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Abstract

Introduction: Built and natural environments may provide opportunities for physical activity. 

However, studies are limited by primarily using residential addresses to define exposure and 

self-report to measure physical activity. We quantified associations between global positioning 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Corresponding author. oriol.marquet@uab.cat (O. Marquet). 

CRediT authorship contribution statement
Oriol Marquet: Conceptualization, Data curation, Writing – original draft. Jana A. Hirsch: Conceptualization, Methodology, Formal 
analysis, Writing – original draft. Jacqueline Kerr: Writing – review & editing, Funding acquisition. Marta M. Jankowska: . 
Jonathan Mitchell: . Jaime E. Hart: . Francine Laden: . J. Aaron Hipp: Conceptualization, Writing – original draft, Project 
administration. Peter James: Conceptualization, Methodology, Formal analysis, Writing – original draft.

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Appendix A. Supplementary material
Supplementary data to this article can be found online at https://doi.org/10.1016/j.envint.2022.107317.

HHS Public Access
Author manuscript
Environ Int. Author manuscript; available in PMC 2023 May 16.

Published in final edited form as:
Environ Int. 2022 July ; 165: 107317. doi:10.1016/j.envint.2022.107317.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/


systems (GPS)-based activity space measures of environmental exposure and accelerometer-based 

physical activity.

Methods: Using a nationwide sample of working female adults (N = 354), we obtained seven 

days of GPS and accelerometry data. We created Daily Path Area activity spaces using GPS data 

and linked these activity spaces to spatial datasets on walkability (EPA Smart Location Database at 

the Census block group level) and greenness (satellite vegetation at 250 m resolution). We utilized 

generalized additive models to examine nonlinear associations between activity space exposures 

and accelerometer-derived physical activity outcomes adjusted for demographic characteristics, 

socioeconomic factors, and self-rated health.

Results: Higher activity space walkability was associated with higher levels of moderate-

vigorous physical activity, and higher activity space greenness was associated with greater 

numbers of steps per week. No strong relationships were observed for sedentary behavior or 

light physical activity. Highest levels of moderate-vigorous physical activity were observed for 

participants with both high walkability and high greenness in their activity spaces.

Conclusion: This study contributes evidence that higher levels of physical activity occur in 

environments with more dense, diverse, and well-connected built environments, and with higher 

amounts of vegetation. These data suggest that urban planners, landscape architects, and policy 

makers should implement and evaluate environmental interventions to encourage higher levels of 

physical activity.

1. Introduction

Physical inactivity is a major behavioral risk factor for cancer, cardiovascular disease, 

diabetes, hypertension, and other chronic diseases (Sallis et al., 2016), yet only 53% of 

US men and 47% of US women reach physical activity guidelines (Ward et al., 2008). 

Research, informed by the ecosocial model (Krieger, 2005), has highlighted the potential 

role of environmental contextual factors to provide opportunities for physical activity (Zhang 

et al., 2016; McNeill et al., 2006; James et al., 2015; Sallis et al., 2012).

Two features that have emerged as potential facilitators of physical activity are the built and 

natural environment. The built environment, provides opportunities or barriers to routinely 

walk and be physically active (Handy et al., 2002; Cdc, 2011). Characteristics of the built 

environment such as population density, land use mix, connectivity and design have been 

repeatedly found associated with higher accessibility levels (Leslie et al., 2007; Frank et 

al., 2010), being able to walk to a higher number of daily destinations and thus with 

higher population levels of physical activity (Feng et al., 2010). Walkability measures are 

commonly used to encompass these built environment features and have been linked to 

transport-related physical activity (Hirsch et al., 2014; Hirsch et al., 2014), particularly 

utilitarian walking (Cerin et al., 2007). People living in environments with more destinations 

within walking distance walk more often (Villanueva et al., 2014; Norman et al., 2013; 

Marquet and Miralles-Guasch, 2015; Marquet and Miralles-Guasch, 2016) and for longer 

distances (Millward et al., 2013; Owen et al., 2007). Within the natural environment, 

exposure to high levels of vegetation and green space has also been associated with 

increased physical activity (James et al., 2015; Almanza et al., 2012; Lachowycz et al., 
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2012; Vich et al., 2021). Studies have found that exercise facilities such as fitness areas or 

children play areas within green spaces, together with enjoyable scenery and seeing other 

active people, may encourage physical activity (Potwarka et al., 2008; Kerr et al., 2012; 

Mitra et al., 2015; Wendel-Vos et al., 2007; McMorris et al., 2015; Dewulf et al., 2016; 

Cohen et al., 2012; DelCampo et al., 2017; Marquet et al., 2019a,2019b). Green spaces may 

also encourage leisure- and transportation-related physical activity, as green spaces provide 

both a walking/cycling destination and venue for play and exercise (Bedimo-Rung et al., 

2005) although findings are inconsistent (Schipperijn et al., 2013; Ord et al., 2013).

In the past two decades, studies have incorporated device-based methods to assess physical 

activity (e.g. pedometers, accelerometers, other biosensors) (Hajna et al., 2015). These 

tools offer high-resolution, accurate measurements of movement (Troiano et al., 2014). 

Use of accelerometry data is starting to provide new evidence on the association between 

walkability and physical activity worldwide (Sallis et al., 2016; Vanhelst et al., 2013), in 

dense urban spaces (Rundle et al., 2016), among particular demographic groups (King et al., 

2011; Hirsch et al., 2016; Rodríguez et al., 2012), and across several domains (Yang et al., 

2014; Marquet and Hipp, 2019;March(7):20–26.; Marquet et al., 2020). Use of device-based 

measures is also advancing in green space studies (James et al., 2015; Halonen et al., 2020), 

where accelerometers have extended evidence linking greenness with increased physical 

activity among children (Almanza et al., 2012; Lachowycz et al., 2012; Ward et al., 2016) 

and adults (Dewulf et al., 2016). However, research has struggled with small sample sizes 

and mixed findings.

Studies trying to assess environmental exposures have relied on administrative boundaries 

(Leal and Chaix, 2011; Foster and Hipp, 2011), which may introduce significant 

measurement error by assuming participants stay within these boundaries (Spielman and 

Yoo, 2009) and introducing well-documented spatial bias such as the NEAP (Kwan, 2018) 

or UGCoP (Kwan, 2018). In the past, many studies have centered measurements around 

a participant’s residential address (Sarmiento et al., 2010; van Loon et al., 2014; Hwang 

et al., 2016), failing to acknowledge spaces participants encounter throughout their daily 

lives (Hirsch et al., 2016,2014; Vich et al., 2017), and making important assumptions 

about size and shape of areas around an address to consider (James et al., 2014). Overall, 

these traditional geographic measures of neighborhood have failed to accurately capture 

environmental exposures which has led some to suggest that the literature needs to move 

beyond notions of contextual influence that rely on using such specific fixed locations 

(Kwan, 2018; Sheller and Urry, 2006). GPS technology can overcome some of these 

limitations by offering a dynamic measure of the environmental context (Jankowska et al., 

2014). GPS-based measures can generate “activity spaces” that represent the area within 

which people move or travel in the course of their daily activities. GPS-based activity spaces 

include all movements during the day for all purposes and with any mode of transport 

(Hirsch et al., 2014); (Marwa et al., 2021), and they can later be paired with GIS data to 

measure environmental exposures (Ward et al., 2016; Chaix et al., 2013; Kerr et al., 2012). 

Recently, researchers have used the triad of GPS location, GIS exposure, and sensor-based 

physical activity outcomes to create a transdisciplinary field coined as “Spatial Energetics 

(Marquet et al., 2020; James et al., 2016). Linking behavioral and spatial data facilitates 

the examination of location and physical activity at precise spatiotemporal scales (James 
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et al., 2016). While this nascent work shows promise, additional research is needed using 

larger samples and examining greenspace. There also exists a gap for examining nonlinear 

relationships, which could potentially account for changes in physical activity that might 

occur once certain thresholds or minimum values of environmental features are present 

(Moudon et al., 2006; Sugiyama et al., 2012). Similarly, limited environmental variability 

may impact measured associations between the environment and physical activity.

This study fills a gap in the literature by examining device-based measured physical activity 

with GPS-based activity space measures of greenness and walkability. With participants 

located throughout four different study sites across the US, we also maximized exposure 

variability and context. We hypothesized that higher levels of greenness and walkability 

within a participant’s activity space would be associated with higher intensities of physical 

activity.

2. Methods

2.1. Population

A sample of female participants was recruited from four sites from the National Cancer 

Institute (NCI)-funded Transdisciplinary Research in Energetics and Cancer (TREC) 

initiative (Patterson et al., 2013). As described elsewhere (James et al., 2017), the sample 

was made up of working adults (University of California, San Diego (UCSD) and 

Washington University in St. Louis (WUSTL)), members of the prospective Nurses’ Health 

Study II cohort (Harvard University (Harvard)), and breast cancer survivors (University of 

Pennsylvania (UPenn)). Eligibility criteria for this study were: female, 21–75 years old, self-

reported BMI 21.0–39.9, ability to ambulate unassisted, not pregnant or breast-feeding, and 

willing to wear monitoring devices for seven days. Site-specific eligibility criteria included: 

currently employed full or part-time (WUSTL) and previously diagnosed with breast cancer 

(UPenn). Furthermore, 17% of the UCSD sample was comprised of confirmed breast cancer 

survivors. The Harvard sample was selected from participants in the Nurses Health Study 

II with a BMI less than 40, and was sampled to evenly represent varying population 

densities and all Census regions of the US (African Americans were oversampled). For 

the Harvard sample, 120 recruitment letters were sent out and 91 participants provided data 

for this analysis. Institutional review boards at each university approved the protocol, and all 

participants provided informed consent.

Participants were enrolled over 12 months in 2012–2013, completed baseline surveys, and 

were instructed to wear an Actigraph GT3X+ accelerometer and a Qstarz BT1000X GPS 

device on the hip during all waking hours (except when showering, bathing, or swimming) 

for seven consecutive days. Participants removed devices at night to charge the GPS device.

All data in these analyses were centrally pooled and uniformly processed at UCSD.

2.2. Accelerometer data

Accelerometer data were screened manually for wear time compliance. We collected raw 

accelerometer data at 30 Hertz and aggregated as counts in one-minute epochs. Wear time 

was assessed using the Choi algorithm in Actilife 6.11, which assesses 90 consecutive 
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minutes of zero counts as non-wear allowing for up to two minutes of nonzero counts to 

remove artifactual movement (Choi et al., 2011). Data were manually screened by trained 

personnel to identify valid days. Data were excluded if there were fewer than five days of 

data with 600 min per day of wear time or fewer than four days with 3000 min of total 

accelerometer wear time (Troiano et al., 2008). Counts per minute (CPM) from the vertical 

axis of the accelerometer were used to derive steps and physical activity intensities. We 

employed the Troiano physical activity cutpoints for sedentary (≤99 CPM), light (100–2019 

CPM), and moderate or vigorous physical activity (≥2020 CPM) (Troiano et al., 2008). We 

also used the report of total steps recorded by the accelerometer.

2.3. Global positioning systems data

Qstarz GPS devices logged location coordinates, distance, speed, elevation, and time. Qstarz 

validation studies have reported accuracy of 3 m, and all GPS devices were evaluated for this 

level of accuracy before deployment. We configured devices to record location and time data 

at 15 s intervals.

2.4. Activity spaces

We analyzed GPS location data, aggregated by participant, using Python 2.7.2 and ArcPy 

for ArcGIS 10.4. We examined Daily Path Areas (DPA) adapted from previous literature 

(Hirsch et al., 2014; Zenk et al., 2011; Starnes, 2012) by creating 200 m merged buffers 

for all of a participant’s GPS data (see Fig. 1). DPA are considered as the best approach 

to analyze the cumulative exposure experienced through daily mobility at the street level 

(Hirsch et al., 2014; Vich et al., 2017). To assess optimal activity space calculation (Hirsch 

et al., 2016; Patterson and Farber, 2015), sensitivity analyses were performed using two 

additional activity space approaches (standard deviation ellipse (SDE) and minimum convex 

polygon (MCP)) (see Supplemental Fig. 1). SDE measure the directional distribution of 

a series of points and are usually used to observe the normal range of spatial motion for 

an individual (Zenk et al., 2011; Starnes, 2012; Sherman et al., 2005; Rainham et al., 

2010; Newsome et al., 1998). MCP, sometimes referred to as “home ranges”, represents the 

smallest polygon that contains all GPS points, with the outermost points serving as vertices. 

Detailed methods for creating activity space measures have been published previously (Zenk 

et al., 2011; Sherman et al., 2005; Fan and Khattak, 2008). Because mean walkability and 

greenness values for participants across different activity space types were highly correlated 

(Spearman’s ρ > 0.76 for walkability ρ > 0.91 for greenness), results are presented only for 

DPAs.

2.5. Spatial datasets and exposures

2.5.1. Greenness—Normalized difference vegetation index (NDVI) values estimate 

vegetation, or greenness, in an area. Reflected sunlight from satellite-measured red and 

near-infrared bands of the light spectrum are converted to generate NDVI values with a 

range of −1.0 to 1.0 (larger values indicating higher vegetation density) (Kriegler et al., 

1968). We used Moderate-resolution Imaging Spectroradiometer (MODIS) data deployed on 

NASA’s Terra satellite. Imagery from July 2012 approximated the greenness levels at the 

time of data collection (Carroll et al., 2004). Average NDVI values from 250 m resolution 
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satellite data were calculated for each activity space. Fig. 1 shows a participant’s activity 

space linked to greenness.

2.5.2. Walkability—Average area-weighted walkability values were calculated for 

activity spaces by averaging the sum of walkability values that fall within the activity space 

areas. Each activity space was linked to a walkability index from the US Environmental 

Protection Agency (EPA) Smart Location Database (SLD). SLD provides nationwide 

geographic data on 90 attributes summarizing built environment characteristics at the Census 

Block Group level (Ramsey and Bell, 2014). The walkability index was compiled using: 

Gross population density (people/acre) on unprotected land; Street intersection density 

(weighted, with auto-oriented intersections eliminated); and Land Use Diversity (based on 

mix of retail, office, service, industrial, entertainment, education, healthcare, and public 

administration employment). We created Z-scores (mean of 0, standard deviation of 1) for 

each measure across all Block Groups in the US and summed these Z-scores to estimate 

a walkability index for each Census Block Group. Higher walkability index indicates a 

more walkable neighborhood. All spatial exposures were calculated and appended to activity 

spaces using ArcGIS v10.6.1 (Red-lands, CA).

2.5.3. Demographic characteristics—Survey data included information on age 

(years), race (White; Black; Other), marital status (Married; Never Married, Divorced, 

Separated, or Widowed), educational attainment (Less than College; College; Graduate 

Degree), household annual income from all sources (<$50 K per year; $50 K–$69 K per 

year; $70 K per year; Missing or Refused to Answer), employment status (Full Time; Part 

Time; Homemaker, Unemployed, Unable to Work; Retired), and self-rated health status 

(Poor, Fair, Good; Very Good, Excellent).

2.6. Statistical analysis

We used generalized additive models to estimate relationships between activity space 

walkability or greenness and weekly-averaged physical activity, adjusted for demographic 

characteristics. We built models including both greenness and walkability to assess potential 

confounding between environmental features. We also ran single-exposure models, but 

results were similar to mutually adjusted models (Supplemental Fig. 2) so we present 

mutually-adjusted models. We used natural splines to test for deviations from linearity and 

estimate thresholds. We compared Akaike’s Information Criteria (AIC) values for linear 

versus nonlinear models. In addition, we explored interactions between greenness and 

walkability, to understand whether the relationship between greenness and physical activity 

differed according to levels of walkability, and vice versa. Data were analyzed in R (version 

3.4.0).

3. Results

3.1. Population characteristics

Of the 354 participants, the majority were White (79%), married (71%), worked full time 

(51%), and made over $70 K/year (46%) (Table 1). The average age of participants was 55.3 

years. A minority of participants walked or biked to work (9%), and just over half rated their 
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health as very good or excellent (54%). The majority of data was collected in the spring 

(36.4%) and winter (29.7%), while 24.7% of data were collected in the fall and 9.2% of data 

were collected in the summer months.

3.2. Main effects models

3.2.1. Sedentary behavior—Fig. 2a and b show fully-adjusted spline models for 

sedentary behavior, mutually adjusted for both greenness and walkability within 200 m DPA 

activity spaces. There was no relationship between activity space greenness and sedentary 

behavior (p = 0.39). There was a statistically significant (p = 0.047) relationship between 

activity space walkability and sedentary behavior. Specifically, for walkability below 0 there 

was no relationship between walkability and sedentary behavior; however, from 0 to 1, 

higher levels of walkability were related to lower levels of sedentary behavior, and above 1, 

higher levels of walkability were associated with greater sedentary behavior.

3.2.2. Light physical activity—The relationship between activity space greenness and 

light physical activity was positive and linear but did not reach statistical significance (p 

= 0.07, Fig. 2c and d). Alternatively, walkability was not associated with light physical 

activity.

3.2.3. Moderate-vigorous physical activity—Models for both activity space 

measures demonstrated positive linear associations with accelerometer measured moderate-

vigorous physical activity (MVPA) (Fig. 2e and f) although only walkability reached 

statistical significance. Greenness was positively associated with moderate-vigorous 

physical activity (a 0.1 increase in activity space NDVI was associated with a 0.8 (95% 

CI −0.6, 2.2) minute per day increase in moderate-vigorous physical activity), although this 

failed to reach statistical significance (p = 0.13). A one-unit increase in walkability was 

associated with statistically significant 11.7 min/day (95% CI 1.8, 21.7) higher moderate-

vigorous physical activity.

3.2.4. Steps—Activity space greenness was positively associated with average number of 

steps per day in spline models (p = 0.0051) (Fig. 2g). Association between greenness and 

steps was strongest for NDVI measures below 0.5 and attenuated somewhat at levels above 

0.5. There was no relationship between activity space walkability and steps (p = 0.32) (Fig. 

2h).

3.2.5. Interactions between greenness and walkability—Analyses examining 

interactions between activity space greenness and walkability (Fig. 3a–d) revealed no 

evidence of interactions for sedentary behavior (Fig. 3a) or light physical activity (Fig. 

3b). There was evidence of a linear interaction (Fig. 3c) (p = 0.03) between greenness 

and walkability for moderate-vigorous physical activity, where levels of moderate-vigorous 

physical activity were highest among those who had activity spaces with both high 

walkability and high greenness. There was also evidence of nonlinear interactions between 

greenness and walkability for steps (Fig. 3d) (p = 0.03), where the highest step counts 

were observed for participants with activity spaces with the highest greenness and 
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walkability; however, these relationships were not consistent across all levels of greenness 

and walkability.

4. Discussion

Using data from a sample of women at four sites across the United States who provided 

a week of GPS and accelerometer data, we observed that participants whose activity 

spaces had higher levels of walkability also had higher levels of moderate-vigorous physical 

activity. Furthermore, higher activity-space greenness was associated with a greater number 

of steps per week. No strong relationships were observed for activity space exposures and 

sedentary behavior nor light physical activity. We found evidence of interactions between 

activity space greenness and walkability for moderate-vigorous physical activity, where the 

highest levels of moderate-vigorous physical activity were observed for participants who had 

activity spaces containing both high walkability and high greenness. Interactions between 

activity space greenness and walkability on the associations with steps were inconsistent.

Previous research has reported discordance between exposures measured at the residential 

and activity space-level (Chaix, 2018; Hurvitz and Moudon, 2012). These inconsistencies 

have prompted calls for increased examinations of relationships between non-residential 

environments and physical activity (Hirsch et al., 2014; Holliday et al., 2017). Shifting from 

a restrictive focus on residential environments to activity space measures allowed us to 

account for environmental exposures in the diverse places visited by participants (Chaix et 

al., 2017). Thus, we were able to include daily physical activity that takes place away from 

residential neighborhoods (Marquet et al., 2020; Hurvitz et al., 2014; Holliday et al., 2017; 

Kestens et al., 2018).

Our findings suggest that individuals may obtain higher levels of physical activity in 

walkable environments. While existent literature had already extensively explored this 

relationship at the neighborhood and residential scale (Hajna et al., 2015; Hwang et al., 

2016; Sundquist et al., 2011; Lee et al., 2016; Hoehner et al., 2011; Kondo et al., 2009; 

Duncan et al., 2016), only a handful of articles has explored it at the activity space level 

(Chaix, 2018). Our results are consistent with Rundle’s et al. (Rundle et al., 2016) which 

also used activity spaces and accelerometer-based measures of physical activity in New 

York City. This work showed a positive relationship between walkability and moderate 

physical activity. Using similar methods, Hirsch et al. (2016) found consistent, although 

statistically non-significant, associations between density of destinations within participants 

activity spaces and physical activity in a group of community-dwelling older adults from 

Vancouver. Others have found that a change in walkability within an activity space can 

lead to increased physical activity (Andersen et al., 2017). Using self-reported measures 

of physical activity, Howell et al. (2017) found a positive and significant relationship 

between walkability and participants’ transportation physical activity. These associations 

were stronger when walkability was measured at the activity space level, compared with 

only around the residential environment. Furthermore, the negative association between 

walkability and sedentary time in areas that reach a minimum threshold of walkability is 

consistent with theories advocating for minimum densities and compact development in 
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order to generate physical activity or active transport (James et al., 2017; Christiansen et al., 

2016; Cerin et al., 2017).

Our findings also suggest that higher greenness levels may be associated with daily steps 

or light physical activity. Among other studies using greenness at the activity space level, 

our results are consistent with Jansen et al. (2017), who studied natural environments and 

physical activity, and with Kang et al. (2017) who examined the association of recreational 

walking with the amount of land park/trails within activity spaces. They contrast, however, 

with the insignificant associations found by Zenk et al. (2011). Our positive association 

between greenness and average steps also contradicts van Heeswijck et al. (2015) who found 

a negative association between activity space-NDVI and walking for transport. Other studies 

exploring the association between either momentary or activity space exposure to greenness 

and physical activity outcomes have generally found a positive correlation (Almanza et al., 

2012; James et al., 2017; Chaix et al., 2016). Inconsistencies may be partially explained 

by exclusion of walkability in combination with greenness. In that context, our results 

add important evidence that the interaction between greenness and walkability might be 

positively associated with moderate to vigorous physical activity and average number of 

steps (Shuvo et al., 2021). This is one of the first studies to jointly consider these effects, 

especially within activity spaces.

Our analyses were limited by the use of a sample of older women who were working 

adults, members of a prospective cohort of nurses, and breast cancer survivors, impacting 

generalizability, especially to men, who may interact differently with their environments. 

Second, GIS data on walkability and greenness may not capture all relevant environmental 

features (e.g., sidewalk availability, vegetation species, park amenities) that might promote 

activity. The use of NDVI as a proxy of the amount of accessible greenspace might be 

affected by the presence of large but inaccessible green areas. Additionally, different data 

sources (e.g. Landsat 8 or Sentinel-2) may provide higher spatial or spectral resolution that 

may lead to different results. Third, several data source features and processing decisions 

may have led to measurement error. Participants’ activity during the one recorded week 

may not be representative of their complete routine behavior (Zenk et al., 2018). Similarly, 

our findings may suffer from selective daily mobility bias, or confounding by intrapersonal 

characteristics which arises when individual preferences simultaneously lead individuals to 

visit certain locations and also drive the behaviors conducted in those locations (Schipperijn 

et al., 2014; Carlson et al., 2015; Meseck et al., 2016). If this were true, the relationship we 

found would be overestimated; however, the degree to which this is true is unknown as we 

do not have detailed information from participants on why they visit specific locations.

Despite these limitations, our analyses contribute an understanding of the environmental 

characteristics of locations where individuals are active. Other substantial strengths include 

device-based, high spatiotemporal resolution GPS-based measures of activity spaces and 

accelerometer-based measures of physical activity in a relatively large sample. These 

measures were joined with high-quality data on greenness and walkability collected 

uniformly nationwide. While we were unable to characterize the urbanicity, history, or 

other contextual factors of the participant locations, the broad geographic sample and 

uniform measurement of exposures increases generalizability across geographic contexts. 
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Standardized approaches across multiple study sites enabled pooling of consistently 

collected data. We also explored nonlinear relationships, allowing us to explore potential 

threshold relationships. This is one of the first studies to examine activity spaces and 

physical activity using nonlinear approaches. Our observed evidence of interactions between 

walkability and greenness might be relevant for future analyses. Overall, this study 

adds evidence to the literature showing that higher levels of physical activity occur in 

environments that have higher walkability and amounts of vegetation. Along with other 

research, our findings might inform implementation and evaluation of interventions that 

increase neighborhood walkability and greenness. Our findings suggest that policies to 

increase density, diversity, and connectedness of the built environment may increase physical 

activity. In addition, this study indicates that interventions to plant vegetation should focus 

on doing so in areas where walkability is high to maximize opportunities for physical 

activity.
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Fig. 1. 
Example of GPS data, daily path area activity spaces, and greenness.

Marquet et al. Page 17

Environ Int. Author manuscript; available in PMC 2023 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Fully-adjusted spline models for 200 m daily path area greenness and walkability and 

different measures of physical activity (PA) (sedentary behavior, light PA, moderate-

vigorous PA, avg steps per day).
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Fig. 3. 
Interactions between greenness and walkability for a. Sedentary minutes; b. Light physical 

activity; c. Moderate-vigorous physical activity; d. Steps.
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Table 1

Characteristics of study population of working adults from four sites (UCSD, WUSTL, Nurses’ Health Study 

II cohort (Harvard), and breast cancer survivors (UPenn)) who provided seven day samples of GPS and 

accelerometer data (N = 354).

N %

Race

White 279 78.8

Black 58 16.4

Other 17 4.8

Marital status

Never married, divorced/separated, widowed 103 29.1

Presently married or partnered cohabitation 251 70.9

Educational attainment

Less than college 111 31.4

College 119 33.6

Graduate degree 124 35.0

Household income

Less than $50 k 79 22.3

$50 k–$69 k 54 15.3

Over $70 k 163 46.1

Don’t know or refused 58 16.4

Employment status

Missing or refused 4 1.1

Full time 180 50.9

Part time 79 22.3

Homemaker, unemployed, unable to work 32 9.0

Retired 59 16.7

Commute mode

All other modes 322 91.0

Walk or bike to work 32 9.0

Health status

Poor, fair, good 163 46.1

Very good, excellent 191 54.0

Study site

Harvard 91 25.7

Penn 116 32.8

UCSD 69 19.5

WUSTL 78 22.0
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