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Nonlinear Models in 2 + ~ Dimensions 

D. Friedan 

La\vrence Berkeley Laboratory and Department of Physics 
University of California 

Berkeley, California 94720 

ABSTRACT 
~-~---

A generalization of the nonlinear ~ model is con-

sidered. The field takes values in a compact manifold M 

and the coupling is determined by a Riemannian metric on H. 

The model is renormalizable in 2 + ~ dimensions, the 

renormalization group acting on the infinite dimensional 

space of Riemannian metrics. Topological properties of the 

p-function and solutions of the fixed point equation 

PACS numbers: 03. 70.+k, 02. 40.+m, ll.lOGh, 64. 60.-1 



1 
Polyakov several years ago studied the renormalization of the 

O(N)~invariant nonlinear o- model in 2 + ~ dimensions in the lov 

temperature regime dominated by small fluctuations around ordered 

states. He found an infrared unstable fixed point at a temperature of 

order ~. The unstable renormalization group trajectory gives a model 

critical system in its scaling limit or, equivalently, a Euclidean quan-

? 
tun field theory.- In two dimensions the model is asymptotically free. 

3 I describe here a more general model to which Polyakovp s approach 

is appropriate: a field ¢(x) taking values in a compact manifold M, 

governed by the action 

where 

-1 
T g .. 

lJ 

~ r. 1 -1 ' i ' j S(¢) ""1\ )dx 2 T gij (¢(x)) o!U¢ (x) o!U¢ (x), 

/\
-1 is the short distance cutoff. The dimensionless coupling 

is a Riemannian r.Jetric on 11.
4 The standard non-linear 

models have M a homogeneous space and 0' 

"'ij an invariant metric. 

Correlation functions are generated by the partition function 

Z(h) ~Q: d¢(x) exp[~S(¢) + H(¢)] where the!! priori measure d¢(x) 

(1) 

is the metric volur.1e eleraent on M and H(~) = 1\ Z+<E- ~dx h(x) (¢(x)), h 

being an external field, each h(x) a function on M. The k~fold 

correlation function takes values in the unit measures on k 
H : 

<¢(x ) • • • ¢(x )> 1 k 

The double expansion in T and ~ is constructed as a renonnal~ 

. bl b . . 5 lza e pertur at1on serles. Only fields close to the constants play a 

(2) 



role; Z(h) "" ~dm Z(m,h) where Z(m,h) is the sum over small fluctua~ 

tions around the constant ¢(x) • m. A choice of coordinates around 

each point m in 1:·1 gives a linear representation for the fluctua~ 

tions: the linear field i cr (x) is ¢(x) in coordinates around 

The sum over fluctuations betomes 

Z(m,h) = ~ dcr exp[-S(m,cr) + U(m,cr)J. 

S(m,cr) 

H(m,cr) 

ri dcr(x) exp[ /\
2+"" )dx log det J(m,cr(x)) ] 

X 

"" (dv _21 T-1 - ( ( ) ) ~ i( ) .,. j ( ) .;)'"' gij m,cr x u!Jcr x o!Jcr x 

)dx h(x,m,cr(x)). 

m.. 

(3a) 

(3b) 

(3c) 

(3d) 

where g .. (m,cr(x)) and h(x,m,cr(x)) are the metric and external field 
1J 

in coordinates around m and 
i 

det J. (m,cr(x)) is the Jacobian of the 
J 

coordinate map from cr(x) to 9(x). Propagators and vertices come 

from expansion in powers of cr. Normal coordinates yield: 

i J. (m,cr(x)) 
J 

g(m,cr(x)) 

h(x,m,cr(x)) 

i 1 k 1 i 
6j + i a (x)cr (x) R klj(m) 

00 k 
~ ni n=O 

• cr n(x) vk • • • vk h(x) (m). 
- 1 n 

(4a) 

(4b) 

(4c) 



To each constant m corresponds a perturbation series whose ver~ 

tices are in the most general form required by pm11er counting, so is 

J!..!Jma _faci<:. renonnalizable. But the existence of an underlying non~ 

linear theory means that the vertices for one constant m determine 

those for all nearby • Ill by translation of coordinates and shift of 

origin. To renormalize the nonlinear theory the renormalized vertices 

must be made to satisfy an equivalent renormalized invariance. That 

this can be done is shmm in Ref. 3. 

Renormalized as dictated by pO\V'er counting, at a scale set by ~' 

(Sa) 

h(x) = 
-2-+ · R R <J\1 p) Z 

1 
( •, 1\/p.. g ) h ( x) + h 

1 
( •, g) (5b) 

where and are the renormalized coupling and external 

field, z1 is a linear operator on functions on H and 11
1 

serves to 

remove quadratic divergences. In the follm11ing only renormalized quan-

tities are discussed; the R- superscripts are suppressed. 

The partition function satisfies the renormalization group equation 

~ ' ~ ( ~ ~~ + ~{g) ~g + (Y(g) h(x)) ~h(x) ) Z(h) = 0 • 

The ~~function ~(g) is a vector field on the space of metrics and 

Y(g) h(x) is a linear vector field on functions. 

(6) 

The order parameter i(x) dual to h(x) takes values in the non-

negative unit measures on M. The free energy 



max 
h 

2+~ ( 
[- log Z(h) + ju .)dx (h(x) ,n(x))] 

satisfies the renormalization group equation 

(7) 

0 (8) 

where Y(g) ~ -(2 + ~) + Y(g). 

f) 
To two loops, using dimensional regularization and renormalizing 

by minimal subtraction, 

k 
R .. "" R 'k' is the Ricci tensor and T has been replaced by 2rr T. 
~J ~ "] 

The renormalization group has meaning only as it acts on the 

equivalence classes of metric couplings and external fields under 

reparametrizations (diffeomorphisms) of r1. The partition function 

Z(h) sees no change when both gij and h are subjected to the same 

reparametrization, thus no normalization condition can distinguish among 

members of the same equivalence class. The construction and renormali-

zation of the perturbation series respect this covariance. 

The diffeomorphism classes of metrics make up an infinite dimen-

sional Ollanifold (singular at metrics \vith symmetry), 7 over which the 

external fields form a vector bundle. The renormalization group has its 

fixed points where h(x) vanishes and p(g) is an infinitesmal 



reparametrization: ~·,(g) • v.v. + v.v. for v a vector field on M. 
~J ~ J J 1. 

The coefficients ~ and Y are natural functions of the metric: 

when is transformed by a reparametrization of ~ij (g) and 

)'(g) undergo the same transformation. In particular, if g is unaf-

fected then so are p and y. Thus the renormalization group 

preserves internal symmetry. 

Since a homogeneous space has the same geometry at every point, the 

couplings of any standard model comprise a finite dimensional submani-

fold of the metrics at one point in H. Group theoretic formulas for 

renormalization group coefficients are given in Ref. 3. 

Global topological information on the p-function for small T is 

available when H has dimension two and also when l1 is homogeneous. 

3 
In both cases the p-function is a gradient through two loops. 

The fixed points correspond to solutions of 

v.v. + v.v .• 
1 J J 1. 

±1 or 0. 

Writing the coupling in the form T~l (gij + kij), 

and keeping only terms of topological significance: 

T and 

~ T 2 
"" ±l ~ o< T o< 

pen ~ T - T3 when o< 0, Rijkl "' 0 

~ T 
Rijkl 0 

~ (k) ij 
l 

Llp 
st 

"" z T Ll~(k) ij v1v1 + l order 

(10) 

small, 

(lla) 

(llb) 



1 
~ ( 2 + «-) + 2" T fly ~ v.v. 

~ l 
- 2 

i v v .• 
l 

The only meaningful k .. - directions are those transverse to the 
~J 

(llc) 

reparametrizations and to the T- direction. ll~ is an elliptic 

operator with positive leading part, so the number of unstable or margi~ 

nal k- directions is always finite. The flat metrics (R "' 0) ij kl 

have trivial perturbation theories; in the follmving they are excluded 

fron the case o::: "" 0. 

When 0.:: "" 1 or 0 there is a nontrivial fixed point for «- > 0 at 

or T ::; «- 1;2 ' infrared unstable in at least the T- direction. 

lvhen 0.:: is -1 there is a fixed point for «- < 0 at T :::: - «-, 

infrared stable in the T- direction. In all three cases there are also 

trivial fixed points at T = 0. No other kind of fixed point at nonde-

generate coupling is possible because when the two loop term in the 

~-function vanishes, i.e. Rikln Rjkln "" v.w. + v. \v. , then 
~ J J ~ 

:)dm Rikln Rikln "" 0, so Rijkl = o. 

In two dimensions the trivial and nontrivial fixed points merge at 

T = Ot asymptotically free in the small ~ten o::: 1, 0 and in the 

large when a.:: = 1 I'J'hen 0< = 0 ~ (T) vanishes to second order in 

T, so the approach to freedom is extraordinarily slow. 

All known solutions of (10) are actually Einstein metrics (vi= 0). 

For 0< = 1 there is available only one example which is not locally 

8 
horaogeneous. Among the homogeneous spaces those admitting just one 

invariant metric are necessarily Einstein, 9 but others with less sym~ 

metry are known. lO h Sorae ave instability in k- directions, so provide 

model multicritical points. 3 The only known Ricci~flat spaces (ex:= 0) 



11 
are the Kahler manifolds of Yau. Einstein metrics 'vith ex = =1 are 

known in two varieties: the locally symmetric spaces of noncompact type 

11 
and the Kahler metrics of Yau. 

For ~ > 0, ~ • 0 or 1, the long distance physics is qualita-

tively familiar. Belmv the critical temperature long distance behavior 

is governed by the trivial fixed point at T = 0, so there is a degen-

erate set of pure equilibrium states, labelled by the points in !1. At 

T • 0 the free energy rCi) is minimized by the point measures 

di (x) "' 6 • As T increases, the set of minima is still H, but the 
~ m 

minimizing order parameters have diffused outward; to lmves t order 

At T = T 
c 

the degeneracy 

of equilibria disappears, the ~ having converged to the unique meas

* ure annihilated by Y . To lowest order the anomalous dimensions of 

9i(x) are determined by the eigenvalues of D..y· Long distance proper-

ties for T > T are not accessible to perturbation theory, but the 
c 

system presumably remains disordered. 

A solution of (10) with i v not a gradient would show some novel 

features: approaching the critical surface, the order parameter would 

drift as it diffused (because of the term 

anomalous dimensions could be complex. 

i -2v v. 
1 

in fly) and the 

The ~ ~ -1 fixed points are analogous to ¢
4 

fixed points near 

four dimensions, the ~ expansion probing dimensions below two. The 

scaling limit in two dimensions is trivial, so it would seem more 

interesting to attempt an interpretation of the T = 0 fixed points as 

the long distance termini of trajectories originating on a critical sur-

face at nonzero T. Infrared asymptotic freedom implies a correlation 



- 9 -

function <jll(x)p(O)> decaying as (log lxi)~Y for large lxl. But 

high temperature series for lattice versions of the nonlinear models 

always sho\v finite correlation lengths, so there must be an intervening 

phase transition. The locally symmetric <x: = -1 spaces all have non

trivial, nonabelian fundamental groups, allmving topologically stable 

vortex-like field configurations. Phase transitions due to dissociation 

of multivortex bound systems might be e:x:pected.
12 

Other of the o::: = -1 

manifolds, being simply connected, call for different mechanisr:1s. 

Construction of a nonstandard model requires the bare 2, Qriori 

r.1easure djll(x) which avoids nonspontaneous long range ordering. For 

asymptotically small T it can be calculated fror.1 the renonnalization 

group equation for the bare external field. It depends on the method of 

short distance regularization and differs from the metric volume element 

whenever h
1 

in (Sb) is nonzero. The difference is of order T, so in 

two dimensions the critical a Rriori measure is exactly the metric 

volume eler;wnt. But an infinite number of relevant couplings (the 

external fields) must be fixed in order to bring the 2, Q_riori measure to 

its critical value. In this sense the nonstandard models are unnatural. 

The standard models have enough internal synu:1etry to determine the a 

priori measure uniquely, so for them these issues do not arise. 

I am grateful for advice and criticism from E. Brezin, N. Ercolani, 

D. Foerster, J, Glimm, P. Li, J.E. Narsden, S. Shenker, I.~·f, Singer, and 

R. Stora. This work was supported in part by the High Energy Physics 

Division of the u.s. Department of Energy under contract No. \~7405-

ENG-48. 
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