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Abstract

The use of a constant discount rate to study long-lived environmental problems such as
global warming has two disadvantages: the prescribed policy is sensitive to the discount

rate, and with moderate discount rates, large future damages have almost no effect on cur-
rent decisions. Time-consistent quasi-hyperbolic discounting alleviates both of these mod-
eling problems, and is a plausible description of how people think about the future. We

analyze the time-consistent Markov Perfect equilibrium in a general model with a stock
pollutant. The solution to the linear-quadratic specialization illustrates the role of hyper-
bolic discounting in a model of global warming.
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1 Introduction

There are two important consequences of using a constant discount rate to model the control
of long-lived environmental stocks such as greenhouse gasses. First, the optimal program is
likely to be sensitive to the discount rate – a parameter about which there is some disagreement
Second, discounting at a non-negligible rate makes the present value of future damages small.
The effects of greenhouse gasses might not be felt for a century (if ever). At an annual discount
rate of 1%we would invest 37 cents today to avoid a dollar’s worth of damages in a century, and
at a discount rate of 4% that amount falls to 1.8 cents. These values differ by a factor of more
than 20. The corresponding values if damages occur after ten years rather than after a century
are 90 cents and 67 cents, numbers that differ by a factor of less than 1.4. The cost-benefit ratio
for investments related to global warming may be largely determined by the discount rate.
It seems reasonable to apply a non-negligible discount to the future, but using a constant and

non-negligible discount rate makes us callous toward the far-distant future. An obvious remedy
is to use a declining discount rate. This remedy introduces the problem of time-inconsistency.
A time-consistent equilibrium can be studied, but even with strong assumptions such as Markov
beliefs and differentiable policies, this equilibrium is typically not unique in an infinite horizon
problem. Despite this limitation, discounting is sufficiently important in problems of long-
lived pollutants that it is worth considering carefully an alternative to constant discounting.
This paper is step toward providing that analysis.
Section 2 reviews the literature, and explains why hyperbolic discounting is a useful way to

model long-lived environmental problems. Section 3 uses Harris and Laibson (2001)’s heuris-
tic method to derive the Euler equation in a stock-pollutant model. This section provides suf-
ficient conditions under which the expected stock either oscillates or changes monotonically.
The section then discusses the non-uniqueness and the Pareto ranking of the set of differen-
tiable Markov Perfect equilibria (MPE). Section 4 specializes the model to linear-quadratic
functions and presents the equations that determine the (linear) equilibrium decision rule. A
calibration that represents plausible magnitudes of costs and benefits associated with global
warming shows that hyperbolic discounting provides a useful method of studying long-lived
environmental problems.
To the extent that a social planner has a declining discount rates, the analysis here is pos-

itive. The paper may also contribute to the large normative literature on the optimal control
of greenhouse gasses, which assumes a constant discount rate. If a decreasing discount rate
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provides a better description of society’s preferences, and if the time-consistency problem is
important, then the model studied here is useful for normative analysis.

2 Literature Review

Arrow et al. (1996) suggest that the appropriate discount rate for environmental damages in
the distant future depends on whether the modeling exercise is “descriptive” or “prescriptive”.
They conclude that in the former case, it is appropriate to use a market rate of interest, typically
in excess of 7%; in the latter case, a social discount rate no greater than 3% should be used.
The collection of papers edited by Portney and Weyant (1999) –in particular, Dasgupta, Maler,
and Barrett (1999) and Cline (1999) – provides a variety of perspectives on this issue. Heal
(1998) and Heal (2001) examines the effect of different kinds of discounting in environmen-
tal contexts. Frederick, Loewenstein, and O’Donoghue (2002) review the genesis of models
based on discounted utility, and they survey the empirical literature that measures individuals’
discount rates.
Cropper and Laibson (1999) suggest using hyperbolic discounting to evaluate payoffs under

global warming. They use Phelps and Pollack (1968)’s model in which an individual chooses
a time-profile of consumption, subject to a growth rate for capital. We use a similar idea but
modify the model so that it describes a situation in which the accumulation of a pollution stock
causes future economic damages.
In a continuous time setting, where U(ct) is the social utility of consumption and φ(t) is the

discount factor for consumption, the payoff at time t is
R∞
0

φ (τ)U (ct+τ ) dτ . The present value
today of one dollar additional consumption τ units of time in the future is is φ(τ)U 0 (ct+τ ). The
social discount rate, r(t), equals the negative of the rate of change of the present value of future
marginal utility of consumption:

r(t) =
−d ln (φ(t)U 0(ct))

dt
= ξ(t) + υ(ct)

ċ(t)

c(t)
, (1)

where ξ(t) is the pure rate of time preference and υ(c) is the elasticity of marginal utility of
consumption. In standard usage, hyperbolic discounting refers to a falling pure rate of time
preference. This paper interprets hyperbolic discounting as a declining social discount rate.
Rabin (1998) describes the psychological basis for a declining pure rate of time preference.

Ainslie (1991), Cropper, Ayded, and Portney (1994), and Kirby and Herrenstein (1995) provide
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empirical evidence that individuals actually discount the future in this manner. Read (2001) and
Rubinstein (2003) offer other interpretations of this evidence. Rubinstein presents experimental
evidence that is not consistent with either constant or hyperbolic discounting, but is consistent
with a decision-making procedure based on “similarity relations”. This procedure assumes
that individuals ignore small differences and focus on large differences when comparing two
alternatives.
Hyperbolic discounting and “similarity relations” models have important differences, but

they have in common the idea that a decision-maker’s ability to distinguish between the levels
of characteristics of alternatives is important in making a choice. Hyperbolic discounting
assumes that the ability to make distinctions diminishes for more distant events. For example,
an individual might prefer one dollar today to two dollars tomorrow; in a short time frame, a
single day is an appreciable delay. The same individual might prefer to receive two dollars in
ten years and one day rather than one dollar in ten years; over a long time frame, the elapse of
a single day is nearly irrelevant.
This idea is compelling when considering long-lived environmental problems. We may feel

appreciably closer to our children than to our grandchildren, and therefore be willing to discount
the welfare of the second generation. It seems plausible that there is a smaller difference in
our emotional attachment to the tenth relative to the eleventh future generation. In that case,
our future rate of time preference is lower. Two successive generation in the distant future
appear more similar to the current generation, compared to two successive generations in the
near future.
Equation (1) shows that even if the pure rate of time preference is constant the social dis-

count rate could change, if for example, the growth rate of consumption changes or the elastic-
ity of marginal utility changes with consumption. In a stationary model with a constant rate of
time preference, Gollier (2002) provides sufficient conditions for a declining yield curve; this
implies a falling social discount rate.
Weitzman (2001) suggests an additional rationale for using a decreasing social discount

rate. Suppose that there actually exists a constant discount rate, r, that is “correct” for the
specific modeling objective; the value of r is unknown, so it makes sense to treat it as a random
variable. Define π(t) ≡ Ere

−rt as the (subjective) expectation of the social discount factor,
and ϑ(t) = −d lnπ(t)

dt
as the corresponding social discount rate. Weitzman shows that ϑ(t) is

decreasing when r has a gamma distribution. A previous draft of this paper shows that ϑ(t) is
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decreasing when r has an arbitrary discrete distribution. The intuition for this result is that as
t increases, smaller values of r in the support of the distribution are relatively more important
in determining the expectation of e−rt. An alternative, but formally equivalent interpretation of
Weitzman’s model is that there are agents with different but constant discount rates. A social
planner chooses the time path of a public good in order to maximize a convex combination of
the present discounted value of the utility of these different agents.
Hyperbolic discounting implies that optimal policies are time-inconsistent (Strotz 1956).1

This time-inconsistency arises because the marginal rate of substitution between consumption
at two points in the future depends on the ratio of the discount factors. With hyperbolic dis-
counting, this ratio changes as the gap between the current period and the two future points
diminishes with the elapse of time.
Chichilnsky (1996) proposes a variation of hyperbolic discounting as a means of modeling

sustainable development. Li and Lofgren (2000) build on this proposal to study the sustainable
use of natural resource stocks. This modeling approach allows the current regulator to commit
to future actions, thereby avoiding (by assumption) the time-consistency problem.
Cropper and Laibson (1999) show (in a particular setting) that a one-period ahead interest

rate subsidy, together with the ability to choose current consumption, provides a substitute for
commitment.2 This result might suggest that the time-consistency issue should be ignored,
since it can be resolved given a sufficiently rich policy menu. A different interpretation is that
the impracticality of writing and enforcing sufficiently detailed contingent contracts, and the
limitations of the policy menu in the real world eliminate the kinds of remedies that arise in
simple models. If we accept that time-consistency problems put us in a second-best world, it
is worth trying to understand the resulting equilibrium.
Here we assume that, for one of the reasons suggested above, the regulator has a declining

discount rate. She is unable to commit to future actions, and does not have a commitment
1If the declining discount rate depends on calendar time or the calendar values of other state variables, optimal

policy is not time-inconsistent; see page 71-72 of Blanchard and Fischer (1990). In Newell and Pizer (2003) the
discount rate follows an ARMA process. The current discount rate is known and the regulator learns about future
values over time. Here also the changing discount rate does not lead to a time-consistency problem.

2This result holds in a model with quasi-hyperbolic discounting where there are only two discount rates. In a
sense, there is a single “distortion”, so it is perhaps not surprising that a single interest rate subsidy can achieve the
first best outcome. More complicated policies (perhaps the use of a stream of future subsdies) would be needed
in a model with a more complicated discount function. The policies or institutional change needed to eliminate
the time-consistency problem are sensitive to the details of the model.
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device that solves the time-consistency problem. The regulator makes the current decision
with the understanding of how this will influence the environment and thereby influence future
decisions. Equivalently, there are a succession of regulators; each regulator’s tenure is limited,
perhaps due to a political cycle. The current regulator can influence her successors’ decisions
by means of influencing the environment that they inherit, but cannot directly choose her suc-
cessors’ decisions. Regulators are identified by the time at which they act. Each regulator cares
about current and future payoffs, but treats bygones as bygones. The equilibrium is Markov
perfect.3

3 Hyperbolic discounting with a stock pollutant

The first subsection describes the model and derives the necessary condition for a differentiable
MPE. The second subsection analyzes the necessary condition for a MPE. The third discusses
the non-uniqueness and Pareto ranking of the equilibria.

3.1 Model description and derivation of equilibrium condition

Let St and zt be the stock and the flow of emissions in period t, and η the fraction of the stock
that persists until the next period.4 Using the convention that the flow in the current period
contributes only to next period’s stock, the equation of motion for the stock is

St+1 = ηSt + zt. (2)

The payoff in the current period is h (St, zt). This function is concave in both arguments; it is
decreasing in its first argument and increasing in the second argument. A higher stock causes

3The time-inconsistency issue arises not only because of the nature of the problem – agents’ objectives and
constraints – but also because of the assumption that decisions are Markovian, i.e., they depend on the payoff-
relevant state variable (in this case, the stock of pollution). Allowing agents to use history dependent controls
– i.e., to have history dependent beliefis – typically leads to a multiplicity of equilibria, some of which may be
approximately first-best, as in Ausebel and Deneckere (1989) and Chari and Kehoe (1990).

4A previous version of this paper considers the slighly more general case in which equation (2) is replaced by
the stochastic equation St+1 = ηSt + zt + θt where θt is an iid random variable. This generalization accounts
for the possibility that the regulator can control emissions only imperfectly, or other sources of random changes in
the stock.
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environmental damages; a higher level of emissions is associated with increased GNP or lower
abatement costs.
In period t the regulator’s present discounted value of the payoff is

h (St, zt) + β
∞X
τ=1

δτ (h (St+τ , zt+τ)) . (3)

At time t the discount factor used to compare payoffs in periods s and s + 1, for s ≥ t + 1, is
the constant 0 < δ < 1; the discount factor used to compare payoffs in periods t and t + 1 is
βδ, with 0 ≤ β ≤ 1. The value β = 1 produces the standard model of constant discounting,
and if 0 < β < 1 there is quasi-hyperbolic discounting. In this case, the regulator at time t
discounts the payoff in the subsequent period (t+ 1) at a higher rate than she uses to compare
payoffs in two contiguous future periods. For example, the regulator at period t compares the
payoffs in periods t+ 1 and t + 2 using the discount factor δ. However, in the next period, at
time t+ 1, the regulator compares the payoffs at time t+ 1 and t+ 2 using the discount factor
βδ ≤ δ. Matters appear different at time t+ 1 than they did at time t.
The regulator is able to choose the level of emissions in the current period, but cannot

commit to decision rules that will be followed in the future. It is as if the regulator plays a
dynamic game with her future selves; thus we speak of “Regulator t” as being the regulator
who chooses zt.
We want to find a differentiable equilibrium Markov control rule, χ (St), such that (from

the standpoint of the regulator at time t) the optimal level of zt is zt = χ (St), given that the
regulator knows that her “future selves” will choose emissions according to the rule zt+τ =
χ (St+τ). We find a symmetric Nash equilibrium in the sequential game, using Harris and
Laibson (2001)’s heuristic derivation. (Their method can be extended to a general model of
non-constant discounting, as in Karp (2004).)
Regulator t’s payoff is given by expression (3) and the constraint is given by equation (2).

The single period payoff in equilibrium is

H(St) ≡ h (St, χ (St)) . (4)

The dynamic programming equation used to generate the MPE in this game is

W (St) = max
z
{h (St, z) + δ [W (St+1)−H (St+1) (1− β)]} . (5)

(Details are in the Appendix.) In solving this problem, Regulator t takes the function H (·) as
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given. A symmetric equilibrium requires that the solution to this problem, the control rule χ,
is the same as the function that appears in equation (4).
For β = 1, the control problem is identical to the standard problem with constant discount-

ing. For the other extreme case, β = 0, the regulator at time t puts no value on future payoffs.
In that case she maximizes the single period payoff in each period, leading to the control rule
χ = argmax h(S, z).
In the more interesting case where 0 < β < 1, hyperbolic discounting changes the nature

of the control problem. The necessary condition for the problem in equation (5) is

hz (St, z) + δ [W 0 (St+1)−HS (St+1) (1− β)] = 0. (6)

The stock of pollution creates damages, so the shadow cost of pollution (the negative shadow
value of pollution) is positive, −W 0 > 0. In the problem with constant discounting (β = 1)
the first order condition requires equality between the marginal benefit of current emissions
(hz) and the discounted shadow cost of pollution. With hyperbolic discounting, the shadow
cost of pollution is reduced by the constant factor (1 − β) times the single period marginal
equilibrium cost, HS. For β < 1, the “effective shadow cost” of pollution falls from −W 0 to
−W 0 + (1− β)HS. Since a value β < 1 reduces the effective shadow cost of the stock, we
expect it to lead to a larger level of emissions at a given stock.
Using standard manipulations (given in the Appendix) we can write the “Generalized Euler

Equation” corresponding to the DPE (5) as

hz (t) = −δ {βhS(t+ 1)− hz (t+ 1) (η + (1− β)χ0 (St+1))} , (7)

using the notation that hy (τ) is the partial derivative of hwith respect to y evaluated at h (Sτ , zτ).

3.2 Analysis of the equilibrium condition

This subsection presents the intuition for the Euler equation, discusses the monotonicity of the
trajectory, and considers the nature of the strategic interaction amongst different generations of
the regulator.

3.2.1 Intuition

For 0 < β < 1 the outcome is an equilibrium to a game, rather than the solution to an opti-
mization problem. In this case, the intuition from the standard Euler equation (associated with

7



β = 1) is not directly applicable. However, it helps to recall the standard case, to see how
matters are different here.
If β = 1, the Euler equation has the following familiar interpretation. Consider a perturba-

tion of a reference path; this perturbation marginally increases emissions in period t and makes
an offsetting reduction in the following period, so that the stock inherited in period t+ 2 is the
same as in the reference path. If the reference path is optimal, the gain from this perturbation
must equal the cost. The left side of equation (7) gives the gain of a slight increase in emissions
in the current period. A unit increase in emissions in period t leads to a unit increase in stock
in the next period. The first term on the right side is the discounted cost due to this higher stock.
An additional unit of stock in period t+1 results in η additional units in period t+2. In order
for the perturbation to return the stock to the reference level, it is necessary to reduce emissions
in period t+ 1 by η, incurring a cost of hz (t+ 1) η.
If β < 1 the regulator at t cannot choose emissions in period t+ 1. Nevertheless, the costs

and benefits of the perturbation are as described above. In addition, there in an “automatic”
equilibrium change of period t+1 emissions, due to Regulator t+1’s response to the changed
stock. This change equals χ0 and costs hz (t+ 1)χ0 (St+1) in that period. The last term in
equation (7) accounts for this cost.

3.2.2 Monotonicity

At time t, the equilibrium stock in the next period is St+1 = ηSt+χ (St). The next period stock
is a monotonically increasing function of the current stock if and only if η+χ0(S) > 0. In this
case, the trajectory of the stock is a monotonic function of time. If the inequality is reversed, the
next period stock is a monotonically decreasing function of the current stock. In this case, the
stock trajectory oscillates over time. The following proposition provides sufficient conditions
for these two cases.

Proposition 1 A sufficient condition for the next period stock to be non-decreasing function of
the current stock is

hSz − ηhzz ≥ 0 (8)

evaluated at z = χ (S). A sufficient condition for the next period stock to be everywhere
non-increasing in the current stock is

hSz − ηhzz ≤ 0 (9)
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evaluated at z = χ (S).

This proposition holds for 0 < β ≤ 1 – that is, it also holds for the case of exponential
discounting. However, the equilibrium decision rule changes with β. Thus, we cannot rule
out the possibility that one of the two inequalities (8) or (9) holds for one value of β but not for
some other value. Of course, if either of these inequalities holds for all (S, z) (not only for the
equilibrium z), the next period stock is monotonic in the current stock.
In view of the concavity of h (·) in z, a sufficient condition for the next period stock to

be monotonically increasing in the current stock is hSz ≥ 0. Thus, additive separability in
abatement costs and environmental damages (hSz = 0) is sufficient for monotonicity; we use
this fact in Section 3.3. A large value of η (as with global warming) or a large absolute value
of hzz also make it “more likely” that equation (8) holds. In this case, the pollution stock is a
monotonic function of time.
When equation (9) holds, the stock oscillates – a high value of S is followed by a low value,

and vice-versa. If the absolute value of hzz is small, the regulator is not particularly concerned
with smoothing emissions. (For example, emissions may be positively correlated with GNP,
and the regulator is not concerned with smoothing GNP.) If η is small, emissions in period t
have little effect on the stock in periods t+j, j ≥ 2. If in addition, hSz < 0, so that the marginal
utility of emissions is small when stocks are high, the regulator wants to alternate periods of
high and of low emissions, causing the stock to oscillate. Although this outcome is possible,
the more natural case seems to be where equation (8) holds.

3.2.3 Strategic substitutes and complements

Since the stock is a bad and the flow is a good in this setting, it might seem that any “reason-
able” equilibrium decision rule would satisfy χ0 < 0. This inequality implies that actions are
“strategic substitutes”; that is, when the stock increases, the regulator responds by decreasing
emissions. If this inequality holds, the presence of the last term in equation (7) reduces the
right side of the equation. Since hzz < 0, this reduction requires an increase in period t emis-
sions in order to maintain the equality. In this case, reducing β leads to an increase in emissions
for any stock level. However, the inequality χ0 < 0 might not hold.
There are two types of effects of reducing β. First, there is the obvious fact that discounting

the future more heavily encourages higher emissions in the current period. However, a reduc-
tion in β not only means that Regulator t values the current payoff more highly relative to future
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payoffs. It also means that her valuation of moving benefits from period t + 1 to period t+ 2
is higher than Regulator t + 1’s valuation of the same transfer. The discount factor between
these two periods is δ for Regulator t, and it is δβ for Regulator t + 1. As a consequence of
a reduction in β, Regulator t not only wants to emit more in the current period rather than the
future, but she also would like to see a reallocation of emissions from period t + 1 to subse-
quent periods. An increase in period t emissions, leading to an increase in St+1, reduces period
t+ 1 emissions provided that actions are strategic substitutes (χ0 < 0). Regulator t’s desire to
influence the decision of Regulator t+ 1 encourages the former to emit more when actions are
strategic substitutes.

3.3 Non-uniqueness and welfare

This subsection explains why the equilibrium is not unique5; it shows how to Pareto rank the
equilibria, and it considers the equilibrium under full commitment.

3.3.1 Non-uniqueness

Asymptotic stability of the steady state requires

− (1 + η) < χ0(S∞) < 1− η (10)

where S∞ is a steady state. Inequality (10) is consistent with either a monotonic or oscillatory
state trajectory. It is also consistent with actions being strategic substitutes or complements in
the neighborhood of the steady state.
In this model, the necessary equilibrium conditions are consistent with a continuum of

steady states when 0 < β < 1. Using equation (2), the steady state stock and flow satisfy
S∞ (1− η) = z∞. This restriction and the Euler Equation (7) evaluated at the steady state
comprise two algebraic equations involving the three variables z∞, S∞ and χ0 (S∞). Since the
function χ is unknown (and therefore χ0(S∞) is unknown), the equilibrium steady state con-
ditions are under-determined, even with the assumption of local stability. In other words, the
requirement that a trajectory satisfy the Euler equation, and the assumption that it approach a

5Krusell and Smith (2003) show that the equilibrium in a model of quasi-hyperbolic discounting is not unique
when the equilibrium decision rule is a step function – and therefore not everywhere differentiable. We rule out
this source of non-uniqueness by requiring the decision rule to be everywhere differentiable – an assumption used
in our derivation of the Euler Equation.
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Figure 1: The steady state conditions under hyperbolic and constant discounting

steady state, do not determine a (locally) unique steady state. This circumstance is analogous
to the situation noted by Tsutsui and Mino (1990) in differential games.6,7.
The non-uniqueness can be illustrated graphically when hSz = 0 (i.e., the function h is

additively separable in the stock and the flow). We noted that in this case the stock trajectory
is monotonic, so equation (10) is strengthened to

−η < χ0(S∞) < 1− η. (11)

For this case, define A (z) = hz, the marginal benefit of emissions, and D (S) = −hS, the
marginal damage of the pollution stock. By concavity A0 < 0 andD0 > 0. The Euler equation

6Tsutsui and Mino (1990) refer to this circumstance as an “incomplete transversality condition”. The transver-
sality condition is limt→∞ δtW 0(St) = 0. This condition implies the steady state condition S∞ = ηS∞ + z∞.
With constant discounting, the Euler equation evaluated at the steady state and the steady state condition comprise
two algebraic equations in two unknowns. Their solution yields (locally, but perhaps not globally) unique values
of S∞ and z∞. Under hyperbolic discounting the transversality condition also implies the steady state condition,
again yielding two algebraic equations. However, with hyperbolic discounting there is a third unknown variable,
χ0 (S∞). The transversality condition is “incomplete” because it does not enable us to identify even a locally
unique steady state.

7Karp (1996) notes that the same circumstance can arise when a monopolist sells a slowly depreciating durable
good, or more generally where a decision-maker who is confronted with a time-inconsistency problem uses a
stationary Markov decision rule. Our model of a decision-maker with hyperbolic discounting is an example of
this kind of problem.
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(7) evaluated at the steady state can be written as ωA = δβD, where ω ≡ 1−δ (η + (1− β)χ0).
Equation (11) implies

1− δ (1− β + βη) ≡ ω1 < ω < ω2 ≡ 1− δβη.

For fixed β, with 0 < β < 1, Figure 1 graphs δβD, ω1A and ω2A (evaluated at z = (1− η)S),
and it shows the intersection points S1 and S2. The set of candidate steady states under quasi-
hyperbolic discounting is the open interval between S1 and S2.. (We use this notation below.)
The values of S1 and S2 depend on β and the other parameters of the model. For β = 0 the
steady state is given by A(S (1− η)) = 0; for β = 1, ω1 = ω2 = ω∗ ≡ 1 − δη. Thus,
the interval (S1, S2) collapses to a point in the extreme cases where β = 0 or β = 1. The
equilibrium steady state is unique in these limiting cases. Figure 1 also shows the dashed curves
ω∗A and δD whose intersection S∗ is the steady state under constant discounting (β = 1).
When h is additively separable, the set of candidate steady states corresponding to β < 1 lies
strictly above the unique steady steady under constant discounting.
Thus far we have used only the necessary conditions for equilibrium. There is no guarantee

that the candidates steady states (i.e. those in the interval S1 < S < S2 that is identified in
Figure 1) are globally asymptotically stable or that they are actual equilibria. That is, we do
not know whether the function χ(S) that drives the state to a particular steady state exists for
all S, or that it induces functions W (S) and H(S) such that the maximand in equation (5) is
concave for all values of S (i.e., for all initial conditions).
However, all values of S satisfying S1 < S < S2 can be supported as MPE steady states

given initial conditions in the neighborhood of that candidate. To confirm this assertion, pick
an arbitrary candidate steady state S∞. When it is important to emphasize the dependence of
the policy function on the steady state (toward which that policy function drives the state), we
write the policy function as χ̃ (S;S∞) (instead of χ(S)). This function satisfies χ̃(S∞;S∞) =
(1− η)S∞ and inequality (10).
Concavity of the maximand of (5), evaluated at the steady state, requires that ∂2χ̃(S∞;S∞)

∂S2

satisfy an inequality.8 Stability imposes bounds on the first derivative of the policy function
8The derivation of that inequality is straightforward, but the inequality is not informative so we do not present

it. To obtain the inequality, substitute the equilibrium control χ̃(S;S∞) into the dynamic programming equation
(5) and differentiate the resulting equation twice with respect to S (using the envelope theorem). Evaluate the
result at the steady state, and solve to obtain an expression forW 00(S). Use this expression to eliminateW 00 from
the inequality that is necessary and sufficient for concavity of the maximand of equation (5). The result is an
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(as shown by inequality (10)). Concavity of the maximand imposes bounds on the second
derivative of the policy function, without further restricting the candidate steady states. The
assumption of concavity implies an additional inequality, but that inequality involves an addi-
tional choice variable, the second derivative of the policy function.
The multiplicity of (at least “local”) MPE raises the issue of equilibrium selection. One

alternative is to take the limiting equilibrium of the finite horizon game, as the horizon goes to
infinity (Driskill 2002). A second alternative is to admit only equilibria that are defined over
the entire state space and that induce a concave problem for all of state space – i.e., to introduce
“global” criteria. This alternative could be implemented numerically.

3.3.2 Welfare

A third alternative is to Pareto rank the MPE. We will also use a Pareto criterion to compare
a MPE and a non-Markov equilibrium, e.g. one that involves some degree of commitment.
To this end, we first compare emissions (as distinct from welfare) under a MPE and in the
equilibrium where the initial regulator is able to choose the entire trajectory of emissions (the
full commitment equilibrium). We noted in Section 2 that given a sufficiently rich policy
menu or a different institutional structure, it might be possible to support the full commitment
equilibrium.
If the initial regulator had a commitment device, the Euler equation for the first period is

hz (t) = −βδ {hS(t+ 1)− ηhz (t+ 1)} . (12)

The difference between the functions on the right sides of equations (7) and (12) is

RHS(7)−RHS(12) ≡ F (S, χ(S)) = δ (1− β)hz (t+ 1) [η + χ0 (St+1)] . (13)

A necessary and sufficient condition for the first period level of emissions to be greater under
full commitment is F (·) > 0. In view of the inequality hz > 0, a sufficient condition for
F (·) > 0 is η+χ0 (St+1) > 0. The discussion of Proposition 1 notes that a sufficient condition
for this inequality is hSz(S, z) ≥ 0.
In the full commitment equilibrium, the steady state is equal to the steady state in a control

problem with constant discount factor δ (since the effect of the higher discounting in the first
period eventually wears off). We noted in Section 3.3.1 that at least in the case where h(S, z)

inequality involving the first and second derivatives of χ̃ and the primitive functions.
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is additively separable, the steady state under constant discounting ( S∗) is strictly below the
infimum of the set of MPE steady state (S1).
These observations imply

Proposition 2 For additively separable h(S, z), the regulator who can make full commitments
begins with a higher flow of emissions and eventually drives the stock to a lower level (with
correspondingly lower steady state emissions), relative to all MPE.

The ability to make commitments means that future stocks will be relatively low, implying that
the shadow cost of the stock in the first period is relatively low, encouraging the regulator to
have high emissions in the first period.
We now turn to welfare comparisons. A policy rule C(S) “locally” Pareto dominates a

different rule B(S) if for initial conditions S̃ in the neighborhood of the steady state corre-
sponding to B(S) the payoff (on the equilibrium trajectory emanating from S̃) of the current
and all successive regulators is at least as high under C(S) as under B(S), and the payoff is
strictly higher for at least one regulator. To evaluate these payoffs we use the expression in
(3): each regulator discounts utility τ periods in the future by βδτ . The qualifier “locally” in
our definition emphasizes that we consider only initial conditions near the steady state corre-
sponding to the rule B(S). If we are near the steady state of B(S), the current and all future
regulators would be willing to switch from the rule B(S) to a rule C(S) that locally Pareto
dominates B(S).
Consider an arbitrary “reference” MPE rule χ̃ (S;S∞), i.e. a rule that drives the state to a

particular steady state S∞. The previous subsection establishes that at least in the neighbor-
hood S∞ there is an equilibrium rule that supports S∞. There is also a rule that supports a
neighboring steady state; we denote this neighboring rule as χ̃ (S;S∞ − ) for small .
Since both the reference rule and the neighboring rule are equilibria, each of these is a

best response if the current regulator believes that future regulators will use that particular rule.
We do not have an explanation for which of the infinitely many equilibria is actually selected.
However, we can Pareto rank these equilibria “locally”, i.e. in the neighborhood of the steady
state. Under the reference rule, for initial condition S = S∞, the current regulator’s equilibrium
action is to set z = (1− η)S∞, maintaining the state at the current level. It is feasible for the
current regulator to deviate from that action, but it is not optimal if the current regulator believes
that her successors will use the rule χ̃ (S;S∞).
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One feasible deviation is for the current regulator to reduce emissions slightly, setting z =
(1− η)S∞ − with > 0, so that the state in the next period is S∞ − . Since χ̃ (S;S∞ − )

is an equilibrium rule, S∞− can be maintained as a steady state in equilibrium. We therefore
consider the deviation in which the current regulator drives next period stock to S∞ − and
future regulators maintain the stock at that level. The question is: Does this deviation benefit
the current regulator and all her successors? If the answer is “yes”, then the rule χ̃ (S;S∞ − )

locally Pareto dominates the rule χ̃ (S;S∞).
Denote the value of the deviation for the current regulator as J(S, ) and denote the value

for all successive regulators as K(S, ). For > 0 it is clear that J(S∞, ) < K(S∞, ) since
the current regulator makes a larger decrease in emissions ((1− η)S∞− < (1− η) (S∞ − ))
than do future regulators, but does not enjoy the reduced stock in the current period. Conse-
quently, for > 0, the deviation benefits the current and all future regulators if and only if it
benefits the current regulator. A necessary and sufficient condition for the current regulator to
benefit from a small deviation is ∂J(S∞,0)

∂
> 0. The function J(S∞, ) is

J(S∞, ) ≡ h (S∞, (1− η)S∞ − ) + β
∞X
τ=1

δτ (h (S∞ − , (1− η) (S∞ − ))) .

A straightforward computation implies

∂J(S∞, 0)
∂

= −hz − βδ

1− δ
(hS + (1− η)hz) =

δhz
1− δ

((1− β) (1− η)− (1− β)χ0) , (14)

where the second equality uses equation (7) evaluated at the steady state. Equation (14), the
fact that hz > 0, the stability condition (10), and the definition of S1 as the infimum of the set
of stable MPE steady states imply

∂J(S∞, 0)
∂

> 0⇐⇒ S∞ > S1. (15)

This equivalence relation implies

Proposition 3 (i) More conservative MPE policy rules – those that lead to a lower steady state
pollution stock – locally Pareto dominate less conservative rules. That is, the equilibrium
policy function χ̃ (S;S∞ − ) locally Pareto dominates the neighboring policy rule χ̃ (S;S∞)
for > 0. (ii) A (non-Markov) policy rule that leads to a steady state strictly lower than S1
does not Pareto dominate a MPE that drives the state close to the lower bound S1.
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The inability to make commitments results in a higher steady state stock, at least when
h(S, z) is additively separable (Proposition 2). Therefore it is not surprising that more conser-
vative MPE rules (locally) Pareto dominate less conservative rules. Part (ii) of Proposition (3)
states that if we changed the game, e.g. by allowing the regulator some commitment ability or
by introducing additional policies that substitute for commitment ability, the resulting policy
rule would not (locally) Pareto dominate a sufficiently conservative MPE rule (one that drives
the state close to S1).
For example, compare a conservative MPE rule that maintains the state slightly above S1,

χ̃ (S;S1 + 1) and an alternative non-Markov ruleC(S;S1− 2) that maintains the state slightly
below S1 (with i > 0 and small). For fixed 2 and sufficiently small 1, the rule C(S;S1 −
2) does not locally Pareto dominate χ̃ (S;S1 + 1) since the current regulator would want to
switch from C(S;S1 − 2) to χ̃ (S;S1 + 1) in view of the relation (15). In addition, the rule
χ̃ (S;S1 + 1) does not locally Pareto dominate the rule C(S;S1 − 2): if the current state is at
S1 − 2, a switch to χ̃ (S;S1 + 1) drives the state to a higher steady state level, lowering the
payoff of future regulators.

4 An application to global warming

The linear equilibrium of a linear-quadratic control problem illustrates the effect of hyperbolic
discounting in modeling the regulation of a stock pollutant. The linear equilibrium is defined
for all values of the state and it is also the limit of the finite horizon model. For our numerical
example, the linear equilibrium drives the state close to the lower bound of the set of feasible
steady states, S1; in view of Proposition 3, the linear equilibrium therefore Pareto dominates
“most” MPE. The first subsection presents the system of algebraic equations that determine
the linear equilibrium control rule. The second subsection discusses numerical results.

4.1 The linear-quadratic model

Abatement costs are b
2
(x̄− z)2, where b and x̄ are positive parameters; the former is the slope

of marginal abatement costs and the latter is the cost-minimizing level of emissions; x̄ is the
Business as Usual (BAU) level of emissions. The benefits of emissions equal the reduction in
abatement costs. Environmental damages are g

2

¡
S̄ − S

¢2 where g and S̄ are positive parame-
ters; the former is the slope of marginal damages and the latter is the damage-minimizing level
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of stocks.
Using these two functions, the single period payoff (benefits minus damages) is

h (S, z) = f + az − b

2
z2 − cS − g

2
S2.

This equation uses the definitions f ≡ − b
2
x̄2 − g

2
S̄2, a ≡ bx̄, and c ≡ −gS̄. The dynamic

programming equation is

W (S) = max
z

f + az − bz2

2
− cS − g

2
S2 + δ [W (St+1)−H (St+1) (1− β)] . (16)

A linear-quadratic equilibrium involves a quadratic value function,W (S) = λ+µS+ ρ
2
S2,

and a linear control rule, χ(S) = A+BS, where λ,µ,ρ,A, andB are constants to be determined.
The appendix shows that the constant B is a root of the cubic

Ψ (1− β)− δbηB2 +
¡
δg + b− bη2δ

¢
B + δgη = 0 (17)

with
Ψ ≡ − ¡δbB3 +Bδg + δbB2η + δgη

¢
.

The intercept of the control rule is

A =
− (δaB − δc) (1− β)− δaη − δc+ a

− (δbB2 + δg + δbB) (1− β)− δbηB − ηbδ + b+ δg
. (18)

When β = 1 the unique negative root of equation (17) is the correct root, since the positive
root violates the transversality condition limt→∞ δtW 0(St) = 0. For β < 1 there are two
negative roots (or two complex roots with negative real parts). We can show analytically that
only the larger of these negative roots (the one that is near the unique negative root when β = 1)
satisfies the stability condition (10); in addition, the linear policy function associated with this
root induces a globally concave problem.
For purpose of comparison, we present the bounds on the MPE steady states for general

(non-linear) rules, previously illustrated in Figure 1. For the linear-quadratic functional forms,
these bounds are

S1 ≡ bx̄ς < S∞ < bx̄ψ ≡ S2,

ς ≡ 1−(1−β+ηβ)δ
δgβ+b(1−η)(1−δ+δβ−δηβ) , ψ ≡ 1−δη+δ(1+η)(1−β)

δgβ+b(1−η)(1−δηβ+δ−δβ) .
(19)

The steady state in the linear equilibrium lies in this interval.
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Parameter Note Value
g slope of the marginal damage, 0.0223

billion $/(billion tons of carbon)2

S0 initial stock, billion tons of carbon 781
S̄ zero damage stock 590
a intercept of the marginal benefit, 224.26

$/(ton of carbon)
b slope of the marginal benefit, 1.9212

billion $/(billion tons of carbon)2

x̄ unregulated emissions 116.7
η an annual decay rate of 0.0083 0.9204

Table 1: Base-line parameters

4.2 Numerical results

The numerical results are based on a calibration taken from Karp and Zhang (2002), where its
relation to previous literature is explained in detail. That calibration fits the linear-quadratic
model to data and estimates used in previous simulation models. It relies heavily on infor-
mation from IPCC (Intergovernmental Panel on Climate Change 1996) and Nordhaus (1994).
Using a period of 10 years, the parameter values are given in Table 1.
In order to be able to use the formulae in the preceding section, define a new state, st ≡

St − α
1−η = St − 590, where α is the pre-industrial flow of emissions. The equation of motion

for this state is st+1 = ηst + zt and damages are g
2
(st − s̄)2, with s̄ ≡ S̄ − 590 = 0. The

equilibrium z is given by A+Bs.
The parameter values in Table 1 and equations (19), (17) and (18) enable us to compute

the boundaries of the set of candidate steady states and the linear emissions rule for different
combinations of δ and β. To describe the results, define d as the continuous annual discount rate
for future periods, so δ ≡ exp (−10d) (because a period lasts for ten years); r is the additional
yearly discount rate for the first period, so β = exp (−10r). The annual discount rate during the
current period is r + d, and the annual rate at which the current regulator discounts subsequent
payoffs is d.
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Figure 2: Ratio of Regulated to Unregulated steady states. The lens is the set of (stable,
monotonic) MPE and the dotted curve is the linear MPE

4.2.1 Non-uniqueness

Figure 2 is constructed using the parameter values in Table 1 and δ = e−.3 (a yearly discount
rate of 3%). The lens-shaped area contains the interval of Markov Perfect steady states that
satisfy the stability and monotonicty contraint, equation (11). These steady states are shown
as a fraction of the unregulated steady state, and graphed as a function of β. For example, for
β = e−.2 = 0.82 (a yearly discount rate of 2%), the ratio between the MPE steady state and the
unregulated steady state ranges from 0.84 to 0.88. For β = 0 there is no regulation, and for
β = 1 there is constant discounting. For both of those cases, there is a unique equilibrium.
The dotted curve shows the ratio between the steady state in the linear equilibrium and the

unregulated steady state as a function of β. The linear equilibrium achieves nearly the lowest
steady state stock that is feasible in a MPE. In view of Proposition 3, this fact means that the
linear equilibrium is “close to” the Pareto dominant MPE. For example, for β = 0.82, the ratio
of steady states in the linear and unregulated equilibria is 0.846, only 0.6% higher than in the
lowest MPE steady state (and 4% smaller than the largest MPE steady state). In addition, the
linear equilibrium is defined over the entire real line; as noted in Section 3.3.1, the domain of
other (non-linear) equilibria is unknown.
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r\d .01 .03 .05 .07
0 (25.1, 18.4) (9.8, 8.8) (5.2, 5.2) (3.3, 3.5)

.02 (20.8, 15.6) (8.1, 7.3) (4.3, 4.3) (2.7, 2.9)

.04 (17.4, 13.2) (6.7, 6.1) (3.5, 3.6) (2.2, 2.4)

Table 2: First element of each entry: the first period percentage abatement; second element:
percentage reduction in stock after ten periods

4.2.2 The short and medium run

Table 2 shows the short and medium term effects of different combinations of d (the columns)
and r (the rows) in the linear equilibrium. The first element of each entry is the percentage
reduction in emissions during the first period, relative to the BAU emissions. The second
element is the percentage reduction of the stock after ten periods (100 years), relative to the
BAU level.
The first row of the table shows these two values for four levels of dwhen the regulator has a

constant discount rate (r = 0). Higher discounting leads to a drop in abatement since the costs
of abatement are borne in the current period and the benefits arise from lower environmental
damages in the future. Beginning with d = .01, an increase in the discount rate causes a
substantial fall in abatement. For example, with r = 0, an increase in the constant discount rate
from d = .01 to d = .03 reduces first period abatement from about 25% of the BAU level to
approximately 10% – a large change. A further increase in the discount rate to d = .05 causes
abatement to fall by an additional 50%.
It is instructive to compare the sensitivity of the results to different parameter changes. For

example, if we fix d = .03, r = 0 but triple the estimate of damages (multiply g by 3), the first
period abatement increases to 25. 5% and the stock reduction (relative to the BAU level) after
100 years increases to 20. 7%. In other words, beginning with our baseline parameters and
d = .03, r = 0, a reduction in the annual discount rate to .01 has approximately the same effect
on policies as does a tripling of the estimate of damages.
These results illustrate the two problems associated with constant discounting in determin-

ing policies to control long-lived environmental problems: The optimal policies tend to be very
sensitive to the discount rate, and for reasonable discount rates the regulator may be unwilling
to bear moderate costs today in order to prevent substantial damages in the distant future.
The last two rows show the effect of hyperbolic discounting. As expected, this discounting
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reduces abatement. Perhaps the most interesting result is that the magnitude of this change
is moderate. When d = .01 and r = .02, the annual discount rate during the first ten year
period is .03; subsequent payoffs are discounted at the rate of .01 per year. Holding d = .01

and increasing r from 0 to .02 causes first period abatement to fall from approximately 25% to
21% – a moderate change.
Compare the following two changes. In the first, we change the parameters from d =

.01, r = 0 to d = .03, r = 0 and in the second we change the parameters from d = .01, r = 0

to d = .01, r = .02. These two changes have the same effect on the discount rate during the
first ten year period – it changes from 1% to 3% – but they obviously have different effects on
the discounting applied to subsequent periods. The first change causes a large reduction in the
level of abatement, and the second causes a moderate reduction.
These numerical experiments suggest that the optimal control of greenhouse gasses may

be relatively insensitive to the discount rate for the near future, holding fixed the discounting
between periods in the distant future. In addition, the regulator may be willing to incur sub-
stantial abatement costs even if the short-term discount factor is non-negligible, provided that
the long-term discount factor is small.

5 Conclusion

There is a strong argument for discounting the future, but the use of a constant discount rate has
unfortunate implications for models of long-lived environmental problems. The optimal policy
is likely to be sensitive to the choice of the discount rate, and moderate discounting makes us
unwilling to incur even moderate costs today to avoid large damages in the distant future.
Hyperbolic discounting is a plausible description of how people think about trading-off

costs and benefits in the distant future. It also may ameliorate some of the modeling defects
of constant discounting. Numerical examples show that if the inter-period discount rate used
for distant events is held constant, equilibrium policies are relatively insensitive to the discount
rate applied to events in the near future. In addition, in equilibrium a planner with a relatively
large near-term discount rate may be willing to incur substantial costs to protect the future.
The time-inconsistency problem is an integral aspect of hyperbolic discounting. Dynamic

environmental models can incorporate this feature, rather than assuming it away by allowing
the current regulator to commit. Although the resulting equilibria are non-unique, they have
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a simple Pareto ranking, at least in the neighborhood of the steady state. The linear-quadratic
model is particularly useful in this context, because the linear equilibrium exists for all state
space and it can be analyzed so easily; in addition, examples show that it is close to the Pareto
dominant MPE.
Optimal control methods have been used to study a wide range of stock-related environ-

mental issues. Many of these same issues can also be studied in the (arguably) more realistic
situation where the regulator uses hyperbolic discounting and cannot commit to future actions.
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A Appendix: Derivations and Proof

Derivation of equation (5)

Suppose that “Regulator t” believes that all subsequent regulators will use the control rule
z = χ (S). In this case, the present value of Regulator t’s equilibrium continuation payoff from
time t+ 1 onwards is a function V (St+1) that satisfies the recursive relation

V (St+1) = [h (St+1, χ (St+1)) + δV (ηSt+1 + χ (St+1))] . (20)

Since Regulator t treats the function χ as given, she takes the function V as given.
Regulator t solves the following dynamic optimization problem

W (St) = max
z
[h (St, z) + βδV ((ηSt + z))] . (21)

Recall that Regulator t discounts next period’s payoff using the factor βδ. A necessary condi-
tion for the function χ to be a stationary Markov Perfect Nash equilibrium in this game is that it
solves the dynamic programming problem in (21); χ must maximize the right side of equation
(21). We obtain the equilibrium value function by substituting the equilibrium control rule into
equation (21), giving

W (St) = [h (St, χ (St)) + βδV ((ηSt + χ (St)))] . (22)

Regulator t understands that Regulator t+1 solves an analogous control problem, possibly
with a different value of the initial state, S. Thus, the value function W (St+1) also satisfies
equation (22) with t replaced by t+ 1. Using equations (20) and (22), and defining H(St) ≡
h (St, χ (St)) we have

βδV (St+1) = δ [W (St+1)−H (St+1) (1− β)] . (23)

Substituting equation (23) into (21) we obtain the dynamic programming equation (5).

Derivation of equation (7) .

We first use the envelope theorem and equation (5), and rearrange to obtain

W 0 (St)− {hS (St, zt)− δ (1− β) ηHS (St+1)} = δηW 0 (St+1) . (24)
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Rearranging equation (6) and multiplying both sides of the resulting equation by η gives

− {hz (St, zt)− δHS (St+1) (1− β)} η = δηW 0 (St+1) (25)

These two equations imply

W 0 (St) = {hS (St, zt)− hz (St, zt) η} .

Advancing this equation by one period and substituting the result into equation (6) implies

hz (St, z) =

− {δ [hS (St+1, zt+1)− hz (St+1, zt+1) η −HS (St+1) (1− β)]} . (26)

Use the definition of H (·) to write

HS (S) = hS (S, χ (S)) + hz (S, χ (S))χ
0(S).

Substituting this expression into equation (26) and simplifying yields equation (7).

Proof of Proposition 1
We begin with some definitions to ease the notation and then prove the proposition. Define

the value of the next period stock, given current stock S and current emissions z, as y ≡ ηS+z.
By equation (2), St+1 = yt. With this definition, the continuation payoff in the maximand of
the DPE (5) can be written as

{δ [W (St+1)−H (St+1) (1− β)]} = {δ [W (yt)−H (yt) (1− β)]} ≡ U(yt).

The single period payoff, written in terms of y, is

k(S, y) ≡ h(S, z)

from which we obtain

kS + ηky = hS, kSy + ηkyy = hSz kyy = hzz,

which implies kSy = (hSz − ηhzz). Thus we have the following relation

kSy ≥ 0⇔ (hSz − ηhzz) ≥ 0. (27)

Define the equilibrium value of y(S) as ψ(S) ≡ ηS + χ (S). The stock is non-decreasing
if ψ0 (S) ≥ 0; the stock is non-increasing if ψ0 (S) ≤ 0.
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Proof. (Proposition 1) Consider two arbitrary stock levels, S∗ > S∗∗, and let y∗ = ψ(S∗),
y∗∗ = ψ(S∗∗) be the corresponding optimal levels of y. By optimality,

k(S∗, y∗) + U (y∗) ≥ k(S∗, y∗∗) + U (y∗∗)

k(S∗∗, y∗∗) + U (y∗∗) ≥ k(S∗∗, y∗) + U (y∗) .

Adding these two equations implies

0 ≤ k(S∗, y∗)− k(S∗, y∗∗) + k(S∗∗, y∗∗)− k(S∗∗, y∗)

=
R S∗
S∗∗
R y∗
y∗∗

∂2k(S,y)
∂S∂y

dydS
(28)

If equation (8) holds, then kSy ≥ 0 by equation (27), so y∗ ≥ y∗∗ by equation (28). If equation
(9) holds, the same argument implies that y∗ ≤ y∗∗.

Derivation of equations (17) and (18) .
Substitute A + BS0 into the expression for h (S0, z0) and use the equation of motion, S0 =

ηS + z, to write the resulting expression as a function of the current stock and emissions. The
single period payoff in the next period, as a function of the current stock and control is

H (S, z) ≡ f + a (A+B (ηS + z))−
1
2
b (A+B (ηS + z))2 − c (ηS + z)− 1

2
g (ηS + z)2 .

Using the quadratic value function, the value ofW in the next period is

λ+ µ (ηS + z) +
ρ

2
(ηS + z)2 .

Using the definition = 1− β, the dynamic programming equation (5) specializes to

λ+ µS + ρ
2
S2 = maxz f + az − b

2
z2 − cS − g

2
S2+

δ
¡
λ+ µ (ηS + z) + ρ

2
(ηS + z)2 − H (S, z)

¢
.

(29)

The first order condition implies the control rule z = A+BS, with

(a) A =
− (−δc+ δaB − δbBA) + a+ δµ

− (δbB2 + δg) + b− δρ
(b) B = −δη (bB2 + g) + ρ

(δbB2 + δg) − b+ δρ
.

(30)
Solving equation (30b) for ρ gives

ρ =
− (δbB3 +Bδg + δbB2η + δgη) +Bb

δ (B + η)
. (31)
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Substituting the control rule into equation (29) produces the maximized DPE. Equating
coefficients in orders of S implies

µ = −1
2

Ω + 2bc− 2aδρη − 2ηbδµ− 2δcρ
− (δbB2 + δg) + b− δρ

(32)

Ω ≡ − ¡−2ηbaB + 2cg + 2ηb2BA+ 2abB2η + 2ηbc+ 2B2bc+ 2agη
¢
δ

ρ = −(B
2δη2b2 + δbgη2 + δg2 +B2δbg) + δgρ+ δbρη2 − bg

(δbB2 + δg) − b+ δρ
. (33)

Substituting the expression for ρ in equation (31) into the right side of equation (33) and sim-
plifying implies that ρ = bηB − g. Setting this value of ρ equal to the right side of equation
(31) implies equation (17). To obtain equation (18) we use ρ = bηB − g in equation (32) to
obtain an expression for µ. Using this expression in equation (30a) implies equation (18).
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