interaction to the carboxamide of rucaparib (Fig. 1C). It is important to design 

binding interactions with these groups with sub-Ångstrom accuracy to engender specificity 

and a favorable free energy of association. Next, the remainder of the sequence was designed 

by using Rosetta flexible backbone design (Fig. 1D) (3, 20) while retaining the identity of 

the keystone residues (identified in the COMBS step). The mainchain moved 1-Å root mean 

square deviation (RMSD) during this step (fig. S1), so a second round of vdM sampling 

was performed on the relaxed backbone. This procedure identified three mutants involving 

drug-contacting residues, including N29D, W90L, and N131D (Fig. 1E). A second round of 

flexible backbone sequence design with this backbone and the newly fixed vdMs resulted 

in converged sequence-structure combinations (Figs. 1E and 2, A and B), as a third round 

of COMBS showed that the vdMs were now optimal. The final designs included numerous 

CH-p and hydrophobic interactions interspersed with specific polar interactions, including 

four hydrogen bonds (a H-bond donor to the drug’s carboxamide oxygen as well as three 

H-bond acceptors to the drug’s carboxamide NH, indole NH, and charged ammonium 

group), as well as second-shell interactions. (Fig. 2C and fig. S2).

Throughout the design process, we ensured that the designs would also retain favorable 

interactions with most of the common pharmacophores of the three other drugs (materials 

and methods). However, we predicted that the protein would have lower affinity for niraparib 

and mefuparib because they lack the H-bonding group indole NH of rucaparib. Additionally, 

we expected veliparib to bind weakly because it lacks a hydrophobic phenyl group and the 

position of its charged ammonium group differs from that found in the other three drugs.
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The final models were chosen based on multiple criteria: (i) Favorable vdMs (highest total 

vdM cluster scores); (ii) satisfaction of all potential buried H-bond donors and acceptors 

in the protein and ligand; (iii) low Rosetta energy (lowest 50 of the 1000 total designs); 

and (iv) avoidance of clashes with the three other PARP inhibitors, which show structural 

variability near the amine end of the molecule. Top-scoring designs selected for expression 

were designated PARPi binder (PiB) and its variant PiB′ (fig. S3 and table S1). PiB′ 
differs from PiB by the substitution of five solvent-exposed charged residues with alanine to 

encourage crystallization. The other two proteins chosen for expression (PiB-1 and PiB-2) 

were less closely related to PiB in structure (RMSD = 0.93 and 0.79 for PiB-1 and PiB-2 

to PiB, respectively) and sequence (41 and 42% identity for PiB-1 and PiB-2 to PiB, 

respectively) (fig. S4). Circular dichroism spectroscopy showed that all four had substantial 

a-helical character (fig. S5). However, PiB-1 and PiB-2 failed to induce large changes in the 

fluorescence emission spectrum of rucaparib (fig. S6); therefore, we focused our efforts on 

PiB and PiB′ (figs. S7 to S11).

Spectral titrations showed that PiB and PiB′ bound the PARPi drugs with high affinity. 

Incubation of PiB with equimolar concentrations of rucaparib led to a marked blue shift 

and an increase in intensity of its fluorescence spectrum, as would be expected if its indole 

core were bound in a rigid, solvent-inaccessible site (figs. S6 and S7). Nuclear magnetic 

resonance spectroscopy of PiB showed that it folded into a well-defined structure and 

that the addition of a single equivalent of rucaparib led to a new set of peaks, which 

was consistent with a stoichiometric, specific complex (figs. S10 and S11). Fluorescently 

monitored titrations of protein into a solution of rucaparib showed that PiB and PiB′ 
bound with very low to subnanometer affinity (Figs. 2, D and E, and 3A). Even at the 

lowest experimentally feasible rucaparib concentration, the binding isotherms showed a 

linear increase in intensity with respect to protein concentration until a single equivalent 

was added, followed by an abrupt leveling at higher protein concentrations. This behavior 

is indicative of a dissociation constant that is much lower than the total rucaparib 

concentration. A nonlinear least-squares fit to the data returned a Kd of 2.2 nM for PiB 

and 0.37 nM. For PiB′, and a sensitivity analysis showed that the Kd was <5 nM for both 

proteins (Fig. 2, D and E). Achieving single-digit nanomolar to picomolar binding affinity 

for de novo– designed proteins has previously required extensive experimental optimization 

(5).

Ultraviolet-visible absorption titrations showed that PiB and PiB′ also bound to the 

remaining ligands with affinities that grew increasingly weaker as the drugs’ structures 

diverged from rucaparib (Fig. 3A and fig. S12). PiB retained submicromolar affinity for 

mefuparib (Kd = 190 and 350 nM for PiB and PiB′, respectively) and niraparib (Kd = 

600 and 550 nM). The corresponding Kd values of PiB and PiB′ were 14 and 24 mM, 

respectively, for the structurally divergent drug veliparib, and no binding was detected for 

the most divergent drug, Olaparib (fig. S13). This observed trend in binding affinity matched 

the order expected from the structural differences mentioned previously.

We next examined the in vitro stability and potency of PiB and PiB′ in serum and 

cellular assays. PiB and PiB′ were highly stable in human serum, as are other de novo 

proteins designed for medical applications (figs. S14 and S15) (3, 21). PARPi drugs potently 
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inhibit the viability of cells with certain DNA repair deficiencies including loss-of-function 

mutations in BRCA2 (18). To determine whether PiB and PiB′ could attenuate the lethal 

effects of PARPi drugs, we measured their effects on the growth of BRCA2-mutated DLD-1 

cells and SUM149 cells (22). Dose-response curves were first established in the absence of 

PiB, then the titration was repeated with PiB or PiB′ at varying protein/drug ratios for each 

PARPi drug concentration. The addition of a single equivalent of PiB or PiB′ resulted in 

a fourfold increase in the half-maximal inhibitory concentration (IC50) value for rucaparib. 

Thus, PiB competes effectively for binding of rucaparib to human PARP1, an enzyme 

reported to bind rucaparib with a Kd of 0.1 to 1 nM in biochemical assays (23, 24) (Fig. 

3, A, B, and D, and figs. S16 to S18). The potencies of PiB and PiB′ in the cellular assay 

were similar and decreased in the progression of rucaparib to mefuparib and niraparib to 

veliparib, which was in good agreement with the spectroscopic assays (Fig. 3, B and D, and 

figs. S16 to S18). Moreover, PiB and PiB′ did not appreciably change the cellular response 

to olaparib (Fig. 3, C and D, and figs. S16 to S18), which agreed with spectroscopic data that 

indicated that PiB and PiB′ do not bind this drug.

Structural and mutational validation of designs

The crystallographic structures of PiB′ were solved in the absence and presence of the four 

active compounds at 1.3- to 1.6-Å resolution (table S2). The protein’s conformation was 

in excellent agreement with the predicted Alpha Fold2 model, particularly near the binding 

site [a carbon (Ca) RMSD of the 60 surrounding residues was 0.2 to 0.5 Å] (Figs. 2A and 

4, A and B; fig. S19; and table. S3). A similar degree of agreement (<0.5 Å RMSD) was 

observed comparing the experimental structure and the designed model. An important aspect 

of the design was that the binding site should be preorganized. Indeed, the binding pocket of 

PiB′ was nearly identical between the experimentally determined drug-free and drug-bound 

structures (0.2 to 0.5 Å Ca RMSD) (Fig. 4, B and C, and fig. S20). Moreover, the sidechains 

interacted precisely as predicted in the design of the rucaparib complex (Fig. 4B and fig. 

S20): Asp29 made a direct H-bonded salt bridge to the drug’s charged ammonium group; 

rucaparib’s carboxamide formed a two-coordinate hydrogen bond with Gln54, which in turn 

was stabilized by a second-shell network of H-bonds predicted in the design; and Asp131 

formed a solvent-mediated H-bond to rucaparib’s indole NH group (Fig. 4B and fig. S20). 

A search of water-mediated Asp sidechains with related indole and imidazole sidechains 

showed that this bridging interaction is frequently found in the PDB (fig. S21).

The structures of mefuparib and niraprib bound to PiB′ showed a similar set of interactions 

as rucaparib did when bound to PiB′ (fig. S22). However, their aromatic five-membered 

azole rings lacked a H-bonding group to interact with Asp131, explaining their decreased 

affinity for the protein. As expected from its divergent compare their structural dynamics 

on this time scale. The simulations were performed on the designed models (instead of the 

crystallographic structures) to assess the use of MD as a predictor of experimental success. 

The protein backbone conformations were very stable for all four complexes. However, 

rucaparib’s designed binding pose was stable only in PiB and PiB′ (fig. S25A) (because PiB 

and PiB′ behave similarly in MD, we only discuss PiB): it retained its bivalent hydrogen 

bonding interaction to Gln54 (Fig. 5A), and Asp29 and Asp131 showed stable interactions 

with rucaparib’s indole NH and ammonium groups through direct and water-mediated 
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hydrogen bonds, respectively (Fig. 5A). By contrast, PiB-1 and PiB-2 simulations deviated 

from rucaparib’s designed pose, and their key buried H bonds to Gln54 were broken within 

50 ns in each of three independent calculations (fig. S25). Moreover, PiB shielded the 

apolar atoms in rucaparib more efficiently than PiB-1 and PiB-2, as determined from 

solvent-accessible surface area calculations within individual MD trajectories (fig. S26). 

Furthermore, MD simulations of PiB in complex with niraparib, veliparib, and mefuparib 

showed similar binding-site conformational stability as PiB-rucaparib over 2 ms (Fig. 5A 

and fig. S27). MD can thus help rationalize how interactions contribute to stability in 

predicted complexes and may be a useful tool in design. We next turned to alchemical 

and physical pathway methods to determine whether these methods could predict the 

absolute binding free energies for PiB and PiB′ directly from MD simulations, using the 

computational designs (rather than experimental structures) as the starting models. The 

alchemical transfer method (26, 27) was carried out by one of the authors who had no 

knowledge of the experimental results. This method has been shown to be comparable 

to other alchemical methodologies, such as Schrodinger’s Free Energy Perturbation plus 

(FEP+) (26) or Amber’s thermodynamic integration (27), given comparable sampling of 

the configurational space. An initial absolute binding free energy calculation was used to 

evaluate the energetic contributions of the fused-ring cores of the drugs and to ensure 

convergence of the calculations. An additional relative binding free energy calculation 

was performed to transform each core into the target ligand to estimate the contribution 

from noncore regions (fig. S28). Universally, the alchemical transfer method tended to 

overestimate the binding energy, possibly owing to having two sets of restraint potentials. 

However, this procedure correctly predicted the relative affinities of the four ligands (table 

S4).

We next used potential of mean force calculations, an orthogonal physical-pathway 

methodology (28), to compute absolute binding energies (figs. S29 to S33), and the results 

were in remarkably good agreement with those of the experiment (Fig. 5, B and C, and table. 

S5). The RMS error between the predicted and experimental values is 1.3 kcal/mol, and the 

correct rank order of affinities was observed. This error was close to the experimental error 

in the measurement of Kd for rucaparib. We also obtained very good agreement between 

computation and experimental results for a set of four mutants of PiB (Fig. 5, B and C, 

and table S5). This agreement bodes well for the use of alchemical and physical pathway–

based binding free energy calculations to evaluate potential binding energies of de novo 

small-molecule binding proteins.

Discussion

In this study, we used structural bioinformatics to drive the de novo design of a high-affinity 

drug-binding protein. Molecular dynamics simulations accurately captured the trend in 

binding affinity for the series of drugs and predicted the role of water in binding. Our 

results portend a future in which artificial intelligence–enabled sampling of conformational 

and sequence spaces are seamlessly interfaced with physics-based models to design proteins 

and biomimetic polymers with precisely predefined binding affinity, specificity, and, given 

the intimate relation between binding and catalysis, catalytic properties. To achieve binding 

of complex polar molecules, sampling favorable geometries for ligand-protein interactions 
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is essential. In this work, vdMs and COMBS were key to this achievement. Although 

they were used in conjunction with Rosetta sequence design, they could be easily adapted 

to improve sampling and/or scoring of a variety of recently developed protein-design 

algorithms based on diffusion models (3, 8-10). MD simulations of de novo proteins 

have only been occasionally used to provide insight into de novo protein design (29-33). 

However, by using this method, we were able to differentiate successful versus unsuccessful 

designs, suggesting that it should be helpful for prioritizing designs. Although we ran 

simulations for 2 ms, their essential features could be gleaned after 100 ns, suggesting 

that simulations on this timescale should be useful. Free energy calculations have not 

previously been applied to designed proteins. Although they are more computationally 

intensive and require more user-specified parameters, we obtained excellent quantitative 

agreement between computed and experimentally measured binding free energies using 

only the designed models as the input structures. These data demonstrate the possibility of 

designing proteins with high affinity (Kd < 5 nM) to small molecules by using fully rational 

criteria for design and “physics-based” force fields to evaluate the complexes.

Rucaparib binds to the human PARP1 enzyme with a Kd ranging from 0.1 to 1 nM 

depending on the experimental conditions (23, 24), which is close to the range observed 

for PiB and PiB′. Ligand efficiency is often used as a guiding rule in drug discovery to 

determine whether the affinity of a molecule of a given size is within a range typically seen 

in highly optimized small-molecule drugs and natural organic ligands for proteins (34, 35). 

As ligands become larger, they have more opportunities to form favorable interactions with 

their target proteins. Thus, the maximal affinity possible roughly scales with the size of a 

small molecule, and the ligand efficiency is defined as the free energy of binding (1 M 

standard state) divided by the number of heavy atoms in the ligand. Most drugs have ligand 

efficiency of around 0.3 kcal/ (mol × heavy atom count) (34, 35), although higher values 

are observed for highly optimized drugs such as rucaparib, which has a ligand efficiency 

of 0.5 kcal/(mol × heavy atom count). The ligand efficiency of a drug is similarly a good 

measure of how well optimized a de novo protein is for binding to a small molecule. The 

0.5 kcal/(mol × heavy atom count) ligand efficiency of PiB is a considerable improvement 

over the 0.21 to 0.26 ligand efficiency of the first COMBS-designed apixaban binders, 

which demonstrates the importance of incorporating the design principles discussed above. 

With these and similar refinements, it should be increasingly possible to design high-affinity 

small molecule–binding proteins with predicable binding energetics for a variety of practical 

applications in sensing and pharmaceuticals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Computational design of PARPi protein binders. (A) PARPi analogs. The shared chemical 

features are marked in orange. Olaparib is used as a negative control in the design and 

binding assay. (B to E) The overall design strategy. [(B) and (C)] We first defined the 

pharmacophore and used COMBS to sample vdMs on the selected protein backbones. At 

the outset of the design, we chose chemical groups that should form hydrogen bonds when 

the drug is bound to the binding site. These groups included rucaparib’s indole NH and 

carboxamide groups (marked in orange). The carboxamide group is present in our vdM 

library. However, there were relatively few examples of indole NH vdMs in the database, 

so we used imidazole as a proxy for the indole’s pyrole ring (in the vdMs, the oxygen 

is marked in red, and nitrogens are marked in blue). We then used COMBS to discover 
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sidechains at different positions of a four-helix bundle template that could simultaneously 

form hydrogen bonds to the indole and carboxamide chemical groups of the drug. (The 

COMBS algorithm samples vdMs on a protein backbone and then performs superpositions 

of a ligand onto the chemical groups of the vdMs; next, COMBS finds all the vdMs 

with nearby chemical groups to each superposed ligand; and finally, COMBS computes 

a specific combination of vdMs for each ligand that optimizes a score, such as the vdM 

prevalence or cluster score.) We discovered a solution in which the carboxamide formed 

bidentate hydrogen bonds with sidechain of Q54, and the drug’s indole NH interacted with 

the N131 [in (C), carbon atoms of protein, green; those of rucaparib, orange]. A second-shell 

interaction to Q54 that was discovered by COMBS was D58 (carbon atoms, brown). (D) 

We applied flexible backbone sequence design with a custom Rosetta script while fixing 

the interactions selected from COMBS (rucaparib, purple). (E) We searched for vdMs again 

based on the design output from the previous sequence step (D). The slightly different (~ 

1-Å Ca RMSD) backbone now preferred different vdMs at some locations (higher cluster 

scores), and these mutations were made. Three residues at 29, 90, and 131 (deep blue) were 

changed based on COMBS results. Single-letter abbreviations for the amino acid residues 

referenced throughout the paper are as follows: L, Leu; N, Asn; D, Asp; Q, Gln; W, Trp; F, 

Phe.
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Fig. 2. 
Assessing the computational model and experimental binding of PiB to rucaparib. (A) The 

AlphaFold2 model agreed with the designed PiB, with the binding site Ca RMSD of 0.41 

Å, the upper fold Ca RMSD of 0.49 Å, and overall Ca RMSD of 0.67 Å. (B) The predicted 

local distance difference test scores (pLDDTs) concurred with the trend of RMSD difference 

of the design model. For example, the N terminal, C terminal, and the middle loop with 

low pLDDTs (<90) showed higher Ca RMSD. (C) The design model showing that the polar 

groups of rucaparib are all hydrogen bonded. (D and E) A fluorescence titration showed that 

PiB and PiB′ bind rucaparib with Kd < 5 nM. The fluorescence emission intensity at 420 

nm of rucaparib (excitation wavelength, 355 nm) was measured after titrating aliquots of PiB 

(D) or PiB′ (E) to a final concentration indicated in the abscissa, in which [PIB]T/[ruc]T or 
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[PIB′]T/[ruc]T refers to the ratio of the molar concentrations of PiB or PiB′ to rucaparib, 

respectively. The data are well described by a single-site protein-ligand binding model, and 

a nonlinear least-squares fit to the data returned Kd values of 2.2 ± 0.9 nM for PIB and 0.37 

± 0.29 nM for PiB′. Although the fitting error was relatively small, a sensitivity analysis 

in which the value of Kd was held constant at various values showed that the data for 

both proteins were fit within experimental error so long as the Kd was <5 nM. Therefore, 

although the most probable binding constants were 2 and 0.4 nM, respectively, we can 

confidently conclude that the values for PiB and PiB′ are <5 nM. The titration was carried 

out in buffer containing 50-mM Tris and 100-mM NaCl (pH 7.4). a.u., arbitrary units.
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Fig. 3. 
Spectral titrations and cell viability assay of PiB with PARPi. (A) The Kd values of various 

drugs for PiB as obtained from a global fit of a single-site binding model to the fluorescence 

or absorbance changes as a function of the concentration of PiB or drugs. The indicated 

wavelengths for the titration were chosen to maximize the difference in absorption for the 

free versus bound drug. (B) Growth assays in DLD-1 BRCA2-mutated cells showed that 

PiB alleviates the effects of rucaparib, mefuparib, niraparib, and veliparib toxicity in a 

dose-dependent manner. The PARP inhibitors were preincubated with PiB in media at room 

temperature for 5 min at multiple concentration ratios (protein:ligand) of 0:1, 1:1, 2.5:1, 

5:1, and 10:1. (C) Cell viability assay as in Fig. 3B showing that PiB had no effect on the 

olaparib dose response. (D) Table showing IC50 values for the inhibition of cell proliferation 

by PARPi drugs in the presence of increasing mole ratios of added PiB protein.
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Fig. 4. 
The structure of drug-bound PiB′ agrees with the design. (A) The design model agreed 

well with the rucaparib-bound PiB′ crystal structure, with the binding site Ca RMSD 

range between 0.38 and 0.46 Å for the three monomers in the asymmetric unit. (B) The 

binding site of PiB′. A 2mFo-DFc composite omit map contoured at 1.6 s. The map 

was generated from a model that omitted coordinates of rucaparib. Overlay of the design 

(gray) and the structure (protein, orange; rucaparib, pink). The sidechains of the binding 

pocket in rucaparib-bound PiB′ agreed with the design. Asp131 interacts with the indole NH 

through a bridging water as in MD simulations. (C) The structure of drug-free PiB′ shows a 

preorganized open pocket filled with multiple waters, which are displaced in the drug-bound 

conformation. (D) Reversal of the three designed substitutions from the vdM optimization 
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procedure led to lower binding affinity (higher Kd) for rucaparib by fluorescence emission 

titrations. (E) Alanine mutations of the direct binding residues decreased binding affinity 

confirmed by fluorescence emission titrations
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Fig. 5. 
The MD simulations of PiB, PiB′, and mutants. (A) By using unbiased MD simulations in 

Amber, we calculated (in triplicate) the frequency with which the intermolecular hydrogen 

bonds formed between the protein scaffold and the bound drug molecule. PiB was found 

to form a hydrogen bond between Gln54 and the targeted drug carboxamide in 100% 

of all simulations for each drug complex. The charged ammonium groups of rucaparib 

and mefuparib interacted with Asp29 through a combination of direct and water-mediated 

hydrogen bonds, totaling to more than half of the full simulation time, which contrasts 

niraparib and veliparib’s inabilities to form equivalent hydrogen bonds (owing to changes 

in chemical structure around the ammonium tail of the ligand). In a small fraction of each 

rucaparib and veliparib trajectory, Asp131 engaged in water-mediated hydrogen bonds to 

the drugs. (B) By using biased simulations in GROMACS, we calculated the binding free 
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energy (DG) for each ligand and found that ranked affinity for each drug was consistent 

with experimental results. (C) Comparison of DG from the GROMACS calculation with the 

experimental value from spectral titrations
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