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ABSTRACT OF THE DISSERTATION

The Eigenvalue Spacing of IID Random Matrices

and Related Least Singular Value Results

by

Stephen Cong Ge

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2017

Professor Terence Chi-Shen Tao, Chair

This thesis studies the spacing between eigenvalues of random matrices with independent

and identically distributed (iid) entries. Tail estimates on the minimum distance between

any pair of eigenvalues are proven. In particular, we establish that the spectrum of an iid

random matrix is simple with high probability. A key technical result is a new least singular

value tail estimate for shifted matrices of the form An − zIn, where An is an iid random

matrix with real entries and z is a complex scalar.
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CHAPTER 1

Introduction

1.1 Background and past results

We first introduce our primary objects of study and classic related results. Let ξ be a fixed

random variable and let An be an n×n random matrix with each entry an independent and

identically distributed (iid) copy of ξ. We call An an iid matrix and the sequence (An)∞n=1

an iid ensemble. We refer to ξ as the atom random variable. Common choices for the atom

random variable include taking ξ to be the standard normalized real gaussian

gR := N(0, 1)

or standard normalized complex gaussian, denoted gC, which has real and imaginary parts

each an independent copy of N(0, 1
2
). Random sign matrices where ξ is Bernoulli taking the

values ±1 with equal probability are a common discrete example.

The set of eigenvalues, or the spectrum, of An is a primary topic in the study of iid

matrix ensembles. Let {λk}nk=1 be the eigenvalues of An and define

µn :=
1

n

n∑
k=1

δ 1√
n
λk

to be the empirical spectral distribution of An. A central result for the spectra of iid matrices

is the circular law, which has an extensive history with many authors. [Gir84], [Bai97],

[PZ10], and [GT10] among others progressively weakened the assumptions on the atom

random variables, culminating with the form we state below obtained by Tao and Vu in

[TV10b].
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Figure 1.1: Eigenvalues of 256 × 256 matrices generated using ξ ∼ NC(0, 1) (left) and

ξ ∼ Bernoulli(1/2) (right)

Theorem 1.1.1. Let ξ be a random variable with mean 0 and variance 1 and take (An)∞n=1 to

be an iid ensemble with ξ as the atom random variable. Then: with probability 1, µn converges

to µcirc, the uniform distribution over the (complex) unit disk as n tends to infinity.

The circular law is an example of the universality principle in random matrix theory. The

limiting behavior of the spectrum of An is not affected by the particular distribution of the

atom variables ξ, but is instead determined completely by the mean and variance of ξ. The

limiting distribution µcirc was first computed explicitly for the complex Ginibre ensemble,

where the atom random variable is taken to be ξ ∼ gC.

The primary technical tool towards the proof of the circular law in [TV10b] was a lower

tail estimate for the least singular value of An. Such least singular value results have proven

fruitful for other applications in the study of iid random matrices, and the main results in

this thesis are another example. Later in this section, we will review a collection of least

singular value results and their applications. Before going on to lower tail estimates for the

least singular value, we briefly discuss the singularity probability problem, i.e. the extreme

case where the least singular value is zero.

2



1.1.1 Singularity probability

When the atom random variable ξ is gaussian, or any distribution that is absolutely contin-

uous with respect to Lebesgue measure, we have

P(An is singular) = 0

This can be quickly seen from the fact that the subset of Rn×n or Cn×n consisting of singular

matrices has positive codimension, and hence Lebesgue measure 0. This argument also

applies to symmetric or Hermitian matrix ensembles. The situation is markedly different

when the atom random variable ξ is discrete. For the rest of this section, we consider the

case of random sign matrices, where the entries of An are ±1 Bernoulli. The event that two

rows or columns are equal occurs with positive probability, which gives a lower bound for

the singularity probability of random sign matrices.

The result that An is singular with probability tending to 0 is nontrivial and first estab-

lished by Komlós in [Kom67]. Exponential bounds of the form

P(An is singular) ≤ cn

for c < 1 were obtained in [KKS95], [TV07], [BVW10]. The aforementioned works pro-

gressively lowered the numerical value of c toward the conjectured c = 1/2 + o(1), which

matches the lower bound from considering the event that two rows or columns are parallel.

The current record established in [BVW10] is c = 1√
2

+ o(1). The methods in [TV07] and

[BVW10] relied on tools from additive combinatorics to illuminate the connections between

the arithmetic structure of a vector and concentration probabilities of random walks asso-

ciated with the vector. Similar methods were later also crucial for the least singular value

result that helped establish the circular law in [TV10b].

1.1.2 Least singular value

We now discuss tail bounds for the least singular value of iid random matrices. Recall that

for an n × n matrix A, the singular values are defined to be the eigenvalues of the matrix

3



√
A∗A. We will arrange them in nonincreasing order:

s1(A) ≥ · · · ≥ sn(A) ≥ 0

The two extreme singular values are also commonly characterized as:

s1(A) = ‖A‖op = sup
‖z‖=1

‖Az‖ and sn(A) = inf
‖z‖=1

‖Az‖

We use GR or GC to denote n × n matrices drawn from the real or complex Ginibre

ensemble respectively, i.e. where the atom random variables are gaussian gR or gC. In

[Ede88], Edelman computed the probability density functions of ns2n in both cases, which

upon integration give the following lower tail estimates for the least singular value:

P(sn(GR) ≤ tn−1/2) ≤ t (1.1)

P(sn(GC) ≤ tn−1/2) ≤ t2 (1.2)

for any t > 0. Note the relationship between the bound on the size of sn and the probability

bound. Modulo a constant power of n, it is linear tn−1/2 to t for GR while being quadratic

tn−1/2 7→ t2 for GC. In [SST06], Sankar, Spielman, and Teng extended (1.1) to include an

arbitrary shift, showing that

P(sn(GR +M) ≤ tn−1/2) ≤ Ct (1.3)

where M is any deterministic n × n real matrix and C > 0 is an absolute constant. More

recent advancements have obtained lower tail estimates for ensembles with more general atom

distributions, in particular discrete random variables. In [TV10c], Tao and Vu optimized

their previous least singular result in [TV10b] and showed:

Theorem 1.1.2. Let ξ be a mean zero random variable with bounded second moment. Let

γ ≥ 1/2 and A ≥ 0 be constants. Let A be an n× n random matrix with ξ as atom random

variable and let M be a deterministic matrix with ‖M‖op ≤ nγ. Then:

P(sn(A+M) ≤ n−(2A+2)γ+1/2) ≤ c(n−A+o(1) + P(‖M‖ ≥ nγ))

for some absolute constant c > 0.
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The bound in (1.3) implies that a gaussian random matrix allows for deterministic shifts

of any size. However, in [TV10c] it was also established that for more general distributions,

the probability bound is impacted by the norm of the shift matrix.

In a series of papers on the smallest singular value of random matrices by Rudelson

and Vershynin, the concept of least common denominator was developed to characterize the

arithmetic structure of a vector. The following optimal bound was proven in [RV08]:

Theorem 1.1.3. Let ξ be a mean zero, variance 1, subgaussian random variable. Let A be

an n× n matrix with ξ as atom variables. Then for any t > 0:

P(sn(A) ≤ tn−1/2) ≤ Ct+ e−cn

for absolute constants C, c > 0.

The least common denominator method was also used to give tail estimates on the

smallest singular value of rectangular random matrices in [RV09] and applied to prove a

form of delocalization of eigenvectors in [RV16]. Specifically, it was shown that with high

probability, every eigenvector of a random matrix has a non-negligible portion of mass located

in any subset of its coordinates.

Luh used the least common denominator method in [Luh16] to prove the following least

singular value result for complex iid matrices:

Theorem 1.1.4. Let ζ = ξ+ iξ′ be a complex random variable where ξ, ξ′ are iid copies of a

mean 0, variance 1, subgaussian real valued random variable. Let A be a n×n matrix with ζ

as atom random variable and let M be a deterministic complex matrix with ‖M‖op ≤ K
√
n.

Then:

P(sn(A+M) ≤ tn−1/2) ≤ Ct2 + e−cn

for absolute constants K,C, c > 0.

Up to constant factors, the previous two theorems match the bounds (1.1) and (1.2)

for gaussian ensembles. The exponential error term is necessary, due to the singularity

probability in the discrete case. Combining the above tail estimate (1.1.4) with a covering

5



argument along the real line, it was shown that random matrices with complex entries do

not have real eigenvalues. More precisely: with A having atom random variable ζ as above,

P(A has a real eigenvalue) ≤ e−cn

for some c > 0.

1.1.3 Towards eigenvalue spacing

The circular law governs the number of eigenvalues at a macroscopic scale: in any fixed

region R ⊂ C, the proportion of eigenvalues out of n total falling in R is given by the area

of the intersection of R with the unit disk. This thesis focuses on the eigenvalues at an

individual level: the minimal spacing between any two eigenvalues of an iid matrix. More

precisely, we study the quantity

∆(An) := min
j 6=k
|λj(An)− λk(An)|

Before going on to the tail of the minimum gap ∆(An), we briefly discuss the easier problem

of bounding

P(An has a repeat eigenvalue)

i.e. the case where ∆(An) = 0.

The problem of simple spectrum for symmetric Wigner-type ensembles was considered

in [TV14], in which the authors prove the following:

Theorem 1.1.5. Let Mn = (ξij) be a real symmetric random matrix where ξij are jointly

independent for i < j and ξji = ξij. With proper distribution assumptions on ξij, the spectrum

of Mn is simple with probability at least 1− n−B for any fixed B > 0.

The methods in [TV14] and the followup [NTV17] crucially used the Cauchy interlacing

law for eigenvalues, which is not available when the random matrices are not constrained to

be symmetric or Hermitian. When ξ has a continuous distribution, by a similar argument

as previously given for singularity probability we have

P(An has simple spectrum) = 1

6



On the other hand, a repeat eigenvalue occurs with nonzero probability for random sign

matrices. For example, three columns being all multiples of each other implies 0 is a repeat

eigenvalue. This possibility occurs with exponentially small probability, which will be an

error of acceptable size in the bounds we obtain. For iid matrices with arbitrary normalized

atom random variable, we obtain simplicity of the spectrum with high probability as a

corollary of a polynomial tail bound for the spacing between eigenvalues.

1.2 Main results

The main eigenvalue spacing result in this thesis is the following:

Theorem 1.2.1. Let ξ be a real valued random variable with mean 0, variance 1, and bounded

fourth moment. Let A be an n × n matrix with each entry an iid copy of ξ. Let λ1, . . . , λn

be the eigenvalues of 1√
n
A and

∆ := min
i 6=j
|λi − λj|

be the minimum gap between any pair of eigenvalues. Then for s = o(n−4+o(1)), the event

{∆ ≥ s} occurs with high probability

Qualitatively, the above theorem implies that iid random matrices have simple spectrum

asymptotically almost surely. The asymptotic error can be improved with stronger moment

assumptions on the atom random variable. A more precise statement of the main result and

additional related corollaries of the method are given in Chapter 3, where the proof can also

be found.

The primary technical result needed to establish the eigenvalue spacing theorem above is

a tail estimate for the least singular value of a real iid random matrix that has been shifted

away from the real line. The new result, the proof of which is given in the following chapter,

is as follows:

Theorem 1.2.2. Let ξ be a real valued random variable with mean 0 and variance 1. Let A

be an n× n matrix with each entry an iid copy of ξ. For every t ≥ 0 and λ ∈ C of bounded

7



size, we have

P(sn(A− λ
√
nIn) ≤ tn−1/2 and ‖A‖op ≤M

√
n) ≤ C

t2

δ
+ e−cn

where δ is the absolute value of the imaginary part of λ and M,C, c > 0 are absolute constants

independent of n.

Theorem 1.2.2 can be seen as interpolating between the real and complex gaussian bounds

in (1.1), (1.2). When A is shifted a constant amount δ away from the real line, then we have

a quadratic t2 probability bound as in (1.2). On the other hand, for δ of size comparable to

t, the probability bound is t as in (1.1).

1.3 Notations and conventions

n will always be the parameter going to infinity in asymptotic notation. In particular, n will

be frequently assumed to be sufficiently large. n will usually be related to the dimension of

a random matrix. We use X = O(Y ), X � Y, Y � X, Y = Ω(X) synonymously to denote

X ≤ CY for some positive constant C not depending on n. X = Θ(Y ) denotes that we

have both X � Y and X � Y . X = o(Y ) means that X/Y tends to 0 as n goes to infinity.

Subscripts of constants as in Cγ or X = Oγ(Y ) will mean that the asymptotic constant may

depend on γ. We will usually use C > 0 to denote constants that are sufficiently big in order

to satisfy parts of the argument and c > 0 for constants that are taken sufficiently close to

0.

We will use z to denote complex numbers or vectors. The decomposition z = x+ iy will

always have x as the real and y as the imaginary parts of z respectively. With z ∈ Cn, we

then have x, y ∈ Rn.

A will always denote an n× n matrix. For a scalar λ, we write A− λ instead of A− λIn

for brevity. We will use {λj(A))}nj=1 to denote the complex eigenvalues of A, in an arbitrary

order. {sj(A)}nj=1 will denote the singular values of A arranged in decreasing order:

s1(A) ≥ · · · ≥ sn(A) ≥ 0

8



‖A‖ or ‖A‖op will denote the `2 → `2 operator norm of the matrix A. The capital letter M

will be used for a bound on the size of the operator norm, typically as in ‖A‖op ≤M
√
n.

For radius r > 0, we use B(z, r) to denote the ball of radius r around z. We will use

Sn−1R or Sn−1C to denote the unit sphere in Rn or Cn respectively.

9



CHAPTER 2

A least singular value bound for complex shifted

random matrices

2.1 Theorem statement and proof outline

In this section we outline the approach taken to establish the main least singular value tail

estimate result. The proof makes up the bulk of the current chapter. We first give some

technical assumptions required of the atom random variables. We will use ξ to denote a real

valued random variable satisfying the following: there exist K, p > 0 such that

sup
u∈R

P(|ξ − u| < 1) ≤ 1− p (2.1)

and

P(1 ≤ |ξ − ξ′| ≤ K) ≥ p/2 (2.2)

where ξ′ is an iid copy of ξ.

Remark. (2.1) is necessary for a crude bound of the form

P(|ξ1v1 + · · ·+ ξnvn − z| ≤ c) ≤ 1− c (2.3)

and (2.2) is necessary for the main small ball probability theorem. Both conditions hold (for

some K, p) for ξ having finite non-zero variance (of at least 1).

We will use A to denote an n × n matrix with each entry an iid copy of ξ. The main

theorem in this chapter is the following:

Theorem 2.1.1. For every t ≥ 0 and λ = O(1), we have

P(sn(A− λ
√
n) ≤ tn−1/2 and ‖A‖op ≤M

√
n) ≤ O

(
t2

δ

)
+ e−cn

10



where δ > n−C is the absolute value of the imaginary part of λ.

We now give a sketch of the argument. The goal is to control

P(sn(A− λ
√
n) ≤ tn−1/2)

for constant size λ ∈ C. Via standard arguments, we reduce the tail estimate for the smallest

singular value to a bound on the distance from one column of A − λ
√
n to the hyperplane

spanned by the other n− 1 columns, i.e.

P(dist(Xk, Hk) ≤ t)

where Xk is the kth column and Hk is the span of all columns other than Xk. Taking X∗

to be a unit vector orthogonal to Hk, we have dist(Xk, Hk) ≥ |〈X∗, Xk〉| and hence we are

interested in bounding

P(|〈X∗, Xk〉| ≤ t)

The key point is that X∗ can be chosen independently of Xk. We use B to denote the first

n−m rows of (A−λ
√
n)T , where m = 1 in this entire chapter, while m = 2 later on when we

want to bring in the second smallest singular value. The proofs will work for any m that is

constant in n. X∗ can be seen as an element of the kernel of B. A large part of the argument

will be a detailed analysis of the properties of vectors in ker(B). We will sometimes use R

to denote the real part of B, so that B = R + iδ
√
nI ′n, where I ′n is the first n −m rows of

In (assuming without loss of generality that δ is positive). We will also frequently need to

intersect with the event where ‖B‖op ≤ M
√
n. The constant M typically comes from an

application of finite fourth moment and will be fixed throughout. Some of the parameters

may depend on M .

The primary technical result on the way to the least singular value theorem is to show

that unit vectors z = x + iy that are in the kernel of B will usually be arithmetically

unstructured in a sense to be made more precise later. We want to show that

P(inf
S
‖Bz‖ = 0) ≤ e−cn

11



where S ⊂ Sn−1 is the set of unit vectors with rich arithmetic structure. We will need to

divide up S according to several characteristics. For each of these more restricted subsets,

we will construct a low entropy net and combine it with a suitable probability bound for a

single fixed vector in the net. The first instance of this method is in Section 2.2.1, where

we deal with compressible vectors. In Section 2.3, we make precise the notion of arithmetic

structure for z = x+ iy. For fixed z, we will obtain bounds on

P(‖Bz‖ small)

that improve the more unstructured z is. In Section 2.4 we construct nets for subsets of Sn−1

with prescribed arithmetic attributes. In Section 2.5 we combine the nets with the estimates

from Section 2.3 to show that ‖Bz‖ is unlikely to vanish for any arithmetically structured

z, which will establish the main structure theorem. The least singular value tail estimate is

proven in the last section.

2.2 Null vectors of complex shifted random matrices

In this section we establish some properties of vectors that can appear in the kernel of B. The

invertibility for compressible vectors result is from [RV08], [RV09]. We include the proof as

a first instance of the method that combines a discrete net with a bound on P(‖Bz‖ small)

for fixed z.

2.2.1 Compressible and incompressible vectors

We first start with subsets of the unit sphere that have very low entropy:

Definition 2.2.1. (Compressible and incompressible vectors)

Fix constants a, b ∈ (0, 1). We call a vector v ∈ Sn−1C compressible if there is a vector

v′ ∈ Cn with at most an non-zero coordinates such that ‖v − v′‖2 ≤ b. We call a unit

vector incompressible if it is not compressible. Let Comp(a, b) and Incomp(a, b) denote the

sets of compressible and incompressible unit vectors respectively, so that we have Sn−1C =

Comp(a, b) t Incomp(a, b). We can define compressible and incompressible real vectors x ∈
12



Sn−1R similarly. We will use a subscript C or R to distinguish between the complex or real

cases.

Lemma 2.2.2. (Net for compressible vectors)

There exists a (2bz)-net N of CompC(az, bz) with

|N | ≤
(
n

azn

)(
C

b2z

)azn
The exponent of bz can be lowered from 2 to 1 for a net of CompR.

Proof. The set of sparse vectors supported on any fixed azn coordinates has a (bz)-net of

cardinality at most (Cb−2z )azn, since we are essentially looking for a net of SaznC . Unfixing the

nonzero coordinates has an entropy cost of
(
n
azn

)
. This gives a (bz)-net of all sparse vectors

of size bounded by (
n

azn

)(
C

b2z

)azn
By the definition of compressibility, the same set is a (2bz)-net of CompC(az, bz).

The bound we have for any single fixed unit vector is the following:

Proposition 2.2.3. There exists an absolute constant c > 0 such that for any unit vector

z ∈ Sn−1C , we have

P(‖Bz‖ ≤ c
√
n) ≤ e−cn

Proof. The argument is standard and given in [RV16], [TV09]. The proof is essentially

tensorizing the crude bound (2.3) over the n−m rows of B.

Combining the above proposition with the small net for compressible vectors from Lemma

2.2.2 gives:

Proposition 2.2.4. (Invertibility for compressible vectors)

There exists constants az, bz ∈ (0, 1) and c > 0 so that

P( inf
z∈CompC(az ,bz)

‖Bz‖ ≤ c
√
n and ‖B‖op ≤M

√
n) ≤ e−cn (2.4)

13



Proof. Let N be a (2bz)-net of CompC(az, bz) as constructed in Lemma 2.2.2. Suppose the

event in (2.4) occurred. Then we have some z with ‖Bz‖2 ≤ c
√
n and a sparse vector z′ ∈ N

such that ‖z − z′‖2 ≤ 2bz. Using the assumption that ‖B‖op ≤M
√
n, we have

‖Bz′‖2 ≤ ‖Bz −Bz
′‖2 + ‖Bz‖2

≤ ‖B‖op ‖z − z
′‖2 + ‖Bz‖2

≤M
√
n2bz + c

√
n

≤ (2Mbz + c)
√
n

For a fixed vector z′, we have from the previous proposition for some small c′ > 0

P(‖Bz′‖2 ≤ (2Mbz + c)
√
n) ≤ e−c

′n

by picking bz small enough depending on M and c small enough. By the union bound over

all possible z′ ∈ N , we thus have

P( inf
z∈CompC(az ,bz)

‖Bz‖2 ≤ c
√
n and ‖B‖op ≤M

√
n) ≤

(
n

azn

)(
C

b2z

)azn
e−c

′n

The conclusion follows by picking az sufficiently small depending on bz and c′.

Since Bz = 0 implies ‖Bz‖2 ≤ c
√
n, the previous result shows that compressible vectors

are rarely in the kernel of B. az and bz will be fixed in the following so that the above result

holds. Whenever we refer to z ∈ Sn−1C being compressible or incompressible, it will be with

these parameters.

2.2.2 Reduction to distance problem

We now take a diversion from null vectors to reduce the least singular value tail estimate

to controlling the distance between a fixed column of A and the span of the other n − 1

columns. From the same argument as in Proposition 2.2.4, we have

P( inf
z∈Comp

∥∥(A− λ
√
n)z
∥∥ ≤ tn−1/2 and ‖A‖op ≤M

√
n) ≤ e−cn

Using the fact that

sn(X) ≤ t⇔ inf
z∈Sn−1

‖Xz‖ ≤ t

14



and decomposing the unit sphere Sn−1C = Comp t Incomp, we see that it suffices to prove

P( inf
z∈Incomp

∥∥(A− λ
√
n)z
∥∥ ≤ tn−1/2 and ‖A‖op ≤M

√
n) ≤ O

(
t2

δ

)
+ e−cn (2.5)

in order to establish Theorem 2.1.1.

A form of the following Lemma was given in [RV08]:

Lemma 2.2.5. (Invertibility via distance)

Let X1, . . . , Xn denote the column vectors of A − λ
√
n and Hk denote the span of all

column vectors except Xk. Then for every a, b ∈ (0, 1) and t > 0, we have

P( inf
z∈Incomp(a,b)

∥∥(A− λ
√
n)z
∥∥ < tbn−1/2 and ‖A‖op ≤M

√
n)

≤ 1

an

n∑
k=1

P(dist(Xk, Hk) < t and ‖A‖op ≤M
√
n)

In Appendix A we prove a modified form extended to include the second smallest singular

value that is necessary for our later eigenvalue spacing application.

Since the quantities P(dist(Xk, Hk) < t and ‖A‖op ≤ M
√
n) are symmetrical in k, to

prove (2.5) it suffices to establish the following bound:

P(dist(Xn, Hn) < t and ‖A‖op ≤M
√
n) ≤ O

(
t2

δ

)
+ e−cn (2.6)

2.2.3 Two-dimensionality of incompressible random normal

We now return back to null vectors of B. Recall that we are assuming our real random

matrix is shifted by a complex λ with imaginary part equal to δ, which is bounded below.

We next show that incompressible z = x + iy in the kernel of B cannot be “almost real”,

i.e. z cannot be rotated so that either its real or imaginary part vanishes. Geometrically,

this means that the coordinates of z when plotted in the complex plane cannot lie on a line

through the origin.

Lemma 2.2.6. (Two-dimensionality of incompressible random normal)

Suppose z ∈ Sn−1C is incompressible with Bz = 0 and ‖B‖op ≤ Mn1/2. Let z = x + iy

with x, y ∈ Rn. We then have ‖x‖2 ≥ cδ and ‖y‖2 ≥ cδ for some small constant c > 0

15



(depending on az, bz). Note that this applies for any rotation eiθz also, since Bz = 0 if and

only if B(eiθz) = 0. Thus we have ‖cos(θ)x− sin(θ)y‖2 ≥ cδ for any θ.

Proof. Let R be the real part of B. The real part of the equation Bz = 0 is

Rx = δ
√
ny′

where y′ denotes the first n−m entries of y. Solving for y′ gives:

y′ =
Rx

δ
√
n

Now we use the fact that z = x+ iy is a unit vector to get:

1 = ‖x‖22 + ‖y‖22

= ‖x‖22 + ‖y′‖22 +
n∑

k=m+1

|yk|2

= ‖x‖22 +

∥∥∥∥ Rxδ
√
n

∥∥∥∥2
2

+
n∑

k=m+1

|yk|2

≤ ‖x‖22 +

(
M
√
n

δ
√
n

)2

‖x‖22 +
n∑

k=m+1

|yk|2

where we’ve used R being the real part of B and ‖B‖op ≤ M
√
n for the last inequality.

Rearranging we get

‖x‖22 ≥
1−

∑n
k=m+1 |yk|

2

1 + M2

δ2

We are assuming that z is incompressible, so in particular the sum of the last m coordinates

of y,
∑n

k=m+1 |yk|
2, is bounded above by 1 − b2z. The numerator 1 −

∑n
k=m+1 |yk|

2 is then

bounded below by a constant, and hence we can conclude ‖x‖2 ≥ cδ for some small c

depending on M and bz. Repeating the above for the imaginary part of the equation Bz = 0

gives the claim for ‖y‖2. The properties of z being incompressible and z being in the kernel

of B are not affected by a rotation z 7→ eiθz, so we get the final assertion.
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2.2.4 Vectors with compressible real part

Proposition 2.2.4 showed that a complex vector that is compressible is unlikely to be in the

kernel of B. We next show that it is also unlikely that z = x + iy, where x
‖x‖ ∈ CompR, is

in the kernel of B.

Proposition 2.2.7. Let r ∈ [cδ, 1/2] be a fixed scale for the size of x. We can pick constants

ax, bx (independently of r) so that if

Sr :=

{
z = x+ iy ∈ IncompC(az, bz) : r < ‖x‖ ≤ 2r,

x

‖x‖
∈ CompR(ax, bx)

}
we have

P( inf
z∈Sr

‖Bz‖ = 0 and ‖B‖op ≤M
√
n) ≤ e−cn

for some small c > 0.

Proof. The first case is if r ≥ Cδ for some big constant C. Let

S ′r :=

{
x ∈ Rn : r < ‖x‖ ≤ 2r,

x

‖x‖
∈ CompR(ax, bx)

}
Since the real part of the equation Bz = 0 is Rx = δ

√
ny′, the event{

Bz = 0 for some z ∈ Sr and ‖B‖op ≤M
√
n
}

implies ‖Rx‖ ≤ δ
√
n for some x ∈ S ′r and ‖R‖op ≤M

√
n. Thus it suffices to check

P( inf
x∈S′r
‖Rx‖ ≤ δ

√
n and ‖R‖op ≤M

√
n) ≤ e−cn (2.7)

S ′r has a O(bxr)-net N of size

|N | ≤
(
n

axn

)(
C

bx

)axn
· 2

bx

This net of S ′r comes from discretizing the typical net of CompR(ax, bx), which has size

bounded by
(
n
axn

) (
C
bx

)axn
. For each sparse vector s in the net of CompR(ax, bx), add 2/bx

multiples of s to N (those with length between r and 2r).

17



Now suppose the event in (2.7) occurred. We would then have a vector x ∈ S ′r with

‖Rx‖ ≤ δ
√
n. Let s ∈ N be the closest element in the net to x, so that ‖s− x‖2 ≤ 2bxr.

We then have

‖Rs‖ ≤ ‖Rs−Rx‖+ ‖Rx‖

≤M
√
n2bxr + δ

√
n

Dividing by r, we get ∥∥∥Rs
r

∥∥∥ ≤M2bx
√
n+

δ

r

√
n ≤ (2Mbx +

1

C
)
√
n

where we’ve used the assumption that r ≥ Cδ. Note that the vector s/r has length at least

1/2. By Proposition 2.2.3, the probability that the above occurs (for a single fixed s) is at

most e−cn, picking bx small enough depending on M and C in r ≥ Cδ big enough. Using

the union bound and the size of N , we get a bound of e−cn for (2.7) after adjusting ax small

enough.

Now we are left with the case r ∈ [cδ, Cδ]. In this situation we need to use both the real

and imaginary parts of the equation Bz = 0:

Rx = δ
√
ny′

Ry = −δ
√
nx′

Suppose that x is 2bxr close to a sparse vector sx that is supported on the first axn

coordinates (we will pay an entropy cost of
(
n
axn

)
at the end). Let Nx denote a (2bxr)-net of

such x (consisting of sparse vectors supported on the first axn coordinates). The cardinality

of Nx may be bounded by (
C

bx

)axn 2

bx

Next let us freeze the first axn columns of B. Since each sx ∈ Nx is supported only on

the first axn coordinates, 1
δ
√
n
Rsx is a deterministic vector (first columns of B are frozen)

that approximates y′. Let sy ∈ Rn have the first n −m coordinates equal to 1
δ
√
n
Rsx and

the last m coordinates approximate those of y’s up to bx accuracy. The set N ′ of such pairs

18



sx + isy has cardinality bounded by (
C

bx

)axn 2

bx

1

(bx)m

Now given x+ iy such that Rx = δ
√
ny′, we have sx + isy with ‖x− sx‖ ≤ 2bxr and the first

n−m coordinates of sy equal to 1
δ
√
n
Rsx. Let us compute how small ‖sy − y‖ can be:

‖sy − y‖ ≤
∥∥∥∥ 1

δ
√
n
R(sx − x)

∥∥∥∥+mbx

≤M

√
n

δ
√
n
‖sx − x‖+mbx

≤M
bxr

δ
+mbx

≤ (M
r

δ
+m)bx

The mbx summand comes from the approximation of the last m coordinates. Note that

we are assuming r is comparable to δ, so the above is O(bx). In summary: in the case where

r ∈ [cδ, Cδ], the event that Bz = 0 for some z = x + iy ∈ Sr implies that there exists

sx+ isy ∈ N ′ such that ‖sx − x‖ = O(bxr) and ‖sy − y‖ = O(bx). Note that since z = x+ iy

is incompressible and x is compressible, ‖y‖ is bounded below by (say) bz/2, assuming that

bx is small enough. For this sx + isy we have

∥∥Rsy + δ
√
ns′x
∥∥ =

∥∥Rsy +Ry − (Ry + δ
√
nx′) + δ

√
n(x′ − s′x)

∥∥
≤ ‖R(sy − y)‖+ δ

√
n ‖x′ − s′x‖

≤M
√
nbx + δ

√
nrbx

We’ve used Ry + δ
√
nx′ = 0. We can guarantee that ‖sy‖ is bounded below, say by bz/4,

by picking bx small enough. Moreover, the above bound can be made less than cbz
√
n by

picking bx small enough. The probability that the above occurs for a single fixed sx + isy is

e−cn (there is still a (n−m)× (n− axn) random matrix). Multiplying the above by the size

of N ′ gives a probability bound of (
C

bx

)axn 2

bx

1

(bx)m
e−cn
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The last steps are to take the expectation over the frozen first axn columns, and then

multiply by the entropy cost from picking axn out of n columns, which gives a final probability

bound of (
n

axn

)(
C

bx

)axn 2

bx

1

(bx)m
e−cn

The above can be made less than e−c
′n by picking ax small enough.

Note that by Lemma 2.2.6, incompressible z = x + iy in the kernel of B must have ‖x‖

bounded below by cδ. We are assuming δ = Ω(n−C) and hence taking the union bound over

all dyadic values of r between cδ and 1 only gives an extra multiplicative factor of O(log n).

This leads to:

Corollary 2.2.8. We can pick constants ax, bx so that if

S :=

{
z = x+ iy ∈ IncompC(az, bz) :

x

‖x‖
∈ CompR(ax, bx)

}
we have

P(inf
z∈S
‖Bz‖ = 0 and ‖B‖op ≤M

√
n) ≤ e−cn

ax and bx will be fixed from now on so that the conclusion of the above Corollary holds.

Whenever the compressibility or incompressibility of a real vector is discussed, it will be with

these parameters.

2.3 Least common denominator and statement of main structure

theorem

To treat the case of incompressible vectors in the kernel of B, we now introduce the

notion of least common denominator developed by Rudelson and Vershynin. We give the

definition and some useful lemmas from [RV16].

2.3.1 The least common denominator

Definition 2.3.1. Fix L, γ > 0.
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• For vectors v ∈ Rn, define the least common denominator (LCD) of v as

D(v) = D(v;L, γ) := inf

{
θ ∈ R>0 : dist(θv,Zn) < γL

√
log+

‖θv‖2
L

}

• For matrices V ∈ Rm×n, define the LCD of V as

D(V ) = D(V ;L, γ) := inf

{
‖θ‖2 : θ ∈ Rm, dist(V T θ,Zn) < γL

√
log+

‖V T θ‖2
L

}

• For complex vectors z = x + iy ∈ Cn where x, y ∈ Rn, we define the LCD of z to be

the LCD of

xT
yT

 as an element of R2×n.

• For subspaces E ⊆ Rn, define the LCD of E as

D(E) = D(E,L) := inf {D(v, L) : v ∈ E, ‖v‖2 = 1}

We can similarly define the LCD of complex subspaces E ⊆ Cn

Remark. We will make use of the fact that 1
x

√
log+ x has a maximum of 1√

2e
at x =

√
e. γ

will be used to adjust the value of the maximum according to other parameters.

A vector having low LCD should be interpreted as having rich arithmetic structure. Our

primary aim is to show that with high probability, every vector in the kernel of B will have

exponentially large LCD.

2.3.2 Main small ball probability theorem

Theorem 2.3.2. [RV16] Consider a random vector ξ = (ξ1, . . . , ξn), where ξk are iid copies

of ξ. Let V ∈ Rm×n be a fixed matrix. Then for every L ≥
√

8m
γp

, we have

sup
x∈Rm

P(‖V ξ − x‖2 ≤ t
√
m) ≤ (CL/

√
m)m

det(V V T )1/2

(
t+

√
m

D(V )

)m
for all t ≥ 0. p in the condition on L is from the initial assumptions (2.1), (2.2) on ξ.

Remark. If ξ1, . . . , ξn are standard normal random variables, then we have

sup
x∈Rm

P(‖V ξ − x‖2 ≤ t
√
m) ≤ Om

(
tm

det(V V T )1/2

)
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for any V and t ≥ 0. Thus we can think of 1/D(V ) as the smallest level at which the small

ball concentration probabilities for any random variable satisfying ξ’s assumptions match

those of the gaussian.

In the m = 1 case we have:

Corollary 2.3.3. Consider a random vector ξ = (ξ1, . . . , ξn), where ξk are iid copies of ξ.

Let v = (v1, . . . , vn) ∈ Rn be a fixed vector. Then for every L ≥
√

8
γp

, we have

sup
x∈R

P(|ξ1v1 + · · ·+ ξnvn − x| ≤ t) ≤ CL

‖v‖2

(
t+

1

D(v)

)
for any t ≥ 0.

The small ball probability theorem controls concentration of quantities of the form ξ1v1+

. . .+ ξnvn = ξ · v. We would like to control ‖Bz‖. For each row of B dotted with z, we can

use the small ball probability theorem. The next lemma from [RV16] tensorizes the bounds

on individual rows together to control ‖Bz‖.

Lemma 2.3.4. (Tensorization)

Let Z = (Z1, . . . , Zn) be a random vector in Cn with independent coordinates. Assume

that there exists numbers t0,M ≥ 0 such that

sup
u∈C

P(‖Zj − u‖2 ≤ t) ≤M(t+ t0)

for all j and t ≥ 0. Then for some absolutely constant C > 0,

sup
u∈Cn

P(‖Z − u‖2 ≤ t
√
n) ≤ [CM(t+ t0)]

n

for all t ≥ 0.

An important fact relating the LCD to compressibility is the following:

Proposition 2.3.5. (LCD of real incompressible vectors)

Let x ∈ Sn−1R be incompressible with fixed parameters ax, bx > 0. Then if we pick γ to be

a small multiple of bx, we have D(x;L, γ) ≥ 1
2

√
axn.
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Proof. Let σ :=
{
k : |xk| ≤ 1√

axn

}
. Since x is a unit vector, we must have |σ| ≥ n − axn.

Let xσ denote the projection of x onto the coordinates in σ. Since |σ| ≥ n − axn and x is

incompressible, we must have ‖xσ‖2 ≥ bx. By definition of the LCD, we have some p ∈ Zn

such that

‖D(x)x− p‖2 < γL

√
log+

‖D(x)x‖2
L

which implies via projection to the σ coordinates

‖D(x)xσ − pσ‖2 ≤ ‖D(x)x− p‖2 < γL

√
log+

‖D(x)x‖2
L

If we assume that D(x) < 1
2

√
axn, then |D(x)xk| < 1

2
for each k ∈ σ, and hence pσ = 0 is

the optimal choice to minimize distance to the integer lattice. This gives

‖D(x)xσ‖2 < γL

√
log+

‖D(x)x‖2
L

The left hand side is at least D(x)bx. We can insure that the above inequality is never

satisfied by picking γ to be a small constant multiple of bx. This lets us conclude that

D(x) ≥ 1
2

√
axn.

γ will be fixed from now on, so that the conclusion of the above proposition holds.

2.3.3 Statement of main structure theorem and level sets

Theorem 2.3.6. (Structure theorem for kernels of random matrices)

Let B be as before. There exists a small constant c > 0 such that taking γ to be a small

constant and L =
√

8m
γp

in the definition of LCD, we have:

P(D(kerB,L) ≤ D0 and ‖B‖op ≤M
√
n) ≤ e−cn

where

D0 = min(c
√
necn/(2m+1), Lecn/(γL)

2

) (2.8)

The proof of Theorem 2.3.6 will occupy the remainder of this section and the next two

sections. The precise form of D0 comes from technical aspects of the proof. The theorem

states that the LCD of a vector in kerB is typically at least exponentially (D0) big.
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2.3.4 Small ball probabilities depending on LCD and real-imaginary correlation

Due to the fact that we are considering complex unit vectors, we need to introduce another

characteristic that will help us construct small nets in the next section.

Definition 2.3.7. (Real-imaginary correlation)

For z = x+ iy ∈ Sn−1C , let V =

xT
yT

 and define

d(z) := det(V V T )1/2 = (‖x‖22 ‖y‖
2
2 − (x · y)2)1/2

The real-imaginary correlation d(z) is related to the minimal length of the real part of

any rotation eiθz. The calculation can be found in Proposition B.0.1 in the appendix. From

Lemma 2.2.6 we then have:

Corollary 2.3.8. If z = x+ iy satisfies the assumptions of Lemma 2.2.6, then

d(z) ≥ cδ

for some small c > 0.

Proof. Combining Proposition B.0.1 and Lemma 2.2.6 gives

1

2
− 1

2

√
1− 4d(z)2 ≥ (cδ)2

for some small c > 0. After rearranging, the above implies

d(z)2 ≥ (cδ)2 − (cδ)4

and thus the result holds (with an adjusted value of c).

We will be considering the two-dimensional LCD of z = x+ iy, and hence the length of x

becomes key. The elements z = x+ iy of the unit sphere will be partitioned according to the

length of x, the LCD D(z), and the real-imaginary correlation d(z). Note that by Lemma

2.2.6, we may assume ‖x‖ ≥ cδ.
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Definition 2.3.9. (Level sets)

Fix a scale r ∈ [cδ, 1] for ‖x‖. Take D ∈ [c
√
n/r,D0] as a scale for the LCD and let

d0 = C ·max(γL
D

√
log+

Dr
L
,
√
nr
D

).

• (Genuinely complex z)

For d0 ≤ d ≤ 1 define

SD,d,r := {z = x+ iy ∈ Incomp : r ≤ ‖x‖ ≤ 2r,D2(z) = D(x),

x

‖x‖
∈ Incomp, D ≤ D2(z) ≤ 2D, d ≤ d(z) ≤ 2d}

• (Essentially real z)

Define

SD,d0,r := {z = x+ iy ∈ Incomp : r ≤ ‖x‖ ≤ 2r,D2(z) = D(x),

x

‖x‖
∈ Incomp, D ≤ D(z) ≤ 2D, d(z) ≤ d0}

Note that we have different parameters (az, bz) and (ax, bx) for the incompressibility of

complex z and real x
‖x‖ respectively. We are able to assume the two-dimensional LCD of z

is exhibited by the real part x since there is freedom to rotate by a phase eiθ. More details

are provided when we wrap up the proof of Theorem 2.3.6. We can assume D ≥ c
√
n/r

by Corollary 2.2.8 and Proposition 2.3.5. To close the current section we state improved

versions of Proposition 2.2.3 given additional arithmetic constraints on the vector z, namely

z residing in one of the level sets above.

Proposition 2.3.10. (Genuinely complex z)

For any single fixed z ∈ SD,d,r, we have

P(‖Bz‖2 ≤ t
√
n−m) ≤

(
C

d
(t+

1

D
)2
)n−m

for some absolute constant C > 0

Proof. Consider a row Bj of B and the quantity Bjz. We may write Bjz = ξjx + iξjy + aj

where aj is some deterministic complex number and ξj is the jth (random) column of A.
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Theorem 2.3.2 then gives

P(‖Bjz‖2 ≤ t
√

2) ≤ (CL/
√
m)2

d(z)

(
t+

√
2

D2(z)

)2

≤ C

d
(t+

1

D
)2

where we have used the bounded ranges for d(z) and D2(z) in the definition of SD,d,r. Using

the above for each of the n−m rows and tensorization Lemma 2.3.4 gives the claimed result

(with an adjusted C > 0).

For z = x+ iy in the essentially real level sets SD,d0,r, we have similarly:

Proposition 2.3.11. (Essentially real z)

For any single fixed z = x+ iy ∈ SD,d0,r, we have

P(
∥∥Rx− δ√ny′∥∥ ≤ t

√
n−m) ≤

(
C

r
(t+

1

D
)

)n−m
for some absolute constant C > 0

Proof. This follows from Corollary 2.3.3 and an application of tensorization Lemma 2.3.4

analogous to that in the previous Proposition.

2.4 Construction of nets for level sets

The next step is to discretize the level sets using the LCD in order to construct suitably

small nets. We start with the genuinely complex case.

2.4.1 Genuinely complex case

Theorem 2.4.1. Let µ > 0 be a fixed small constant. There exists a (4µ
√
n

D
)-net of SD,d,r

with cardinality bounded by
C2nD2n+1dn−1

µn+1
√
n
2n+1
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Proof. By the definition of LCD and the assumption D2(z) = D(x), we have p ∈ Zn such

that

‖D2(z)x− p‖2 < γL

√
log+

‖D(z)x‖2
L

This gives that the length of p is comparable to Dr:

‖p‖2 ≤ ‖D(z)x‖+
γL

‖D(z)x‖

√
log+

‖D(z)x‖
L

· ‖D(z)x‖

≤ 2D2r + cDr

≤ CDr

and similarly:

‖p‖2 ≥ ‖D(z)x‖ − γL

‖D(z)x‖

√
log+

‖D(z)x‖
L

· ‖D(z)x‖

≥ Dr − cDr

≥ cDr

Next we will deduce a dependence of y on p that will help to approximate y. By definition,

d(z) = det

xT
yT

(x y
) = s1(V )s2(V ), where s1 ≥ s2 are the singular values of V .

Since z is a unit vector, one of x or y must have length at least 1√
2
. Since x, y are the rows

of V , we must have s1(V ) ≥ 1√
2
. This gives the following upper bound on s2(V ):

s2(V ) ≤ d(z)/s1(V ) ≤ 2
√

2d (2.9)

Now consider the matrix W =

 pT

D(z)yT

 and the difference in operator norms

‖D(z)V −W‖op =

∥∥∥∥∥∥
D(z)xT − pT

0

∥∥∥∥∥∥
op

≤ γL

√
log+

D(z)x

L

By Weyl’s inequalities for singular values and (2.9), we can thus deduce

s2(W ) ≤ s2(D(z)V ) + γL

√
log+

D(z)x

L
≤ 4
√

2Dd+ γL

√
log+

D(z)x

L
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Expressing det(WW T )1/2 in two ways, we have the identity

‖p‖2 ·
∥∥Pp⊥D(z)y

∥∥ = det(WW T )1/2 = s1(W )s2(W )

s1(W ) ≤ ‖p‖+ ‖D(z)y‖ and hence we have

∥∥Pp⊥D(z)y
∥∥ ≤ (1 +

‖D(z)y‖
‖p‖

)s2(W )

Using ‖p‖ ≥ cDr, ‖D(z)y‖ ≤ 2D, and the above bound for s2(W ), we get

∥∥Pp⊥D(z)y
∥∥ ≤ (1+

4

r
)(4
√

2Dd+γL

√
log+

‖D(z)x‖
L

) ≤ C(
Dd

r
+
γL

r

√
log+

‖D(z)x‖
L

) (2.10)

Now from the ”genuinely complex” assumption

d ≥ γL

D

√
log+

‖Dr‖
L

we get that Dd
r

dominates in (2.10). Dividing by D(z), we get the following for the component

of y that is not along p: ∥∥Pp⊥y∥∥ ≤ Cd

r

Now we are ready to construct the O(µ
√
n

D
)-net of SD,d,r. Given x + iy ∈ SD,d,r, we have

p ∈ Zn ∩B(0, CDr) such that p/D(z) approximates x well, namely:∥∥∥∥x− p

D(z)

∥∥∥∥ < γL

D(z)

√
log+

‖D(z)x‖2
L

≤ µ
√
n

D

where the second inequality comes from the second expression in (2.8). For each p ∈ Zn ∩

B(0, CDr), we will work with the O( D
µ
√
n
) discrete multiples αp that approximate p/D(z) up

to µ
√
n

D
accuracy. Counting the number of lattice points in B(0, CDr) along with this extra

discretization factor, we get a bound of

CD

µ
√
n

(
CDr√
n

)n
(2.11)

for the total number of αp we have to consider. For each αp, we have

∥∥Pp⊥y∥∥ ≤ Cd

r
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and hence y has to lie in a cylinder in the direction of p. The typical volume bound gives a

µ
√
n

D
-net of all possible y with size bounded by

CD

µ
√
n

(
CDd

µ
√
nr

)n−1
(2.12)

Note that we have d/r = Ω(
√
n
D

) from the second expression in the definition of d0. The first

CD
µ
√
n

is from approximating in the one dimension along p. Combining (2.11) and (2.12), we

see that our net for SD,d,r has the claimed cardinality bound.

2.4.2 Essentially real case

Theorem 2.4.2. Let µ > 0 be a fixed small constant. There exists a set N with cardinality

bounded by
C2n+1Dn+2rn

µ2
√
n
n+2

such that for every z = x + iy ∈ SD,d0,r, there is u + iv ∈ N such that ‖x− u‖ ≤ 2µ
√
n

D
and

‖y − v‖ ≤ µ
√
n

Dr
.

Remark. The approximation in this theorem is different than before, but it is necessary to

maintain a small size for the net. The rougher approximation for y will be not be problematic

due to the equation Rx = δ
√
ny′.

Proof. There are two sub cases, due to d0 being the max of two expressions. Suppose

d(z) < C
γL

D

√
log+

Dr

L

Much of the analysis remains the same. In particular, we will not need to change any of the

work done in the genuinely complex case for p. The bound for the portion of y along p is

changed. The second term now dominates in (2.10) and hence we have∥∥Pp⊥y∥∥ ≤ CγL

Dr

√
log+

Dr

L
≤ µ
√
n

Dr

where as before D ≤ D0 and the second expression in (2.8). In this case, we see that using

the same αp’s as in the genuinely complex case, for each αp, we need to pair it with at most

CDr

µ
√
n
Cn−1
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y’s to approximate up to µ
√
n

Dr
accuracy, and hence the total size of the approximating set is

bounded by
CD

µ
√
n

(
CDr√
n

)n
CDr

µ
√
n
Cn−1

The last case is if

d(z) ≥ C
L

D

√
log+

Dr

L
and d(z) < C

√
nr

D

In this case the only thing that changes from the genuinely complex case is that instead of

(2.12), the volume bound gives a µ
√
n

D
-net of all possible y with size bounded by

CD

µ
√
n
Cn−1

In this case we have the same approximation as in the genuinely complex case and a total

bound of
CD

µ
√
n

(
CDr√
n

)n
CDr

µ
√
n
Cn−1

for the cardinality. In all cases, we have the claimed cardinality bound and approximation.

2.5 Combining small ball probability bounds and nets to finish

proof of main structure theorem

In this section we combine the small ball probability bounds from the end of Section 3 and

nets constructed in the previous section to prove that B is unlikely to have a null vector in

each of the level sets.

2.5.1 Genuinely complex case

Theorem 2.5.1. (Genuinely complex case)

P( inf
z∈SD,d,r

‖Bz‖ = 0 and ‖B‖op ≤M
√
n) ≤ e−cn
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Proof. From Theorem 2.4.1, we have a (4µ
√
n

D
)-net N of SD,d,r of cardinality at most

C2nD2n+1dn−1r

µn+1
√
n
2n+1

Now suppose that Bz = 0 for some z = x + iy ∈ SD,d,r. Let z′ ∈ N be such that

‖z − z′‖ ≤ 4µ
√
n

D
. From Proposition 2.3.10, we have

P(‖Bz′‖2 ≤ t
√
n−m) ≤

(
C

d
(t+

1

D
)2
)n−m

(2.13)

Now suppose that ‖Bz‖ = 0 occurred for some z ∈ SD,d,r (and ‖B‖op ≤ M
√
n), and

z′ ∈ N satisfies ‖z − z′‖ ≤ 4µ
√
n

D
, we then have

‖Bz′‖ = ‖Bz′ −Bz‖ ≤ ‖B‖ ‖z − z′‖ ≤M
√
n
µ
√
n

D
≤ Mµn

D
≤ ν
√
n
√
n−m
D

where the last inequality is by picking µ to be a small constant multiple of ν. Taking t = ν
√
n

D

in (2.13) and using the union bound over N we get:

P( inf
z∈SD,d,r

‖Bz‖ = 0 and ‖B‖op ≤M
√
n) ≤ P( inf

z′∈N
‖Bz′‖2 ≤

ν
√
n
√
n−m
D

)

≤ C2nD2n+1dn−1r

µn+1
√
n
2n+1

Cn−m(ν
√
n)2(n−m)

dn−mD2(n−m)

≤ C3n−mD2m+1dm−1r
√
n
2m+1

ν2(n−m)

µn+1

≤ Cn
1

ν2(n−m)

µn+1

The last inequality is by our assumption D ≤ D0 and (2.8). n+ 1 copies of ν will cancel

with the µ’s in the denominator (and leave another Cn+1, since we picked µ to be a small

multiple of ν). This leaves νn−m−1 that we can adjust as small as necessary depending on

C1 so that the total probability is bounded by e−cn.

2.5.2 Essentially real case

Theorem 2.5.2. (Essentially real case)

P( inf
z∈SD,d0,r

‖Bz‖ = 0 and ‖B‖op ≤M
√
n) ≤ e−cn
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Proof. Let z = x + iy ∈ SD,d0,r and suppose that we are in the event Bz = 0 and ‖B‖op ≤

M
√
n. The real part of the equation Bz = 0 says

Rx = δ
√
ny′

Theorem 2.4.2 gives a set N with cardinality bounded by

C2n+1Dn+2rn

µ2
√
n
n+2

such that for every z = x+ iy ∈ SD,d0,r, there is u+ iv ∈ N such that ‖x− u‖ ≤ 2µ
√
n

D
and

‖y − v‖ ≤ µ
√
n

Dr
. We thus have∥∥Ru− δ√nv′∥∥ =

∥∥Ru−Rx+ δ
√
n(y′ − v′)

∥∥
≤ ‖R‖ ‖u− x‖+ δ

√
n ‖y′ − v′‖

≤M
√
n

2µ
√
n

D
+ δ
√
n
µ
√
n

Dr

≤ O(
µn

D
)

where for the last inequality we’ve used r ≥ cδ. From Proposition 2.3.11 we have

P(
∥∥Ru− δ√nv′∥∥ ≤ t

√
n−m) ≤

(
Ct

r

)n−m
(2.14)

Picking µ to be a small multiple of ν again, we see that Bz = 0 and ‖B‖op ≤M
√
n implies

that there is some u+ iv ∈ N such that∥∥Ru− δ√nv′∥∥ ≤ ν
√
n
√
n−m
D

Taking t = ν
√
n

D
in (2.14) and using the union bound over N we get:

P( inf
z∈SD,d0,r

‖Bz‖ = 0 and ‖B‖op ≤M
√
n) ≤ P( inf

u+iv∈N

∥∥Ru− δ√nv′∥∥ ≤ ν
√
n
√
n−m
D

)

≤ C2n+1Dn+2rn

µ2
√
n
n+2

(
Cν
√
n

Dr

)n−m
≤ Cn

1D
m+2rm

√
n
m+2

νn−m

µ2

≤ Cn
2

νn−m

µ2

We have again used the bound D ≤ D0 to simplify. The result now follows by taking ν small

enough so that the above is bounded by e−cn.
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2.5.3 Proof of Theorem 2.3.6

We are now ready to prove the main structure theorem by combining the small ball proba-

bility estimates and discrete nets from the previous sections.

Proof. First fix a level 1 ≤ D ≤ D0 and define the level set

SD := {z ∈ Incomp : D ≤ D2(z) ≤ 2D}

Note that Bz = 0 is equivalent for B(eiθz) = 0 for any phase θ. Moreover, the LCD is also

rotation invariant, i.e. D2(z) = D2(e
iθz) for any phase θ. Thus we may assume that the

LCD of z is exhibited by the real part x. More precisely, the event Bz = 0 for some z ∈ SD

is equivalent to Bz = 0 for some z ∈ S ′D, where

S ′D := {z = x+ iy ∈ Incomp : D ≤ D2(z) ≤ 2D,D2(z) = D(x)}

We can decompose S ′D into the previously defined genuinely complex and essentially real

level sets SD,d,r and SD,d0,r for different dyadic levels of d and r. Note that since z is

incompressible, by Lemma 2.2.6 and Corollary 2.3.8 and how we’ve restricted δ = Ω(n−C),

there are only log n dyadic values of d and r we have to range over. We also need to exclude

the vectors with compressible real part in the result of Corollary 2.2.8. Let us denote that

set Scomp. Using the results of Corollary 2.2.8, Theorem 2.5.1, and Theorem 2.5.2, we have:

P(inf
SD

‖Bz‖ = 0 and ‖B‖op ≤M
√
n) = P(inf

S′D

‖Bz‖ = 0 and ‖B‖op ≤M
√
n)

≤ P( inf
z∈Scomp

‖Bz‖ = 0 and ‖B‖op ≤M
√
n)

+
∑
r

∑
d

P( inf
z∈SD,d,r

‖Bz‖ = 0 and ‖B‖op ≤M
√
n)

≤ e−cn +O(log n)2e−cn

≤ e−c
′n

The final step is to vary over the dyadic values of D in the range [1, D0]. Since D0 is

exponential in n, this incurs a multiplicative O(n) cost. Adjusting the constant c again, we

get the conclusion of Theorem 2.3.6
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2.6 Distance problem via small ball probability and structure the-

orem

With the structure theorem in hand, we next prove the distance bound (2.6) and complete

the proof of the least singular value tail bound Theorem 2.1.1. Let X∗ denote a unit vector

that is orthogonal to X1, . . . , Xn−1. X
∗ can be chosen so that it only depends on the first

n − 1 columns, and in particular so that it is independent of Xn. As before there is an

ambiguity in the phase of X∗ that we make an arbitrary choice of. We have

dist(Xn, Hn) ≥ |〈X∗, Xn〉|

and hence it suffices to show

P(|〈X∗, Xn〉| < t and ‖A‖op ≤M
√
n) ≤ O

(
t2

δ

)
+ e−cn

We will condition on the first n−1 columns, so that X∗ may be viewed as a fixed vector. The

probability of |〈X∗, Xn〉| < t will then be controlled via the small ball probability theorem.

We will next establish some properties of a typical random normal vector X∗. The first

is that X∗ should be incompressible, which will give us two-dimensionality of the random

normal. The second is that the LCD of X∗ will be exponentially big, which will give us small

ball concentration down to an exponentially small scale for t. Recall D0 from Theorem 2.3.6

is exponentially big.

Proposition 2.6.1. (Typical properties of X∗)

P((X∗ ∈ Comp(az, bz) or LCD(X∗) ≤ D0) and ‖A‖op ≤M
√
n) ≤ e−cn (2.15)

Proof. Ruling out compressible vectors follows from a similar argument as Proposition 2.2.4.

Theorem 2.3.6 rules out X∗ having small LCD.

Now for a fixed X∗ that is incompressible and has large LCD, the small ball probability

theorem implies
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Proposition 2.6.2. Let X∗ ∈ Sn−1C be a fixed (complex) unit vector such that d(X∗) ≥ cδ

and D2(X
∗) ≥ D0. Then:

P(|〈X∗, Xn〉| < t) ≤ O

(
t2

δ

)
+ e−cn

Proof. Xn is a random vector (ξ1, . . . , ξn) shifted by a constant iδen. By Theorem 2.3.2, we

then have

P(|〈X∗, Xn〉| < t) ≤ O(
1

d(X∗)
(t+

1

D2(X∗)
)2)

≤ O

(
t2

δ

)
+ e−cn

Now we can piece everything together for:

Lemma 2.6.3. (Distance bound)

Let X1, . . . , Xn denote the columns of the random matrix A − λ
√
nIn and Hn be the

hyperplane spanned by the first n− 1 columns. For every t ≥ 0, we have

P(dist(Xn, Hn) < t and ‖A‖op ≤M
√
n) ≤ O(

t2

δ
+ e−cn)

Proof. We condition on a realization of the first n − 1 columns X1, . . . , Xn−1 such that the

normal vector X∗ is incompressible and has large LCD. Denote the expectation with respect

to the first n− 1 columns E1,...,n−1 and the probability with respect to the last column Pn.

Let E denote the event that X∗ satisfies d(X∗) ≥ cδ and D2(X
∗) ≥ D0.We then have

P(|〈X∗, Xn〉| < and ‖A‖op ≤M
√
n) ≤ E1,...,n−1Pn(|〈X∗, Xn〉| < t and E) + P(Ec)

≤ O(
t2

δ
+ e−cn) + e−cn

≤ O(
t2

δ
+ e−cn)

Incompressible X∗ must have d(X∗) ≥ cδ by Lemma 2.2.6. That fact lets us control

P(Ec) to be exponentially small via Proposition 2.6.1. Proposition 2.6.2 gives the bound

on Pn(|〈X∗, Xn〉| < t and E) for a fixed realization of the first n− 1 columns.
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CHAPTER 3

Eigenvalue spacing of iid random matrices

3.1 Theorem statement and proof outline

In this section we outline the approach taken to establish the main eigenvalue spacing results.

We will make the same assumptions on the atom random variables ξ as in the previous

chapter, in addition to assuming that ξ is centered. A will be used to denote an n×n matrix

with each entry an iid copy of ξ. The main theorem in this chapter is the following:

Theorem 3.1.1. Let λ1, . . . , λn be the eigenvalues of 1√
n
A and let

∆ := min
i 6=j
|λi − λj|

be the minimum gap between any two distinct eigenvalues. Let s > n−C be a scale for spacing

of polynomial size. We then have the following tail estimate for eigenvalue spacing:

P(∆ < s) = O(δn2+o(1) +
s2n4+o(1)

δ2
) + e−cn + P(‖A‖op > Mn1/2)

where δ > s is a scale at which eigenvalues near the real line are to be separated from each

other.

The large operator norm term can be controlled via moment assumptions on ξ. For

example, imposing a bounded fourth moment implies

P(‖A‖op > Mn1/2) = o(1)

and a subgaussian assumption implies that

P(‖A‖op > Mn1/2) ≤ 2e−n
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where the constant M depends on the bound on the fourth moment or subgaussian moment.

See [YBK88], [RV08] and the references within. Qualitatively, Theorem 3.1.1 implies that

iid random matrices have simple spectrum asymptotically almost surely:

Corollary 3.1.2. Let A be an n×n iid random matrix where the atom random variables are

centered, have variance at least 1, and have bounded fourth moment. Let ∆ be the minimum

gap between any two distinct eigenvalues of 1√
n
A. Taking δ = n−(2+o(1)) and s = δn−(2+o(1))

in Theorem 3.1.1 gives

P(∆ < n−(4+o(1))) = o(1)

which implies

P(A has simple spectrum) = 1− o(1)

We now give an outline of the chapter, starting with a brief sketch of the argument for

Theorem 3.1.1. The intermediate goal is to establish a bound for the probability that there

are two eigenvalues near a fixed z ∈ C, i.e.

P(λi, λj ∈ B(z, s) for i 6= j)

Many applications of least singular value results involve using a bound on

P(sn(A− z
√
n) ≤ sn−1/2)

to control or detect the presence of (at least) one eigenvalue near z. We will deduce bounds

on the two smallest singular values sn−1 and sn of 1√
n
A− z from the presence of two eigen-

values near z. In contrast with the Hermitian case, eigenvectors of iid matrices may not be

orthogonal. The process involves accounting for the possibility that the associated eigenvec-

tors of λi, λj ∈ B(z, s) are almost parallel, leading to a range of bounds for sn−1, sn. We then

need to use a version of the least singular value bound from the previous chapter extended

to give joint tail estimates for sn−1 and sn. The final step is to use a covering argument to

deduce Theorem 3.1.1 from the bounds on the event where there are two eigenvalues of 1√
n
A

near a fixed center z ∈ C. We conclude by stating further eigenvalue spacing results that

are obtainable via similar arguments.
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3.2 Two eigenvalues near a fixed center

In this section we consider a local version of the eigenvalue spacing problem. Instead of the

entire spectrum, we prove bounds on the event that there are two eigenvalues close to a fixed

point z ∈ C. More precisely, the estimates we will establish are:

Proposition 3.2.1.

P(λi, λj ∈ B(z, δ) and ‖A‖op ≤M
√
n) = O(δ2n2+o(1)) + e−cn (3.1)

for fixed real z = O(1).

P(λi, λj ∈ B(z, s) and ‖A‖op ≤M
√
n) = O(

s4n4+o(1)

δ2
) + e−cn (3.2)

for fixed complex z = O(1) with imaginary part bounded below by cδ.

3.2.1 Accounting for non-orthogonality of eigenvectors

Fix z = O(1) and suppose λi, λj are within s of z. We will denote N := 1√
n
A − z. With

the assumptions z = O(1) and ‖A‖op ≤ M
√
n, we then have ‖N‖op = O(1). Ideally, the

eigenvectors associated to λi, λj would be orthogonal, and then we would immediately have

sn(N), sn−1(N) = O(s). That may not necessarily be the situation, as A is not constrained

to be symmetric. Indeed, [MC98], [MC00] give that eigenvectors of a complex Ginibre

matrix become more correlated as their associated eigenvalues get closer. Nevertheless, we

can convert the event of two eigenvalues being close to fixed z = O(1) into the following

information on orthogonal vectors:

Lemma 3.2.2. Suppose λi, λj ∈ B(z, s) for some 1 ≤ i < j ≤ n and ‖A‖op ≤ M
√
n. Then

there exists orthogonal unit vectors v, w ∈ Cn and a = O(1) such that Nv = (λi − z)v and

Nw = (λj − z)w + av. In particular we have ‖Nv‖ = O(s) and ‖Nw − av‖ = O(s)

Proof. First suppose that λi 6= λj. Let vi, vj be eigenvectors corresponding to λi, λj. Take

v = vi
‖vi‖ and let w be a unit vector orthogonal to v such that v, w span the same plane as
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vi, vj. We then have

‖Nv‖ =

∥∥∥∥(
1√
n
A− z)v

∥∥∥∥ = ‖(λi − z)v‖ = O(s)

by our assumption on |λi − z| and v being a unit vector. Now write w = aivi + ajvj. Then

Nw = ai(λi − z)vi + aj(λj − z)vj = (λj − z)w + ai(λi − λj)vi = (λj − z)w + av

taking a = ai(λi−λj) ‖vi‖. Arguing as above, we get ‖Nw − av‖ = O(s) as well. Finally, we

have av = (N − (λj − z))w. Since ‖N‖op = O(1), |λj − z| = O(s), and v, w are unit vectors,

we have a = O(1). Now suppose λi = λj. If this repeat eigenvalue has geometric multiplicity

2 or greater, then the above argument still applies since we have distinct eigenvectors vi, vj

as before. Now suppose λi = λj = λ and the geometric multiplicity is 1. Using the Jordan

canonical form, we have vi, vj such that

Nvi = (λ− z)vi and Nvj = (λvj + 1 · vi)− zvj = (λ− z)vj + vi

where the 1 · vi comes from the off-diagonal 1. Writing w = aivi + ajvj again, we now have

Nw = (λ− z)w + ajvi

and hence we take a = aj this time and finish as above.

3.2.2 Reduction to singular values tail estimates

Let E be the event in the conclusion of Lemma 3.2.2. We will next deduce bounds on the

two smallest singular values of N given that E occurs.

Proposition 3.2.3. Suppose E occurs for a = O(1). There are two cases corresponding to

the range of a:

• If a = O(s), then

sn(N) = O(s) and sn−1(N) = O(s)

• If a = Ω(s), then

sn(N) = O

(
s2

|a|

)
and sn−1(N) = O(|a|)
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Proof. First suppose a = O(s), which is akin to the situation where the eigenvectors v and

w are orthogonal. We have ‖Nv‖ = O(s) and ‖Nw‖ ≤ ‖Nw − av‖+ ‖av‖ = O(s). Since v

and w are orthogonal, this implies that both sn(N) = O(s) and sn−1(N) = O(s) as claimed.

Now suppose a is in the range from s to 1, i.e. a = Ω(s). sn−1(N) = O(|a|) since

‖N‖op = O(|a|) on the plane spanned by v and w. For the least singular value, we can

bound

sn(N) ≤ s2(N |span(v,w)) ≤ dist(Nv, span(Nw))

Recall that Nv = (λi − z)v and Nw = (λj − z)w + av, where v and w are orthogonal.

Combined with the fact that λi, λj ∈ B(z, s), we may then bound

dist(Nv, span(Nw)) ≤ |λi − z| |λj − z|
|a|

= O

(
s2

|a|

)

3.2.3 Proof of Proposition 3.2.1

We will use the following extension of Theorem 2.1.1:

Theorem 3.2.4. For any t2 ≥ t1 ≥ 0 and λ = O(1), we have

P(sn(A−λ
√
n) ≤ t1n

−1/2, sn−1(A−λ
√
n) ≤ t2n

−1/2 and ‖A‖op ≤M
√
n) ≤ O

(
t21t

2
2

δ2

)
+e−cn

where δ is the absolute value of the imaginary part of λ.

The proof is given in Appendix A. We will also require the following result:

Theorem 3.2.5. For any t2 ≥ t1 ≥ 0 and real λ = O(1), we have

P(sn(A− λ
√
n) ≤ t1n

−1/2, sn−1(A− λ
√
n) ≤ t2n

−1/2 and ‖A‖op ≤M
√
n) ≤ O (t1t2) + e−cn

Theorem 3.2.5 is not stated explicitly in the literature. Using the same process as in

Appendix A applied to the results in [RV09] will give the above statement.

Proof. We are now ready to prove (3.2). Suppose ‖A‖op ≤ M
√
n and we have distinct

eigenvalues λi, λj ∈ B(z, s) for fixed complex z = O(1) with imaginary part bounded below
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by cδ. This implies that one of the conclusions in Proposition 3.2.3 occurs. By a union

bound over the dyadic possibilities for |a| in the range (cs, C), we have

P(λi, λj ∈ B(z, s) and ‖A‖op ≤M
√
n) ≤ P(sn(N), sn−1(N) = O(s) and ‖A‖op ≤M

√
n)

+
∑
|a|∈D

P(sn(N) = O

(
s2

|a|

)
, sn−1(N) = O(|a|) and ‖A‖op ≤M

√
n)

where D denotes the dyadic values in the range (cs, C), with its cardinality bounded by

|D| ≤ |log(s)| ≤ O(log(n))

For any of the summands, Theorem 3.2.4 gives a probability bound of

O

(
s4n4

δ2

)
+ e−cn

A union bound over the dyadic possibilities for |a| in the range (ct, C) gives the claim in

(3.2).

P(λi, λj ∈ B(z, s) and ‖A‖op ≤M
√
n) ≤ |log(s)| (O

(
s4n4

δ2

)
+e−cn) ≤ O

(
s4n4+o(1)

δ2

)
+e−cn

An analogous argument using Theorem 3.2.5 gives (3.1).

3.3 A covering argument and further corollaries

We next reduce Theorem 3.1.1 to (3.1), (3.2), which will establish the main eigenvalue

spacing result.

Proof. Suppose we are outside the event where the operator norm ‖A‖op is bigger than M
√
n.

Let B be a ball of O(1) bounded radius that contains all the eigenvalues of 1√
n
A. First cover

R ∩ B with balls of radius δ centered at real zα such that if |λi − λj| ≤ δ/100 and either λi

or λj has imaginary part less than δ/100, then there is some α such that λi, λj ∈ B(zα, δ).

Since B has O(1) radius, this covering takes O(δ−1) many balls, i.e. O(δ−1) many centers

zα.

41



Next cover the rest of B with balls of radius s centered at zβ with |=zβ| ≥ t/1000 such

that if |λi − λj| ≤ s/100 and both λi, λj have imaginary part at least δ/100 in absolute value,

then λi, λj ∈ B(zβ, s) for some zβ. This takes O(s−2) distinct centers zβ.

Now we have

P(∆ < s) ≤ P(‖A‖op > Mn1/2) +
∑
α

P(λi, λj ∈ B(zα, δ) and ‖A‖op ≤M
√
n)

+
∑
β

P(λi, λj ∈ B(zβ, s) and ‖A‖op ≤M
√
n)

Combining (3.1), (3.2) along with the entropy bounds of O(δ−1) for the number of α and

O(s−2) for the number of β gives

P(∆ < s) ≤ O(δn2+o(1) +
s2n4+o(1)

δ2
) + e−cn + P(‖A‖op > Mn1/2)

3.3.1 Further results

We now state some eigenvalue spacing results that are readily obtained from arguments

similar to those in this chapter. The first is by applying the covering argument only to the

real line, as opposed to a complex ball. We can obtain a bound on the event that A has two

real eigenvalues within t of each other.

Theorem 3.3.1. Let A satisfy the same assumptions as in Theorem 3.1.1 and t > 0. Let

E(t) denote the event that A has two real eigenvalues within t of each other. Then:

P(E(t)) = O(tn2+o(1)) + e−cn + P(‖A‖op > Mn1/2) (3.3)

Since complex eigenvalues of real matrices must come in pairs, we also have the same

bound in the following:

Theorem 3.3.2. Let A satisfy the same assumptions as in Theorem 3.1.1 and t > 0. Let

F(t) denote the event that A has a complex conjugate pair of eigenvalues within t of the real
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line. Alternatively, we can characterize F(t) as the event that A has a complex eigenvalue

with imaginary part strictly in the range (0, t). Then:

P(F(t)) = O(tn2+o(1)) + e−cn + P(‖A‖op > Mn1/2) (3.4)

Assuming the entries of A have bounded fourth moment and taking t = o(n−2+o(1)) in (3.4),

we get that with high probability, A has only strictly real eigenvalues within o(n−2+o(1)) of the

real line.

The right side of Figure 3.1 demonstrates the effect of complex conjugate pairs of eigen-

values being repelled from the real line. In the same figure we see the contrast between the

case where the atom random variables take on complex values versus purely real values.

When the atom random variables have independent real and imaginary part, we can use

the argument in this chapter along with a least singular value result whose bound holds

uniformly in the shift z
√
nIn. In particular, the bound does not deteriorate when approach-

ing the real line. Applying the preceding covering argument with Theorem 1.1.4 extended

appropriately to the two smallest singular values, we get the following version of eigenvalue

spacing for iid matrices where the atom variables have independent real and imaginary part:

Theorem 3.3.3. Let A be an n × n iid matrix with atom random variables that satisfy

the same assumptions required for Theorem 1.1.4. Let ∆ denote the minimum eigenvalue

spacing of A. For s > 0 we have:

P(∆ < s) = O(s2n4+o(1)) + e−cn
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Figure 3.1: Eigenvalues of 200 independent 64×64 matrices generated using ξ ∼ gC (top-left),

ξ ∼ gR (top-right), ξ ∼ Unif(S1) (bottom-left), and ξ ∼ Bernoulli(1/2) (bottom-right)
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APPENDIX A

Joint tail estimates for two smallest singular values

In this appendix we extend the least singular value theorem established in Chapter 2 to

also include sn−1. The approach will be similar to that of before: first using compressible

and incompressible vectors to reduce to a distances problem and then applying a small ball

probability result to the last two columns after conditioning on the rest of the matrix. The

key new ingredient is a version of the invertibility via distances lemma accounting for two

smallest singular values.

A.1 Reduction to distances problem

Let A be an n × n matrix with each entry an iid copy of ξ, where ξ satisfies the same

assumptions as in Chapter 2. The main result in this appendix is the following:

Theorem A.1.1. For any t2 ≥ t1 ≥ 0 and λ = O(1), we have

P(sn(A−λ
√
n) ≤ t1n

−1/2, sn−1(A−λ
√
n) ≤ t2n

−1/2 and ‖A‖op ≤M
√
n) ≤ O

(
t21t

2
2

δ2

)
+e−cn

where δ > n−C is the absolute value of the imaginary part of λ.

Recall that for fixed parameters a, b ∈ (0, 1), a unit vector z is compressible if there is a

sparse vector z′ with at most an non-zero coordinates such that ‖z − z′‖2 ≤ b. A unit vector

is incompressible if it is not compressible. Every incompressible vector z must have at least

an indices k where |zk| ≥ bn−1/2. Otherwise we have ‖z − z′‖ ≤ b, where z′ is the projection

of z onto the indices where |zk| ≥ bn−1/2.

Call a plane W incompressible if all of the unit vectors on W are incompressible. The

event where sn−1(A − λ
√
n) ≤ t2n

−1/2 occurs implies that there is a plane W on which
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‖(A− λ
√
n)|W‖op ≤ t2n

−1/2. If there is a compressible vector z ∈ W , then we would have

‖(A− λ
√
n)z‖ ≤ t2n

−1/2 for some compressible z. Moreover, since we are assuming that

t1 ≤ t2, we can now break the event in Theorem A.1.1 into two parts:

P(sn(A− λ
√
n) ≤ t1n

−1/2, sn−1(A− λ
√
n) ≤ t2n

−1/2 and ‖A‖op ≤M
√
n)

≤ P( inf
z∈Incomp

∥∥(A− λ
√
n)z
∥∥ ≤ t1√

n
, inf
incomp W

∥∥(A− λ
√
n)|W

∥∥
op
≤ t2√

n
and ‖A‖op ≤M

√
n)

+ P( inf
z∈Comp

∥∥(A− λ
√
n)z
∥∥ ≤ t2n

−1/2 and ‖A‖op ≤M
√
n)

Proposition 2.2.4 controls the second term above to be exponentially small. The next

steps are to go toward a new invertibility via distances lemma for the purpose of bounding

the first summand. We will use the following form of Lemma 2.2.5:

Lemma A.1.2. Let X be an n×n random matrix and X1, . . . , Xn denote the column vectors

of X. Let Hk denote the span of the n − 1 columns excluding Xk. Let E be an arbitrary

event. Then for every a, b ∈ (0, 1) and t1 > 0, we have

P( inf
z∈Incomp(a,b)

‖Xz‖op < t1bn
−1/2 and E) ≤ 1

an

n∑
k=1

P(dist(Xj, Hk) < t1 and E)

Lemma A.1.2 is given in [RV08] and as remarked in [TV10c], the intersection with an

arbitrary event E does not affect the proof. A straightforward modification of the argument

gives:

Lemma A.1.3. Let X be an n×n random matrix and X1, . . . , Xn denote the column vectors

of X. Fix an index k. For j 6= k, let Hjk denote the span of the n− 2 columns excluding Xj

and Xk. Let E be an arbitrary event. Then for every a, b ∈ (0, 1) and t2 > 0, we have

P( inf
incomp W

‖X|W‖op < t2bn
−1/2 and E) ≤ 1

an

∑
j 6=k

P(dist(Xj, Hjk) < t2 and E)

Proof. We give the proof without intersecting with the arbitrary event E to ease notation.

Suppose there is an incompressible plane W on which X’s operator norm is at most t2bn
−1/2.
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Consider z ∈ W with zk = 0. For any j 6= k, we have

‖Xz‖ ≥ dist(Xz,Hjk)

= dist(zjXj + zkXk, Hjk)

= |zj| dist(Xj, Hjk)

This implies that for any j 6= k, we have either

|zj| < bn−1/2 or dist(Xj, Hjk) < t2

Otherwise, ‖Xz‖ ≥ bn−1/2t2, in contradiction with our assumption that X’s operator norm

on W is strictly less than t2bn
−1/2. The incompressibility of z implies that there are at least

an indices j where |zj| ≥ bn−1/2. On these indices, we must have dist(Xj, Hjk) < t2. In

summary, we have deduced that the existence of an incompressible plane W with ‖X|W‖op <

t2bn
−1/2 implies that there are at least an indices j such that dist(Xj, Hjk) < t2. Markov’s

inequality now gives:

P(|{j : dist(Xj, Hjk) < t2}| > an) ≤ E |{k : dist(Xj, Hjk) < t2}|
an

=
1

an

∑
j 6=k

P(dist(Xj, Hjk) < t2)

Combining the previous two lemmas gives:

Lemma A.1.4. Let X be an n×n random matrix and X1, . . . , Xn denote the column vectors

of X. Let Hk denote the span of the n − 1 columns excluding Xk and for j 6= k, let Hjk

denote the span of the n − 2 columns excluding Xj and Xk. Let E be an arbitrary event.

Then for every a, b ∈ (0, 1) and t2 ≥ t1 ≥ 0, we have

P( inf
z∈Incomp(a,b)

‖Xz‖ < t1bn
−1/2, inf

incomp W
‖X|W‖op < s2bn

−1/2 and E)

≤ 1

a2n2

n∑
k=1

∑
j 6=k

P(dist(Xk, Hk) < t1, dist(Xj, Hjk) < t2 and E)
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Proof. First take the arbitrary event in Lemma A.1.2 as

F =

{
inf

incomp W
‖X|W‖op < t2bn

−1/2 and E
}

to get

P( inf
z∈Incomp(a,b)

‖Xz‖ < t1bn
−1/2 and F) ≤ 1

an

n∑
k=1

P(dist(Xk, Hk) < t1 and F) (A.1)

Now for each k, take the arbitrary event as

Fk = {dist(Xk, Hk) < t1 and E}

in Lemma A.1.3 to get

P(dist(Xk, Hk) < t1 and F) = P( inf
incomp W

‖X|W‖op < t2bn
−1/2 and Fk)

≤ 1

an

∑
j 6=k

P(dist(Xj, Xjk) < t2 and Fk)

=
1

an

∑
j 6=k

P(dist(Xk, Hk) < t1, dist(Xj, Hjk) < t2 and E)

Combining the above with A.1 gives the result.

By the preceding Lemma and the compressible/incompressible decomposition, the proof

of Theorem A.1.1 is reduced to establishing the following distances bound:

Proposition A.1.5. Let A be an n×n matrix satisfying the same assumptions as in Theorem

A.1.1. Let X1, . . . , Xn be the columns of A − λ
√
n. Let Hk denote the span of the n − 1

columns excluding Xk and for j 6= k, let Hjk denote the span of the n− 2 columns excluding

Xj and Xk. Then for every λ = O(1) and t2 ≥ t1 ≥ 0, we have

P(dist(Xn, Hn) < t1, dist(Xn−1, Hn−1n) < t2 and ‖A‖op ≤M
√
n) ≤ O

(
t21t

2
2

δ2

)
+ e−cn

where δ is the absolute value of the imaginary part of λ.
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A.2 Distances problem via small ball probability and structure

theorem

Proof. We condition on a realization of the first n−2 columns so that Hn−1n, Hn, and normal

vectors are fixed. Denote the expectation with respect to the first n − 2 columns E1,...,n−2

and the probability with respect to the last two columns Pn−1n. dist(Xn, Hn) < t1 implies

that that there is some vector X normal to Hn such that

|〈X,Xn〉| < t1

and similarly we have some vector X ′ normal to Hn−1n such that

|〈X ′, Xn−1〉| < t2

Let B denote the n− 2× n matrix with rows equal to the first n− 2 columns of A− λ
√
n.

Let E denote the event that every unit vector X∗ in the kernel of B has d(X∗) ≥ cδ and

D2(X
∗) ≥ D0.

P(dist(Xn, Hn) < t1, dist(Xn−1, Hn−1n) < t2 and ‖A‖op ≤M
√
n)

≤ P(|〈X,Xn〉| ≤ t1 and |〈X ′, Xn−1〉| ≤ t2 for some X,X ′ ∈ kerB and ‖B‖op ≤M
√
n)

≤ E1,...,n−2Pn−1n(|〈X,Xn〉| ≤ t1, |〈X ′, Xn−1〉| ≤ t2 for some X,X ′ ∈ kerB and E) + P(Ec)

≤ E1,...,n−2Pn−1n(|〈X,Xn〉| ≤ t1, |〈X ′, Xn−1〉| ≤ t2 for some X,X ′ ∈ kerB and E) + e−cn

where we have used Proposition 2.6.1 to control the probability of Ec. The event E does

not depend on any of the last two columns. Therefore, by independence of Xn−1, Xn and

Proposition 2.6.2 we have

Pn−1n(|〈X,Xn〉| ≤ t1 and |〈X ′, Xn−1〉| ≤ t2 for some X,X ′ ∈ kerB and E)

=Pn−1(|〈X ′, Xn−1〉| ≤ t2 for X ′ ∈ kerB and E) ·Pn(|〈X,Xn〉| ≤ t1 for X ′ ∈ kerB and E)

≤O(
t22
δ

+ e−cn) ·O(
t21
δ

+ e−cn)

The result now follows from taking the expectation over the first n− 2 columns.
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APPENDIX B

An elementary computation for real-imaginary

correlation

Recall that for a complex vector z = x+ iy ∈ Sn−1C , the real-imaginary correlation is defined

to be

d(z) := (‖x‖22 ‖y‖
2
2 − (x · y)2)1/2 =

√√√√√det

xT
yT

(x y
)

d(z) is invariant under rotations, i.e. d(eiθz) = d(z) for any θ. The following proposition

relates d(z) to the extremal lengths of the real and imaginary parts of rotations eiθz.

Proposition B.0.1. Let z = x + iy ∈ Sn−1C have real-imaginary correlation d(z). As θ

varies, the minimal value of
∥∥Re(eiθz)

∥∥2
2

is

1

2
− 1

2

√
1− 4d(z)2

and the corresponding maximal value is

1

2
+

1

2

√
1− 4d(z)2

Proof. We have

Re(eiθz) = cos(θ)x− sin(θ)y

and hence the extremal lengths of
∥∥Re(eiθz)

∥∥
2

correspond to the singular values of the matrix

that has x and y as columns: (
x y

)
The eigenvalues of xT

yT

(x y
)

=

‖x‖22 x · y

x · y ‖y‖22
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satisfy

λ2 − (‖x‖22 + ‖y‖22)λ+ (‖x‖22 ‖y‖
2
2 − (x · y)2) = 0

or equivalently

λ2 − λ+ d(z)2 = 0

The claim follows from solving the above quadratic.
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