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School of Computing Science
Simon Fraser University
Burnaby, B.C., V5A 1S6
hadleyQ@cs.sfu.ca

Abstract

A network exhibits strong semantic systematicity when, as
a result of training, it can assign appropriate meaning rep-
resentations to novel sentences (both simple and embedded)
which contain words in syntactic positions they did not oc-
cupy during training. Herein we describe a network which
displays strong semantic systematicity in response to unsu-
pervised training. During training, two-thirds of all nouns are
presented only in a single syntactic position (either as gram-
matical subject or object). Yet, during testing, the network
correctly interprets thousands of sentences containing those
nouns in novel positions. In addition, the network generalizes
to novel levels of embedding. Successful training requires a
corpus of about 1000 sentences, and network training is quite
rapid.

1. Introduction

Fodor’s and Pylyshyn’s arguments (1988) to the effect
that human thought and language exhibit both compo-
sitionality and systematicity are by now widely known.
Although connectionists have questioned whether hu-
mans display these attributes in the form that F&P de-
scribe, most now agree that in some important sense
humans do exhibit some form of linguistic systematicity.

In 1989-90, a number of connectionists reported
results which established that connectionist networks
(hereafter, c-nets) could exhibit forms of linguistic gen-
eralization, which, prima facie, qualify as systematicity.
These results were obtained without recourse to mere im-
plementation of “classical” symbolic methods, and so, it
appeared that one of F&P’s major conclusions was falsi-
fied. However, in Hadley, 1992, 1994a, a learning based
conception of systematicity was introduced, and vari-
ous degrees of systematicity were distinguished, ranging
from weak syntactic to strong semantic systematicity.
Hadley (1994a) examined six different connectionist sys-
tems and argued that, in all probability, none of these
systems displayed the strong forms of systematicity that
humans display. As a consequence, it appeared that a
variant of F&P’s original challenge stood unscathed.

Recently, however, some researchers claim to have sat-
isfied Hadley’s definition of strong systematicity, though
not his formulation of semantic systematicity. In one in-
stance (Phillips, 1994), this claim clearly requires qual-
ification, since (as Phillips has acknowledged, personal
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communication) the system involved cannot process em-
bedded sentences as required by Hadley’s definition. In
another instance (Christiansen & Chater, 1994), a claim
to strong generalization is restricted to a single syntactic
context (conjunctive noun phrases). Discussion of this
claim, together with those of Niklasson & van Gelder
(1994) is given in Hadley, 1994b, where reservations are
explored. In any event, none of the work just cited ad-
dresses semantic aspects of systematicity and composi-
tionality, although F&P’s (1988) presentation of these
concepts did seem to involve semantic issues (such as the
capacity to understand the meaning of novel sentences
and the need to banish semantic equivocation in logical
inference).

Before proceeding, it will be helpful to characterize
strong semantic systematicity, as defined in (Hadley,
1994b). Briefly stated, we may say that a network ex-
hibits strong semantic systematicity when, as a result
of training, it can assign appropriate meaning represen-
tations to novel sentences (both simple and embedded)
which contain words in syntactic positions they did not
occupy during training. The training set (or corpus) in-
volved should not only refrain from presenting all words
in all syntactic positions, but should so refrain for a
significant fraction of the training vocabulary. Further-
more, a sentence counts as novel only if it contains a
word in a syntactic position (e.g., subject) that it did
not occupy at any level of embedding during the training
phase.

Now, given F&P’s emphasis on understanding novel
sentences, and our contention (Hadley, 1994a) that hu-
mans display at least strong semantic systematicity, we
have sought a connectionist system which clearly dis-
plays these properties in the context of a simple recursive
language. In the following pages, we describe a system
of c-nets which satisfies this requirement. However, we
should stress that we do not see our model as a refuta-
tion of F&P’s basic thesis. Rather, we have sought to
forge a genuine synthesis between connectionist method-
ology and a powerful classical insight, viz., that acti-
vating complex semantic representations entails activat-
ing their semantic constituents. Significantly, represen-
tations within our model do not involve static strings,
but emerge from connectionist methods not considered
in F&P’s 1988 paper (e.g., binding nodes [Smolensky,
1990] and activation decay). Also, although we certainly



S — NPVNP

NP — N|NRC

N — Mary | Jane | Sally | Susan | Vicky | Fran
| Abe | Bill | Carl | Dave | Earl | Fred

V — likes | knows | treats | calls | draws | helps
| races | sees

REL-PRO — who

RC — REL-PRO V NP

Figure 1: The Grammar of L.

would not claim ‘cognitive fidelity’ for our model, we be-
lieve that the present research takes meaningful steps in
the direction of cognitive plausibility. Support for this
belief will emerge in later-sections, but we may summa-
rize several relevant accomplishments here:

(a) The model exhibits strong semantic systematicity.
Following training on a recursive grammar, the system
successfully processes, with complete accuracy, substan-
tially deeper levels of sentence embedding than occur
during training (thus attaining level 4 in Niklasson’s and
van Gelder’s (1994) generalization hierarchy).

(b) During training, two-thirds of all nouns are not
presented in all legal positions. However, during testing,
those nouns are each successfully presented in positions
novel to those words.

(c) When embedding is restricted to a maximum depth
of one, as occurs during training, over one million sen-
tences are candidates for inclusion in the training cor-
pus. Yet, the network is successfully trained on a subset
of about one thousand sentences.

(d) All network learning is unsupervised; forms of Heb-
bian training are used throughout. It is widely believed
that Hebbian learning is probably closer to biological
reality than the commonly used method of backpropa-
gation of error.

(e) Once training is complete, the network not
only displays strong semantic systematicity (hereafter,
semantic-S), but a straightforward explanation of this
fact exists. The network’s behavior is transparent.

2. Task and Basic Strategy

A system of c-nets (hereafter, simply called the ‘c-net’ or
the ‘network’) is given the task of attaining semantic-S
in the context of learning the semantics of a simple re-
cursive language. Sentence meanings (construed here as
propositions) are represented within a special layer that
loosely corresponds to a traditional semantic network
(cf. Schubert, 1976). Upon completion of training, the
entire c-net should produce appropriate meaning repre-
sentations in response to any sentence taken from the
language L, provided embedded sentences do not occur
at depths greater than level three. The grammar of L is
given in Figure 1.

Corresponding to each sentence of L (where the max-
imum level of embedding may be as great as three) is a
proposition or ‘meaning’ representable in the semantic
network. However, the training corpus consists of a tiny
fraction of all sentences whose maximum level of em-
bedding is one (i.e., during training, no relative clause
contains another relative clause). As each of the train-
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ing sentences is presented as input, its corresponding
proposition is actively represented within the semantic
network. Sentences are presented to an input layer one
word at a time, and as training progresses, associations
are learned between word (or lexical) nodes in the input
layer and nodes in the semantic (network) layer. Acti-
vation propagated from the input layer is spread within
the semantic layer, where the sequencing of thematic role
activation must be learned.

3. Architecture and Representation Methods

Before delving into representational details, we wish to
stress that nodes and links within our network should not
in any way be construed as the counterparts of biologi-
cal objects (e.g., neurons and axons). Rather, following
Smolensky (1988), we intend that our nodes, links, and
processes should be taken as fairly high-level abstrac-
tions. Nodes and links, for example, might in fact corre-
spond to patterns of activity whose biological substrates
are left entirely open.

3.1 Overall Structure

The network i1s comprised of an input layer and a se-
mantic (output) layer. The input layer is a linear array
of 21 nodes, each node corresponding to a single lexical
item (a word). When a word is presented as input, the
corresponding lexical node is activated. By contrast, the
semantic layer has considerable internal structure, and
contains four distinct types of nodes. These are: concept
nodes, proposition nodes (pnodes), binding nodes, and
thematic site nodes. Pnodes also have internal struc-
ture and serve to integrate concept nodes into unified
propositions. Lexical nodes in the input layer are fully
connected, by means of tunable links, to each concept
node and to the core of each pnode in the semantic layer.
After training, concept nodes and pnodes provide seman-
tic content for the lexical items, and for this reason are
called ‘semantic nodes’. We recognize, of course, that se-
mantic nodes do not possess intrinsic semantic content.
Rather, their semantic role presumably arises through
their participation in semantic grounding processes (cf.
Hadley, 1989).

3.2 The Semantic Layer, Internal Structure

Structure within the semantic layer is provided pri-
marily by links between concept nodes and pnodes. Pn-
odes are of two types: master pnodes and modifier pn-
odes (mod-pnodes). Both types have the cognitive role
of integrating concepts of objects and actions into a co-
herent whole. There is a single ‘master’ pnode, which
unites constituents into the main proposition expressed
by a complete sentence (see Figure 2).

By contrast, mod-pnodes have a subservient role; they
represent propositions which modify particular concept
nodes. Mod-pnodes can be ‘bound’ to concept nodes
for specific periods by means of modifier sites (see 7 in
Figure 2). In the current implementation, there are three
mod-pnodes.

Pnodes of each type are small networks in their own
right, consisting of a core node (connected to lexical
nodes in the input layer) and attached site nodes. Each
pnode core is connected to its satellite sites by directional
links, and vice-versa. Site nodes represent various the-
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Figure 2: A master pnode (a) and a modifier pnode (b).
Site nodes are part of each pnode constellation. The
thematic role represented by each site is indicated as fol-
lows: 7 indicates a modifier site, a represents an agent
site, 8 an action site, and v is a patient site.

matic roles, including agent, patient, and action roles.
In addition, mod-pnodes each possess a ‘modifier site’.
The thematic role associated with each site is fixed, and
site nodes can enter into ‘bindings’ with a concept node
by means of binding nodes (see below).

The sites involved in a given pnode form a competitive,
winner-take-all cluster. As is customary in c-net simula-
tions, inhibitory links in all winner-take-all (WTA) clus-
ters in this network remain at the virtual level. Links
between pnode cores and sites are actual, however, and
when a hitherto inactive core receives activation (from
below) which exceeds its threshold, the core ‘fires’ and
sends activation to its associated site nodes (for details,
see sections 5 and 7). Weights on links from each core
to its sites are tuned during network training when the
core 1s prompted to fire by an activated site. As will
emerge, this tuning enables each pnode constellation to
learn the sequence in which its sites are stimulated dur-
ing training. We regard each pnode (which includes both
core and sites) as a module having the specific cognitive
function of learning sequences.

Now, just as pnodes are of two types, so are concept
nodes; they represent either actions or objects. Each
‘action concept node’ is connected to every thematic site
that represents an action role. Similarly, each ‘object
concept’ is connected to each agent site and each patient
site. Every connection between a concept node and a
role site is mediated by a ‘binding node’ (cf. Smolensky,
1990), which intercepts activity from the concept node
to the site node (Figure 3).

Links to various binding nodes emanate from a given
site. Once a site enters into a binding, both that site
and the effective binding node remain active, and the
site will not send activation to any binding node except
the one to which it is actively bound.! For this reason,
a site can only bind with a single concept node at a time
(via the mediating binding node).

Concept nodes can enter into bindings with particular
sites when their mutual binding node receives adequate
input from both the site and the concept node (see sec-
tion 7). Binding nodes reside on the connection between

!We assume that connections at sites could have evolved
to have this specific property.

Master pNode

Jane sees Bill likes Mary

Figure 3: Semantic representation for ‘Jane sees Bill
who likes Mary’. Diamond shaped nodes depict bind-
ing nodes. Only active binding nodes are shown here.

each pnode site and each semantically appropriate con-
cept node.

In order to ensure that appropriate bindings are
formed, binding nodes compete in a WTA fashion (see
section 7 for details). This competition is separate from
that involving site nodes. However, both kinds of compe-
tition are essential to the formation of appropriate bind-
ings during sentence interpretation. In this regard, a no-
table aspect of site competition is that, once a site enters
into an active binding, it no longer competes with other
sites. Given our assumption that pnodes are abstract ob-
jects, possessing a specific cognitive function, we think
it plausible that thematic role sites should behave this
way. Furthermore, this assumption is consistent with
standard connectionist techniques. For, we need only
suppose that virtual modifier links (cf. Feldman & Bal-
lard, 1982) emanate from each site node to all inhibitory
links coming into or leaving that site. When a binding
occurs, a binding node fires and sends activation to the
involved site (see figure 3). As a result, the site node at-
tains a high activation level (43) and the site’s modifier
links then block any activation flow through the site’s
inhibitory links.

Apart from competitive clusters involving, respec-
tively, binding nodes and site nodes, WTA competition
also occurs between semantic nodes. ‘Winning’ seman-
tic nodes are selected both during network training and
testing.

4. Training Data

Training and test data are generated using the gram-
mar of L. One hundred separate training corpora have
been generated, and the model has tested successfully
when trained on each. A given training corpus consists
of 1370 sentences, with any given sentence duplicated at
most once. Each training corpus contains 75% simple (N
V N) sentences and 25% complex sentences, containing
relative clauses. The latter have a maximum embed-
ding depth of one. About half of the complex sentences
contain a relative clause in both the subject and object
NPs. All 12 nouns appear in each training corpus, but
only four of these nouns are permitted to appear in both
subject and object positions.
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5. Network Training

Successful network training requires less than one com-
plete pass through a single training corpus. As previ-
ously indicated, each sentence is presented to the input
layer one word at a time. Presentation of a word amounts
to activating one of the 21 lexical nodes in the input
layer. The appropriate lexical node is set to +1 just until
the next word is presented. Throughout the processing
of a complete sentence, the corresponding propositional
representation is active within the semantic layer. All
concept nodes and pnode cores involved in that propo-
sition are set to their maximum activation levels (+1).
Site nodes involved in the active pnodes are also set ini-
tially to +1, though their maximum level is +3. In ev-
ery active propositional representation, the master pn-
ode will be active. One of the three mod-pnodes will
be randomly selected for inclusion in the representation
whenever some proposition modifies a concept (this oc-
curs only when relative clauses are present in the input).

The network’s trainable links are those occurring be-
tween the input layer and semantic layer, and those
emanating from pnode cores to pnode (thematic) sites.
Other links within the semantic layer serve to establish
bindings and to spread activation. Every lexical input
node is connected to each semantic node (i.e., to the
concepts and pnode cores). On each ‘word iteration’,
activation flows from an active input node to semantic
nodes. Subsequently, activation is relayed from seman-
tic nodes to binding nodes, and ultimately to pnode sites
and cores.

5.1 Training Links Between Layers

Each time an input word is presented, a semantic node
corresponding to the word’s ‘meaning’ will be active
within the semantic layer. This holds true even for the
relative pronoun (‘who’), which not only denotes some
individual each time it is used, but signals that some
proposition modifies that individual. Thus, mod-pnodes
are strongly correlated with occurrences of ‘who’. How-
ever, many spurious semantic nodes will also be active
when a given word appears as input.

A simple Hebbian learning algorithm, which merely
strengthened weights between simultaneously active
nodes in the input and semantic layers, would suffice
to discover the strongest correlations. However, this ap-
proach would still assign substantial weights to moder-
ate, though spurious, correlations. A better method,
adopted here, is to integrate Hebbian learning with a
simple form of competition.

To understand this Hebbian variant, recall that many
links flow into each semantic node from the lexical layer.
Moreover (as is common), there is a fixed maximum (+1)
for the sum of all weights on links coming into a seman-
tic node. Initially, the weight on each of these links is
.001.2 Each time an active input node sends activation
to the semantic layer, weights are incremented on every
link which connects that node to a semantic node that is
active (+1) within the current propositional representa-
tion. Let S be any of these active semantic nodes. Then

?Random weights close to .001 would serve equally well.
For simplicity, we have chosen a uniform initial weight.
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the link (L) coming into S is incremented as follows:
increment = R x.0005

where R is the ratio of the current weight on L to the
current average weight of links into S. Note that the ratio
R can cause links with ‘above average’ weight to be re-
warded significantly. As learning proceeds, the learning
on winning links accelerates, and little weight is assigned
to links which reflect spurious co-occurrences. Moreover,
if many input nodes have significant correlation with a
single node, as happens with the master pnode, no clear
winning link emerges, since the ratio R remains near
unity for most links into that semantic node.

Training halts when all semantic nodes have reached
their weight maximums, i.e., when no semantic node has
any weight left to distribute among its incoming links.
Typically, this happens after 950-1050 sentences have
been processed. When training i1s complete, links re-
flecting correct word-concept associations are frequently
100 times greater than those reflecting spurious co-
occurrence.

Presently, we shall examine training which occurs
within the semantic layer. Before doing so, a final issue
1s germane to the testing phase, described in section 7.
During training, firing thresholds for semantic nodes are
irrelevant, since those semantic nodes which are active in
a given semantic representation have already been set to
their maximum level of activation. However, we assume
that, as semantic nodes receive varying levels of input
during training, they acquire thresholds. Upon comple-
tion of training, the firing threshold of each semantic
node is taken to be 80% of the largest input stimulus
ever presented to that node. This means that, typically,
firing thresholds for semantic nodes will be above .7.

5.2 Training within the Semantic Layer

Within the semantic layer, training occurs at pnodes
only. In particular, weights on links flowing from pnode
cores to site nodes are tuned as a side effect of spreading
activation, which is initiated at concept nodes. In loose
analogy with training between layers, we have assumed
a fixed limit of one for the sum of all core-to-site weights
at each pnode. Learning ceases at any pnode which has
reached this weight limit.

As previously mentioned, a complete semantic repre-
sentation remains active throughout the processing of a
given sentence. Within this active representation, active
concept nodes are bound to the particular thematic sites
by active binding nodes (see Figure 3). All nodes par-
ticipating 1n this representation are set to +1, which 1s
the maximum for concept nodes and pnode cores.

As each word is presented to the input layer, activation
1s propagated upwards to semantic nodes. Each seman-
tic node receives activation equal to the weight on the
link coming into that node from the active input node.
Upon receiving this input surge (or ‘boost’), semantic
nodes enter into a WTA competition. That node whose
received boost is largest will win the competition. We
have assumed that semantic nodes will spend their ex-
cess ‘boost’ when competing, but not their initial level
of activation.

Now, training within a pnode constellation occurs as



a side effect of a concept node’s winning the WTA com-
petition. For, when a concept node wins (e.g., ‘Jane’
in figure 3), it spreads activation towards binding nodes.
When this spreading activation reaches an inactive bind-
ing node, nothing happens because a binding node will
fire only when it senses activation from both a site node
and a concept node. However, when activation from a
concept node reaches any active binding node, that node
fires and sends activation to the involved site node. Re-
ferring to figure 3, if ‘Jane’ were selected as winner of the
semantic competition, activation would reach the agent
site on the master pnode. However, if instead ‘Bill’ were
to win, three separate sites would receive activation, in-
cluding the modifier and agent sites on the mod-pnode.
For simplicity, we shall assume that the first word of the
sentence, ‘Jane’, causes the Jane node to fire.

Once a given site (a, in this case) receives activation
from a binding node, it will jump from its current acti-
vation (+1 in this case) to its maximum level, +3. At
this point, the a site is at a higher activation level than
the remaining two sites. However, since all sites at the
current pnode are involved in active bindings, no WTA
competition occurs between the sites (their mutual in-
hibitory links are currently blocked, as described ear-
lier). Now, given that site o has just been boosted to its
highest activation level, a fires towards the pnode core,
but retains its +3 activation.® Activation received at
the core causes the core to fire in turn. As a result, the
core sends activation to each of its sites in proportion
to the existing weight on the link leading from the core
to the given site. The ‘boost’ now received by each site
is added to the site’s activation level, unless that site is
already at its maximum (+3) level.

Thus far, activation levels for sites «, 3, and ¥ would
be, respectively, +3, (1 + j), and (1 + k), where j and k
are substantially less than one. Consequently, the agent
site, «, is at the highest level by far. Also, now that
activation has passed along trainable links, from an ac-
tive core to active sites, weight modification will oc-
cur. In particular, weights will be modified by adding
(activation(s) *.0005) to the existing weight on the link
from core to site s. Clearly, in the present example, the
link to site a will receive a significantly larger increment
than links to 8 and 7.

Once weight modification between core and sites is
complete, a new cycle begins, for the affected sites have
not received sufficient activation to cause them to fire.
If we assume that the next input word causes the ‘sees’
node to win, spreading activation will pass through a
binding node, and cause site # to jump to a level of
+3. (A, in turn, will now excite the core, which will
again spread activation to the sites. Weight modifica-
tion will again occur, this time with a and S both at
+3, while the patient site, 4, has substantially less ac-
tivation. As a consequence, the weight into « receives
another (comparatively) sizable increment, and though
the weight into 4 will now be substantially augmented,

3]t is somewhat unusual for nodes to both fire and retain
significant levels of activation. However, this assumption is
consistent with connectionist principles as set forth in Feld-
man & Ballard (1982).

7’s weight receives a comparatively small increase. By
the time the third cycle is completed (after processing
‘Bill’), weights into agent, action and patient sites will
be ordered, by descending magnitude, in the same se-
quence as those sites were boosted to their maximum
(4+3) values (other things being equal).

Due to the nature of conceptual binding, the a and
7 sites on any mod-pnode will always be bound to the
same concept (during training). In such situations, if
the concept node i1s chosen as winner of a WTA com-
petition, both the o and 7 sites will receive simultane-
ous activation. Thus, those two sites will always un-
dergo identical training. For this reason, weights into
the @ and = sites at a given mod-pnode will be iden-
tical, though the weights at separate pnodes will vary.
Because « and 7 sites are equally weighted with respect
to a pnode’s core, both sites will tie in any WTA compe-
tition between sites which occurs during the testing (i.e.,
comprehension) phase, described in section 7.

6. Test Data

Once the network has been trained on a given corpus,
it is tested on a separate set of over 6000 sentences. Of
these 4000 are randomly generated; no restrictions are
placed upon any word’s syntactic position, aside from
grammaticality. Three quarters of these sentences con-
tain embedded clauses, frequently in both subject and
object NPs. The remaining 2000+ sentences all present
some noun in a position it did not occupy during train-
ing (i.e., the word did not occupy that position at any
level of embedding during training). Of these (roughly)
2000 sentences, only 500 are simple sentences. In addi-
tion, six handcrafted sentences are included in the set.
These handcrafted sentences test the network’s ability
to generalize to deep levels of embedding.

7. Testing Performance

Once the c-net has been fully trained, its ‘comprehen-
sion’ is tested on each of the 6006 sentences described
in the preceding section. Testing of a given sentence
involves the seriatum presentation of words to the net-
work’s input layer. In response to each word, a seman-
tic node is activated within the semantic layer and, via
spreading activation, some ‘binding’ will occur (i.e., a
binding node will be activated). Once the sentence has
been processed, a pattern of active nodes and bindings
exists within the semantic layer. (A node is considered
active if its level of activation exceeds its firing thresh-
old.) This pattern of activation is compared to the sen-
tence’s correct propositional representation, and ‘perfect
matches’ are noted. The process by which thematic role
sites are activated and bindings are set is somewhat com-
plex. Given space limitations, we can present only an
outline of this process here.

7.1 Sentence Comprehension — Outline.
For each sentence in the training corpus:

(1) All nodes throughout the network are initially set
to zero. Cognitively, this might be caused by a preceding
silence or by successful comprehension of the previous
sentence.

(2) The master pnode is activated, initially via its core.
Activation spreads to the three site nodes and a WTA

362



competition ensues among the sites. A single site (pre-
sumably the agent site) wins and attains an activation
level of +3. In theory, activation of the master pnode
occurs just as some initial stimulus is being recognized
as a word, perhaps by a ‘preprocessor’ which activates a
particular lexical node once the word is recognized.

(3) A lexical node is activated and activation flows
from the lexical layer to the semantic layer. A WTA
competition ensues among the semantic nodes. The win-
ning node is selected as follows: If one or more previ-
ously inactive nodes surpasses it firing threshold, that
node wins which surpassed its threshold by the largest
amount. (Ties are extremely unlikely, though a unique
winner would be selected in that case.) Otherwise, that
presently active node which received the largest input
boost wins. In either case, the winner attains an activa-
tion of +1.*

(4) If the ‘winner’ from step 3 was a pnode, call it P.
P’s core is now active (+1). The following occurs:

e A WTA competition ensues among P’s site nodes,
which are all presently unbound. Multiple (tying)
winners are possible.

A winning site(s) at P is (are) chosen and assumes
activation of +3. All other active sites and concept
nodes undergo some decay (a .01 decrement to their
activation level).

(5) Binding now occurs between the most active site
(or sites, if there is a tie) and the most active concept
node that can bind with that site(s). Activation decay
ensures that the most recently activated site(s) and con-
cept are the most active nodes.

(6) Binding action from the previous step causes a
binding node to fire. This in turn spreads activation to
the site involved in that binding, and the site relays ac-
tivation to the core of the involved pnode. If there are
still unbound sites at that pnode, a new WTA competi-
tion is triggered among just those sites, and the winning
site attains +3 activation. All other active sites and con-
cept nodes undergo some decay. This decay ensures that
correct bindings occur during and after recursive embed-
dings. (See Stevenson, 1994, for a similar use of decay
in a massively parallel parser.)

(7) Return to step 3.

8. Test Results

As mentioned in section 4, the network has been sepa-
rately trained and tested on 100 distinct training cor-
pora. Each of the 100 training sessions produces a
uniquely weighted c-net, which, in turn, is tested on the
6006 sentence test corpus described in section 6. As each
sentence in each trial is tested, its output is compared
to the correct ‘target’ representation for that sentence.
In all cases, a perfect match occurred between the net-
work’s real and target output. This held true even when

*This ‘disjunctive’ winner selection rule is consistent with
a standard WTA competition among semantic nodes. We
merely need to assume that a node which has just surpassed
its firing threshold discharges an activation greater than one,
i.e., greater than the ‘input boost’ received by presently ac-
tive nodes.
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test sentences involved maximum levels of embedding (a
depth of three consecutive relative clauses).

9. Discussion

The fundamental goal of research presented here has
been to demonstrate that strong semantic systematic-
ity can be achieved through unsupervised connectionist
learning. In terms of the definition presented in sec-
tion 1, we believe this goal has clearly been achieved.
Not only is the trained c-net able to process sentences
containing words in novel positions, but overall network
behavior is transparent. Given the forms of Hebbian
learning involved, it is clear how words become asso-
ciated with their conceptual counterparts and how the
proper sequence for thematic site activation is learned
by p-nodes. These aspects, together with the combina-
torial power of binding nodes, explain the model’s ability
to process words occurring in novel syntactic positions.
Note that training of p-node links is crucial to the resul-
tant systematicity.

In addition, although our model undoubtedly ignores
some concerns for cognitive plausibility, we have sought
to attain plausibility wherever possible. For example, (a)
we have used unsupervised learning methods through-
out, (b) relatively small training corpora have been em-
ployed, (¢) most nouns were not presented in all positions
during training, (d) the network generalizes to deep lev-
els of embedding.
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