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Advances in milestoning. ll. Calculating time-correlation functions
from milestoning using stochastic path integrals
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In the milestoning framework, and more generally in related transition interface sampling schemes,
one significantly enhances the calculation of relaxation rates for complex equilibrium kinetics from
molecular dynamics simulations between the milestones or interfaces. The goal of the present paper
is to advance milestoning applications into the realm of non-equilibrium statistical mechanics, in
particular, to calculate entire time correlation functions. In order to accomplish this, we introduce a
novel methodology for obtaining the flux through a given milestone configuration as a function of
both time and initial configuration and build upon it with a novel formalism describing autocorrelation
for Langevin motion in a discrete configuration space. The method is then applied to three different
test systems: a harmonic oscillator, which we solve analytically, a two-well potential, which is solved
numerically, and an atomistic molecular dynamics simulation of alanine dipeptide. Published by AIP

Publishing. https://doi.org/10.1063/1.5037482

. INTRODUCTION

The knowledge of time correlation functions derived from
the time series measurements made along molecular trajec-
tories plays the same central role in the realm of kinetics
as does the knowledge of partition functions from sets of
molecular configurations in the realm of thermodynamics:
from time-correlation functions, one can derive any relax-
ation property, just like from the partition function one can
derive any thermodynamic observable. But, in numerical sim-
ulations, it is as difficult—if not even more so—to calculate
time-correlation functions as it is to calculate thermodynamic
averages when the simulated systems are complex. Because
of the wide distribution of energy barriers, the ergodicity of
the simulated trajectories breaks down. To put the magnitude
of the computational task into perspective, consider a rela-
tively simple system where, say, 100 different configurations
exist in a reduced, slow manifold (i.e., after integrating—or
projecting out—the fast degrees of freedom). Back-and-forth
transitions between all pairs of these intermediate configu-
rations model the dynamics in conformational space. Even
in this relatively simple picture, there are over 1.7 x 1013
different 10 step trajectories possible. This is without even
considering the fact that, in a more realistic stochastic dynam-
ics picture, the same series of 10 configurations can occur with
a continuum of different transition times, which would make
the number of possible trajectories proliferate ad infinitum.
While in theory all experimental properties can be extracted
from time correlation functions, in practice it is often the case
that important relaxations are measured on time scales that are
out of reach for brute force molecular dynamics. An example
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would be calculating NMR relaxation properties, like residual
dipolar couplings (RDCs), from bond-vector time-correlation
functions.'?

The challenge of and demand for calculating kinetic prop-
erties of complex systems from simulations have led to major
progress in chemical theory;>>* this progress has advanced
the early treatments using transition state theory (TST)-® or
the Kramers escape rate model to more general approaches
such as transition path sampling (TPS),” transition path the-
ory (TPT),® and milestoning® or transition interface sampling
(TiS),'° to name just a few (more approaches are reviewed in
Ref. 11; see also other papers in this issue). A common strat-
egy in measuring kinetics in molecular dynamics simulations
is the measurement of fluxes of trajectories through hyper-
planes in phase or configuration space.’> !> More recently, the
use of the hyperplanes in the milestoning method has been
generalized to subdividing configuration space into Voronoi
cells, where the milestones exist as the interfaces between
cells.!3 Thus far, milestoning has been used to calculate many
useful properties, such as equilibrium flux values through
the set of milestones, rate constants,'* and other equilib-
rium properties such as mean first passage times between
states,!> but the method has never been used before to cal-
culate non-equilibrium dynamical objects such as time corre-
lation functions. In Paper I, we introduced a methodology for
rapid calculation of transition time density functions between
milestone hyperplanes, the central objects of milestoning cal-
culations, by artificially pushing the system toward the target
milestone and then re-weighting the distribution to recover
the true transition time distribution.!® In this paper, we intro-
duce a method for calculating entire time-correlation functions
from milestoning data. In order to calculate time correlation
from milestoning, not only must we know the equilibrium
flux values through each interface, but we must also know
the flux through each interface as a function of time and ini-
tial configuration. For this reason, it was necessary that we also
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introduce our stochastic path integral approach to calculate the
time-dependent fluxes, in addition to the methodology for cal-
culating time correlation functions from these time-dependent
fluxes.

Il. THEORY
A. Milestoning theory

A more in-depth overview of milestoning theory can be
found in Paper L' or in Ref. 14, but let us review a few
of the key premises upon which our method for calculating
time correlation functions hinge. The quantity of most funda-
mental importance in milestoning is the flux through a given
milestone, for which the equation is’

Py(1) = / Qs(t’)[l - /  K(dr
0 0

!
0s(1) = 26(1)P(0) + /0 Qa1 (1K (1 = 1)1,

dr’,

ey

where Pg(t) is the probability of being at milestone s at time
t (or, more specifically, arriving at time ¢’ and not leaving
before time #7), and Q(¢) is the probability of a transition to
milestone s at time t. K (7) indicates the probability of transi-
tioning out of milestone s given an incubation time of 7; thus

=" K,(1)d is the probability of an exit from milestone s any-
time between 0 and 7 — ¢/, which makes 1 — 0,_,/ K (t)dT the
probability of there not being an exit from milestone s over
that same time period. Since the probability of two indepen-
dent events happening concurrently is the product of the two
events, the equation for Py(¢) is simply integrating the con-
current probabilities of arriving at milestone s and not leaving
over the time frame from time O to 7. Turning our attention
toward the meaning of the first term, Q(#), 20(¢)P5(0) simply
represents the probability that the system is already occupy-
ing milestone s at time ¢ = 0, where the factor of 2 is present
since the d-function is centered at zero, meaning that only half
of its area would be counted without this factor. Q. (¢") is
the probability that the system transitioned into one of the two
milestones adjacent to s at an earlier time ¢”. K7, (t — i) is
the probability of a transition from milestones s + 1 into mile-
stone s. Thus the second term of the second line of Eq. (14) is
another concurrent probability: the probability of the system
entering an adjacent milestone at an earlier time and then tran-
sitioning into milestone s between time ¢ and 0. It is important
to note that all functions Ps(¢) and Qs(¢) are calculated using
the respective values of K (7) between adjacent milestones;
thus the set of K (7) between all milestones of interest con-
tains all the information needed to calculate kinetics using
the milestoning method. It is also important to note that a K
function between two milestones x = A and x = B, K4p(7),
is simply a probability distribution representing the lifetime
for the system remaining in state A before transitioning to
state B.

B. Time correlation from milestoning data

This approach aims to glean the time correlation func-
tion C(¢) of an observable from milestoning data. The key
insight into this method is the approximation of the continuous
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configuration space, which we define as x, as a discrete space of
milestone configurations. Although the formalism presented
below requires that the equilibrium distribution of configu-
rations occupied, f(x), is known, any successful milestoning
simulation yields the equilibrium flux through the set of mile-
stones, and so this set of fluxes will serve as the equilibrium
distribution of configurations in our discrete space. For the
sake of clarity of notation, we will be limiting our derivation
to observables which are a function of configuration x, but it
should be noted that all developments presented herein can
be easily generalized to observables which are a function of
both position and velocity by considering our variable x as
a phase space coordinate. We begin with the usual definition
for a time correlation function for time-ordered measurements
of an observable that is a function of configuration, A(x; 7),
arising from the equilibrium distribution of configurations,

fx),
C(t) = (A(x,0)A(x, 1)) = /A(xo,O)A(x, Hfxdx, (2)

where time t is the lag time between measurements. For
time ¢ = 0, the time correlation function has the lower
limit C(0) = [A(xo, 0)A(xo, 0)f (x)dx = (A?), the variance.
On the opposite extreme, given an infinite relaxation time,
the mean value of A(x) at time ¢t will be equivalent to
the mean at equilibrium, lim,_,{(A(x, 1)) = [A(X)f(x)dx,
which implies that lim,_,., C(¢) = [ A(x)(f AQ)f (x)dx)f (x)dx
= [ A ()dx [ AQ)f (0)dx = (AY.

So far, we have only discussed equilibrium probability
distributions in configuration space, which we defined as f(x),
but let us now consider a time-dependent probability den-
sity function of configuration, which is a function of initial
configuration x(0). Keep in mind that time-dependent prob-
ability density functions such as these are the solutions to
Fokker-Planck equations. Let us define this probability den-
sity function as g(x, t; xo, 0) and express its mean value as
a function of time and initial configuration, (x(z, xp)), in the
following manner:

(x(t,x0)) = /xg(x,t;xo,O)dx. 3)

Following suit, the expectation value of our observable A as a
function of time can be written as

(A(x,t;x0,0)) = /A(x)g(x, t; xo, 0)dx. )

We can now substitute (A(x, ¢; xg, 0)) for A(x, ¢) in the definition
of a time correlation function,

C@t)= /A(x)(/A(x)g(x, t;xO,O)dx)[(x)dx. 5)

As stated earlier in this section, our aim is to coarse grain
the continuous configuration space of x into a discrete space
of milestone configurations, from which we can calculate a
time correlation function. Our first step in constructing this
model will be to approximate the outermost integral in x with
a sum over a discrete set of configurations {x;} multiplied
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by the equilibrium probability of finding the system in the
configuration i. If we define the probability of the system
being in configuration x; at time ¢ given an initial configu-
ration xg as P;(t; xo), then given that our system will reach
equilibrium at infinite time regardless of initial configura-
tion, the equilibrium probability can be expressed as P;(0).

Thus we arrive at our first discrete approximation of time
correlation,

C@~ ZA(xi)Pi(oo)( / A(x)g(x, x(0), 1)dx ). (6)

Our next task is to approximate the remaining integral in the
equation with a sum over milestone states. Equation (4) gives
us an expression for the mean value of A(x) in a continuous
space, given an amount of time elapsed ¢ and an initial con-
figuration xo. Now consider the case where x can only occupy
discrete values from the set {x;}. In this case, the integral in
Eq. (4) is replaced by a sum in a weighted average expression
where each discrete value of x; is multiplied by its statistical
weight as a function of time,

/ A(x)g(x,x(0), t)dx ~ ZA(xs)Ps(tlxo). @)

Next, we substitute this weighted sum approximation into
Eq. (6),

C = Z(A(x»ﬂ-(oo) ZA(Xs)Px(flxo))- @®)

L

Note that we have now arrived at a complete expres-
sion for a discrete approximation of time correlation, with
the assumption that P(¢|xo) and P;(co) can be obtained from
milestoning calculations. Since the set of equilibrium fluxes,
P;(c0), has been calculated from milestoning simulations since
the beginning, and we will introduce a novel method for
calculating Ps(t|xg) from milestoning simulations in Subsec-
tion IV B later in the article, we are able to demonstrate that
time correlation can indeed be calculated from milestoning
simulations.

lll. ANALYTICAL SOLUTION FOR 1D
HARMONIC OSCILLATOR

In this section, we demonstrate the effectiveness of Eq. (8)
in approximating the time correlation function for diffusion
in a harmonic potential, for which there is an analytical
solution. Our potential is defined as V(x) = %kxz, and its
equilibrium distribution in x is the Boltzmann distribution,
f(x) = e BV The closed form expression for the time-
dependent probability distribution for diffusion in a harmonic
well is'’

(x _er—Zt/‘?)z

2hksTS(t)/k |’ ©)

p(x.t|xo,0) = P(-

1
— eXx
\V2rkgTS(t)/k
where S(f) = 1 — ¢ /T and 7 = 2kgT /kD.

Given this analytical expression for p(x, t, |xg, 0), we can

obtain an analytical expression for C(¢) by substituting p(x,
t, |xo, 0) into Eq. (5) for g(x, x;(0), t) and integrating. This
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yields the exact time correlation function C(¢) for diffusion in
a harmonic potential,
2t
2 =
C(t) = Vre . (10)
k

_dr
3/2 kBT(lfe v ) k(coth(Z)+1)
ksT k kgT

Alternatively, we can apply Eq. (8) and obtain a general closed
form expression for approximating C(¢) by summing over
a discrete configuration space of N milestones rather than
integrating over a continuous one,

N
S F—— VP
2nkBT(1—e*¥) i=1
‘/T
N
X ) (%0 + x,Qi(1)Ax), (11)
=1
where
2) 2 1) (ki — ve2)’
04(0) = exp _k(coth( f) 4k2)7§x, xje ) ’
(12)
x’k tanh(%)
Qii(t) = exp| —

2kgT ’

and Ax is the distance between the evenly spaced milestones.
Q;i(t) represents the probability that our system is in configu-
ration x; at time ¢, given that the system was in state x; at time
t = 0. Likewise, Q;;(¢) is the discrete probability density as a
function of time that our system is still in configuration x; at
time ¢ if it started in configuration x; at time ¢ = 0. Thinking in
terms of the assumption of Markov statistics for transitions
between milestones inherent to the milestoning method, it
makes sense that these probabilities are added given that we are
interested in the outcome of finding our system in configuration
x; whether it was already there or it arrived there from another
configuration.

The most straightforward and intuitive way to compare
Egs. (10) and (11) is to plot them. In Fig. 1, we can compare
the exact time correlation function for diffusion in a harmonic
potential (with parameters 8 = 0.35, k = 5, and D = 0.2857)
with the approximate C(¢) generated using Eq. (11). Discretiz-
ing the space to three milestones is clearly too coarse of an

= 3 milestones
= 6 milestones
= 9 milestones
= exact C(t)

2 i 6 B T time (ps)

FIG. 1. Approximate time correlation functions calculated using Eq. (8), for
3, 6, and 9 evenly spaced milestones spanning the range x = —2.5 to 2.5,
overlaid on top of the exact analytical function C().
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approximation, but the gain in accuracy in going from 6 to 9
milestones is quite modest. As one might expect, the discrete
approximation of the time correlation function is most accu-
rate for long times and least accurate for C(0). It turns out
that this sacrifice in accuracy is a meager one because C(0) is
always available from milestoning data because it is equiva-
lent to the sum approximation of the variance in configuration

space at equilibrium, Z P x2P i(00). This will be leveraged to
our advantage in Sec. I'V.

IV. NUMERICAL DEMONSTRATION
A. 1D Fokker-Planck diffusion on a bistable potential

In order to further validate the approach of calculating
time correlation functions using the nested sum in Eq. (8) in a
discrete configuration space to approximate integrating Eq. (2)
in continuous conformation space, the method was applied to
a simple two well potential of equation y = (x — D2(x + 1)?,
where the time evolution of the probability density function
in configuration space was calculated using a Fokker-Planck
formalism,

dp@x,1) _ 62p(x ) FiA%
ot ax2 ﬁa_(() ) (13)

By repeatedly solving Eq. (13) numerically using the Math-
ematica software package,'® using a normalized Gaussian
distribution centered at the various x;(0) values as the initial
condition, the manifolds g(x, x;(0), ) were obtained for each
of the 10 milestone configurations x; in the set {-2, - 1.6, .. .,
1.6, 2}. These manifolds were then used to find C(¢) using
both the intermediate method described by Eq. (6) (shown
as red circles in Fig. 2) as well as our fully developed dis-
crete method described by Eq. (8) (shown as blue circles in
Fig. 2). In the case of Eq. (6), the integral [xg(x, x(0), t)dx was
numerically integrated directly, while in the case of Eq. (8),
the manifold g(x, x(0), #) was used to obtain values of P;(x(0),
t) by multiplying g(x, x(0), #)Ax, similar to the transformation
from Eqgs. (6) to (8), but in reverse. The results are shown to
be superimposed over a plot of the time correlation function
for the system obtained in the traditional manner by running

C)

O Integral
05 O Sum
: 0O Eq. Variance

W WaY
5 10 15— X

Lag time (ps)

FIG. 2. Demonstration of implementation of the proposed method for approx-
imating time correlation functions in continuous space by summing over time
dependent joint probabilities of transitions between discrete states, as obtained
in milestoning simulations. The red rings mark the data points from imple-
menting Eq. (6), the blue data points indicate the positions where the full
nested sum approximation of Eq. (8) was implemented, and the green ring
is the data point for C(0) calculated from equilibrium probabilities which is
used to replace the value of C(0) generated using Eq. (8). The data is shown
superimposed over the time correlation function C(z), represented by a solid
black line, calculated using the traditional method of Eq. (14).

J. Chem. Phys. 149, 084104 (2018)

10 steps of Langevin dynamics and then calculating the time
correlation function over this one long trajectory using the
equation

=
|
BN

cw=- XiXpti- (14)

1

We would like to point out that, as we alluded to in Sec. I,
the data point for C(0) is the only portion of the time correla-
tion function approximated using Eq. (8) with any appreciable
error. In practice, the data point for C(0) can always be replaced
with the value obtained from the sum C(0) = }; xizP,-(oo)
(shown as the green ring in Fig. 2) due to the fact that the
set of equilibrium probabilities, P;(c0), is always known from
milestoning simulations.

B. Random walk/path integral methodology

In order to make use of the formalism for obtaining auto-
correlation in a discrete configuration space, as introduced in
Sec. II, we require an expression for Pg(¢]x;(0)), i.e., the prob-
ability that our system is in configuration s at time #, given that
it was in configuration i at time ¢ = 0. Since previous imple-
mentations of the milestoning method have been “based on
the iterative determination of stationary flux vectors at mile-
stones,”’® and not on the determination of non-equilibrium
time dependent fluxes given some initial configuration, it was
necessary to devise a methodology for obtaining the function
P(t|x,(0)) from milestoning data. In the case of diffusive sys-
tems which can be described using a Fokker-Planck formalism
[Eq. (13)], the Fokker-Planck equation can be solved for a
manifold p(x, r) which represents a probability density of con-
figurations evolving in time, where the distribution at time
t =0 is the distribution dictated by the initial condition and the
distribution as t — oo is equivalent to the equilibrium distribu-
tion in Xx. While this Fokker-Planck description can be directly
solved for the time evolution of a probability density function
of configurations (when tractable, as in Fig. 2), it is also possi-
ble to obtain the manifold p(x, ¢) via a path integral approach
using a large ensemble of trajectories generated using stochas-
tic models such as Langevin dynamics. This equivalence was
the inspiration behind the random walk/path integral method
introduced in this section. There are some differences how-
ever; for example, instead of Langevin trajectories, we use
random walks along the given set of milestones. Very long
random walks, orders of magnitude longer than time scales
accessible to molecular dynamics, can be quickly generated
with minimal computational cost by taking advantage of two
data sets which are already known in any milestoning calcu-
lation: the transition matrix K (essentially a Markov matrix)
and the set of all K4p(7) functions, which are the probability
density functions of transition times between milestone A and
milestone B. The K 45(7) functions are obtained by histogram-
ming transition times between milestones, and each element
K ; of the matrix K is obtained by integrating the distributions
of transition times, k;;(7), over all time 7 and then normalizing
each row to impose the constraint that the system at state i has
probability 1 of transitioning to one of the states to which it is
coupled (7). Since the matrix K gives the equilibrium transi-
tion probabilities between milestones and the k;; functions are
probability density functions for the transition time between
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connected milestones, these two pieces of information can be
used to construct time-dependent random walks along a set of
milestones. Each step taken from some current configuration
i is chosen by selecting between each possible coupled state
J» weighted by the transition probabilities from K; next, the
amount of time each selected transition from state i to j took
is selected randomly from the distribution defined by k;;(7).
In this manner, trajectories of arbitrary lengths in this discrete
space can be very quickly generated in only the amount of cen-
tral processing unit (CPU) time necessary to select 2N random
numbers, where N is the desired number of steps in the random
walk. Once a large set of these random walks is generated,
they can be used to calculate discrete versions of the same
p(x, t) manifolds which would be obtained as the solutions
to the Fokker-Planck equation (see Fig. 3). To elaborate on
this, consider a single random walk along the milestone con-
figurations. If, at each time step, we histogram the frequency
with which our system has visited each milestone configura-
tion up to that point in time into a normalized distribution,
then we have constructed a discrete manifold in configura-
tion space x and time ¢ which represents the time evolution of
the probability distribution of finding our system in a partic-
ular configuration for this particular realization of a random
walk in our discrete configuration space. From here, it only

probability
density

FIG. 3. Graphical comparison between the time evolution of a discrete prob-
ability distribution for a set of 5 milestone configurations subjected to the
two well 1D potential found in Sec. IV using our random walk/path integral
methodology [part (a)] and the manifold representing the time evolution of
a continuous probability density function of configurations for the same two
well system subjected to Fokker-Planck diffusion [part (b)]. Part (a) is the
set of probabilities as a function of time for the system being found at each
milestone configuration, given that the system was in configuration x = —1 at
time ¢ = 0, and part (b) shows Fokker-Planck diffusion on the same two well
system. Note that the random walk in part (a) began at the milestone located
atx = —1; thus, we see a decay from {P(0) =0, P»(0) =1, P3(0) =0, P4(0) =
0, P5(0)} to the equilibrium distribution, the same way our initial continuous
distribution, a normalized Gaussian centered at —1, decays to the equilibrium
probability distribution predicted by the Botlzmann distribution for the two
well potential, and both evolve in time on about the same time scale.

J. Chem. Phys. 149, 084104 (2018)

W True C(t)
M 4 milestone C(t)
B 5 milestone C(t)

0.6 M 6 milestone C(t)

0.4
0.2
e} (pS)
L
10 20 30 20 5 P

FIG. 4. Time correlation functions calculated using Eq. (8), where the con-
ditional probability as a function of time, Ps(t]x(0)), is calculated using
our random walk/path integral methodology, represented graphically in
Fig. 3(a).

remains to average the set of probability distributions gener-
ated from numerous manifestations of the random walk. The
results of applying this approach to our bistable 1D model over
the interval x = —1.5 to 1.5 are shown in Fig. 4. An alterna-
tive approach to calculate time correlation functions from these
random walks would be to “connect the dots” along the random
walk using an interpolation method and then use the traditional
approach to numerically calculate time correlation, shown in
Eq. (14), from the resulting continuous function, as shown in
Fig. 5. In both the applications of the method, C(0) was calcu-
lated using the relationship Z?i | xl.zP,-(oo), as demonstrated in
Sec. 111

A few noteworthy observations can be made regarding
Figs. 4 and 5. First we note that for this particular system,
4 milestones seem to be optimal over 5 or 6. Although this
may seem counterintuitive, recall that we have employed the
original form of milestoning (not exact milestoning), which
assumes that transitions between milestones are Markovian.
Thus, the calculation of C(¢) from the 5 and 6 milestone simu-
lations show an artificially long memory due to closely placed
milestones leading to transitions in the coarse-grained space
that possesses longer-lived time correlation than that exhibited
by the continuous system being approximated by the dis-
crete one. A second noteworthy observation is that the method
whereby linear interpolation of discrete trajectories is used to

W True C(t)
M 4 milestone C(t)
M 5 milestone C(t)

0.6 M 6 milestone C(t)

0.4

0.2

10 20 30 40 50 L(PS)

FIG. 5. Time correlation functions which were calculated by first generating
one long random walk using the method introduced in this article, then linking
each point in the trajectory using linear interpolation, and finally using Eq. (14)
to calculate C(¢).
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approximate continuous ones (Fig. 5) more successfully repro-
duces the decay to zero correlation than the method whereby
P(t|x(0)) functions are calculated, as shown in Fig. 4. This is
due to the reduction in entropy inherent to coarse graining a
continuous space to a discrete one, i.e., if a system can only
be configured in exactly 5 different ways, it can more easily
return to an exact previous state, and some baseline time cor-
relation is likely to persist longer than in one that can vary
continuously (smooth or not).

V. APPLICATION TO CALCULATING LONG-TIME
RDCS IN ATOMISTIC SIMULATIONS

A. Application of discrete space time correlation
methodology to the alanine dipeptide bond vector

In this section, we describe an application of our method-
ology to a molecular system. Shown in Fig. 6 is the molecular
structure of our system, alanine dipeptide. In order to present
a heuristic molecular model with a fluctuating bond vector for
which configurational milestones can be easily visualized, we
fixed the positions of the nitrogen and carbon atoms shown
in yellow in Fig. 6, resulting in trajectories whereby the bond
vector along the NH bond fluctuates about a roughly circu-
lar path. After constraining the nitrogen and carbon atoms
labeled in yellow to remain fixed at their initial positions,
Langevin dynamics at T = 300 K was run for 4 x 10 time
steps with a time step size of 0.001 ps for a total of 40 ns using
the CHARMM molecular dynamics software package. As the
molecular dynamics simulation ran, the orientation of the bond
vector extending from the center of the labeled nitrogen atom
to the center of the hydrogen atom indicated by the purple
arrow in Fig. 6 was recorded. Although this bond vector pos-
sesses three spatial degrees of freedom, its orientation could be
well approximated by a single rotational degree of freedom, as
shown in Fig. 7. By counting the number of time steps between
transitions from one milestone state to the next (shown graph-
ically as the four colored planes in Fig. 7) over the course of
the 40 ns trajectory, probability distribution functions for the
transition times between neighboring pairs were constructed as
histograms to obtain the set of k;;(7) functions for each pair of
neighboring milestone states. These k;;(7) functions were then

FIG. 6. Alanine dipeptide molecule used as the model system. The two atoms
shown in yellow were held fixed in space while the rest of the molecule was
subjected to Langevin dynamics. The purple arrow gives the orientation of the
bond vector which served as the measurable in our time correlation function
calculations.

J. Chem. Phys. 149, 084104 (2018)

-10
-05-71

10

FIG. 7. Graphical representation of the four milestone configurations for
measuring the time correlation function of the alanine dipeptide bond vec-
tor. Although the bond vector, shown as many thin, purple arrows, possesses
three degrees of freedom as it fluctuates in time, we are able to choose a frame
of reference where the bulk of the motion is taking place as a rotation about
the z-axis, shown as a thick green arrow. Using the four milestones, shown
as the red, green, yellow, and blue planes, we can calculate transition time
probability distributions between each pair of adjacent milestones.

used as the basis for the random walk/path integral approach
described in Sec. IV. Thusly, the P(f|x¢) functions necessary
to calculate the time correlation function using Eq. (16) were
calculated by averaging 75 000 different time-dependent prob-
ability distribution functions which each resulted from some
particular manifestation of the random walk (P,(¢|xp) func-
tions for the four milestone discretized configuration space

Ps(t)
0.40

0.35

0.30

0.254

0.20 ‘W

0.15

0 10 20 30 40 50 60 [

FIG. 8. Probability of finding our system in each of the four milestone config-
urations as a function time, given that we began the simulation with our system
in the configuration shown as the blue plane, using the same color scheme as
in Fig. 7. The probability of being found in the blue milestone at time ¢ = 0
is of course equal to 1, but is obscured from view, as the range of the y-axis
has been truncated in order to better show detail. Note that the probability of
the system being in any of the other three milestone configurations is equal
to zero at time ¢ = 0, as expected. These functions were calculated using the
methodology described in Subsection IV B. These functions contributed to
the calculation of C(r) shown in Fig. 9. Note that the probabilities converge to
their equilibrium values, indicated by the dashed lines, on roughly the same
time scale that C(¢) converges to its long time value.
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FIG. 9. Approximate time correlation functions calculated using Eq. (8)
superimposed over the true time correlation function, calculated using
Eq. (14). The 4 milestone C() function was calculated with the milestones
placed 90° apart as illustrated in Fig. 7, while the 8 milestone configuration
was the same motif, only with 8 planes placed 45° apart.

are shown in Fig. 8). The time correlation functions of inter-
est for this system are those which can be calculated using
the Lipari-Szabo formalism,'” as implemented by Xing and
Andricioaei,! using the equation

C@®) = (L2(u(0)u(2))), 15)

where L (u(0)u(?)) refers to plugging the scalar resulting from
the dot product of time series measurements of the bond vector
u into the second order Legendre polynomial. This motif of
measuring the autocorrelation of this value is then applied to
Eq. (8) to yield the discrete space time correlation function
relationship,

CH = La| > (00) - u)Py(tlu;(0) | Pi(eo),  (16)

where the vectors u; represent the different possible values for
the bond vector, given the coarse graining of the bond vector
into a discrete space. The results of applying our methodol-
ogy to calculate the time correlation function for the NH bond
vector of our constrained alanine dipeptide model is shown in
Fig. 9. Notably, the oscillatory and slower decay in correla-
tion for the 4 milestone case is an effect of coarse graining
the space (the oscillations are reproduceable). This is due
to a loss in entropy in going from the continuous space to
the discrete one, i.e., if only four possibilities exist for the
position of the bond vector, the probability of pointing in
the same direction as that of a previous time step increases
compared to a system where 8 or more configurations are
possible.

VL. CONCLUDING DISCUSSION

We have first demonstrated that time correlation func-
tions for continuous processes can be approximated using
Eq. (8) to coarse grain the configuration space to a discrete
one. Additionally, we have introduced a novel method for
extending the milestoning algorithm (or any other interfac-
ing algorithm) into non-equilibrium regimes by numerically
calculating the time-dependent fluxes P(#|x;(0)). The method
consists of constructing random walks in the discrete con-
figuration space, defined by a set of milestone configura-

J. Chem. Phys. 149, 084104 (2018)

tions, from transition time probability density functions k;;(7)
obtained using the milestoning method, followed by calcu-
lating time-dependent histograms of milestone states occu-
pied using the stochastic path integral method described in
Subsection IV B.

The time correlation function for the harmonic oscillator
calculated analytically using our discretization method showed
excellent agreement with the true time correlation function
C(t), also obtained analytically, for a harmonic oscillator.
There was also an excellent agreement between the C(f) calcu-
lated for a discrete configuration space for a bistable potential
and the true autocorrelation function, where P(¢|x;(0)) was
obtained by numerically solving a Fokker-Planck equation. We
also obtained a promising result from applying the discretiza-
tion method of Eq. (16) in conjunction with the stochastic
path integral method to an atomistic system. The autocor-
relation function C(#) for the bond vector calculated using
the methods introduced herein showed a nice agreement with
the true C(¢) calculated using Eq. (15). The limitations to
the methods we have introduced appear to be limited to the
challenges inherent to the implementation of the milestoning
method. A key advantage of our method is that the random
walks between discrete configurations can be constructed at
trivial computational cost, allowing for us to make predictions
well into time regimes inaccessible to molecular dynamics
simulations.

We would like to note that although the calculations
described in this article were performed on systems where
the observable of interest was constant along each milestone
hyperplane, the method can easily be generalized for systems
where the observable varies along each milestone hyperplane.
In order to account for such observables, one must simply
construct equilibrium probability distributions of the observ-
able on each hyperplane, then select from this distribution
at each time step of the random walk along the milestones.
In other words, at each step, the algorithm must first choose
the next step to take using the transition matrix, then select
the transition time from the appropriate transition time distri-
bution function, and then select the value of the observable
from the probability distribution describing the observable
along that hyperplane. We feel that the methods introduced
in this paper have the potential to allow for the calculation of
experimental observables from molecular dynamics simula-
tions that are currently unattainable by brute force long time
simulations.

The majority of applications of milestoning to complex
molecules so far have only employed the transition probabil-
ities K, which are easier to obtain than the transition time
distributions between milestones. The difficulty with the latter
distributions comes from the slow convergence of the required
histograms when the number of trajectories used for the cal-
culation is not large enough. Moreover, the long-time tails of
these distributions are additionally difficult to capture with
limited trajectory sampling. While these difficulties were not
present in the model cases explored herein, for more com-
plex systems they can be alleviated via an enhanced trajec-
tory sampling scheme adapted for milestoning, such as the
wind-assisted re-weighing method in the companion article to
Paper 1.1
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