
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Numerical Adventures in Exoplanet Formation, Detection and Characterization

Permalink
https://escholarship.org/uc/item/1n8714sj

Author
Meschiari, Stefano

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1n8714sj
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

SANTA CRUZ

NUMERICAL ADVENTURES IN EXOPLANET FORMATION,
DETECTION AND CHARACTERIZATION

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ASTRONOMY AND ASTROPHYSICS

by

Stefano Meschiari

June 2012

The Dissertation of Stefano Meschiari
is approved:

Professor Gregory Laughlin, Chair

Professor Steven S. Vogt

Professor Daniel C. Fabrycky

Tyrus Miller
Vice Provost and Dean of Graduate Studies



Copyright c© by

Stefano Meschiari

2012



Table of Contents

List of Figures vi

List of Tables viii

Abstract ix

Dedication xii

Acknowledgments xiii

1 Introduction 1
1.1 Planet detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Radial Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Transits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.3 Mass determination and Transit Timing Variations . . . . . . . . . . . . . 11

1.2 Planet formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Requirements for planetesimal accretion . . . . . . . . . . . . . . . . . . . 15
1.2.2 Gas drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.3 Erosive encounters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.4 Planetesimal collisions in binary environments . . . . . . . . . . . . . . . 18

1.3 Numerical techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 SPHIGA: Numerical algorithm and tests . . . . . . . . . . . . . . . . . . . 20

2 Systemic: A Testbed for Characterizing the Detection of Extrasolar Planets 40
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 The systemic Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Radial Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.2 Transits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.3 Best-fit model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.4 Error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 The Systemic Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.1 Resonance characterization in the HD128311 system . . . . . . . . . . . . 55
2.5.2 Best fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.3 Dynamical interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

iii



2.5.4 Constraints by transits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Numerical Approaches to the Transit Timing Inverse Problem 66
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 HD40307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5 HAT-P-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.6 HAT-P-13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 The Lick-Carnegie Survey: Four New Exoplanets 91
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3 Radial Velocity observations and target stars . . . . . . . . . . . . . . . . . . . . 93
4.4 HD 31253 (HIP 22826) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.1 Stellar properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.2 Keplerian solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 HD 218566 (HIP 114322) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5.1 Stellar properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5.2 Keplerian solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 HD 177830 (HIP 93746) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.6.1 Stellar properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.6.2 Keplerian solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.7 HD 99492 (HIP 55848) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.7.1 Stellar properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.7.2 Keplerian solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.8 HD 74156 (HIP 42723) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.8.1 Stellar properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.8.2 Keplerian solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5 The Potential Impact of Groove Modes on Type II Planetary Migration 122
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4 Computer simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Planet Formation in the Kepler 16 System 137
6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.3 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3.1 Impact classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.4 Simulations without gas drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.5 Simulations with gas drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

iv



7 Discussion 157
7.1 Transit Timing Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.2 Gravitational instabilities driven by planetary gaps . . . . . . . . . . . . . . . . . 160
7.3 Planet formation in binary systems . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Bibliography 166

A Radial velocity data 191

v



List of Figures

1.1 Number of planets discovered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Minimum mass vs. semi-major axis plot of exoplanets . . . . . . . . . . . . . . . 5
1.3 GJ436 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Transit timing variations of Kepler-18 . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Leapfrog and RADAU comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6 Inner boundary of a SPH realization of a circumstellar disk . . . . . . . . . . . . 28
1.7 Spurious infall and boundary corrections . . . . . . . . . . . . . . . . . . . . . . . 29
1.8 Mass growth of the sink with corrected and uncorrected boundaries . . . . . . . . 32
1.9 One-dimensional shock tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.10 Two-dimensional ring test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.11 Three-dimensional isothermal sphere collapse . . . . . . . . . . . . . . . . . . . . 36
1.12 SPH gas drag test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1 Periodogram of the combined Keck and HET datasets for HD128311 . . . . . . . 58
2.2 Best-fit integrated solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.3 Maximum eccentricities obtained during 104 yr integrations . . . . . . . . . . . . 60

3.1 Sensitivity of the RV method to the mutual gravitational perturbations . . . . . 74
3.2 Predicted transit timing variations for HD40307 . . . . . . . . . . . . . . . . . . . 75
3.3 Results of the MCMC simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4 Libration of the resonant arguments for the HAT-P-7 synthetic dataset . . . . . 80
3.5 Map of the transit timing variation amplitudes . . . . . . . . . . . . . . . . . . . 81
3.6 Best-fit solutions for the HAT-P-7 synthetic dataset . . . . . . . . . . . . . . . . 88
3.7 Sample TTV signals for different inclinations of HAT-P-13 . . . . . . . . . . . . . 89
3.8 Relative inclination distribution for synthetic HAT-P-13 realizations . . . . . . . 90

4.1 Radial velocity data and periodograms for HD 31253 . . . . . . . . . . . . . . . . 99
4.2 Keplerian solution and residuals periodogram for HD 31253 . . . . . . . . . . . . 100
4.3 Radial velocity data and periodograms for HD 218566. . . . . . . . . . . . . . . . 102
4.4 Keplerian solution and residuals periodogram for HD 218566. . . . . . . . . . . . 103
4.5 Radial velocity data and periodograms for HD 177830. . . . . . . . . . . . . . . . 106
4.6 One-planet Keplerian solution and residuals periodogram for HD 177830. . . . . 107
4.7 Keplerian solution and residuals periodogram for HD 177830. . . . . . . . . . . . 108
4.8 Eccentricity evolution of planets HD177830 b and c. . . . . . . . . . . . . . . . . 109
4.9 Radial velocity data and periodograms for HD 99492. . . . . . . . . . . . . . . . 112
4.10 One-planet Keplerian solution and residuals periodogram for HD 99492. . . . . . 113

vi



4.11 Keplerian solution and residuals periodogram for HD 99492. . . . . . . . . . . . . 114
4.12 Radial velocity data and periodograms for HD 74156. . . . . . . . . . . . . . . . 116
4.13 One-planet Keplerian solution and residuals periodogram for HD 74156. . . . . . 117
4.14 Keplerian solution and residuals periodogram for HD 31253. . . . . . . . . . . . . 118
4.15 Plot of all known extrasolar planets. . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1 Toomre Q profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2 Sketch of the evolution of the disk instability. . . . . . . . . . . . . . . . . . . . . 133
5.3 Surface overdensity evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4 Normalized amplitudes of the m=2 modes. . . . . . . . . . . . . . . . . . . . . . 135
5.5 Evolution of the density at the gap . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.1 Eccentricity and longitude of pericenter of the planetesimals (gas-free run) . . . . 146
6.2 Fraction of accreting impacts (gas-free run) . . . . . . . . . . . . . . . . . . . . . 147
6.3 Eccentricity and longitude of pericenter of the planetesimals . . . . . . . . . . . . 149
6.4 Planetesimal accretion into the central star . . . . . . . . . . . . . . . . . . . . . 150
6.5 Fraction of accreting planetesimals . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.6 Initial location of embryos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.1 Growth rate of modes as a function of gap depth . . . . . . . . . . . . . . . . . . 160
7.2 Importance of turbulent torque on planetesimal accretion . . . . . . . . . . . . . 163

vii



List of Tables

1.1 Representative parameters for planetesimal accretion models. . . . . . . . . . . . 15
1.2 List of numerical codes used in this dissertation . . . . . . . . . . . . . . . . . . . 19

2.1 List of tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2 Best-Fit parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3 Monte-Carlo analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1 Best fit solutions for the HD40307 system . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Stellar parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Keplerian orbital solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1 Growth rate and pattern speed as measured by the linear code and full simulation.127

A.1 Keck radial velocity data for HD128311, HD31253, HD218566, HD177830, HD99492,
and HD74156. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

viii



Abstract

Numerical Adventures in Exoplanet Formation, Detection and Characterization

by

Stefano Meschiari

In this thesis I investigate the use of numerical modeling techniques applied to the study

of extrasolar planets. In the first part (Chapters 2-4) I discuss the algorithms and applications

of the Systemic code in the detection and characterization of exoplanets through radial velocity

(RV) and transit timing observations. The second part (Chapters 5-6) deals with hydrodynamic

and N -body simulations applied to the study of planet formation. For each chapter, I provide

a detailed review of the numerical techniques involved in the respective introductions.

Chapter 2 discusses several aspects related to the dynamical fitting of RV observations.

I introduce the Systemic package I developed, and describe several applications of the numerical

algorithms developed for the code. As a case study, I investigate the dynamical fitting of

HD128311 and the characterization of the 2:1 mean motion resonance (MMR) through radial

velocities and a small number of central transit times. I present an updated Keck RV dataset

and show that the addition of three years of new RV coverage yields only a modest improvement

in the characterization of the system.

In Chapter 3, I study planet detection through transit timing variations (TTV), devi-

ations from linear transit ephemeris that can be caused by additional planets exerting gravita-

tional perturbations on a transiting planet. I created synthetic RV and TTV datasets for several

planetary configurations, with the intent of modeling timing observations from the Kepler mis-

sion. I use the algorithms described in Chapter 2 to solve the so-called “inverse problem”, the

task of characterizing additional, non-transiting planets through their signatures in the RV and

ix



TTV datasets of transiting. I show that the space of the best-fitting solutions may be remark-

ably degenerate if the perturbing planet is not observed directly (e.g. as in the case of Kepler

19-c), and that more extensive RV coverage can be used to break the degeneracy.

In Chapter 4, I present the discovery of four new exoplanet candidates character-

ized with Keck/HIRES RV observations. The new exoplanets discovered around the host stars

HD31253, HD218566, HD177830 and HD99492 comprise masses between M sin i ≈ 27M⊕ to

M sin i ≈ 8MJ . Of particular interest for the scope of this thesis, HD177830 is currently the

only multiple-planet system orbiting a binary with aB < 100 AU. This separation is slightly

below the limit at which the binarity of the system influences planet formation. Finally, we

strengthen the case for the non-detection of HD74156d, the detection of which was claimed to

be in accordance to the “Packed Planetary System” hypothesis.

Chapter 5 explores a class of self-gravitating instabilities driven by features in the

surface density of protoplanetary disks (groove modes). The emergence of these instabilities is

studied via a generalized eigenvalue code and full two-dimensional hydrodynamical simulations.

I find that gaps in the surface density, such as those naturally carved in response to the formation

of a giant planet, can excite a global two-armed mode at comparatively lower disk masses than

in absence of such gaps.

Chapter 6 describes a new code, Sphiga, used to explore the issue of forming planets in

circumstellar (CS) or circumbinary (CB) orbits during the planetesimal accretion phase and its

feasibility within the core accretion framework. I investigate the balance between accreting and

erosive impacts for the circumbinary planet Kepler 16-b and the feasibility of planet formation

in situ as opposed to migration of an embryo formed at or outside the ice line.

This dissertation includes reprints of the following material: (a) Meschiari, S., & Laugh-

lin, G. 2008, ApJ, 679, L135; (b) Meschiari, S., Wolf, A. S., Rivera, E., et al. 2009, PASP, 121,

1016; (c) Meschiari, S., & Laughlin, G. P. 2010, ApJ, 718, 543; (d) Meschiari, S., Laughlin, G.,
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Vogt, S. S., et al. 2011, ApJ, 727, 117; (e) Meschiari, S., 2012, ApJ, in press.
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Io stimo più il trovar un vero, benché di cosa leggiera, che ’l disputar lungamente

delle massime questioni senza conseguir verità nissuna.

– Galileo Galilei

D

To doubt everything or to believe everything are two equally convenient truths;

both dispense with the necessity of reflection.

– Henri Poincarè

D

[...] Have no respect whatsoever for authority; forget who said it and instead look

what he starts with, where he ends up, and ask yourself, “Is it reasonable?”

– Richard Feynman

To the love of my life and my family:

♥.

xii



Acknowledgments

I want to thank my advisor Greg Laughlin for his continued guidance, generosity and creative

input throughout my undergraduate and graduate career. His foresight in shaping my academic

path through gentle prodding, while ensuring I was conducting my research in an independent

manner, made the road to this thesis a fulfilling one. I also want to thank Daniel Fabrycky and

Steve Vogt for showing me a successful career path.

I am greatly indebted with my fellow graduate students, Anna, Anne, Feña, Javiera,

Judy, Rachel, Valentino and everyone else. Grad school would have not been the same with-

out frequent coffee (and ice cream, and latte) breaks, campus strolls, and chit-chats in the sun

(sometimes involving science, too!). This dissertation year was made just bearable by the con-

stant commiseration with my officemate Judy, without whom the job search would have been

only half as “fun”.

A lot of friends cheered and supported me to the end of this journey. There are too

many people to mention and too many languages involved to really do justice to the amount

of love and friendship that I am fortunate to be surrounded with. My dearest friends from

Italy, Andrea, Claudia, Daniela, Federica, Giulia, Lucia (x2) and Pietro were there during the

whole trek, and we have shared each other’s good luck and sorrows. My American family was

just as fundamental to my sanity and happiness in these six years in the United States. Finally,

during those long nights coding, many friends kept me company in a little window on the screen:

Lucy and Ethel, Liz and Jack, Homer and Marge, Fran and Maxwell, Dorothy, Rose, Blanche

and Sophia, Fry and Leela, Ted and Barney, Frasier and Niles, Jerry and Elaine, Hyacinth

B-U-C-K-E-T and many more.

My family, Silvano, Patrizia and Valentina had faith in me since the beginning, helped

me grow and be proud of who I am. None of this would have been possible without their help,

xiii



affection and strength. My partner Daniel helped me more than anyone else with his patience,

his love and, most of all, his ability to make me happy at any given time. He gave me a goal to

strive for with my work.

Finally, I dedicate this thesis to my honorary nephews who were born during graduate
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Chapter 1

Introduction

The size and variety of the planetary census has come a long way from the discovery

of the first hot Jupiters around main-sequence stars. Driven by increasingly prolific and precise

detection methods, astronomers are pushing the observational envelope to include long-period

giants, super-Earths and terrestrial-mass, habitable planets (the “holy grail” of exoplanets). In

order to extract maximum value from these expensive long-term surveys, analysis techniques

and algorithms have also become more sophisticated and adept at teasing out planetary signals

from stellar noise. Thanks to this combination of observational and reduction advances, the

wealth of diverse planet candidates is ushering an era where observations can provide detailed

insights into the physics of planet formation in regimes very different than those of our own

Solar System. In parallel, observations of protoplanetary disks and young stellar systems at

various stages of their evolution are providing new constraints for theories of planet formation.

In spite of these observational advancements, several fundamental shortcomings persist

in our understanding of the process of planet formation. Due to the enormous dynamical range

involved in the assembly of planetary embryos (& 108 cm) from dust (∼ 1 − 10µm) within the

core accretion paradigm, it is presently beyond our computational capabilities to attempt to

1



model planet formation with end-to-end simulations. Even if that were feasible, models still

need to address the uncertainties surrounding the relative importance of the many physical

processes at play and the transition between different scales of planetary buildup.

Since our Solar System and the large majority of planet candidates discovered to date

orbit single stars, our understanding of planet formation is firmly rooted in dynamical systems

where the bulk of the mass is concentrated in the central body and the bulk of the angular

momentum in the protoplanetary disk. However, a growing fraction of the planetary census is

represented by planet candidates belonging to a binary or multiple system, in either circumstel-

lar or circumbinary configurations. Far from being exotic oddities, planet candidates in binary

systems represent an even more stringent test of the environments in which our theories of planet

formation are applicable, due to the more extreme conditions in which planetary assembly must

be successful. The recent discovery of Kepler 16-b, Kepler 34-b and Kepler 35-b, among the

more than 2,000 eclipsing binaries monitored by Kepler , implies a ≈ 1% frequency of circumbi-

nary planets with comparable transit probabilities. There is also considerable theoretical and

observational interest in the α Centauri system, and the feasibility of forming a terrestrial planet

in the habitable zone of either stellar component. The system is composed of a close binary

with nearly solar-mass components and moderate eccentricity, orbited by a distant third star

(Proxima). The system provides excellent candidates from an observational point of view due to

their brightness, absence of long-term variability, position in the sky and relatively high metal-

licity. These appealing features made the system a long-term target for several radial velocity

surveys and the subject of numerous theoretical works. However, a straightforward extension

of the standard planet formation paradigm in the presence of the binary companion gives rise

to a different set of weaknesses in our theory of planet formation, including the ‘planetesimal

bottleneck’ discussed in this work.

This dissertation investigates two broad themes. The first part deals with planet detec-

2



tion using radial velocity (RV) and transit timing observations, using both synthetic test cases

and actual data taken at the Keck telescope (§2, §3, §4). The second part investigates planet

formation in two regimes outside the parameter space well-trodden in the literature, namely,

giant planet formation in a moderately massive protoplanetary disk (§5) and planet formation

in a circumbinary configuration (§6).

In the present chapter, I begin with a broad introduction to the current state of exo-

planetary science and some of the themes that will be discussed in this dissertation. In Section

(1.1), I briefly review the methods for detecting planet candidates and the composition of the

current planetary census. In Section (1.2), I present a broad overview of planet formation. In

Section (1.3), I review some of the numerical schemes used in the rest of the dissertation.

1.1 Planet detection

Since the stunning discoveries of the first planets orbiting a pulsar (PSR 1257+12;

Wolszczan & Frail 1992) and the first planet around a main-sequence star (the hot Jupiter 51

Peg; Mayor & Queloz 1995), planetary science has witnessed a renaissance, becoming once again

a fashionable and fast-moving field. Figure 1.1 is a testament to this renewed interest and the

role of exoplanet detection in driving both theoretical and observational work.

Figure 1.2 shows a mass/semimajor axis/eccentricity diagram of the known exoplanet

candidates. To date, 763 candidates have been detected using a variety of methods and survey

programs1. Each technique is naturally biased towards different regions of the diagram: for

instance, radial velocity and astrometry are better suited to detecting long-period planets than

transits, and direct imaging is most sensitive to bright, massive planets at even larger distances.

Furthermore, masses may be known only as a lower limit (in the case of radial velocity) or even

1http://www.exoplanet.eu, retrieved on April 29, 2012
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unknown (in the case of transits). In the latter situation, only radial velocity follow-up or the

detection of transit timing variations can constrain planetary masses.

Nonetheless, it is possible to discern a number of clear features in Figure 1.2 indepen-

dent of these limitations:

• The distribution of massive exoplanets is bimodal in period, with a population of hot

Jupiters clustering around a period of a few days and long-period eccentric planets with

P > 200 d. Outside a few AUs the limited time span of RV surveys prevent the secure

detection of longer-period planets.

• A new population of relatively low-mass planets (super-Earths, M . 10M⊕) has been

uncovered by precise RV (e.g. Rivera et al. 2005, Mayor et al. 2009a, Vogt et al. 2010) and

transit observations (e.g. Léger et al. 2009); on the other hand, there is a distinct lack of

planets with 10 .M . 100M⊕ and P . 50 days, despite the relative ease of detection.

• Correcting for detection biases in the mass domain, the planet frequency increases at

smaller masses (Butler et al. 2006, Howard et al. 2011).

• Planets with P . 10 days are tidally circularized, whereas planets at larger distances have

an eccentricity distribution peaking at e ≈ 0.25, with a long tail. Such high eccentricities

are presumably excited by planet-planet scattering (e.g. Jurić & Tremaine 2008) or Kozai

oscillations (Fabrycky & Tremaine 2007), as is likely the case of the super-eccentric planet

HD80606 (Wu & Murray 2003, Laughlin et al. 2009).

Explaining these features and other correlations, including mass-distance and metallic-

ity correlations, is the domain of planet synthesis models (e.g., Ida & Lin 2004, Mordasini et al.

2009). The validity of these models, which distill the current state of planet formation theory

into large-scale Monte Carlo simulations, can be tested by comparison with the observed plan-
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etary census. Therefore, in order to test and push theory forward, it is imperative to continue

improving the completeness of the sample (together with the pursuit of the alluring habitable

Earth twins).

In the next few sections we describe the radial velocity and transit detection methods.

Given the rapid progress in the field since the writing of Chapters §2 and §3 (thanks in particular

to the launch of Kepler), we will review some of the most recent literature, where appropriate,

or point the reader to up-to-date references. For the sake of brevity, we will not cover other

successful techniques, including microlensing (Bennett 2008), astrometry (Benedict et al. 2002,

Bean & Seifahrt 2009), stellar pulsations (Silvotti et al. 2007), direct imaging (Chauvin et al.

2005, Kalas et al. 2008, Marois et al. 2008) and pulsar timing (Wolszczan & Frail 1992).

1.1.1 Radial Velocity

The radial velocity method searches for periodic Doppler shifts in the absorption spec-

tra of stars caused by motion along the line of sight as the star orbits the center of mass of the

system. To first approximation, the resulting signal is a linear superposition of Keplerian orbits

with semi-amplitude

Kj =

(
2πG

Pj

)1/3 Mj sin ij
(M? +Mj)2/3

1√
1− e2

j

, (1.1)

where M? is the mass of the star and Mj , ej and ij are mass, orbital eccentricity and orbital

inclination to the plane of the sky of the j-th planet, respectively (Murray & Dermott 2000). In

general, mass and inclination cannot be determined independently from the RV signature alone;

therefore, we can only infer the minimum mass Mj sin ij .

The radial velocity signal has to be extracted from spectral shifts with incredible preci-

sion: better than 12 m/s for a Jupiter-like planet at 5.2 AU, 3 m/s for the typical super-Earth and

better than 0.1 m/s for an Earth-like planet in the habitable zone. These translate to spectral
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shifts of the order of 10−4 to 10−6Å. Worse, a näıve exposure taken with the highest-resolution

spectrograph available would still be ineffectual due to thermal flexures and pressure fluctua-

tions, which alone produce shifts of the order of hundreds of m/s and completely overwhelm any

planetary signal.

Modern precision radial velocity sidesteps this issue by employing high-resolution echelle

spectrographs and taking simultaneous reference spectra for continuous calibration of the stellar

spectra. The two prominent approaches to coping with drifts are the thorium-argon reference

(e.g. ELODIE, CORALIE, HARPS; Mayor et al. 2003) and the iodine absorption cell techniques

(e.g. HIRES; Vogt et al. 1994).

The latter technique, used to obtain the data in Table A.1, employs an absorbing cell

filled with low-pressure gaseous iodine. This cell is interposed on the light beam, placing a forest

of strong absorption lines on top of the shifted stellar spectrum. The resulting spectrum will be

composed of a blend of iodine and stellar lines, both suffering from instrumental drifts in the

same manner and convolved with the point spread function (PSF) of the instrument:

Iobs(λ) ∝ [Tiodine(λ)Itemplate(λ+ ∆λ)] ∗ PSF (1.2)

(Butler et al. 1996). In Equation (1.2), Tiodine is a high-resolution spectrum of the iodine

cell, Itemplate is a high-resolution template spectrum of the star and the ∗ operator indicates a

convolution. Thus, a typical observing night follows these steps to obtain the shift ∆λ:

1. A sample of targets is selected, depending on the observability conditions of each object

and instrumental constraints (e.g. altitude/azimuth restrictions, telescope slews, stellar

brightness, etc.).

2. A featureless star (typically, a B star) is observed through the iodine cell held at a fixed

temperature, yielding a spectrum of the iodine cell convolved with the PSF of the instru-

ment. The PSF is then derived by comparison with tabulated spectra of iodine, and used
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to deconvolve the stellar templates.

3. Several flat fields are taken to compensate for pixel-to-pixel sensitivity variations in the

CCD.

4. For each star, the spectrum is divided into several bins and modeled using Equation 1.2.

The shift ∆λ/λ is derived by minimizing the χ2 of the model and the PSF parameters.

Thanks to these instrumental advances, instrumental error budgets of better than 1

m/s are now attainable. Nonetheless, a number of intrinsic limitations make reaching the sub-

m/s precision, which is required to detect Earth-mass planets around solar-type stars (K ≈ 0.1

m/s), a challenge.

Photon statistics establishes an unavoidable baseline Poisson noise, due to the quantum

fluctuations in the electromagnetic field. However, this can be minimized by restricting the

sample to bright stars such that photon noise is a small fraction of the error budget, or by

increasing the number of photons collected (e.g. by employing a more efficient CCD or a larger

telescope mirror). More troublingly, intrinsic stellar noise, both on the short term (of the order

of tens of minutes; e.g. atmospheric oscillations, granulation, and other magnetic activity) and

long term (e.g. magnetic activity cycles) can dominate the error budget in the form of “jitter”.

Short-term activity can generally be averaged out by combining several exposures, bringing the

error budget down to & 0.7 m/s for the quietest stars. This precision can generally only be

achieved with old late-G to early-K stars showing small RV scatter and low activity indicators.

However, by the very design of such a survey, this presents the risk of only selecting stars that

do not display significant RV scatter, and therefore may not harbor any planet at all (e.g. Pepe

et al. 2011). For an in-depth review of the noise sources that have to be taken into account in

high-precision RV surveys, see Lovis & Fischer (2010) and references therein.

Overall, this technique has been the most prolific in terms of number of planets discov-
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ered; as of April 2012, 399 planets were first detected through their radial velocity signal. The

RV technique is intrinsically biased towards planets that produce large Ks (Equation 1.1): mas-

sive, short-period planets will be more easily detected, which explains the initial preponderance

of hot Jupiters among planet candidates. Long-period and very eccentric orbits, on the other

hand, suffer from inadequate phase coverage (e.g. Cumming 2004, Cumming et al. 2008).

1.1.2 Transits

Transit surveys look for photometric variations consistent with planets eclipsing their

parent star. Since the detection of transits for HD209458 b (Charbonneau et al. 2000, Henry et al.

2000), the transit method has acquired an increasingly instrumental role in the advancement

of exoplanetary science. This is a result of the low cost of bootstrapping automated networks

of telescopes for photometric monitoring (e.g. Alonso et al. 2004, Charbonneau et al. 2009,

Bakos et al. 2011), the advent of dedicated space missions (such as CoRoT; Léger et al. 2009)

and even involvement of amateur astronomers (Gary 2009). The launch of Kepler in 2009 and

the following two years of continuous photometric monitoring of 150,000 target stars has further

accelerated the field, producing a large number of new, confirmed planets and “Kepler Objects of

Interest” (KOI)2. These new discoveries have extended the planetary sample into mass regimes

and system architectures previously unexplored (e.g. Lissauer et al. 2011, Doyle et al. 2011,

Gautier et al. 2012).

A planetary transit is a rare event, as only a small fraction

Ptr = 0.0045

(
1AU

a

)(
R∗ +Rpl
R�

)[
1− e cos(π2 −$)

1− e2

]
(1.3)

of orbital elements is geometrically aligned to produce an eclipse along the line of sight; addition-

ally, only a small fraction of the orbital period is spent in transit. Therefore, transit campaigns

2See http://kepler.nasa.gov/Mission/discoveries/ for an up-to-date list of confirmed planets
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have to survey a large number of stars looking for photometric variations. When several transits

are observed, the period, phase, impact parameter and inclination are precisely determined by

the flux loss, timing and duration of the eclipses. When occultations (i.e. when the planet

is hidden by the parent star) are detected, they place tight constraints on a combination of

eccentricity and argument of pericenter as well (Deming et al. 2007).

1.1.3 Mass determination and Transit Timing Variations

Obtaining the actual mass of candidates that are detected through their transits can

be challenging: the flux drop observed in transit only determines the ratio of the planetary ra-

dius to the stellar radius. Therefore, follow-up with radial velocity observations is often used to

determine the true masses of the candidates and ascertain their planetary status (e.g. Borucki

et al. 2010b). Analogously, follow-up of radial velocity observations with transit monitoring

can be used to determine true masses (as the inclination is determined from the impact pa-

rameter). As an example, Figure (1.3) shows radial velocity (from HARPS, KECK and HET)

and transit timing (including Hubble, Spitzer, and amateur observations) for the Neptune-mass

planet GJ436 b (Deming et al. 2007). In this case, both primary transits and occultations were

detected, accurately determining the orbital elements. Radial velocities establish the true mass

of b through the semiamplitude K; datasets from different observatories can be combined to

produce a longer baseline, provided they are appropriately shifted to a common zero-point offset.

Follow-up via RV observations is not always practical, or even feasible. This can be due

to the low mass of the planets (e.g. Lissauer et al. 2011), faintness of the star (Ford et al. 2012)

or high stellar activity (Queloz et al. 2009). This is especially problematic for Kepler stars, due

to the faintness and high stellar activity of its sample (Gilliland et al. 2011). Additionally, its

stated mission goals are the detection of small, rocky planets in the habitable zone, which are

at present outside the reach of Doppler surveys.
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Transit timing variations (TTV; deviations from a linear ephemeris of the eclipses, due

to the dynamical perturbation of one or more companions) provide a new avenue for confirming

planet candidates from transit observations alone. These deviations can be readily observed

with Kepler : Figure (1.4) shows, as an example, the TTVs for Kepler-18 c and d (Cochran et al.

2011).

A statistical analysis of the Kepler sample showed that at least 11% of systems showed

deviations suggestive of TTVs (Ford et al. 2011). Chapter §3 (Meschiari & Laughlin 2010;

written before the first Kepler data became available) reviews some of the difficulties associated

with this method when the perturbing object is non-transiting (see also Nesvorný 2009, Veras

et al. 2011, Boué et al. 2012), due to degeneracies in the fitting process. Such complications

impeded the full characterization of Kepler-19 c (Ballard et al. 2011). However, when all planets

participating in dynamical interactions transit, it is possible to derive constraints on their mass

that confirm their planetary status (e.g. Lissauer et al. 2011, Ford et al. 2012, Fabrycky et al.

2012a).

An analogous procedure can be applied to eclipsing timing variations (ETVs), which

are commonly detected in the Kepler binary catalog (Slawson et al. 2011). ETVs were used to

determine the planetary nature of the circumbinary planets Kepler-16, 34 and 35 b (Doyle et al.

2011, Welsh et al. 2012).

1.2 Planet formation

In this section we briefly cover the stage of planet formation where planetesimals as-

semble into embryos. We refer the reader to the reviews of Lin & Papaloizou (1993), Lissauer

(1993), Papaloizou & Lin (1995), Papaloizou & Terquem (2006), Armitage (2010), Chambers

(2010), Kley & Nelson (2012) for a more comprehensive overview of planet formation.
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Gas disk
Surface density Σ = Σ0(R/1 AU)−p+1

Σ0 1700 g cm−2

p 2.75
Gas scale height H = H0(R/1 AU)−q+3/2

H0 0.05 AU
q 0.5

Planetesimals
Radius Rp = 1-100 km

Density ρp ≈ 3 g cm−3

Encounter regimes { vesc, vweak, vstrong } ms−1

1 km { 1.29, 3.5, 10 }
5 km { 6.47, 16.6, 54.2 }

10 km { 12.9, 33.1, 108 }

Table 1.1: Representative parameters for planetesimal accretion models.

1.2.1 Requirements for planetesimal accretion

This section focuses on the growth beyond km-sized planetesimals. Table (1.1) shows

the relevant quantities in this stage. In this regime, bodies will primarily grow due to the

combined action of planetesimal-planetesimal gravitational interaction, collisional encounters,

and gas drag.

For purely head-on encounters, the geometrical cross section of a planetesimal is given

by

Γ = πR2
p (1.4)

However, at the km-sized scale, the gravitational attraction between bodies cannot be neglected,

and the cross section is augmented by a gravitational focusing factor:

Γ = πR2
p

(
1 +

v2
esc

σ2

)
(1.5)

where vesc is the escape velocity

v2
esc =

2G(m1 +m2)

Rp,1 +Rp,2
(1.6)

and σ is the local velocity dispersion of the planetesimals. The escape velocity represents a
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critical speed in determining the balance between accretion, rebound, and disruption of plan-

etesimals.

For a given collision at a speed dv (with velocity at infinity v2
∞ = dv2 − v2

esc), accre-

tion can only happen when the rebounding velocity vreb = εdv (where ε < 1 is the rebounding

coefficient) is smaller than the escape velocity, i.e. dv < vesc/ε. Therefore, accretion requires

v∞ ∼ σ < vesc. When this condition is satisfied (i.e., as long as the velocity dispersion, which

depends on the local mean planetesimal eccentricity and inclination, is not too large) a phase

of runaway accretion occurs, such that ṁp ∝ m
4/3
p (Chambers 2010). This phase lasts approx-

imately 105 years, during which larger planetesimals can become 50-100 times more massive

than the swarm (Kokubo & Ida 2000). Once stirring from the gravitational interaction raises

the velocity dispersion of the planetesimals, a phase of oligarchic growth ensues, where a few

large embryos experience slower, orderly growth until they exhaust their feeding zones.

The onset and duration of runaway growth depends on the balance between excita-

tion due to gravitational stirring (between planetesimals, or due to an external perturbation)

and damping mechanisms (dynamical friction, inelastic collisions and aerodynamic gas drag).

Assuming that σ ≈ eP vkep, then we require that eccentricities are damped to small values

(Kobayashi & Ida 2001)

eP <
vesc
vK
≈ 0.001

(
m

1019g

)1/3(
ρ

3g cm−3

)1/6 ( a

1AU

)1/2
(
M∗
M�

)−1/2

. (1.7)

1.2.2 Gas drag

For km-sized objects, aerodynamic gas drag is still the dominant interaction with the

gas disk (tidal torques become important at 10−4 − 10−2M⊕). In the Stokes drag regime, the

planetesimal suffers a torque due to the headwind of the gas:

T = πCD
R2
papρg

2mp
(δv)2 (1.8)
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where δv = vp − vg is the relative speed of the planetesimal to the gas (Weidenschilling 1977).

For circular orbits, δv determined by the sub-Keplerian speed of the gas due to its pressure

support, such that δv ∼ H2
0vK ≈ 2 × 10−3vK ; in this regime, damping is very weak. When

significant eccentricity and inclination develop, gas drag becomes important in damping the

velocity dispersion. The relevant timescale is given by

tdamp = L/T ≈ 4

3
C−1
D M∗

ρp
ρg

Rp

a
1/2
p

(δv)−2 (1.9)

where L is the angular momentum of the planetesimal, CD is a coefficient of order unity and ap

is the orbital distance of the planetesimal. For eP ∼ 10−3, a = 1 AU, RP = 10 km, we find a

timescale tdamp ≈ 106 years, which is sufficient to damp stirring when planetesimals are small

(Armitage 2010).

1.2.3 Erosive encounters

For encounter speeds approaching or larger than the escape velocity, the outcome of a

planetesimal collision depends on the specific energy

Q =
mpv

2

2Mp
(1.10)

where mp and vp are the mass and velocity of the smaller impactor and Mp is the mass of

the massive target. The threshold Q∗ at which a body shatters (but remains part of a larger

fragment) as opposed to complete erosion (in which fragments disperse) is largely determined

by a combination of experiments and numerical simulations.

Several estimates of the accretion/disruption limit exist (e.g. Thébault et al. 2006).

Chapter §6 follows the prescription of Stewart & Leinhardt (2009) to classify encounters in

two limiting regimes (“weak” materials and “strong” materials). A few representative collision

speeds in the accreting and erosive regimes are shown in Table (1.1).
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1.2.4 Planetesimal collisions in binary environments

The treatment of planetesimal accretion in the previous sections have assumed that

planetesimal growth occurs in a single-star environment, where the velocity dispersion, and

therefore impact speed, is expected to be low. However, external perturbations, such as those

exerted by a stellar companion, can act to stir the planetesimals and increase eccentricities

throughout the disk, raising the impact speeds past the threshold of erosive encounters.

For a binary system of mass ratio µ =M2/(M1+M2), separation aB , and eccentricity

eB , the eccentricity of a planetesimal at a distance a will oscillate around the forced eccentricity

(Marzari & Scholl 2000, Moriwaki & Nakagawa 2004):

ef =
5

4

a

aB

eB
(1− eB)2

(1.11)

when the binary is external to the planetesimal (circumstellar orbit), and

ef =
5

4
(1− 2µ)

aB
a

eB (1.12)

when the binary is inside the planetesimal’s orbit (circumbinary orbit). N -body simulations

where planetesimals are placed on initially low-eccentricity and inclination orbits followed the

evolution of encounter speeds as a function of semi-major axis and planetesimal size (e.g. Marzari

& Scholl 2000, Moriwaki & Nakagawa 2004, Thébault et al. 2004, Scholl et al. 2007, Thébault

et al. 2006; see also Chapter §6). At the beginning of the simulation, eccentricities quickly

increased beyond the critical value of Equation (1.7); however, orbits were strongly aligned and

encounter velocities relatively low, far lower than expected if orbits were randomized; in that

case, dv ≈ eP vK . Subsequently, as the frequency of eccentricity oscillations increases and only

weak phasing persists (Figure 6.2), planetesimals on crossing orbits start colliding at different

phases, leading to high encounter velocities (Thébault et al. 2006). The presence of a gas disk

only worsens the issue, as gas drag acts to phase planetesimals in a size-dependent fashion,
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Code Described in
Systemic §2 http://www.oklo.org
Sphiga §1.3.1 Available upon request
Disc-o-Mode §5 Available upon request

Table 1.2: List of numerical codes used in this dissertation

leading to disruptive encounters between different-size planetesimals (Thébault et al. 2008).

This difficulty leads to a “planetesimal bottleneck” in the process of planet formation

around binary stars (for a review of this issue, see Thebault 2011). Earlier stages are likely to

be hampered by the binary of the system as well (e.g. grain formation and sticking; Nelson

2000, Zsom et al. 2011), although the literature on this topic is still incomplete. Somewhat

reassuringly, if planetesimals were able to form and accrete, then later stages involving the

build-up of cores from Moon-sized embryos are generally able to proceed rather undisturbed in

almost the entire dynamically stable region (Quintana et al. 2002, Guedes et al. 2008). More

sophisticated treatments typically exacerbate the issue (e.g. through additional perturbations

from the gas disk), leading to the troubling conclusion that planet formation is hindered or

altogether stopped for a large semi-major axis range around the stellar components. This

becomes a paradox for planets such as HD196885-b, where ostensibly no region around the

stellar primary is conducive to planet formation (Thebault 2011). Chapter §6 discusses this

topic further in the context of circumbinary planet formation.

1.3 Numerical techniques

Table (1.2) lists a few of the numerical codes written to run the simulations described

in this thesis. In the following section, we describe the Sphiga code in detail.

19



1.3.1 SPHIGA: Numerical algorithm and tests

We perform the simulations described in §6 using a new hybrid code (Sphiga). This

class of codes are termed “hybrid” because they simultaneously integrate the motion of Np test

particles (the planetesimals) and N∗ massive particles, and the hydrodynamical evolution of a

protoplanetary disk. The planetesimals are evolved according to the gravity of the massive bodies

(typically, a binary system) and the gas, and subject to aerodynamic drag, which is determined

locally to the body. The full machinery for calculating the hydrodynamical evolution of the

disk constitutes the bulk of the code, but can be turned off and substituted for a static gas

background for computational convenience.

The code presented in this section models the hydrodynamical evolution of the disk

using Smoothed Particle Hydrodynamics (SPH) method (Gingold & Monaghan (1977), Lucy

(1977); see Monaghan (1992), Rosswog (2009), Price (2012) for recent reviews). While the gen-

eral idea of local sampling of hydrodynamical quantities is common to all SPH formulations, in

practice the details of the algorithm diverge significantly among the literature. In particular,

the treatment of artificial viscosity, boundary corrections and time-stepping may produce quite

different (oftentimes inaccurate) outcomes; this is especially true in the case of circumstellar

disks, which are sensitive to the correct integration of shear flows. Our algorithm follows most

closely the modern SPH formulations of Price (2004), Rosswog & Price (2007) and Lodato &

Price (2010). Sphiga implements a number of features (gas self-gravity in two and three di-

mensions, sink particles with corrected boundary conditions, accurate treatment of the adaptive

smoothing length) which makes it better suited to follow the evolution of a circumstellar disk

compared to other implementations. In the following sections, we briefly describe the numerical

scheme and a few tests to verify its validity.
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1.3.1.1 Hydrodynamics

SPH is a Lagrangian scheme for solving the equations of hydrodynamics . The evolution

of the gas quantities is computed by integrating the equations of motion of Ng gas particles.

Sphiga employs the grad-h formalism of Rosswog & Price (2007), whereby the SPH equations

are derived from a discretized Lagrangian, ensuring conservation of energy, linear and angular

momentum. In this scheme, the momentum and internal energy (in absence of dissipation)

equations for particle a take the form

v̇a = ga −
∑
b

mb

[(
Pa

Ωaρ2
a

)
∇aW (ha) +

(
Pb

Ωbρ2
b

)
∇aW (hb)

]
(1.13)

u̇a =
∑
b

mb

(
Pa

Ωaρ2
a

)
[(va − vb) · ∇aW (ha)] (1.14)

where ga accounts for all non-hydrodynamical forces (e. g., gravity, indirect terms due to

an accelerating frame), Pa and ρa are the pressure and density associated with the particle,

respectively. The term Ωa takes into account the spatial and temporal variation of the smoothing

length h, and is defined as

Ωa =

[
1− ∂ha

∂ρa

∑
b

mb
∂W (ha)

∂ha

]
(1.15)

In the Sphiga code, the smoothing kernel W is set to the cubic B-spline (Monaghan 1992),

which has a compact support; therefore, summations are restricted to neighborhoods of radius

2h.

Finally, the density ρ and smoothing length h are computed simultaneously by iterating

the equations

ρa =
∑
b

mbW (ha) (1.16)

ha = η

(
ma

ρa

)1/ν

(1.17)
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using the Brent method (Press et al. 1992) until sufficient accuracy is achieved. ν is the number

of dimensions, and η sets the typical number of particles that will be involved in the interpo-

lation. We use η = 1.2 for all our simulations; this ensures that at least ≈ 20 particles (in two

dimensions) or ≈ 50 particles (in three dimensions) are used to approximate fluid quantities.

The code allows for several different equations of state (EOS), including an ideal gas

law,

P = (γ − 1)ρu (1.18)

a locally isothermal EOS appropriate for disks with c2s(R) = cs,0R
−p (for p = 1/2 this corre-

sponds to a disk with constant aspect ratio hD = cs,0), and a polytropic EOS where

P = Kργ (1.19)

The last two equations of state absolve the need to follow the energy equation.

We use the standard SPH artificial viscosity (Monaghan 1992) in all of our simulations

to handle shocks and to avoid interparticle penetration. The artificial viscosity prescription adds

two additional dissipation terms to the velocity and energy equations:

v̇a,diss = −
∑
b

mbΠab∇aW (1.20)

u̇a,diss =
1

2

∑
b

mbΠabvab · ∇aW (1.21)

where ∇aW = 1/2 [W (ha) +W (hb)]. The artificial viscosity contributions are defined as

µab =
h̄min [(va − vb) · (ra − rb), 0]

r2
ab + η′2h̄2

(1.22)

Πab =
−ᾱc̄sµab + β̄µ2

ab

ρ̄
(1.23)

where barred quantities represent averages (X̄ = [Xa+Xb]/2), α and β are numerical coefficients

that control bulk and shear viscosity, and η′ ≈ 0.01 avoids divergences when rab → 0. Since

most of our simulations involve shearing disks (where the artificial viscosity prescription would
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be active at all times, even in absence of shocks), it is crucial to ensure that that artificial

viscosity is minimized in the absence of shocks, while at the same time ensuring that shocks are

resolved correctly. In our simulations, we follow the prescription of Morris & Monaghan (1997).

The artificial viscosity coefficient α is evolved for each particle using an additional evolution

equation

α̇a = −αa − αmin
τa

+ Sa (1.24)

whereby the decay timescale τa = ha/0.1cs,a and the source function is Sa = max[−(∇ · v)a, 0]

restrict the growth of artificial viscosity to regions where compressional flows are present. We

typically restrict the range of α between 0.05 and 1.5. Additionally, we use the “Balsara switch”

α′a = αa
|∇ · va|

|∇ × va|+ |∇ · va|
(1.25)

(e.g., Balsara 1995, Lodato & Rice 2004) to further reduce the viscosity in pure shear flows. Al-

though unneeded artificial viscosity cannot be completely eliminated, the use of time-dependent

viscosity and the Balsara switch greatly reduced spurious viscous evolution of the disk.

Neighborhood lists are updated using the Barnes-Hut tree algorithm (Barnes & Hut

1986, Hernquist & Katz 1989). At each update of the particle positions, the tree is descended

recursively. For each particle i for which the neighborhood list is being updated, the algorithm

opens cells nodes that intersect with a cube of size of size 4hi centered around the particle. Once

a particle node is reached, the distance between the two particles is computed to check whether

the particle lies within 2hi, and is added to an array of neighbors. For non-pathological particle

distributions, neighbors are determined in O(N logN) time.

Gravity is computed using one of the following two methods. When the self-gravity of

the gas is neglected, a straightforward loop of all “star” particles accumulates the gravitational

acceleration for each particle. We use the spline-softened form of the gravitational potential of

Hernquist & Katz (1989) for a given softening length ε. If the self-gravity is computed, we reuse
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the tree structure built to compute the neighborhood lists to additionally store center of mass

and quadrupole moments for each node, and subsequently traverse the tree. The accuracy of the

gravity calculation is controlled by the cell opening tolerance θ. Tree descents, SPH summations

and gravity calculations are parallelized using OpenMP, where possible.

All units are normalized such that G = 1, R = 1 AU and the unit of mass is that of

the central body. The unit of time is P (R = 1)/2π, the orbital period at a unit distance from

the central star.

1.3.1.2 Planetesimal dynamics and collisions

Planetesimals are treated as test particles, interacting with the star particles through

gravity and with the gas disk through gravity and gas drag:

v̇a = g∗(ra) + gdisk(ra) + fdrag(ra) (1.26)

We approximate the aerodynamic drag force in the km-sized regime as (Weidenschilling 1977)

fdrag = −K|∆v|∆v (1.27)

where the drag coefficient K is given by

K =
πCdρgasR

2
p

2mp
(1.28)

and ∆v = vp − vgas. Physical radius Rp and mass mp of the planetesimals are constant in

the simulation (i.e., accretion or erosion outcomes following collision are neglected). We take

Cd ≈ 0.4, which is appropriate for spherical objects. In the case of two-dimensional simulations,

we approximate the three-dimensional gas density using the local surface density and scale height

(ρgas ≈ Σgas/
√

2πH).

The gas drag force depends on the properties of the gas flow local to the planetesimal.

We approximate these quantities using the SPH interpolation within a distance 2hp to the
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planetesimal, where hp is varied in time to ensure that at least ≈ 20 gas particles (50 in three

dimensions) participate in the interpolation. As in the previous section, neighbors are identified

by traversing the tree structure.

The number of planetesimals that can be evolved in a computer simulation is bound

by the sheer memory and CPU requirements for a realistic simulation. Therefore, we follow the

standard inflated radius prescription (e.g., Marzari & Scholl 2000, Thébault et al. 2006; and

others), whereby a small population of planetesimals (N = 5 − 20 × 103) can yield a sufficient

number of collisions to build encounter velocity statistics by setting the search radius to an

inflated radius ∼ 10−4−10−5 AU. Again, we identify planetesimals for which rab < Rinfl during

the SPH tree traversal, at a negligible computational overhead (compared to other simulations,

e.g., Marzari & Scholl 2000).

1.3.1.3 Time integration

The code supports a number of different integration schemes, including embedded

Runge-Kutta schemes (of order 2 and 3) and the drift-kick-drift (DKD) leapfrog. Time step is

limited by the SPH Courant condition and the acceleration criterion (e.g., Hernquist & Katz

1989), which is

∆tf,a = τf
√
ha/|v̇a| (1.29)

for gas particles, and

∆tf,a = τ ′f min
[√

rab/gab

]
(1.30)

for planetesimals (where the minimum is taken over all particles b accelerating the planetesimal

a). We take τf = 0.5 and τ ′f = 0.01.

For the simulations presented in this section and Chapter §6, gas particles and plan-

etesimals are evolved using the DKD leapfrog scheme. The leapfrog scheme presents a number
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of advantages compared to the Runge-Kutta schemes: the symplectic nature of the algorithm

conserves angular momentum, leading to a sufficiently accurate evolution of the semi-major axis

and eccentricity of planetesimals. We verify that our time stepping algorithm is sufficiently

accurate to model the evolution of the orbital elements of the planetesimals by running a refer-

ence N -body simulation comparing the leapfrog algorithm with the output of the Mercury code

(Chambers & Migliorini 1997). The Mercury code used the RADAU integrator and default

accuracy parameter. As a sample setup, we place 1,500 planetesimals in orbit around the A

component of the α Centauri system (with orbital elements of the binary companion taken from

Pourbaix et al. 2002). We ran both codes for 8× 103 years.

Figure 1.5 shows the distribution of semi-major axes versus eccentricities and longitude

of pericenter of the planetesimals. We note that the leapfrog algorithm appears to perform quite

well as compared to RADAU, deviating somewhat only in the inner part of the planetesimal

disk. This was expected, given that the low eccentricities (e . 0.15) involved in the simulation

make low-order schemes suitable to evolve the planetesimal orbits. While higher order schemes

would be preferable for maximal accuracy, the need to update and traverse the tree at each

force evaluation of the planetesimals makes them presently unfeasible. Finally, we note that

although the symplectic nature of the algorithm is formally lost due to the variable time step,

in practice large time step changes are isolated and should not influence the overall orbital error

significantly.

1.3.1.4 Boundary corrections

In gas simulations, we typically follow the evolution of the gas disk down to a minimum

radius Rin from a sink particle representing the central star(s). However, it is easy to see that

particles lying close to the boundary will spuriously accrete into the sink rather than maintaining

pressure-supported Keplerian orbits. The reason for this is a particle bias highlighted by the
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Figure 1.5: Snapshot at t = 8 × 103 years of the eccentricity (top panel) and longitude of
pericenter (bottom panel) of planetesimals evolved with the leapfrog integrator (black dots) and
Mercury’s RADAU (gray dots.).
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(2)

(1)

Figure 1.6: Sketch of the inner boundary of a SPH disk, with the neighborhood of two repre-
sentative particles highlighted. Particles lying within 2h from the inner boundary (1) will feel
a spurious inward pressure and viscosity gradient due to a lack of neighbors on the side of the
sink particle, causing excessive accretion. Particle (2) will be unaffected initially, but will suffer
the same spurious gradient once particles inside its orbital radius are accreted.
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pressure near the boundary.
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sketch in Figure 1.6. Particles lying within 2h of the inner radius will lack pressure support

on the side of the neighborhood facing the sink particle, and only particles away from the sink

participate in the SPH summations; in effect, it is a “vacuum”. This implies that there will be

two spurious accelerations pushing the particle towards the sink: a positive pressure gradient

(giving an inward radial acceleration) and a negative tangential viscosity, causing loss of angular

momentum. The net effect is that accretion at the inner boundary cascades to particles at large

distances, leading to an unrealistically high rate of accretion and the creation of a inner hole

(Figure 1.7, left panel). The right panel of Figure 1.7 shows the uncorrected density, pressure

and tangential viscosity profiles near the boundary of an SPH disk.

This numerical issue is due to the very nature of SPH summations, which rely on a

smooth distribution of particles at the smoothing length scale. Such a spurious activity near

the inner boundary can be seen in other SPH simulations of astrophysical disks (e.g Nelson

et al. 1998, Lodato & Rice 2004). Grid-based codes, for example, avoid this problem by setting

boundary values in ghost cells at the edge of the grid. For long-running simulations in which

we are interested in a correct behavior of the gaseous disk, this poses an important obstacle.

We adapted the procedure of Bate et al. (1995) to correct the hydrodynamical quantities at the

boundary in the following manner.

Firstly, we evolve a disk extending all the way to an open inner boundary of 10−2Rin

for a few orbits of the outer edge, to suppress any remaining spurious noise. This procedure

provides a snapshot at time t = t0 where the density ρ, the pressure P and tangential viscosity

force Fvisc (hereafter collectively denoted with the generic letter A) at the inner boundary Rin

are unaffected by the lack of particles towards the central star. We then select all the particles

with Rs < Rin + 4hi from the sink. For each particle, we group neighbors on each side from the

sink particle, and calculate their mean distance and Ā, yielding a linear slope for the density,

Ψ such that A(R) = Ψ(R − Rs) + A0. We can then integrate the analytic equation for the
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interpolated density to estimate the contribution from particles facing the sink (A1) and away

from the sink (A2). In 3D, this is:

A1 −A(Rs) =

∫ 2h

0

∫ π

0

∫ π/2

−π/2
(ΨR)W (r) sinφ r2 drdφdθ = −2πF3Ψ

(
31h4

140

)
= c3 ,

while in 2D,

A1 −A(Rs) =

∫ 2h

0

∫ π

0

(ΨR)W (r) rdrdθ = −2F2Ψ

(
h3

3

)
= c2

(where Fν is the normalization of the kernel in ν dimensions; Monaghan 1992). Doing the same

calculation for A2 attains a linear relationship between A2 (the correctly measured quantity)

and A1 (the quantity that needs to be corrected):

A1 = A2κν , κν =
1− cν/A
1 + cν/A

where A is the correct value. We then cut all particles within Rin and start the full simulation.

At each timestep tj , the correction κν is calculated by using the previously corrected value

A(tj−1) (at the first timestep t1, this is derived from the real gradient calculated at t0). Finally,

when appropriate (e.g., in circumstellar configurations), we slowly introduce the gravitational

perturbation of the secondary companion by linearly ramping up the mass, such that the final

mass is reached after four orbital periods.

This setup provides us with a framework for accounting missing neighbors self-consistently

and recovering reasonable gradients at the boundary (Figure 1.7). Figure 1.8 shows the mass

accreted by the central sink in presence of corrected boundaries, which is a fraction of the mass

that would be accreted without corrections.

1.3.1.5 Initial conditions and set up

The typical set-up we are interested in involves a protoplanetary disk and planetesimals

either in a circumstellar (CS; i.e., orbiting one of the binary components) or circumbinary
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(CB; i.e., orbiting around the barycenter of the central binary) configuration. The orbital

parameters of the binary are fixed, and the instantaneous position and velocity vectors of the

stellar components are determined by solving Kepler’s equation (2.3.1).

When simulations are conducted in the non-inertial astrocentric frame of reference, an

indirect term is added as an external force such that

g′ = g − MB

B3
B (1.31)

where B is the instantaneous position vector of the stellar companion.

The Sphiga code is suited to conduct both pure N -body (gas-free or with a fixed gas

drag term) simulations and simulations with an evolving circumprimary gas disk. In the latter

case, the disk can be modeled as a two-dimensional, vertically averaged disk or a fully three-

dimensional disk. The flow is initialized with zero radial and vertical velocity and sub-Keplerian

tangential velocity, given by

vϕ =

√
M∗
R
−

(α+ 2p)c2s,0
γR2p

(1.32)

All gas simulations have to start from a “quiet” N -body realization, where gas particles

are initialized on rings according to the prescribed surface density, at mutual distances such

that δR ≈ δRϕ (e.g., equal distance in radius and azimuth to the nearest neighbors). Although

this configuration is quickly erased by SPH relaxation from local pressure and viscosity forces

(Price 2012), it provides a less noisy start than a random rejection algorithm. Finally, for CS

configurations, the mass of the companion is initially zero to aid in the relaxation of the disk.

1.3.1.6 Numerical tests

We briefly present some of the numerical tests we performed to verify the correct

implementation of the SPH algorithm. In particular, we are concerned in the ability of the code
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to resolve shocks without excessive dissipation.

Figure 1.9 shows a snapshot of a one-dimensional Sod shock tube (Sod 1978, Monaghan

& Gingold 1983). The output of the Sphiga code is compared with Athena, a grid-base

hydrodynamical code (Stone et al. 2008). We find very good agreement between Sphiga and

Athena. A more stringent test, also shown in Figure 1.9, is represented by the Shu-Osher shock

tube. In this case, the code has to accurately follow both a Mach = 3 shock and a small-scale

smooth sine wave. Again, we find excellent agreement with the same test case run in Athena.

Following Murray (1996), we evolved an axisymmetric ring with a Gaussian surface

density distribution

Σ(r, t = 0) = exp

[
−
(
r − r0

l

)2
]

centered around r0 = 0.85 and with a half-width of l = 0.025, orbiting around a central particle of

unit mass. We used the standard SPH artificial viscosity, with a fixed α = 10. This corresponds

(in the continuum limit) to a kinematic viscosity term ν = (1/8)αcsh. An approximate analytical

solution for the evolution of the surface density for small t is given by

Σ(r, t) ≈ 1

r3/4
√

12πνt
×
∫ r2

r1

ρ3/4 exp

[
−
(
ρ− r0

l

)2
]

exp

[
− (ρ− r)2

12νt

]
dρ

(Murray 1996). This represents an excellent test of the correct implementation of SPH viscosity,

as it can be compared to the analytical viscous evolution. The left panel of Figure 1.10 shows

the output of a SPH simulation with 20,000 particles. The SPH ring density profile follows the

analytic profile quite well, implying that the viscosity is implemented correctly. The right panel

of Figure 1.10 shows the same simulation, but with the Balsara switch turned on. The use of

the latter prescription effectively turns off viscosity in this purely shearing flow, even for the

high value of α used.

Subsequently, we tested the three-dimensional, self-gravitating adiabatic collapse of an

isothermal sphere to verify the correctness of the implementation of the energy equation, viscos-
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Figure 1.9: One-dimensional shocks as resolved by ATHENA (blue line) and the SPH code (red
line). Panels 1-3: Density, pressure and velocity at t = 0.5 for the Sod shock test problem.
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ity and self-gravity. Figure 1.11 shows the energy evolution during the collapse of the isothermal

sphere; we found that total energy during the rapid initial collapse is typically conserved to bet-

ter than 2 × 10−3. Our results are in agreement with the output of TREESPH (Hernquist &

Katz 1989).

Our final test aims to verify the goodness of the SPH approximation in reconstructing

the local gas drag acting on a planetesimal. Given the inherent small-scale noisiness of the SPH

method, the local SPH summations used to compute the aerodynamic drag on the planetesimals

could be construed as too coarse for the scope of this study. To assess this possibility, a bench-

mark simulation free from the gas flow disturbances imposed by the gravity of the secondary

companion is set up as follows.

The system is set up with a binary with mass ratio µ = m2/(m1 + m2) = 0.4, semi-

major axis aB = 30 AU and eccentricity eB = 0.4. We take a quiet SPH snapshot of the

gas disk orbiting around the primary star, and fix the position of the gas particles relative to

the primary. This fixed arrangement of particles could be viewed as a lattice of gas particles

that the planetesimals travel through. Since the lattice still carries the properties of the gas

flow (density and velocity vector) attached to each particle, it represents a SPH realization of

a static gas background. To evaluate the quality of the SPH interpolation, we can therefore

compare outputs computed with a pure N -body simulation including an analytic gas drag term

(with the gas velocity given by Eqn. 1.3.1.5). We take a constant planetesimal radius of 5 km.

Figure 1.12 shows the orbital elements of 1500 planetesimals, distributed between 0.8

and 1.8 AU, at two stages in the simulation (4×103 and 8×103 years). Although the local SPH

summation will yield a somewhat noisy interpolation of the local ∆v (the difference between

the planetesimal and local gas velocity, used to calculate the aerodynamic drag) and density,

it does not appear to significantly affect the quality of the simulation, introducing only very

small deviations in the orbital elements of the planetesimals throughout the duration of the
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simulation.
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Figure 1.12: Snapshots comparing the eccentricity (top panel) and longitude of pericenter (bot-
tom panel) of planetesimals evolved with the N-body code with analytic gas drag (grey dots)
and the SPH method presented in this paper (black dots).
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Chapter 2

Systemic: A Testbed for Characterizing

the Detection of Extrasolar Planets

2.1 Abstract

We present the systemic Console, a new all-in-one, general-purpose software package for

the analysis and combined multiparameter fitting of Doppler radial velocity (RV) and transit

timing observations. We give an overview of the computational algorithms implemented in

the Console, and describe the tools offered for streamlining the characterization of planetary

systems. We illustrate the capabilities of the package by analyzing an updated radial velocity

data set for the HD128311 planetary system. HD128311 harbors a pair of planets that appear

to be participating in a 2:1 mean motion resonance. We show that the dynamical configuration

cannot be fully determined from the current data. We find that if a planetary system like

HD128311 is found to undergo transits, then self-consistent Newtonian fits to combined radial

velocity data and a small number of timing measurements of transit midpoints can provide an

immediate and vastly improved characterization of the planet’s dynamical state.
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2.2 Introduction

During the past decade, the characterization of extrasolar planets has become a major

branch of Astronomy. The field is energized by a variety of ground and space-based detection

programs that are meeting with increasing success. In 2009, the census of extrasolar planets has

exceeded 300, and planets have now been successfully detected using a variety of techniques,

including doppler radial velocity (e.g. Mayor & Queloz 1995, Udry et al. 2007), transit photom-

etry (e.g. Henry et al. 2000, Charbonneau et al. 2000, Charbonneau et al. 2007), microlensing

(Bennett 2008), astrometry (Benedict et al. 2002, Bean & Seifahrt 2009), stellar pulsations (Sil-

votti et al. 2007) and even direct imaging (Chauvin et al. 2005, Kalas et al. 2008, Marois et al.

2008).

The radial velocity method has been used to discover more than 75% of the known

planets, and continues to be a dominant technique, both in terms of its continued productivity

(e.g. Fischer et al. 2005) and its ability to accurately probe planetary architectures into the

vicinity of the terrestrial mass region (e.g Rivera et al. 2005, Lovis et al. 2006, Udry et al. 2007,

Mayor et al. 2009b). A number of planets that were initially detected using radial velocity

(e.g. HD 209458b, HD 189733b, HD 149026b, Gl 436b, HD17156b and HD80606b) have been

later shown to transit as a result of follow-up photometry, and because the parent stars of these

planets are bright, follow-up characterizations with a variety of methods have been extremely

valuable (e.g. Deming et al. 2005).

The planets that have been detected with the radial velocity technique comprise a

complicated and non-uniform sample. Some systems such as Upsilon Andromedae (Butler et al.

1999; 2006), GJ 876 (Marcy et al. 1998; 2001, Rivera et al. 2005) and HD69830 (Lovis et al. 2006)

have had multiple planets subject to very accurate orbital characterization within uniform, well-

sampled data sets. Other systems, for example Epsilon Eridani (Benedict et al. 2006), draw their
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support from a variety of observational sources and in some cases have orbital parameters that

are significantly uncertain. Indeed, it is difficult to draw a firm boundary between detections

that are secure, and those that may be subject to serious revision or even elimination.

In addition to the large amount of observational work that has gone into the detection

of extrasolar planets, there is a parallel effort by theorists to explain the emerging distributions

of planets within the context of theories of planetary formation and evolution. This work spans a

wide variety of bases, but a unifying principle is that much of it depends on the raw data being

supplied by the catalog of extrasolar planets, and therein lies a difficulty. Dynamicists have

traditionally dealt with planetary orbital elements that are known to exquisite precision. As

far back as the Eighteenth century, the orbital elements of the solar system planets were known

with an accuracy well in excess of our current orbital determinations for extrasolar planets.

Theoretical interpretations of the extrasolar planetary data is sometimes made without full

account of the highly varying signal-to-noise of the datasets that make up the catalog. This

problem is exacerbated by the fact that there exists no continuously up-to-date compendium of

known extrasolar planets in which all of the fits are derived using the same toolset of routines.

The systemic collaboration has been established as an effort to solve this problem.

The plan for this paper is as follows. In §2.3, we describe the systemic Console. In

§2.5, we show some sample applications of the tools that are incorporated in the Console, with a

particular emphasis on the planetary system orbiting HD128311 (Vogt et al. 2005). We show that

our current radial velocity data set for this system is insufficient for characterizing the resonant

relation between the planets, and we demonstrate, using synthetic datasets, how the inclusion

of transit timing data (were transits to be detected) would almost immediately eliminate this

degeneracy. As another example of the versatility of the code, we describe in Appendix 2.4 an

automated pipeline (the systemic “backend”) which runs on top of the same program to create

a web application that analyses data sets and aggregates fits. In §2.6, we describe the direction
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of possible future work with the tools that we have developed, and conclude.

2.3 The systemic Console

The systemic Console is a downloadable software package 1 that provides an intuitive

graphical user interface for the fitting of planetary signatures, and an associated suite of dynam-

ical analysis tools (Table 2.1). It can also be used as a specialized, programmable calculator and

run scripts in non-interactive mode to access its library of numerical routines. The program is

written in the Java programming language for cross-platform portability.

2.3.1 Radial Velocities

The systemic Console allows for a choice between two modeling schemes. For the

majority of the known extrasolar planetary systems, the planets do not experience significant

dynamical interactions during the time range spanned by a set of radial velocity observations. In

these cases, the radial velocity variation of the star can be represented as a sum of N Keplerian

orbits (Murray & Dermott 2000), each described by osculating orbital elements (period P , mass

M, eccentricity e, mean anomaly M , argument of periastron $, inclination i and node Ω):

vr(t) =

N∑
i=1

Ki[cos(υi +$i) + ei cos$i] , (2.1)

where the radial velocity half-amplitude, Ki, of planet i is given by

Ki =

(
2πG

Pi

)1/3 Mi sin ii
(M? +Mi)2/3

1√
1− e2

i

, (2.2)

and where the true anomaly, υi, is related to the eccentric anomaly, Ei, via

tan
[υi

2

]
=

√
1 + ei
1− ei

tan

[
Ei
2

]
. (2.3)

1Freely available at http://www.oklo.org.
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The eccentric anomaly, Ei, in turn, can be expressed in terms of the mean anomaly Mi =

2π/Pi(t− Tperi,i), which increases linearly in a clock-hand fashion, through Kepler’s equation

Mi = Ei − ei sinEi (2.4)

Summed Keplerians provide an adequate model for nearly all of the planetary systems

that have been discovered to date. Kepler’s equation is rapidly solved using a simple iterative

scheme, and hence models can be quickly evaluated (see e.g. Ford 2009; for a discussion of the

current state-of-the-art).

There are, however, several exceptions, notably GJ 876 (Rivera et al. 2005), HD202206

(Correia et al. 2005) and HD60532 (Laskar & Correia 2009) in which a self-consistent, or New-

tonian fit is required. In these cases, planetary interactions are taken into account in the fit,

and the Console adopts an N -body model of the system

d2xi

dt2
= −

∑
j 6=i

GMj(xi − xj)

|xi − xj|3
, (2.5)

with the integrations carried out using either 4th/5th order Runge-Kutta with adaptive timestep

control or Hermite 4th-order integration (Press et al. 1992, Hut et al. 1995). When an integrated

model is adopted, a system is defined by the osculating orbital elements of the planets at the

epoch of the first observation expressed in Jacobi coordinates (Lee & Peale 2002). The user also

has the option of providing an integration routine.

Finally, the Console allows the velocity offsets between different data sources to be

additional free parameters; this allows sources with different zero-point offsets (e.g. radial

velocity surveys using different templates) to be combined in the fitting procedure.

The Console carries out parameter minimization of the so-called reduced chi-square
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statistic

χ2
red,RV =

1

NRV −Mfit

N∑
i=1

[
vi − v(xi ; a1 . . . aM )

σi

]2

(2.6)

of a fit; in the above expression, N is the number of radial velocity data points, and Mfit is

the number of activated parameters, a1 . . . aM . As a rule of thumb, a reduced Chi-square value

near unity is indicative of a “good” fit to the data, suggesting that the model is a reasonable

explanation of the data within the observational errors. Typically, larger values usually signal an

insufficient modeling of the data, whereas smaller values imply that the data has been over-fit.

However, this rule is not exact, and should hence be applied with caution.

2.3.2 Transits

A rapidly growing number of planets (58 as of writing) with a favorably inclined or-

bital plane are being further characterized with transit timing data 2. Transits enable direct

estimations of planetary masses, radii and mean densities, together with period and phase of

the transiting planet (Charbonneau et al. 2007). Considerable current interest is focused on

detection of transit timing variations (TTVs) which can point to the presence of additional

perturbing bodies in a given system.

When supplied to the Console, transits data (central primary and secondary transits

timing) is included with the RV data in the following way. The Console searches for the best-fit

orbital parameters by minimizing over the joint reduced χ2 statistic

χ2
red =

1

NRV +Ntr −Mfit

[
χ2
RV + χ2

tr

]
(2.7)

where χ2
RV represents the goodness-of-fit for the radial velocity component of the model, as

described above, and χ2
tr is representative of the transit component. Ideally, one would fit

together all of the radial velocity and transit photometry data with a single model to jointly

2Gary, B. 2009; http://brucegary.net/AXA/x.html, accessed 13 March 2009
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invert for the parameters that describe all available data. In the future, these capabilities will

be incorporated into the Console. Much progress can still be made, however, by restricting our

analysis to observed times of central transit with error-bars obtained from separate light curve

analyses. These transit time data can then act as separate constraints on the observed behavior

of the system. To ease implementation, we compare the predicted and observed location of the

planet at the observed time of central transit, rather than comparing transit times. Since the

orbital velocities are not changing significantly with respect to the duration of the eclipse, the

difference between these approaches is negligible. We thus use the following equation to define

the goodness-of-fit statistic for the transit component of the model:

χ2
tr =

N∑
i=1

[
δxi
σδx,i

]2

(2.8)

where δxi is the predicted separation perpendicular to the line of sight at the observed central

transits ti, such that

δxi = |x∗(ti)− xP (ti)|, i = 1..N (2.9)

The error on δxi is estimated from the error on ti as σδx,i = vx,Pσti . While we do not explore

it here, it is important to recognize that regularization of the fit may be warranted in this type

of analysis (Press et al. 1992). 3

Since it is routinely possible to achieve small error bars on the central primary transits

(100s for ground-based observations down to 10s for HST observations), a best fit found by the

Console that includes transit timing may yield extremely precise determinations of the period

and mean anomaly at epoch of the transiting planet (e.g. Wittenmyer et al. 2005, Bean et al.

2008).

3Regularization is a formal statistical method of compromising between two distinct sources of information.
This is accomplished by adding a relative weighting factor λ in front of one of the components of the overall χ2

metric, where the value of λ determines the relative importance of the two components of the goodness-of-fit.
There are many different methods that can be used to choose an appropriate value for the weighting factor. In
this work, we have implicitly chosen the value λ = 1, corresponding to an equal weighting.
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Detection of central secondary eclipses (Deming et al. 2007) also places tight bounds

on the eccentricity and argument of periastron of the planet. This additional constraint can

break degeneracies present when RVs alone are used; for instance, it can discriminate between

eccentric single-planet systems and two-planet systems in a 2:1 resonance with circular orbits

(Anglada-Escudé et al. 2010).

As we will address later, it can be possible to measure transit timing variations (TTV)

in a dynamically interacting planetary configuration and infer the orbital elements of a perturb-

ing, non-transiting body (Holman & Murray 2005, Agol et al. 2005, Agol & Steffen 2007).

2.3.3 Best-fit model estimation

2.3.3.1 Periodograms and False Alarm Probabilities

The Lomb-Scargle (LS) periodogram is an algorithm for time series analysis of unevenly

spaced data (Scargle 1982, Horne & Baliunas 1986, Press et al. 1992). The LS periodogram is

useful for rapidly identifying periodic signals in the observed data, and to residuals to a given

fit, without having to fit for the other orbital parameters. The formula for an error-weighted

periodogram Px(ω) as implemented in the Console is given in Gilliland & Baliunas (1987); the

individual weights are taken to be wj = 1/σ2
j .

An advantage of this method is that its statistical properties are well known and are

conducive to the definition of an analytic false alarm probability (FAP) associated with each

periodic signal. When the periodogram is normalized by the total variance p0(ω) = Px(ω)/σ2,

the estimated probability that a peak as high or higher would occur by chance is given by

Pr(p0, Nf ) = 1− [1− exp(−p0)]Nf , where Nf is the effective number of frequencies.

Finally, since the unequal spacing of the data can be a source of spurious periodicities

(e.g. those associated with the synodic lunar month or yearly observational schedules), the
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Console also supports plotting of the power spectral window (Deeming 1975) overlaid over the

standard (non-error weighted) periodogram.

2.3.3.2 Levenberg-Marquardt (local minimization)

Given the observations and associated errors, the goal is to obtain a model configuration

ybf (a 7N vector of orbital parameters) such that χ2(ybf ) = miny χ
2; this is usually reported

as the “best-fit” solution. Typically, the Lomb-Scargle periodogram is used to comb through

periodicities in the data; periodicities are removed in order of decreasing half-amplitude K

and optimized using line-minimization. This procedure leads to a set of orbital parameters y0

which is a rough approximation to the best-fit solution, and can be improved with simultaneous

multiparameter minimization. For a discussion of the intricacies of the Keplerian fitting process,

see Cumming et al. (2008).

Multidimensional parameter minimization can be carried out using the Levenberg-

Marquardt algorithm (LM; Press et al. 1992). Given the initial guess y0, the LM algorithm can

quickly converge to a local minimum y′. Good convergence of the LM algorithm is conditional

on the choice of the initial guess and a favorable geometry of the χ2(y) surface: in particular,

the algorithm is sensitive to rugged χ2 surfaces and can be prone to converging to non-optimal

minima.

2.3.3.3 Simulated Annealing (global minimization)

So-called “global” minimization techniques attempt to avoid getting trapped in local

minima by adding a degree of randomness at each iteration step, although at a much greater

computational cost. Simulated annealing (SA; Press et al. 1992), by analogy to several ther-

modynamic processes in nature, defines an “energy” E as the objective function to minimize

and allows for temperature fluctuations between states at different energies as dictated by the
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current temperature Tn; the temperature Tn is lowered with a (problem-dependent) scheduler.

This algorithm is particularly appropriate for rugged χ2 surfaces, or when the initial guess is

sufficiently distant from the best-fit solution.

In our problem, the objective function is clearly χ2(y). Given a state yn, the algorithm

selects a new configuration yn+1; the new configuration is accepted and kept with a probability

P (n→ n+ 1) ∼ exp(−∆E/Tn) if En+1 > En, and is always accepted if En+1 < En (a downhill

step). The temperature is subsequently updated according to the input scheduler, and the

process is repeated until a target number of steps N is reached. The fact that uphill steps

are sometimes accepted (according to the current temperature) lets the algorithm explore a

larger portion of the parameter space and makes it less likely to get stuck in a narrow local

minimum. The trial configuration yn+1 is selected using a proposal distribution, which is an

easy-to-evaluate generator of trial configurations that picks a new set of parameters given the

current set of parameters. The default function is a multivariate Gaussian distribution centered

on the current step yn; the variance βµ can be chosen independently for each parameter.

The algorithm requires that the following are configured from the user:

1. temperature scheduler: the default scheduler decreases T according to Tn = T0(1−n/N)α,

where T0 and α are input parameters that dictate the initial temperature and cooling rate.

The optimal values of T0 and α are problem-dependent and quite often may determine

whether the routine successfully recovers the true global minimum.

2. generator of trial configurations: the default generator is a Gaussian function centered

around the current configuration, with the scale parameter vector βµ given by the user

(an initial value is suggested).

Since the correct recovery of ybf depends on appropriate choices of T0, α,N and βµ

that are not known a-priori, the Console allows several SA jobs to run in parallel, improving
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the chance of convergence to the best-fit model. Reconfigurations, in the form of occasionally

jump-starting the routine with the best-ever solution, can also be beneficial to the success of

the algorithm.

Other global minimization schemes, such as Genetic Algorithms (e.g. Charbonneau

1995, Laughlin & Chambers 2001), are being considered for inclusion in the Console’s built-in

array of tools. They can be easily implemented by the user using the routine library offered by

the Console.

Finally, we note that certain planetary systems such as HD80606 (Laughlin et al.

2009, Gillon 2009, Pont et al. 2009) include both photometric and spectroscopic data, and

contain planets with high orbital eccentricities. In these cases, the connection between observable

quantities and the orbital and physical parameters is highly nonlinear, and a modeling framework

that relies purely on χ2 minimization may have a difficult time recovering the correct system

configuration. Future releases of the console will therefore incorporate the option of using a fully

Bayesian approach to the fitting problem.

2.3.4 Error estimation

Radial-velocity searches are constantly pushing the envelope towards lower and lower

masses, frequently at the threshold of detection, with low signal-to-noise ratios. For this reason,

once the best-fit parameters have been identified, it is vital to rigorously characterize their

uncertainty. The Console offers two independent methods for estimating uncertainty: synthetic

datasets refitting (bootstrap) and Markov Chain Monte Carlo (MCMC).

2.3.4.1 Bootstrap

The bootstrap procedure consists of drawing with replacement from the observed data

points (RV and central transits) and creating a number of synthetic data sets ASi=1..N . The
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Levenberg-Marquardt fitting procedure is then applied to each dataset, using the best-fit solution

for the real dataset as the initial guess. The distribution of the obtained fitted parameters

ySi=1..N yield an estimated σ for the scatter of the orbital elements around the true intrinsic

orbital parameters.

The bootstrap algorithm is well known (Press et al. 1992) and in common use for

estimating planetary elements uncertainties, but presents a number of disadvantages; namely,

that it drives a local minimization routine (and is thus subject to the same pitfalls), and that

it has a large computational burden. To partially improve on the first weakness, bootstrap can

optionally be preceded by a burn-in phase. The burn-in phase obtains a rough estimate of the

scatter in the parameters by running a short bootstrap phase. The error estimate is then used

in the actual bootstrap run to perturb the best fit a set number of times (e.g. 10 times) per

each synthetic dataset fitting; only the best-fitting final configuration is retained. This helps

improving the reliability of the bootstrap routine in some cases.

2.3.4.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (see, e.g., Ford 2005, Gregory 2005; for exoplanet related

implementations) is an alternative method for estimating uncertainties that does not rely on

minimization schemes. The MCMC method generates a sequence (chain) of configurations yi

that is sampled from the (unknown) probability distribution f(y). The transition probability

between two subsequent configurations yn and yn+1 is

α(yn+1|yn) = min

(
exp

[
χ′2n − χ′2n+1

2

]
, 1

)
(2.10)

Assuming that the observational errors are accurately estimated and approximately Gaussian,

this transition function assures that, after discarding an initial burn-in phase, the distribution

of generated configurations will be sampled from the unknown probability distribution f .
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The algorithm consists of looping over the following steps, given an initial state y0:

1. given a state yn and a Gaussian generator of trial states with scale parameters βµ (see

2.3.3.3), generate a trial state y′;

2. accept the trial state y′ with a probability α(y′|yn) and set yn+1 = y′, otherwise discard

it (downhill steps are again always accepted);

3. set n = n+ 1;

until some convergence criterion of the chain is satisfied. The MCMC algorithm guarantees

convergence to the true distribution f(y), but can explore the parameter space inefficiently

depending on the choice of βµ, or may not achieve satisfactory convergence within the chosen

N steps. The convergence can be visually monitored by interactive plotting of the marginal

distribution of the parameters. The acceptance rate of the MCMC algorithm can be interactively

monitored as well; an optimal acceptance rate is ∼ 0.25 (Gelman et al. 2003).

As with simulated annealing, multiple MCMC chains can be generated in parallel to

provide comparison between the results obtained with different choices of βµ and chain length,

which yield similar results within statistical uncertainties if all chains have converged. More

sophisticated Bayesian algorithms, such as parallel tempering MCMC (Gregory 2005), may be

implemented by the user by exploiting the programmable interface of the Console.

2.4 The Systemic Backend

The systemic backend is a web application that showcases the power of the Console as

an automated engine for data analysis. It consists of a database of catalog information (stellar

properties as well as RV and transit measurements) as published in the astronomical literature,

and a catalog of model planetary fits for each star. For this purpose, it uses the Console as
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its main engine to perform a number of automatic data explorations, whereas the user-facing

part uses standard “Web 2.0” tools (PHP, MySQL, Javascript and wikis) to present a coherent

overview of the data. A public backend is available as a proof-of-concept to foster collaboration

within the broader community of exoplanet researchers and enthusiasts, and to present and

maintain the catalog of fits to radial velocity and transit timing data for known planet-bearing

stars. Each user has a personal data page and fit catalog, the possibility of commenting on

other team member’s fits, and can interact with other team members within a private and

secure environment. A more powerful and customizable version is also available on request for

use by planet hunter teams, and can be useful to maintain an integrated database of datasets

and models in face of the increasing flux of RV and transit data.

The fit catalog is scanned by a number of Console components, which continually sift

through the uploaded fits in non-interactive mode. One component implements a bootstrap

routine to calculate uncertainties on the orbital parameters of each fit; data from the bootstrap

routine is stored in a database for creating scatter plots. Two other components check for

dynamical instability over periods of 1,000 and 10,000 years, with stability defined by the rough

criterion of requiring a smaller than 1% fractional change in semi-major axis with respect to

the average semi-major axis observed during a full N-body integration. This step flags highly

unstable planetary systems that experience ejections or collisions. Data from the integration

is retained for plotting of orbital evolution and for future additional investigations. Dynamical

data (orbital parameters, radial velocity data, fit parameters, stability, integrations, bootstrap

results) is then transparently presented to the user as a set of web pages and can be aggregated

and sliced using a web-based query system.
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2.5 Applications

2.5.1 Resonance characterization in the HD128311 system

A high fraction of the detected extrasolar systems with multiple planet are involved in

near low-order mean motion resonances (MMRs), with at least four of them (GJ876, HD82943,

HD73526 and HD128311) being reported to engage in strong 2:1 resonances. Two planets are in

a mean-motion resonance when the periods are in a ratio of small integers, and at least one of

the resonant angles librates (i.e. it spans a range smaller than 2π). Resonant angles are linear

combinations of $ (argument of periastron) and λ = M + $ (coplanarity is assumed). The

relevant resonant angles for a 2:1 resonance are θ1 = 2λ2−λ1−$2 and ∆$ = $2−$1 (Murray

& Dermott 2000).

Radial velocity measurements for HD128311 (Vogt et al. 2005) (hereafter V05) indi-

cated that the system is locked in a 2:1 MMR, which ensures the long-term stability of the two

giant planets. The best-fitting model was indefinitely stable, with the resonant argument θ1

librating with an half-amplitude of about 60 degrees; a naive fit using Keplerian ellipses instead

of the full N-body model is catastrophically unstable within about 2,000 years. Orbital fits

for the systems generated using a Monte Carlo procedure (similar to Section 2.3.4.1) yielded a

proportion of about 60% stable systems with θ1 librating and ∆$ circulating to about 40% with

both arguments librating (apsidal co-rotation). The large stellar jitter (∼ 9 m/s) and the rela-

tively long periods of the two planets implies that models with different resonant configuration

are equally likely given the radial velocity dataset.

However, whether or not the system is in apsidal co-rotation is a crucial piece of

information, since it can provide fundamental clues to the migration and interaction history

of the system. Scenarios of slow migration and resonant capture into a 2:1 MMR (e.g. Nelson

& Papaloizou 2002, Lee & Peale 2002, Beaugé et al. 2006) consistently result in systems that
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Fit A Fit B Fit C
Period (d) 466.6 [7.5] 469.1 [3.3] 464.84

909.5 [21.0] 893.5 [6.2] 901.63
Mass (MJ) 1.59 [0.22] 1.79 [0.17] 1.72

3.19 [0.11] 3.19 [0.08] 3.13
Mean anomaly (deg) 270.6 [31.9] 282.2 [16.8] 263.10

192.0 [23.3] 190.0 [13.7] 193.33
Eccentricity 0.36 [0.07] 0.33 [0.05] 0.32

0.20 [0.09] 0.23 [0.05] 0.20
Long. of periastron (deg) 73.8 [24.8] 58.98 [19.6] 78.04

11.7 [20.0] 4.54 [14.4] 6.59

Table 2.2: Orbital fit parameters. Fit A: integrated best-fit to the V05 Keck RV data. Fit B:
integrated best-fit to the updated RV data reported in this paper and the HET09 data. Fit C:
orbital elements used to generate the synthetic datasets. All elements are defined at epoch JD
= 2450983.8269. Uncertainties are reported in brackets.

are librating in both resonant arguments. Sándor & Kley (2006), analyzing the specific case

of HD128311, showed that after adiabatic migration and capture into MMR, the two planets

are in apsidal co-rotation and have very small libration amplitudes. If a definitive prevalence of

model fits not in apsidal co-rotation were ascertained, then the discrepancy has to be explained

in terms of subsequent perturbative events (such as sudden termination of migration or planet-

planet scattering) that happen after an adiabatic migration process. Analogous studies have

been conducted for GJ876 (Kley et al. 2005) and HD73526 (Sándor et al. 2007).

It is therefore important to distinguish between the two resonant configurations (ideally,

at the 90% confidence level or better); this requires a more precise determination of the orbital

parameters, which might be achieved, for instance, with additional RV measurements.

For this purpose, we present a set of additional Doppler measurements taken between

June 2005 and May 2008 using the HIRES spectrometer (Vogt et al. 1994). Doppler measure-

ments are taken using the standard iodine cell technique (see Vogt et al. 1994; for more details).

Table A.1 lists the updated Keck dataset, giving the time of each observation, the radial velocity

and the internal uncertainties.
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2.5.2 Best fit

We update the analysis of Vogt et al. (2005) using the tools built in the Console for

both the original data and the updated RVs presented in this paper. The Console is well suited

to this task, since it can easily derive self-consistent fits (interactively) and do batch Monte-Carlo

dynamical analyses on large sets of orbital parameters (non-interactively).

The two prominent periodicities in the V05 dataset were found using the integrated

Lomb-Scargle periodogram. A self-consistent (Newtonian) best-fit was then derived using the

Levenberg-Marquardt minimization routine; one of the built-in N-body integrators (Hermite)

was used to derive the radial velocity curve for each choice of orbital parameters. The final

best-fit orbital parameters are listed as Fit A (Table 2.2). The uncertainties for each orbital

parameter are found using the bootstrap routine on 10,000 synthetic dataset realizations.

Subsequently, we derived the best-fit for the full updated Keck data (Table A.1), to-

gether with the observations taken with the Hobby-Eberly Telescope (HET) and reported in

Wittenmyer et al. (2009). The Lomb-Scargle periodogram and the associated analytic FAP

estimates are shown in Figure 2.1. The Console can account for the zero-point offset and the

velocity offset between the two datasets as two additional free parameters. The Newtonian

best-fit orbital parameters derived, however, result in a system that is unstable within 1000

years. Therefore, we generated a pool of alternative 5000 bootstrap-generated trial fits, checked

each of them for stability within 10000 years and selected the best-fitting stable solution. Its

orbital parameters and corresponding uncertainties are listed as Fit B (Table 2.2). This model

is protected by a 2:1 MMR, in which θ1 librates with amplitude ∼ 60 deg and ∆$ circulates.

The radial velocity measurements and the star radial velocity curve are shown in Figure 2.2.
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Figure 2.1: Lomb-Scargle periodogram for the combined Keck and HET datasets, as plotted
by the Console. Analytical FAPs at levels 10−1 (long dashed), 10−2 (short dashed) and 10−3

(dotted) are overlaid.
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Figure 2.2: Best-fit integrated solution to the RV data presented in this paper (blue) and the
HET data (green) reported by Wittenmyer (orbital parameters listed as Fit B in Table 2.2).
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Figure 2.3: Maximum eccentricities observed during 104 yr integrations of self-consistent fits
obtained using the bootstrap routine for data from V05 (top), data presented in this paper
(middle) and synthetic data (bottom). Filled circles: scenarios in which both arguments librate.
Open circles: scenarios in which θ1 librates and ∆$ circulates. Gray squares: scenarios in which
both arguments circulate. In the bottom panel, black and blue symbols are for models derived
considering RV data only, whereas red symbols are for models considering RV and transits.
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Data R2 R1 NR
2005 (76 Keck RVs) 281 [35%] 489 [61%] 30

2008 (102 Keck RVs) 160 [20%] 618 [77%] 22
2008 (102 Keck + 78 HET RVs) 180 [22%] 615 [77%] 5

Fit C, 102 RVs 603 [75%] 197 [25%] 0
Fit C, 102 RVs + 4 transits 800 [100%] 0 0

Fit C, 306 RVs 743 [93%] 52 [7%] 5

Table 2.3: Monte-Carlo analysis results. R2: resonant fits with both arguments librating. R1:
resonant fits with θ1 librating and ∆$ circulating. NR: fits have both arguments circulating.

2.5.3 Dynamical interactions

Following the procedure detailed in Vogt et al. (2005), we took the two self-consistent

two-planets fits (Fit A and Fit B) and applied a Monte-Carlo bootstrap procedure, in which new

fits are derived by resampling with replacements the radial velocity datasets. We created two

Monte-Carlo generated libraries of 5000 self-consistent models for two radial velocities datasets:

the radial velocities listed in V05 and the updated Keck data reported in Table A.1. For each

of the two groups, 800 fits, stable for at least 104 years4, were selected and integrated forward,

recording the maximum eccentricity for both planets and the amplitude of libration of both

resonant angles. The results of this analysis are shown in Figure 2.3.

With the new radial velocity data, the percentage of model fits that are stable and in

apsidal co-rotation using the additional RVs falls slightly to 20%. A different run considering

1600 models also yields a similar percentage, confirming that the result is robust. The inclusion

of the HET data also does not change our result significantly (Table A.1). Therefore, while we

have strengthened the case for models of HD128311 that only librate in θ1, a secure determination

of the libration amplitude of ∆$ might be obtained either by a transit monitoring campaign or

yet additional RV measurements.

4For longer-term integrations, the builtin integration schemes (RK45 and 4th order Hermite) might not be
sufficiently accurate and can be substituted by integration schemes supplied by the user. Alternatively, the
Console can be set up to drive packages such as SWIFT 5) or Mercury (Chambers & Migliorini 1997).
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2.5.4 Constraints by transits

Although the a-priori geometric probability for transits Ptr

Ptr = 0.0045

(
1AU

a

)(
R∗ +Rpl
R�

)[
1− e cos(π2 −$)

1− e2

]
(2.11)

(Bodenheimer et al. 2003) is very low for HD128311b (Ptr ≈ 0.0032), given the high precision

that can be achieved by the addition of transits to the χ2 budget, it is a worthwhile exercise as

a proof of concept. Moreover, other resonant systems have higher transiting probabilities; for

instance, planets GJ876b and c have a-priori transit probabilities ∼ 1%, though the inclination

of the system is unfavorable and no transits have been observed (Shankland et al. 2006).

We selected the best-fitting solution in apsidal corotation from the ensemble of systems

generated by Monte-Carlo bootstrapping of the RVs presented in Table A.1 (Fit C). The orbital

elements are listed in Table 2.2. Subsequently, we created a synthetic dataset of RVs and

transits by integrating forward in time, using the N-body routines offered by the Console. The

RVs are generated by sampling the radial velocity curve at the times listed in Table A.1; the

tabulated uncertainties and a jitter of 9 m/s are added to the measurement. The central transit

times dataset comprises four points, to which we added a Gaussian noise with amplitude 10−4

d (comparable to the uncertainties that can be achieved by ground-based transit observations;

e.g. Alonso et al. 2008).

We repeated the analysis detailed in the previous section by bootstrapping exclusively

the RV data (Table 2.3); this yields similar ratios, shifted to favor systems in apsidal corotation

(similarly to the generating fit).

As expected, the inclusion of the four central transit times largely reduces the pa-

rameter space that can be spanned by Monte-Carlo explorations. The large excursions in χ2

and the increased ruggedness of the χ2 space makes the simple bootstrap algorithm, driving a

Levenberg-Marquardt scheme, somewhat inefficient in fully exploring the allowed space of or-
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bital parameters (as anticipated in Section 2.3.4.1). We therefore used the Markov-Chain Monte

Carlo routine supplied with the Console. A long chain of systems (5× 105) was generated; the

first 50000 systems were discarded and only 1 every 100 systems were retained, to minimize the

correlation between subsequent chain elements.

The tightness of the orbital parameter uncertainties thus generated (∆P1/P1 = 2.1 ×

10−6; ∆P2/P2 = 3×10−6 d; ∆M1/M1 = 1.4×10−3; ∆M2/M2 = 4.2×10−4; ∆$1 = 2.4×10−3;

∆$2 = 1.3× 10−3) anticipates that the ratio of correctly recovered resonant configuration will

be very high. In fact, with the addition of the four primary transits, all of the systems are

correctly identified in apsidal corotation (Table 2.3). The maximum eccentricities achieved by

the two planets (Figure 2.3) are determined within 10−3.

As a comparison, we ran the same procedure against 204 additional RVs (a 30-year

observation stretch), derived by sampling the integrated stellar radial velocity with the same

schedule used for the Keck dataset. This large amount of additional RVs is required to identify

the generating planetary system as apsidally corotating with a fraction >90% of models (Table

2.3).

2.6 Discussion

In this paper, we have described the features of the systemic software package. This

software has been written with extensibility, portability and clarity as guiding principles, and

is fully adequate for all but the most demanding exoplanet-related analysis tasks. The Console

provides a uniform method for analyzing data stemming from a variety of sources (radial veloc-

ities surveys and transits) and allows the efficient recovery of the best-fitting stable planetary

configuration, even in presence of strong mutual perturbations. It is provided for free to the

scientific community.
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As an example application, we have analyzed an updated radial velocity dataset for

the pair of resonating planets harbored by HD128311. As first noted in V05, the orbital solution

to this system is degenerate between apsidally corotating and non-apsidally corotating fits; the

additional data sets do not break the degeneracy, owing to the large stellar jitter and long orbital

periods. We have used an analysis of synthetic data sets to demonstrate that the detection of

a transiting extrasolar planet system with planets participating in a low-order mean motion

resonance, such as HD128311, would lead to a rapid determination of the libration widths of

the resonant arguments and an attendant understanding in how such systems form and evolve.

Additionally, our analysis shows that the parameters of non-transiting planets can be very well

constrained through transit timing variations in presence of strong mutual interactions. As

noted in Section (2.3.2), however, a more detailed analysis may be warranted (in particular

regarding the issues of fit regularization and full photometry fitting) and will be the object of

a follow-up paper. Finally, we showed that breaking the degeneracy at a comparable level with

radial velocities would require a prolonged observation campaign, of 30 years or more.

We plan to improve the current feature set of the Console by (1) adding facilities for

fully fitting the raw light curve data of a transit detection, (2) implementing more sophisticated

routines for best-fit parameter and uncertainty estimation, and (3) allowing non-coplanar, in-

clined fits. We note that to date, nearly all of the planetary systems that have been detected

with the Doppler radial velocity technique can be satisfactorily modeled (to the precision of the

observations) using co-planar models with the inclinations assumed to be 90◦. The Console’s

integration routines and internal system representations are fully three-dimensional, however,

and so a forthcoming version will enable non-coplanar fits and will accept astrometric measure-

ments (e.g. Bean & Seifahrt 2009). With the advent of space missions such as SIM Lite and

Gaia, there will be numerous opportunities to accurately discern the three-dimensional orbital

configurations of many nearby planetary systems (Unwin et al. 2008). Finally, signatures of
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less obvious effects in the spectroscopic and photometric data sets, such as those expected from

general relativity (Wu & Goldreich 2002) or the excitation of tidal modes in the host star (Wu

& Murray 2003), will require more sophisticated modelling to be properly taken into account.
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Chapter 3

Numerical Approaches to the Transit

Timing Inverse Problem

3.1 Abstract

Transit timing variations – deviations from strict periodicity between successive pas-

sages of a transiting planet – can be used to probe the structure and dynamics of multiple-planet

systems. In this paper, we examine prospects for numerically solving the so-called inverse prob-

lem, the determination of the orbital elements of a perturbing body from the transit timing

variations it induces. We assume that the planetary systems under examination have a lim-

ited number of Doppler velocity measurements, and show that a more extensive radial velocity

characterization with precision comparable to the semiamplitude of the perturber may remove

degeneracies in the solution. We examine several configurations of interest, including (1) a

prototypical non-resonant system, modeled after HD40307 b and c, which contains multiple

super-Earth mass planets, (2) a hypothetical system containing a transiting giant planet with a

terrestrial-mass companion trapped in low-order mean motion resonance, and (3) the HAT-P-13
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system, in which forced precession by an outer perturbing body that is well characterized by

Doppler radial velocity measurements can give insight into the interior structure of a perturbing

planet, and for which the determination of mutual inclination between the transiting planet and

its perturber is a key issue.

3.2 Introduction

While the overall census of extrasolar planets continues to climb steadily (453 as of this

writing1), the emerging population of Earth and Super-Earth sized (M sin i ≤ 10M⊕) planetary

companions that has been uncovered by high-precision radial velocity (RV) surveys (e.g. Rivera

et al. 2005, Udry et al. 2007, Mayor et al. 2009a, Vogt et al. 2010) is shifting the interest of

many planet search programs towards terrestrial planets. Future refinements in ground-based

RV programs will likely continue to further push the detection capabilities towards the low-mass

end of the planetary population (Mayor et al. 2009b, Howard et al. 2011).

On the other hand, the availability of ground and space-based surveys dedicated to

photometric monitoring of large samples of host stars is affording constraints on the true mass

and bulk composition of the Super-Earth planetary population (Léger et al. 2009, Queloz et al.

2009, Charbonneau et al. 2009). In particular, the Kepler mission (e.g. Koch et al. 2004, Koch

et al. 2010) is expected to yield transiting Earth-mass planets in the Habitable Zone (HZ) as

part of its mission objectives, through continuous and simultaneous photometric sampling of

more than 100,000 dwarf stars. However, this class of objects will likely represent a small

percentage of the detections (given the constraints of the mission design), and a large number

of Neptune-mass and giant planets will be detected as well (e.g. Borucki et al. 2010a;b).

The exquisite precision and sheer size of the Kepler transit timing datasets of giant

1exoplanet.eu, retrieved on May 12, 2010
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planets, as observed during the projected four years to six year mission duration, opens up an

alternative route to the detection of low-mass planetary companions. Indeed, transit timing

variations (TTV) will be caused by gravitational perturbations exerted by additional planets,

causing deviations from strictly periodic Keplerian orbits (Miralda-Escudé 2002, Holman &

Murray 2005). These can be used to infer the orbital elements of the perturbing planet (Agol

et al. 2005), or at least place limits on the presence of additional planets (e.g. Alonso et al. 2008,

Miller-Ricci et al. 2008). An approximate analytic estimate for TTV amplitude for a transiting

planet and an external perturber is given by (Holman & Murray 2005)

δt ≈ 45π

16

(
Mpert

M∗

)
Ptrans α

3
e

(
1−
√

2α3/2
e

)−2

(3.1)

(where we use the symbols M for mass, P for period, e for eccentricity and a for semi-major

axis; αe = atrans/ [apert(1− epert)]).

The amplitude of these variations can be quite large and amenable to detection, either

in the presence of high-eccentricity perturbers (e.g. Steffen & Agol 2005) or when the two

planets lie near a low-order mean motion resonance (MMR). Indeed, MMRs are an entirely

plausible outcome of core-accretion models of planetary formation, whereby planets can be

captured and locked into an MMR during the migration stage (e.g. Nelson & Papaloizou 2002,

Papaloizou & Szuszkiewicz 2005, Beaugé et al. 2006). Observationally, several of the detected

extrasolar systems with multiple planets may be locked in low-order MMRs. Three such systems

(HD82943, HD73526 and HD128311) are engaging in deep 2:1 resonances well characterized by

the observations, and GJ876 has recently been reported as a Laplace-type resonance chain (4:2:1;

Rivera et al. 2010). For instance, the TTV amplitude induced by an Earth-mass perturber in

a 2:1 resonance with a 3-day Jupiter-mass planet, both in circular orbits, is of order of minutes

(Agol et al. 2005). This is a large signal compared to an accuracy in the measurement of the
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central transit time of order (Ford & Gaudi 2006)

σT ≈
(
te
2Γ

)1/2

σph

(
Rpl
R∗

)−2

(3.2)

(where te is the duration of the transit ingress/egress, Γ is the observation rate, σph is the

photometric precision, Rpl and R∗ are the radius of the planet and the radius of the star,

respectively), amounting to 10s of seconds for milli-mag photometric accuracy. The recently

published Kepler central times (Latham et al. 2010, Borucki et al. 2010b, Jenkins et al. 2010,

Dunham et al. 2010, Koch et al. 2010) are in rough accordance with this estimate. Furthermore,

with respect to the Kepler project, we note that once a transit is detected with sufficient signal-

to-noise ratio, the star will be switched from the long-cadence (30 minute) to short-cadence (1

minute) sampling rate (Borucki et al. 2008), improving the temporal resolution of the transit

even further. We take σtr,K = 2 × 10−4 d (≈ 15 s) as a conservative estimate of accuracy on

the central transits.

Given a large dataset comprising 1 year or more of continuous transit monitoring, is it

possible to infer the mass and elements of the perturbing planet? Reconstructing the properties

of the perturber from a noisy TTV signal is a complex, and possibly highly degenerate (Nesvorný

& Morbidelli 2008), inverse problem. In this paper, we present a series of simulations aimed at

detecting low-mass perturbers from realistic central transit and follow-up RV data. To this end,

we produce a large sample of Kepler -like observations and attempt to characterize the perturber

using the algorithm toolset offered by a revised version of the Systemic Console (Meschiari et al.

2009; hereafter Paper I). A number of different planetary realizations were used, in an attempt

to fully capture the complexity of TTV fitting, drawing the orbital elements from observed

planetary systems. For the sake of simplicity, we focus on two-planet systems, but the method

is fully general within the constraints of CPU time and measurement errors.

The plan of the paper is as follows. In §3.3, we briefly review describe the algorithms
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used to derive best-fit models and accompanying error estimates. In §3.4, we examine the

characterization of planets similar to HD40307c and d, which lie close but not quite in a 2:1

MMR. Our analysis makes use of the HARPS dataset (Mayor et al. 2009a) and a simulated

transit timing dataset. In §3.5 we fit the synthetic realization of a planetary system deep in

a 2:1 MMR, with an external perturber (using HAT-P-7 as our model system). Finally, in

§3.6 we analyze constraints placed by TTVs on the three-dimensional configuration of planetary

systems, using HAT-P-13 as a test case, and conclude in §3.7.

3.3 Numerical setup

The transit timing variation signal is defined as the difference between the observed

central transit times and the predicted times from a linear regression (corresponding to a single-

planet Keplerian fit with period P1):

δtk = tk − kP1 (3.3)

The variations originate by the mutual gravitational interactions with an additional body, chiefly

causing short-term oscillations wherein the true anomaly f1 trails or leads the Keplerian value

and long-term effects such as pericenter precession (Heyl & Gladman 2007). In principle, since

the signal will depend on the Newtonian evolution of the planetary system, TTVs can provide

a sensitive probe for the three-dimensional orbit of the second planet, in combination with the

tight constraints on the eclipsing planet’s period and the time of pericenter passage provided by

the central transits themselves.

However, solving the inverse problem of deriving a best-model fit to the TTV observa-

tions can be daunting. The computation of the predicted TTV signal requires precise N-body

integrations (with N ≥ 3). In the general case, the dependence of the signal on the set of orbital

parameters is not directly clear; unlike, e.g. the RV technique, deviations from the Keplerian
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signal – as opposed to the Keplerian signal itself – constitute the bulk of the information. The

use of Fourier analysis to sort out periodicities in the data is generally hampered by the sparse-

ness of the transit observations. Furthermore, given the extreme sensitivity of δt to the model

parameters, local minimization routines can easily get stuck in narrow χ2 minima, or fail due

to steep gradients in the landscape. Finally, as shown in the later sections, there is a degree of

non-uniqueness as multiple models can fit the transit timing observations when measurement

errors are taken into account (see also e.g. Nesvorný & Morbidelli 2008); these degenerate solu-

tions are characterized by comparable χ2 ∼ 1, and must be taken into account when deriving

parameter uncertainties.

Direct searches of the parameter space (e.g. Steffen & Agol 2007) can be extremely

expensive in terms of CPU time. A more appealing alternative is represented by the TTV

Inversion Method (TTVIM; Nesvorný & Beaugé 2010; and related papers). TTVIM com-

bines a fast algorithm for computing the 2-planet transit timing based on perturbation methods

with a downhill simplex method to obtain good convergence towards the perturbing planet’s

parameters. However, some issues remain in addressing systems lying close to a MMR.

In this paper, we adopt the approach of finding best-fit models to joint TTV and

Doppler velocity data sets by driving an efficient Bulirsch-Stoer integrator with the Simulated

Annealing algorithm integrated in the Systemic Console (Paper I)2. SA-type algorithms are well-

suited to exploring the orbital parameter space (period P , massM, eccentricity e, inclination i,

mean anomaly at epoch M0, longitude of pericenter $ and node Ω for each planet) and converg-

ing, in principle, to global minima (subject to appropriate choices of scheduling algorithm and

scale parameters). Several minimizers can be run in parallel with different initial temperatures

and initial conditions, exploiting modern multi-core CPUs capabilities. The step size vector is

2The new version of the Systemic Console, including a Bulirsch-Stoer integrator, AMOEBA and fully non-
coplanar fitting is available for download at www.oklo.org
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automatically adjusted to attain an acceptance rate of ∼ 25%; we have found empirically that

this value is an optimal compromise. After a fixed number of steps, we invoke a downhill simplex

algorithm (AMOEBA; Press et al. 1992) in an attempt to home in on nearby deep minima. This

avoids missing promising solutions when the SA step size is too large to properly resolve them.

In practice, this scheme permits the derivation of the full set of degenerate solutions compatible

with the observational errors.

Although we recognize that this approach can be computationally inefficient com-

pared to perturbation methods, the implementation is trivial and can use existing integration

techniques. Furthermore, it permits the characterization of arbitrary planetary configurations

(including Npl > 2, resonant, high-eccentricity and inclined bodies) and the inclusion of addi-

tional dynamics (such as tidal evolution) self-consistently, owing to the fully general N-body

integration. Finally, we remark that in this work the parameters of the transiting planet are

not fixed, but derived simultaneously from the available data. This mimics follow-ups of tran-

siting planets, whereby the mass of the transiting planet is determined by a small number of

RV measurements.

We use the combined χ2 statistic detailed in Paper I to simultaneously fit the transit

timing and follow-up RV datasets. While there is a degree of ambiguity in the choice of the

weighing factor λ, this is not a concern in the vicinity of a solution, where the contribution from

RVs and transits is approximately equal for λ = 1. Far from the solution, the contribution from

transits to the χ2 budget is extremely large; however, this is not an issue in practice because we

first fit for a one-planet solution, reducing the initial χ2 to χ2 ∼ δt/σTR.

3.4 HD40307

Mayor et al. (2009a) recently announced a three Super-Earth planetary system orbiting
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the nearby metal-deficient dwarf HD40307. Interestingly, while this system lies close to a 4:2:1

Laplace resonance chain, such a configuration is ruled out by the observations. The a-priori

transit probability for the innermost 4.3d planet is high enough to warrant a transit follow-

up; unfortunately, no transit was detected using Spitzer (Gillon et al. 2010), preventing the

placement of desirable constraints on the bulk composition of the three planets.

We derived the orbital parameters for the system using the publicly available HARPS

dataset, obtaining best-fit and error estimations in good accordance with the published configu-

ration. As can be seen by Figure 3.1, the difference in RV signal between a fully integrated model

(using Bulirsch-Stoer) versus simple superposition of Keplerian orbits is negligible compared to

the HARPS error bars and the RV residuals.

As a comparison, we derived synthetic TTV computed comparing a simple linear fit to

synthetic transits computed with the fully integrated solution above; we assumed, respectively,

planets b and c to be transiting and computed the primary transit timings for the HARPS

observation window. To each transit timing observation, we added a Gaussian white noise of

amplitude σ = 2 × 10−4 d (0.3 minutes), as a simple, conservative model for Kepler timing

uncertainties. The TTV dataset is shown in Figure 3.2. The amplitude of the TTV signal for

planet c is approximately 5σ, making it a far more sensitive probe of the mutual gravitational

perturbations than the highest-precision RV measurements available.

Although no transits have been so far detected for planet b, the transit probability

for planet c is a tantalizing 5% and the transit depth is of order 400 ppm, fully within the

capabilities of Kepler. Therefore, it is an interesting illustrative test-case problem to use the

known orbital elements of the HD40307 system and analyze the constraints imposed by TTV

on the perturbing planet, in absence of high-precision radial velocities. Given that the bulk of

the signal originates from the mutual perturbation between planets c and d, we hereafter solve

the simpler two-planet inverse problem and neglect the contribution from planet b. The orbital
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Figure 3.1: Sensitivity of the RV method to the mutual gravitational perturbations: Keplerian
model subtracted from the integrated model (thick curve) compared to the HARPS residuals
(empty circles).
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Figure 3.2: Predicted transit timing variations for planets b (empty circles) and c (black circles),
over the HARPS observation window.
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Best fit (HARPS) Best fit (100d) Best fit (365d)
P (days) 9.621 (1) 9.6214 (4) 9.62114 (5)

20.439 (5) 20.2 (2) 20.45 (1)
M (MJ) 0.0218 (6) 0.021 (5) 0.02 (1)

0.0290 (8) 0.025 (4) 0.025 (2)
e 0.06 (3) 0.036 (3) 0.034 (4)

0.12 (2) 0.06 (3) 0.01 (2)
$ (◦) 284 (6) 358 (4) 358.2 (1)

12 (7) 78 (23) 71 (4)
χ2 10.49 1.29 1.15
RMS (m s−1) 1.04 1.17 1.25
χ2
TR – 0.4 0.75

Table 3.1: Best-fit solutions for the HD40307 system. The error on the least significant digit is
indicated in parentheses.

elements of the generating fit are reported in Table 3.1.

We generated two sets of central transit observations spanning 100 days (11 transits)

and 365 (38 transits); we assumed every transit is detected with σtr = 2 × 10−4 d. We also

computed a small set of “follow-up” synthetic radial velocity observations (10 points), which set

the scale for the mass and the eccentricity of the transiting planet (period and mean anomaly

at epoch being primarily determined by the transit timing). We draw the measurement errors

to mimic mid-range precision observations; the average measurement error is ∼ 1.5 m/s. As a

comparison, we also computed a third synthetic RV dataset drawing from the HARPS schedule

and measurement errors for the two planets alone; we assumed a small jitter of ∼ 0.7 m/s. We

point out that this jitter is excellent, and depending on the properties of the parent star, a

realistic case might require more RVs.

Eight SA simulations were launched (one per core on a Mac Pro Xeon workstation),

with initial temperature and step size regulated to achieve 25% acceptance rate in each orbital

parameter. The initial configuration used the parameters from a single planet best-fit for the

transiting planet, and random elements for the perturbing planet (period, mass, eccentricity,

mean anomaly and longitude of pericenter), avoiding orbit-crossing configurations. For the sake
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of efficiency, we constrained the period of the second planet between 1.5 and 5 times the period

of the inner planet, the masses between 0.3 and 32M⊕ and the eccentricity between circular and

0.5. This parameter range approximately spans the region where the transit timings are sensitive

to the perturbations, but the reflex stellar semiamplitude K is not so large to be readily picked

up by RV observations. Finally, every 2,000 steps the current configuration was submitted to

the AMOEBA routine to attempt direct convergence to a solution. The minimization routine

is considered to be converged and the solution is retained if χ2
TR < 1.1 and the radial velocity

RMS < σRV , corresponding to a combined χ2 ∼ 1.3. After a predetermined number of steps

(10,000), if no improvement in the total χ2 has been reached, the suboptimal solution is discarded

and a new set of initial conditions is chosen. A sample of 20 candidate solutions was derived for

each dataset; each solution representing a local minimum. The lowest χ2 solution was chosen

as the representative best-fit.

An estimation of the uncertainties on the orbital parameters of the best-fit solutions

was derived using the Markov Chain Monte Carlo algorithm (MCMC; Ford 2005). While the

synthetic HARPS dataset is amenable to a bootstrap resampling technique, the rugged χ2 land-

scape for the TTV dataset turned out to be excessively complicated for an efficient exploration,

yielding artificially low parameter uncertainties. The simple MCMC algorithm presented in

Paper I derived error bars in accordance with bootstrap estimates for the RV dataset. We use

uniform priors in {logP , logM, M0, e, $}; while more sophisticated approaches are available

(e.g. incorporating information from Eqn. 3.2 as a constraints), the size and precision of the

synthetic datasets provide strong constraints on the model parameters and the choice of the pri-

ors should not affect our results (Ford 2006). We construct MCMC chains of 50,000 states, each

state consisting of 200 iterations. The initial 10% portion of the chain is considered “burn-in”

and discarded.

The best-fit solutions to the three datasets (synthetic HARPS, 100-d and 365d TTVs
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Figure 3.3: Results of a MCMC simulation consisting of 50,000 states computed from the HARPS
dataset (green points), 100 days of transit timing observations + 10 follow-up RVs (red points),
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+ RV followup) and respective uncertainties are compared in Table 3.1. To our knowledge, this

is the first attempt to fully fit and derive error estimates on a large TTV dataset. We show the

parameter scatter for the second planet in Figure 3.3.

The computed parameter uncertainties show a number of interesting properties. Firstly,

the period and mass of the second planet are derived to an accuracy comparable to that of the

full HARPS dataset, which spans 4.5 years. The detection of a low-mass planet at this level

of accuracy showcases the potential of scanning the future Kepler datasets for TTV detection

candidates. Once again, we stress that our estimate of the central transit timing noise is likely

conservative and that stars on the short-cadence list will be observed with an even higher accu-

racy. While the period of the transiting planet is constrained by the transits timing themselves,

the mass is not well constrained because, to a good approximation, the amplitude of the TTVs

does not depend on the mass of the transiting planet itself (Equation 3.2) in the non-resonant

regime.

Finally, we remark that although the χ2 landscape allowed for several, well-separated

local minima, both the SA and the MCMC algorithms were able to efficiently sample the param-

eter space. Therefore, it is likely that global minimization routines will be part of the standard

toolset to analyze the future Kepler transit datasets.

3.5 HAT-P-7

The bright nearby dwarf HAT-P-7 hosts a transiting hot Jupiter, first characterized

by the HATNet project (Pál et al. 2008). The star is in the field of view of one of the Kepler

detectors; ten days of photometric data, as processed by the Kepler pipeline, were obtained

during the commissioning phase (Borucki et al. 2009). Additional primary transits and a number

of secondary eclipses were observed using EPOXI and Spitzer (Christiansen et al. 2010), with

79



ϖ
2 - 
ϖ

1

150

180

210

Θ
1

-25

-20

-15

-10

-5

0

5

10

15

20

Time (years)
0 1 2 3 4 5 6 7 8 9 10

Figure 3.4: Libration (in degrees) of the resonant arguments Θ1 and ∆$ for the reference
configuration (black line) and the best-fit configuration (grey line).

80



P
2
/P

1

lo
g

1
0
 M

2
 /

 M
E

a
rt

h

 

 

1.5 2 2.5 3 3.5 4 4.5 5

−0.5

0

0.5

1

1.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
2
/P

1

lo
g

1
0
 M

2
 /

 M
E

a
rt

h

 

 

1.9 1.95 2 2.05
−0.5

0

0.5

1

1.5

2

4

6

8

10

12

14

Figure 3.5: (Top) Grayscale map of δt (in units of σtr,K ≈ 15 s) for 10,000 realizations spanning
a range of perturber periods and masses, using the reference configuration for the other elements.
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blue contour) respectively. The star symbol represents the reference configuration.
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the intent of studying the atmospheric properties of the planet. The EPOXI best-fit central

times achieved an accuracy of σtr ≈ 10−3 d (≈ 1.5 minutes).

Given its extensive and diverse coverage, and the inclusion of this planet in the Kepler

star list, we chose this system as a prototype of the class of massive transiting planets that will

be monitored by the Kepler mission and may reveal TTVs. In particular, we are interested in

assessing the secure detection of a low-mass planet in a 2:1 MMR with the transiting gas giant

(we consider only the case of an external perturber in the present analysis).

We generated a realistic resonant configuration self-consistently with the following pro-

cedure. We placed the two planets (denoted as 1 and 2, respectively the transiting planet and

the external perturber) on originally widely separated orbits; following Lee & Peale (2002), we

added a forced migration (ȧ/a = −3× 10−4 yr−1) and an eccentricity damping (ė/e = 100 ȧ/a)

term of the outer planet to the equations of motion until resonant capture is achieved. In this

reference configuration, the outer planet was captured into an antialigned configuration with

Θ1 = 2λ2 − λ1 − $2 librating around 0◦ and ∆$ = $2 − $1 librating around 180◦, with an

amplitude of ≈ 5◦(Figure 3.4). The final eccentricities for this choice of forced migration terms

are low (e1 = 0.002, e2 = 0.027).

To illustrate the process, we chose a mass for the second planet of 10M⊕, since this

can yield a TTV signal larger than 1 minute, easily detectable with Kepler. Figure 3.5 shows

the amplitude of the TTV signal for a choice of periods and masses, at fixed eccentricies and

phases; as expected, the TTVs are largest in the proximity of resonances. In particular, 3:2, 2:1

and 3:1 MMRs yield a sizable TTV signal for our range of perturber masses.

We created a TTV dataset spanning 1 year (166 observations) following the procedure

in Section 3.4, using the reference configuration as our generating system and Gaussian noise

at the level of 2 × 10−4 d. We drew from the schedule and uncertainties of the Keck/HIRES

follow-up observations (Pál et al. 2008) to generate the accompanying RV dataset. We note that
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given the small semi-amplitude K2 (≈ 2.8 m/s, larger than the typical error in the Keck dataset

but smaller than the stellar jitter ≈ 3.8 m/s) and the few RV points available, the RV dataset

places only a weak constraint on the parameters of the perturbing planet.

We launched a number of SA chains and allowed the parameters of the perturbing

planet to float freely. We found that the best-fitting solutions comprised a set of degenerate

configurations, shown in Figure 3.6. The fitting routine found two groups of solutions: configu-

rations lying near a 2:1 MMR and configurations lying near a 3:1 MMR can fit the TTV signal

equally well. Additionally, the degeneracy between mass and eccentricity of the perturbing

planet makes it impossible to place a strong constraint on the mass of the second planet.

This non-uniqueness of the inverse problem was already noted in Nesvorný & Morbidelli

(2008); the measurement errors filter out some of the TTV harmonics. The authors also pointed

out that the non-uniqueness threshold (the measurement uncertainty that leads to a unique

solution) of the number of transits detected; accordingly, we verified that a transit dataset

covering 2 years of observations still yielded the two groups of solutions. Reducing the error on

the transit measurement to 5×10−5 d (4 seconds), while not breaking the resonance degeneracies,

reduced the range of possible masses somewhat (Figure 3.6). Finally, only a fraction of the

solutions (about 10%) have librating resonant arguments; the ones that do show a much larger

amplitude of libration than the reference system (Θ1 ∼ 20 − 40◦, ∆$ ∼ 30 − 70◦; see Figure

3.4). This suggests that the TTV signal alone is not enough to constrain the resonant angles.

Our result is particularly remarkable in that the best-fitting solutions cluster around

two different MMRs, preventing a precise characterization of the resonance. Since the two

solutions yield a different RV semi-amplitude K2, this degeneracy may be broken with RV

observations. Even a small RV dataset, where uncertainty and jitter do not completely wash out

the planetary signal, can help constrain the parameters of the perturbing planet to a reasonable

level. Indeed, we verified that a second RV dataset comprising 20 measurements with lower jitter
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(∼ 1 m/s) sufficed to constrain the best-fit solutions to the neighborhood of the 2:1 MMR. We

conclude that while TTVs can be usefully exploited to infer the presence of low-mass perturbing

planets, a small number of RV measurements with a precision comparable to K2 is crucial in

recognizing the nature of the planetary companion. This fact makes it much more desirable to

find configurations orbiting bright parent stars.

3.6 HAT-P-13

HAT-P-13 was the first system known to contain a transiting planet, b, and an eccentric

outer planet, c, well characterized through RVs (Bakos et al. 2009). No transits of planets c have

been detected thus far. A complete characterization of the three-dimensional configuration of

the system can establish the internal structure of planet b (Batygin et al. 2009) and possibly the

formation and scattering history of the system, with certain ranges of inclination being favored

on theoretical grounds (Mardling 2010).

Transit timing variations can provide the required constraints on the mutual inclination

(I) and the nodal line marking the intersection of the two orbital planes (Ω), should transits of

c not be detected. The amplitude and shape of the TTV signal depend significantly on the two

parameters (Payne et al. 2010), although this dependence is not trivial.

Figure 3.7 shows the TTV signal for a number of inclinations. We centered our dataset

around Tperi, c since the different solutions can be best distinguished by the sharp feature in

the neighborhood of the pericenter passage of c. While the discovery paper predicted a TTV

amplitude of order 15-20 seconds, the updated configuration presented in Winn et al. (2010)

reduces the expected δt near the pericenter passage by a factor ∼ 2, to about 7 seconds for

I ≈ 0. Winn et al. (2010) also measured a prograde Rossiter-McLaughlin effect, suggesting that

both orbits are prograde.
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We produced several transit datasets for mutual inclinations in the range 0 < I <

90◦and Ω = 0, assuming that all transits between Tperi, c − 100 d and Tperi,c + 100 d are

detected; the other elements were drawn using the published uncertainties (Winn et al. 2010).

We added white noise to the TTV signal at the 4 × 10−5 d = 3.5 s level (in order to have

δt/σtr > 2). The RV measurements were generated drawing from the schedule and uncertainties

of the Keck/HIRES dataset as reported in the discovery paper.

We used our usual fitting procedure (Bulirsch-Stoer as our integration scheme and

Simulated Annealing and AMOEBA in tandem to pinpoint the solution), with the published

fit as our starting configuration. When a solution was found, we estimated the uncertainty by

running our MCMC algorithm. We generated 4 × 106 trial models; of those, the first 10% was

discarded and only one model every 50 was retained in order to minimize correlations between

successive elements of the Markov chain. Figure 3.8 shows the marginal distribution of the

fitted relative inclinations for systems with various degrees of inclination (I = 0◦, 5◦, 15◦, 45◦

and 75◦). The inclination is well constrained for polar and near-polar configurations of the outer

planet, where the TTV signal is sizable; on the other hand, for low inclinations there is a large

range of allowed configurations. However, it is clear that while the inclination distributions

are broad, they are consistent with the originating configuration and can discriminate between

low-inclination and high-inclination configurations.

3.7 Discussion

In this paper we outlined a procedure to solve the inverse problem of deriving best-

fitting model parameters and associated uncertainties using synthetic radial velocity and transit

timing variations datasets simultaneously. The procedure exploits a number of numerical algo-

rithms that are made available to the community through the Systemic Console package.
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We tested our fitting method against a number of synthetic realizations of different

planetary configurations, including a system of non-resonating coplanar super-Earths, a system

in a deep 2:1 resonance and a non-coplanar system. The transit timing datasets were derived

assuming continuous photometric coverage as provided by Kepler , and thus are fully realistic to

the extent that the transit timing error can be modeled as white noise with a constant amplitude.

Our analysis shows that combined RV and TTV datasets carry enough dynamical information

to characterize a system in its full three-dimensional configuration.

Inverse problems have a storied place in astronomy, with the discovery of Neptune

providing a canonical example. In that case, a fortunate orbital geometry allowed Neptune’s

sky position to be pinpointed with sufficient accuracy that the “prediction” of a new planet

could credibly be claimed. It is worth pointing out, however, that the accurate ephemeris for

Neptune in 1846 was something of a lucky accident. Both Adams’ and Le Verrier’s masses and

semi-major axes were badly off (Grant 1852). The correct position of the planet that emerged

from the calculations stems from a degeneracy of solutions during the period surrounding the

conjunction of Uranus and Neptune.

We have found that a similar state of affairs might apply to the transit timing mea-

surement scenarios that will emerge from Kepler . While departure from strict periodicity can

be readily measurable, it is generally difficult to work out the complete system configuration

from transit timing measurement alone. We confirmed that the suppression of TTV harmonics

by the transit timing noise can lead to severe degeneracies in the model parameters, as first

pointed out by Nesvorný & Morbidelli (2008), even when very low levels of timing error is added

to the synthetic data. In presence of such degenerate set of solutions, however, we have verified

that adequate RV data can single out the correct orbital configuration. We note that other

constraints derived by extracting more observables from the photometry, such as the the dura-

tion of the transits and their variations (TDV – Kipping et al. 2009, Kipping 2010), may also
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help remove the degeneracies in the solution. Including these contributions will require more

sophisticated modelling approaches.

Finally, we note that our work did not investigate other competing effects that con-

tribute to the TTV signal, chiefly including, but not limited to, light travel time, excitation

of tidal modes in the host star, general relativity and the presence of additional planets. Fur-

thermore, the investigation of planetary systems with Npl > 2 with the methods presented here

might be computationally costly due to the large parameter space.
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Figure 3.8: Relative inclination distribution for synthetic HAT-P-13 realizations with I =
0, 5, 15, 45 and 75 degrees respectively. The median inclination and standard deviation are
given inside each plot.
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Chapter 4

The Lick-Carnegie Survey: Four New

Exoplanets

4.1 Abstract

We present new precise HIRES radial velocity (RV) data sets of five nearby stars

obtained at Keck Observatory. HD 31253, HD 218566, HD 177830, HD 99492 and HD 74156

are host stars of spectral classes F through K and show radial velocity variations consistent with

new or additional planetary companions in Keplerian motion. The orbital parameters of the

candidate planets in the five planetary systems span minimum masses of M sin i = 27M⊕ to

8MJ , periods of 17 to 4696 days and eccentricities ranging from circular to extremely eccentric

(e ≈ 0.63).

The 5th star, HD 74156, was known to have both a 52-day and a 2500-day planet, and

was claimed to also harbor a 3rd planet at 336d, in apparent support of the “Packed Planetary

System” hypothesis. Our greatly expanded data set for HD 74156 provides strong confirmation

of both the 52-day and 2500-d planets, but strongly contradicts the existence of a 336-day planet,
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and offers no significant evidence for any other planets in the system.

4.2 Introduction

The planetary census has reached an impressive 496 extrasolar planets. Planetary com-

panions have been successfully detected using a variety of techniques, primarily radial velocities

(463; see e.g. Mayor & Queloz 1995, Butler et al. 2006, Udry et al. 2007) and transit photometry

(106; see e.g. Henry et al. 2000, Charbonneau et al. 2000, Charbonneau et al. 2007). Other tech-

niques employed include microlensing (Bennett 2008), astrometry (Benedict et al. 2002, Bean &

Seifahrt 2009), stellar pulsations (Silvotti et al. 2007) and even direct imaging (Chauvin et al.

2005, Kalas et al. 2008, Marois et al. 2008) 1.

The radial velocity method has been used to either detect or characterize more than

90% of all currently known planets, and continues to be a very important technique. Both its

continued productivity (e.g. Valenti & Fischer 2005) and its ability to accurately probe planetary

architectures into the vicinity of the terrestrial mass region (e.g Rivera et al. 2005, Mayor et al.

2009b, Vogt et al. 2010) are a testament to the rapid technological advances.

We have been monitoring a large set of nearby stars under precise radial velocity survey

with the High Resolution Echelle Spectrometer (HIRES) at Keck for the past 17 years. In this

paper, we present new radial velocity (RV) observations for five of our target stars: HD 31253,

HD 218566, HD 177830, HD 99492 and HD 74156.

The plan of this paper is as follows. In Section 4.3, we discuss the procedure followed

to obtain and reduce the RV dataset. In Sections 4.4 through 4.8 we describe the main stellar

properties, derive model Keplerian fits with associated parameter uncertainties and discuss the

planetary systems they imply. Finally, we discuss the new planetary companions in Section 6.6.

1Source: http://www.exoplanet.eu, retrieved on 06/14/2010
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4.3 Radial Velocity observations and target stars

The HIRES spectrometer (Vogt et al. 1994) of the Keck-I telescope was used for all

the new RVs presented in this paper. Doppler shifts were measured in the usual manner (Butler

et al. 1996) by placing an Iodine absorption cell just ahead of the spectrometer slit in the

converging beam from the telescope. This gaseous Iodine absorption cell superimposes a rich

forest of Iodine lines on the stellar spectrum, providing a wavelength calibration and proxy for

the point spread function (PSF) of the spectrometer. The Iodine cell is sealed and temperature-

controlled to 50 ± 0.1 C such that the column density of Iodine remains constant. For the Keck

planet search program, we operate the HIRES spectrometer at a spectral resolving power R ≈

70,000 and wavelength range of 3700-8000 Å, though only the region 5000-6200 Å (with Iodine

lines) is used in the present Doppler analysis. A block of the spectrum containing the Iodine

region is divided into ∼700 chunks of 2 Å each. Each chunk produces an independent measure

of the wavelength, PSF, and Doppler shift. The final measured velocity is the weighted mean

of the velocities of the individual chunks. All radial velocities have been corrected to the solar

system barycenter, but are not tied to any absolute radial velocity system. As such, they are

“relative” radial velocities, with a zero point that is usually set simply to the mean of each set.

The internal uncertainties quoted for all the RV’s in this paper reflect only one term

in the overall error budget, and results from a host of systematic errors from characterizing and

determining the PSF, detector imperfections, optical aberrations, effects of under-sampling the

Iodine lines, etc. Two additional major sources of error are photon statistics and stellar jitter.

The latter varies widely from star to star, and can be mitigated to some degree by selecting

magnetically-inactive older stars and by time-averaging over the star’s unresolved low-degree

surface p-modes. All observations have been further binned on 2-hour timescales.

We present in Table 4.1 a few basic parameters (and uncertainties, where available) for
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all the host stars considered in this paper. Unless otherwise noted, the data are mostly as listed

in the SPOCS database (Valenti & Fischer 2005) and the NASA NStED database2.

Table 4.2 summarizes all the Keplerian fits for the target stars in this paper; they will

be discussed in more detail in the following sections. The orbital fits were derived using the

Systemic Console (Meschiari et al. 2009). The errors on each parameter are estimated using the

bootstrap technique with 5000 scrambled realizations of the RV datasets. For each planet, we

list best-fit period (P ), eccentricity (e), semi-amplitude (K), time of periastron passage (Tperi),

longitude of pericenter ($), minimum mass (M sin i) and semi-major axis (a). Additionally, we

report approximate estimates of the transit probability calculated as part of the Monte-Carlo

modeling, assuming a putative radius R = RJUP .

4.4 HD 31253 (HIP 22826)

4.4.1 Stellar properties

HD 31253 is a V = 7.133 magnitude star of spectral class F8. Relative to the Sun, HD

31253 is modestly metal-rich ([Fe/H] = 0.16).

This 1.23M� star has a reported V sin i of 3.8 m s−1 which, in conjunction with its

derived radius, implies a maximum rotation period of about 23 days. Our measurement of

logR′hk= -5.13 agrees well with that listed on the NASA NStED site, and leads to an estimate

of ∼2.3 for the expected radial velocity jitter due to stellar surface activity (Wright 2005).

4.4.2 Keplerian solution

Table A.1 shows the complete set of 39 relative radial velocity observations for HD

31253. The radial velocity coverage spans approximately 13 years of RV monitoring. The

2http://nsted.ipac.caltech.edu/
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Parameter HD 31253 HD 218566 HD 177830 HD 99492 HD 74156
Spec. Type F8 K3V K0IV K2V G1V
Mv 3.48 a 6.21 b 3.3 6.3 3.56 c

B − V 0.58 1.013 1.091 1.053 0.581
V 7.133 8.628 7.177 7.383 7.614
Mass (M�) 1.23 [0.05] 0.85 [0.03] d 1.47 0.83 d 1.24
Radius (R�) 1.71 [0.17] 0.86 [0.08] 2.62 [0.06] 0.96 [0.11] 1.64 [0.19]
Luminosity (L�) 3.286 [0.446] 0.353 [0.032] 4.842 [1.003] 0.418 [0.057] 3.037 [0.485]
Distance (pc) 53.82 [3.45] 29.94 [1.11] 59.03 [2.77] 17.99 [1.14] 64.56 [4.93]
V sin i (km s−1) 3.8 0.0 2.5 1.4 4.3
Shk 0.141 [0.018] 0.297 0.125 [0.016] 0.254 [0.033] 0.144
logRhk -5.11 -4.88 -5.37 -4.84 -5.08
Age (Gyr) 3 8.5 2.2 - 6.6 4 3.7 [0.4] d

[Fe/H] 0.16 0.38 0.545 [0.03] 0.36 0.13
Teff (K) 5960.0 4820.0 4949 4740.0 5960.0 [100.0]
log g 4.1 4.81 3.65 4.77 4.4 [0.15] c

Prot 23 - 65 f 45 e -

a Nordström et al. (2004)

b Wright et al. (2004)

c Naef et al. (2004)

d Takeda et al. (2007)

e Marcy et al. (2005)

f Barnes (2001)

Table 4.1: Stellar parameters
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median internal uncertainty for our observations is 1.59 m s−1, and the peak-to-peak velocity

variation is 36.37 m s−1. The velocity scatter around the average RV in our measurements is

8.92 m s−1.

The top panel of Figure 4.1 shows the individual RV observations for HD 31253 . The

middle panel shows the error-weighted Lomb-Scargle (LS) periodogram of the full RV dataset

(Gilliland & Baliunas 1987). The three horizontal lines in this figure and other comparable plots

represent, from top to bottom, the 0.1%, 1.0%, and 10.0% analytic False Alarm Probability

(FAP) levels, respectively. The analytic FAPs are computed using a straightforward approach,

where we estimate the number of independent frequencies by analyzing a set of 1,000 gaussian

deviates with the same timestamps as the original dataset (Press et al. 1992).

For the highest peak, the quoted FAP is estimated using a more robust Monte Carlo

approach, which consists of generating sets of scrambled realizations of the dataset and deter-

mining the maximum periodogram power for each (e.g. Marcy et al. 2005). For all the datasets

presented in this paper, we analyze 3× 105 scrambled datasets.

The computed FAP for the strong Keplerian signal at P = 460.32 days in the RV

dataset indicates an estimated FAP ≈ 4×10−5. Finally, the lower panel of Figure 4.1 shows the

spectral window. A peak at frequency, fs in the spectral window function can be associated with

aliases occurring at |fp ± fs|, where fp is a true periodicity of the input signal. For more details,

see Dawson & Fabrycky (2010). Peaks in the spectral window function are often associated with

relatively immutable periodicities in the observational cadence, such as those arising from the

sidereal and solar day, the lunar synodic month and the solar year. The strongest peak in the

periodogram is well-fit by a Keplerian orbit of period 465.54 days and semi-amplitude K = 12.22

m s−1. Together with the assumed stellar mass of 1.23M�, this amplitude implies a minimum

mass ofM sin i = 0.50MJ . The best-fit orbit for the planet is mildly eccentric (e ≈ 0.34). This

1-planet fit achieves a reduced χ2 = 8.87, with an RMS of 4.23 m s−1. The expected jitter of
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HD 31253 (that is, the amount of jitter required to bring the reduced χ2 of the best-fit solution

to 1.0) is 3.92 m s−1.

The top panel of Figure 4.2 shows the phased stellar reflex velocity of HD 31253

compared to the RV dataset. The middle panel shows the residuals to the 1-planet solution.

Finally, the bottom panel shows the periodogram of the residuals of the best-fit solution. No

interesting peaks are evident, indicating that the present data set provides no strong support

for additional planets in the system.

We do not have photometry of HD 31253 that might conclusively rule out stellar

rotation signatures as a cause of the RV variations. But this star does have a measured V sin i

of 3.8 m s−1 which implies a maximum rotation period of about 23 days, much shorter than the

466-d Keplerian period. The semi-amplitude of the observed variations is 12 m s−1, whereas

a 466-d rotation period, combined with a stellar radius of 1.71 R�, would not produce radial

velocity effects above a few tenths of a m s−1. Therefore, stellar rotation can sensibly be ruled

out as being responsible for the observed RV variations.

4.5 HD 218566 (HIP 114322)

4.5.1 Stellar properties

HD 218566 is a V = 8.628 magnitude star of spectral class K3V. In comparison to the

Sun, HD 218566 is quite metal-rich ([Fe/H] = 0.38). Table 4.1 reports some of the salient stellar

properties, as reported by NStEd, Wright et al. (2004) and Takeda et al. (2007).

4.5.2 Keplerian solution

Table A.1 shows the 56 relative radial velocity observations for HD 218566. The radial

velocity coverage spans approximately 14 years of RV monitoring. The median internal uncer-
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Figure 4.1: Radial velocity data and periodograms for HD 31253. Top panel: Relative radial
velocity data obtained by KECK. Middle panel: Error-weighted Lomb-Scargle periodogram of
the radial velocity data. Bottom panel: Power spectral window.
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Figure 4.2: Keplerian solution and residuals periodogram for HD 31253. Top panel: Phased Ke-
plerian fit. Middle panel: Residuals to the 1-planet Keplerian fit. Bottom panel: Periodogram
of the residuals to the 1-planet best-fit solution.
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tainty for our observations is 1.27 m s−1, and the peak-to-peak velocity variation is 28.46 m s−1.

The velocity scatter around the mean RV in our measurements is 7.18 m s−1.

The top panel of Figure 4.3 shows the individual RV observations for HD 218566.

The middle panel shows the error-weighted Lomb-Scargle (LS) periodogram of the full RV

data set, while the bottom figure shows the spectral window. The FAP calculation for the

strong Keplerian signal at P = 225.06 days in the RV dataset indicates an estimated FAP

≈< 4× 10−6. The dominant peak in the periodogram can be explained by a Keplerian orbit of

period 225.73 days and semi-amplitude K = 8.34 m s−1. This amplitude suggests a minimum

mass of M sin i = 0.21MJ (assuming a stellar mass of 0.88 M�). The best-fit orbit for the

planet is moderately eccentric (e ≈ 0.37). This fit achieves a reduced χ2 = 8.41, with an RMS

of 3.48 m s−1. The expected jitter of HD 218566 (that is, the amount of jitter required to bring

the reduced χ2 of the best-fit solution to 1.0) is 3.23 m s−1.

The top panel of Figure 4.4 shows the phased stellar reflex velocity of HD 218566

compared to the RV dataset. The middle panel shows the residuals to the 1-planet solution.

The periodogram of the residuals to the best-fit solution, shown in the bottom panel, displays

no strong peaks that would support the evidence for additional planets in the system.

4.6 HD 177830 (HIP 93746)

4.6.1 Stellar properties

HD 177830 is a V = 7.177 magnitude star of spectral class K0IV. Relative to the Sun,

HD 177830 is quite metal-rich ([Fe/H] = 0.55).

HD 177830 is a subgiant with Mv = 3.32, close to giant status. The star has a known

early M stellar companion with a projected separation of 97 AU (Eggenberger et al. 2007). It

was first reported by Vogt et al. (2000) to host a 392-day Jovian-mass planet in an eccentric
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Figure 4.3: Radial velocity data and periodograms for HD 218566. Top panel: Relative radial
velocity data obtained by KECK. Middle panel: Error-weighted Lomb-Scargle periodogram of
the radial velocity data. Bottom panel: Power spectral window.
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Figure 4.4: Keplerian solution and residuals periodogram for HD 218566. Top panel: Phased Ke-
plerian fit. Middle panel: Residuals to the 1-planet Keplerian fit. Bottom panel: Periodogram
of the residuals to the 1-planet best-fit solution.
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(e=0.42) orbit. Updates to the orbit were provided by Butler et al. (2006). Wright et al. (2007)

noted a possible 111-day or 46.8-day signal but suggested that it could be correlated noise.

Tanner et al. (2009) studied the star using Spitzer to place limits on the amount of dust in

the system, and concluded that no significant excess emission at 160 µm was detected (see also

Trilling et al. 2008, Bryden et al. 2009).

The stellar parameters for this star listed in Table 4.1 are a compilation of various

results, mostly from the SPOCS database Valenti & Fischer (2005) with additions from the

NStED database. The values for the stellar mass in Table 4.1 are the lower and upper limits of

the isochrone mass listed in the SPOCS database. We find a current logR′hkvalue of -5.37. HD

177830 has a derived rotation period of 65 days (Barnes 2001).

4.6.2 Keplerian solution

We show the 88 Keck radial velocity measurements in Table A.1, spanning approxi-

mately 15 years of RV monitoring. The median internal uncertainty for our observations is 1.05

m s−1, and the peak-to-peak velocity variation is 87.15 m s−1. The velocity scatter around the

average RV in our observations is 24.68 m s−1.

The individual RV observations for HD 177830 are shown in the top panel of Figure

4.5. The middle panel shows the error-weighted Lomb-Scargle (LS) periodogram of the full RV

dataset. Finally, the lower panel of Figure 4.5 shows the spectral window. The strongest peak

in the periodogram is well-fit with a Keplerian model with period 407.31 days, semi-amplitude

K = 31.17 m s−1 and estimated FAP < 3 × 10−6. Together with the assumed stellar mass of

1.48 M�, this amplitude corresponds to a minimum mass of M sin i = 1.48MJ . The best-fit

orbit for the planet is essentially circular. This 1-planet fit achieves a reduced χ2 = 27.53, with

an RMS of 5.24 m s−1. The top panel of Figure 4.6 shows the phased Keplerian fit for the 407-d

planet.
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The bottom panel of Figure 4.6 shows the periodogram of the residuals to the single-

planet fit and the corresponding FAPs. The dominant peak at P = 110.98 with a FAP ≈

5 × 10−5 indicates the rather secure presence of an additional planet. Our best combined 2-

planet fit indicates a new planet with P = 110.91 days, K = 5.11 m s−1 and a minimum mass

of M sin i = 0.15MJ . The orbit of the second planet is moderately eccentric (e ≈ 0.36). With

this revised fit, we obtain a reduced χ2 = 15.31 and an RMS of the residuals of approximately

3.85 m s−1. The expected jitter of HD 177830 (that is, the amount of jitter required to bring

the reduced χ2 of the best-fit solution to 1.0) is 3.71 m s−1.

The top and 2nd panels of Figure 4.7 show the phased stellar reflex velocity of HD

177830 due to each companion as compared to the RV dataset. The 3rd panel shows the residuals

to the 2-planet solution, while the bottom panel shows the periodogram of the residuals of the

best-fit solution. No compelling peaks are evident in the current Keck dataset, indicating that

the present data offers no strong support for additional planets in the system.

The 2-planet fit shows a very slight amount of dynamical interaction between planets

b and c, which we accounted for in the modeling using the Bulirsch-Stoer integration scheme in

the Systemic console (Meschiari & Laughlin 2010); we verified that the best-fit orbital model is

stable for at least 106 years. The time evolution of the eccentricity is shown in Figure 4.8.

4.7 HD 99492 (HIP 55848)

4.7.1 Stellar properties

HD 99492 is a V = 7.383 magnitude star of spectral type K2V. A recent determination

of many of its fundamental stellar parameters was given by Marcy et al. (2005) and is included in

Table 4.1, supplemented with additional values from the NStED database. Marcy et al. (2005)

found this star to be a middle-aged star of average chromospheric activity, with an age of 2-6
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Figure 4.5: Radial velocity data and periodograms for HD 177830. Top panel: Relative radial
velocity data obtained by KECK. Middle panel: Error-weighted Lomb-Scargle periodogram of
the radial velocity data. Bottom panel: Power spectral window.
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Figure 4.6: One-planet Keplerian solution and residuals periodogram for HD 177830. Top
panel: Phased Keplerian fit. Bottom panel: Periodogram of the residuals to the 1-planet
best-fit solution.
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Figure 4.7: Keplerian solution and residuals periodogram for HD 177830. 1st panel: Phased
Keplerian fit of the 407-d component b. 2nd panel: Phased Keplerian fit of the 111-d component
c. 3rd panel: Residuals to the 2-planet fit. 4th panel: Periodogram of the residuals to the
2-planet best fit solution.

108



Figure 4.8: Eccentricity evolution of planets HD177830 b (dashed line) and c (solid line) within
5× 104 years.
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Gyr. They report an implied stellar rotation period of about 45 days (± 30%) based on the

star’s chromospheric activity index. Marcy et al. (2005) also reported a 17.1-day 36 M⊕planet

orbiting this star. Compared to the Sun, HD 99492 is quite metal-rich ([Fe/H] = 0.36).

4.7.2 Keplerian solution

Table A.1 shows the 93 relative radial velocity measurements for HD 99492. The radial

velocity coverage spans almost 14 years of RV monitoring. The median internal uncertainty for

our observations is 1.36 m s−1, and the peak-to-peak velocity variation is 28.32 m s−1. The

velocity scatter around the average RV in our observations is 6.39 m s−1.

The top panel of Figure 4.9 shows the individual RV observations for HD 99492. The

middle panel shows the error-weighted Lomb-Scargle (LS) periodogram of the full RV dataset,

while the bottom panel shows the spectral window. The FAP calculation for the strong Keplerian

signal at P = 17.06 days in the RV dataset indicates an estimated FAP< 3×10−6. The dominant

peak in the periodogram is well-fit by a Keplerian fit of period 17.05 days and semi-amplitude

K = 7.86 m s−1. Together with the assumed stellar mass of 0.83 M�, this amplitude suggests

a minimum mass ofM sin i = 27.76M⊕. The best-fit orbit for the planet shows a small amount

of eccentricity (e ≈ 0.13). This 1-planet fit achieves a reduced χ2 = 12.71, with an RMS of

4.39 m s−1. The top panel of Figure 4.10 shows the phased Keplerian fit for the 17-d planet,

while the bottom panel shows the periodogram of the residuals to the single-planet fit and the

corresponding FAPs.

The additional peak in the periodogram of residuals with P = 4908.67 reveals the

secure detection of an additional planet, with a FAP ≈ 4 × 10−4. Our best combined 2-planet

fit suggests a new planet with P = 4969.73 days, K = 4.88 m s−1 and a minimum mass of

M sin i = 0.36MJ ; the orbit of the second planet is somewhat eccentric (e ≈ 0.11). Using this

revised fit, we obtain a reduced χ2 = 7.17 and an RMS of the residuals of approximately 3.22

110



m s−1. The expected jitter of HD 99492 (that is, the amount of jitter required to bring the

reduced χ2 of the best-fit solution to 1.0) is 2.94 m s−1.

The top and 2nd panels of Figure 4.11 show the phased stellar reflex velocity of HD

99492 from each planet compared to the RV dataset. The 3rd panel shows the residuals to the

2-planet solution, while the bottom panel shows the periodogram of the residuals of the best-fit

solution. No significant peaks are evident, indicating that the present data set offers no strong

support for additional planets in the system.

4.8 HD 74156 (HIP 42723)

4.8.1 Stellar properties

HD 74156 is a V = 7.614 magnitude star of spectral type G1V. In comparison to the

Sun, HD 74156 is modestly metal-rich ([Fe/H] = 0.13).

HD 74156 is a well-studied star, known already to have both a 52-day and a 2500-day

planet (Naef et al. 2004). The star was claimed by Bean et al. (2008) to also harbor a 3rd planet

(“d”) at 336 days, in apparent support of the so-called “Packed Planetary Systems” hypothesis

(PPS; Barnes & Raymond 2004). Indeed, Barnes & Greenberg (2007) cited the discovery of d

as a successful prediction of the PPS hypothesis. However, the reality of HD 74516d was called

into question by Baluev (2009) as a false detection made due to annual systematic errors in the

HET RV data. Wittenmyer et al. (2009) also found no evidence of HD 74156 d in their follow-up

study.

We have had HD 74156 under precise radial velocity monitoring at Keck for the past

8.9 years and here add 21 new velocities to the mix, combined with previously published data

from CORALIE, ELODIE, and HET, bringing the total number of observations to 198. We

re-analyzed the compound dataset from scratch, looking for evidence of further planetary com-
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Figure 4.9: Radial velocity data and periodograms for HD 99492. Top panel: Relative radial
velocity data obtained by KECK. Middle panel: Error-weighted Lomb-Scargle periodogram of
the radial velocity data. Bottom panel: Power spectral window.
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Figure 4.10: One-planet Keplerian solution and residuals periodogram for HD 99492. Top
panel: Phased Keplerian fit. Bottom panel: Periodogram of the residuals to the 1-planet
best-fit solution.
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Figure 4.11: Keplerian solution and residuals periodogram for HD 99492. 1st panel: Phased
Keplerian fit of the 17-d component b. 2nd panel: Phased Keplerian fit of the 4697-d component
c. 3rd panel: Residuals to the 2-planet fit. 4th panel: Periodogram of the residuals to the
2-planet best fit solution.
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panions. As usual, we allowed a floating offset between each data set in the Keplerian fitting

process to compensate for the different zero-points of each observatory.

4.8.2 Keplerian solution

Table A.1 shows Keck/HIRES relative radial velocity observations for HD 74156. The

radial velocity coverage spans almost 13 years of RV monitoring. The top panel of Figure 4.12

shows the individual RV observations for HD 74156 (CORALIE04, ELODIE04 Naef et al. (2004),

HET09 Wittenmyer et al. (2009) and KECK; each RV dataset has been offset to yield the best-

fit solution). The middle panel shows the error-weighted Lomb-Scargle (LS) periodogram of the

full RV dataset. Figures 4.13 and 4.14 show the best 1-planet and 2-planet fits, respectively.

The best 2-planet fit (derived using the full set of RV observations) obtains a reduced χ2 = 3.09,

an RMS of the residuals of approximately 12.80 m s−1 and an expected jitter of 8.59 m s−1.

The value of the estimated jitter from this best-fit is considerably higher than the 2.2 m s−1

expected from its logR′hk activity index. However, in this case the RMS is dominated by the

CORALIE and ELODIE data, with a considerable contribution also from the HET data. The

RMS of the fit using only the 29 Keck points is 3.5 m s−1 with jitter of 2.9 m s−1, in much

closer accord with the expected stellar jitter of 2.2 m s−1.

The periodogram shown in the bottom panel of Figure 4.14, shows no compelling peaks

in the residuals, indicating that the present data set offers no significant support for additional

planets in the system. Our results confirm the conclusions of Wittenmyer et al. (2009). The

expanded dataset presented in this paper does not support the theoretical and observational

evidence for a third planetary companion claimed by Bean et al. (2008).
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Figure 4.12: Radial velocity data and periodograms for HD 74156. Top panel: Relative radial
velocity data obtained by CORALIE04, ELODIE04, HET09 and KECK. Middle panel: Error-
weighted Lomb-Scargle periodogram of the radial velocity data. Bottom panel: Power spectral
window.
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Figure 4.13: One-planet Keplerian solution and residuals periodogram for HD 74156. Top
panel: Phased Keplerian fit. Bottom panel: Periodogram of the residuals to the 1-planet
best-fit solution.

117



Figure 4.14: Keplerian solution and residuals periodogram for HD 74156. 1st panel: Phased
Keplerian fit of the 52-d component b. 2nd panel: Phased Keplerian fit of the 2514-d component
c. 3rd panel: Residuals to the 2-planet fit. 4th panel: Periodogram of the residuals to the
2-planet best fit solution.
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Figure 4.15: Plot of all known extrasolar planets (gray dots) and the orbital elements of all the
planets orbiting the host stars presented in this paper (black points).
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4.9 Conclusions

The five systems presented in this paper add to the ever-growing list of single and

multiple-components exoplanetary systems.

Two of the systems, namely, HD 31253 and HD 218566, are well-characterized Saturn-

mass planets in ≈ 1-year orbits. For both systems, the data presented in this paper do not

show prominent peaks in the periodogram of residuals, even at a 10% FAP level. While several

single-planet systems with similar properties have later been characterized with an additional

outer, long-period companion (e.g. Jones et al. 2010), the absence of any significant linear trend

in the current data seem to rule out the presence of additional Jupiter-mass planets with P <

40,000 days.

HD 99492 and HD 177830 each gain a new planetary companion, adding to the pre-

viously known planets (Vogt et al. 2000, Marcy et al. 2005). The known linear trend in the

residuals to HD 99492 b is now fully characterized thanks to the longer phase coverage, indicat-

ing the presence of a Saturn-mass planet on a ∼5,000-day orbit.

The RV data we collected for HD 177830 support the existence of an additional inner

planet, presenting an interesting case. The planets in this system are within a binary with a

separation of approximately 97 AU (Eggenberger et al. 2007). Simulations of the formation and

stability of planets in binary star systems imply that the perturbative effect of the secondary

star will be negligible in binaries with separation larger than 100 AU. The binary system of

HD 177830 is slightly below this limit. This system is also the first binary with a moderate

separation in which multiple planets have been discovered. Although it is unlikely that the

low-mass secondary star of this system has had significant effects on the formation of planets

around the primary, it would still be interesting to study how planets in this system formed and

migrated to their current stable orbits.
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Finally, we analyzed an expanded dataset of Doppler observations of HD 74156, adding

21 Keck RV points to the known data. We repeated the analysis looking for evidence of a third

planet, which would lend observational credence to the predictions of the PPS hypothesis (e.g.

Barnes & Raymond 2004). Our dataset does not show support for the claimed HD 74156 d

planetary companion. Indeed, the residuals periodogram to our best 2-planet fit do not exhibit

any promising peaks for future RV follow-ups, strengthening the conclusions of Wittenmyer

et al. (2009).

All the planets presented in this paper lie well within the existing exoplanet parameter

envelopes (Fig. 4.15). Several of them lie in the so-called “desert” in the mass and semi-major

axis distribution of extrasolar planets (Ida & Lin 2004). Monte-Carlo population synthesis

models for extrasolar giant planet formation tend to suggest that planets migrate relatively

rapidly through the period range between 10 and 100 days, and, in addition, often grow quickly

through the mass range centered on the Saturnian mass. In the context of the overall planetary

census, these four new planets help to further elucidate the various statistical properties of

exoplanets. In particular, the discovery of multiple-planet systems helps in further characterizing

the number of stars hosting multiple planetary companions and any correlations emerging in

the distribution of orbital elements as suggested by observational clues (e.g. Wright et al. 2009).
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Chapter 5

The Potential Impact of Groove Modes

on Type II Planetary Migration

5.1 Abstract

In this letter, we briefly describe the evolution of a variety of self-gravitating poly-

tropic protoplanetary disk models that contain annular grooves (e.g. gaps) in their surface

density profiles. These grooves are inspired by the surface density gaps that are presumed to

open in response to the formation of a giant planet. Our work provides an extension of the pre-

viously studied groove modes that are known in the context of stellar disks, in which the density

response corotates approximately with the groove minimum. The emergence of nonaxisymmet-

ric gravitational instabilities (GI) is predicted via a generalized eigenvalue code that performs a

linear analysis; the instabilities are confirmed and studied with nonlinear hydrodynamical sim-

ulations. We find the presence of a groove drives a fast-growing two-armed mode in moderately

massive disks, and extends the importance of self-gravitating instabilities down to lower disk

masses than for which they would otherwise occur. We discuss the potential importance of this
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instability in the context of planet formation, e.g. the modification of the torques driving Type

II migration.

5.2 Introduction

The theory of giant planet formation has evolved very rapidly over the past decade,

and the now near-paradigmatic core accretion theory (e.g. Pollack et al. 1996) has been greatly

refined and endowed with a variety of physical inputs (see, e.g. Alibert et al. 2004, Hubickyj et al.

2005). It is now generally accepted that Jupiter-mass planets grow by initially accumulating

5-10 M⊕ cores, which then accrete large quantities of gas from the surrounding nebula. During

the phase of rapid gas accretion, the growing Jovian planet opens a gap in the disk and its orbit

subsequently evolves via the process of Type II migration (Lin et al. 1996, Papaloizou et al.

2007).

A competing theory (e.g. Boss 2000) holds that giant planets such as Jupiter frag-

mented directly from the nebula as a result of gravitational instabilities. This mechanism may

account for some of the observed extrasolar planets, but it has a number of difficulties if invoked

to account for the full population. In particular, it fails to explain the observationally well

established planet-metallicity relation (Santos et al. 2003, Valenti & Fischer 2005). Another

criticism is that gravitational instability requires the Toomre Q parameter, Q = κcs/πGσ, to

be of order unity at some radius in the disk. This, however, generally requires rather massive

disks, MD/Mstar & 0.1, which are not often observed.

Global gravitational instability depends not just on disk mass and sound speed, but

also on the density profile of the disk. As has been shown by Toomre (1981), a sharp density

gradient can provide a mechanism for maintaining a wave cycle that leads to instability and

subsequent destruction of steep density gradients, i.e. “edges”. Analogously, Sellwood & Lin
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(1989) described a family of gravitational instabilities in stellar disks dubbed groove modes

which comprise fast-growing disturbances driven by narrowly defined structures in particle angle-

action space. These features, for collisionless stellar disks, correspond to narrow surface density

depressions; groove modes are thus akin to the edge mode in that they are driven by steep

density gradients at corotation. Sellwood and Lin further noted that groove modes could be

excited and maintained by a feedback cycle. This cycle kicks in when a slowly-growing inner edge

mode carves a groove by scattering particles in a narrow range at its outer Lindblad resonance,

creating a fast-growing groove mode. The appearance of a groove gives rise to further groove

modes once it scatters particles at its own Lindblad resonance.

This feedback cycle relies on the wave-particle interaction at the resonances, and thus

cannot be immediately realized in a gaseous disk. The groove mode may have relevance, however,

in the protoplanetary context: theoretical considerations (Lin & Papaloizou 1979, Goldreich

& Tremaine 1980, Lin & Papaloizou 1993), numerical simulations (e.g. Takeuchi et al. 1996,

Bryden et al. 1999) and tentative observational indications (Setiawan et al. 2008) point to the

fact that, under appropriate circumstances, massive planets can resonantly drive trailing waves

that transport angular momentum and open a “gap” in the disk. The detailed process of opening

and maintaining the gap depends on the balance between the angular momentum flux resulting

from spiral waves driven by the planet and that originating from the viscosity of the disk. When

the planet is sufficiently massive and the viscosity is low enough, a stable surface density groove

is carved on the disk. A growing Jovian-mass planet naturally maintains a surface density

gradient.

In this letter, we open an investigation into the possibility that the planet-induced

presence of a surface density gap can drive a fast-growing, self-gravity induced groove mode in

a massive disk, sidestepping the problems of carving a groove in the first place and providing

a mechanism for maintaining the amplifier. We support our hypothesis with both a numerical
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linear analysis (see, e.g. Adams et al. 1989) and a full hydrodynamical simulation (following

Laughlin & Rozyczka 1996) of a disk with an imposed groove in surface density, as inspired

by previous numerical investigations for stellar disks (e.g. Sellwood & Kahn 1991). We span a

wide range of disk/star mass ratios to assess the relevance of this GI to the realistic disk masses

observed.

5.3 Procedure

We employ a two-dimensional hydrodynamical grid code for following the evolution

of a thin, self-gravitating disk. The continuity and Euler equations in polar coordinates are

solved using a second-order van Leer type scheme, coupled with time stepping that is first-order

accurate. The basic difference equations are given in Stone & Norman (1992). The self-gravity

of the disk is obtained by applying the Fourier convolution theorem to the potential dictated by

the Poisson equation (Binney & Tremaine 1987). The details of the hydrodynamical code are

described in Laughlin et al. (1997) and related papers.

We adopt the following parametrization for the surface density of the disk:

σ(r) = σ0e
[−(r−R0)2/w] ×

(
1− A∆2

(r −RP )2 + ∆2

)
, (5.1)

which represents a Gaussian profile multiplied by a Lorentzian profile of depth A, characteristic

semi-width ∆ and central position RP ; for A = 0, this profile is the “reference disk” considered

by Laughlin & Rozyczka (1996). The disk model used throughout this letter has no pretense

of actually representing a protoplanetary disk faithfully, but has the advantage of possessing a

single m = 2 mode that is very clearly identifiable both in semianalytic calculations and in the

nonlinear simulations. The choice of a Lorentzian profile to represent the gap is arbitrary as

well, and follows Sellwood & Kahn (1991).
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We take w = 0.03, R0 = 0.25 and an inner disk edge of 0.05. We assume a polytropic

equation of state, P = Kσγ with the polytropic exponent γ = 2. Again, this model is chosen

largely for illustrative purposes, and allows us to avoid an energy equation. The characteristic

width ∆ is meant to represent a typical gap width; the chosen value of 0.07 can be derived from

the approximate scaling

2∆/rp ∼ 0.29q2/3R1/3, (5.2)

(e.g. Varnière et al. 2004) with R ≈ 5× 105 and q = 2× 10−3. The set of units used in the code

takes the outer grid radius RD and the gravitational constant G equal to unity and M∗ = 0.5.

To quantify the strength, pattern speed and growth rate of each spiral mode, we com-

pute the Fourier decomposition of the surface density, defined as

am =
1

2π

∫ 2π

0

σ(r,Φ)e−imΦdΦ, (5.3)

for a mode number m. The local growth rate (e-folding time) of a disk mode is given by

γm(r) =
d

dt
log

am
a0

=
d

dt
log cm, (5.4)

while the phase of a disturbance is defined as

Φm(r) = tan−1

[
Im(−am)

Re(am)

]
. (5.5)

The local pattern speed is then given by ΩP = (1/m)Φ̇m. Finally, a global measure of the

growth of a particular mode is given by integrating the m-th Fourier amplitude am over the

radial range and normalizing to the azimuthal average of the surface density:

Cm =

∣∣∣∣∣
∫ RD

Ri
am(r)dr∫ RD

Ri
a0(r)dr

∣∣∣∣∣ . (5.6)

The growth rate and pattern speed that emerge from the hydrodynamical simulation

are checked against a linear numerical analysis code we developed, as described e. g. in Laughlin
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Model qD A Qmin m γlin (γ̄nl) ΩP (Ω̄P )
1 1 0 1.21 2 1.21 (0.90) 2.78 (2.69)
2 0.63 0.90 0.67 2 2.31 (2.14) 3.41 (3.37)
3 0.32 0.90 1.31 2 1.43 (1.16) 3.18 (3.05)
4 0.16 0.90 1.92 2 0.73 (0.65) 3.04 (3.00)
5 0.13 0.90 2.03 2 0.56 (0.50) 3.02 (2.89)
6 0.08 0.90 2.24 2 (0.28a,c) (-0.14c) [1]

7 0.06 0.90 2.76 2 [2]

12 0.63 0 1.30 2 0.84 (0.70) 2.27 (2.22)
13 0.32 0 1.52 2 0.37 (0.16, 0.31) 2.03 (2.22)
14 0.16 0 1.86 2 [2]

15 0.13 0 2.08 2 [2]

16 0.08 0 2.26 2 [2]

17 0.06 0 2.65 2 [2]

Table 5.1: The table lists growth rate (γlin, γ̄nl) and pattern speed (ΩP , Ω̄P ) as measured
respectively by the linear code and the full hydrodynamical simulation for the various disk
masses (qD = MD/Mstar) and groove depths (A) considered. [1] This mode has two linear
phases (a, b) and two saturation phases (c, d). During phase b the mode is counterrotating and
leading; at saturation, the mode reverses its rotation. The growth rates reported are measured
from the hydro simulation. [2] These models do not show appreciable mode growth in either
the linear or the fluid simulation.

et al. (1997), which solves a matrix equation akin to a generalized eigenvalue problem; the

solution is valid in the linear regime and yields a complex eigenvalue, which indicates the pattern

speed ΩP and growth rate γ, and a complex eigenvector, which describes the radial variation

and local spiral phase angle of the mode. Comparison with the full nonlinear simulations enables

us to check the consistency and accuracy of the two independent approaches.

5.4 Computer simulations

Table (5.1) lists the disk models considered in this letter. We have first set up a

“base” disk with surface density given by Equation 5.1, with A = 0, qD = MD/Mstar = 1 and

Qmin = 1.21 (Model 1); this sets the normalization constant σ0 and the polytropic constant K.

The equilibrium was disrupted with a random density perturbation of order 0.001 σ(r). The

grid covers the polar coordinates (r, ϕ) with 256 logarithmically spaced zones in radius and 256
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equally spaced azimuthal zones. Each model is evolved for at least 100 time units, although the

reflective boundaries muddle the nonlinear evolution once the wave reaches the outer part of the

disk. Figure (5.3) shows the evolution of the surface density normalized to the azimuthal average

Σ(r) = log (σ(r)/σ̄(r)). In accordance with the previous investigations and with the output of

our linear code, the base disk is unstable to a single two-armed (m = 2) “grand-design” spiral

mode. The spiral mode grows in the linear regime for the first few dynamical times, and within

about 10 dynamical times it visibly perturbs the outer edges of the disk. After a few more

dynamical times, the spiral pattern has reflected off the boundaries and has propagated back

into the densest regions of the disk. The normalized amplitude C2 shows that the dominant

two-armed mode grows at an exponential rate (linear regime) until stabilizing around a constant

amplitude (mode saturation). These phases are shown in Figure 5.2. Note that for our purposes,

the linear growth rate is the primary quantity of interest. The dashed linear slope is derived

from the mode analysis for the same disk parameters, and agrees well with the hydrodynamical

code. The small discrepancies between growth speeds can be traced to the effective softening

given by the FFT-based solution scheme for the Poisson equation.

A second set of disk parameters (Model 2) including a surface density groove was set

up, with A = 0.90 (a 90% dip in surface density), ∆ = 0.07 and RP = 0.4. Maintaining the

same normalizations for density and pressure as above, the disk has the same surface density

profile sufficiently far from the groove, but a smaller disk-to-star mass ratio, qD = 0.63. The

resulting Toomre Q profile is shown in Figure (5.1). By visual inspection of Figure (5.3) and

the slope of the normalized Fourier amplitude in Figure (5.4), it is clear that the presence of the

groove drives a far more violently growing instability. We then repeated the experiment varying

the surface normalization to yield qD = 0.32, 0.16, 0.13, 0.08, and 0.06 (Models 3-11).

Measuring the pattern speed of the spiral is slightly more difficult, since the pattern

rotates only approximately in a rigid fashion. We thus calculate a “global” measure Ω̄P by
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weighing the local ΩP (r) (eq. [5.3]) with the local density enhancement |cm|:

Ω̄P =
d

dt

(∫
Φm(r) exp(|cm|)dr∫

exp(|cm|)dr

)
, (5.7)

so that the densest parts of the spiral contribute the most to the pattern speed. The spiral

pattern’s corotation radius is found to lie within the gap.

Since the presence of the groove diminishes the qD parameter for a given density normal-

ization, we also set up a series of base disks (Models 12-17) with a surface density normalization

chosen so that its mass would equal that of Models 2-7. The evolution of the normalized m =

2 mode amplitude is shown in Figure (5.4). For a given qD, in the presence of the groove the

m = 2 mode exponentiates about 3 times faster than the base disk. Models 14-17, despite having

equal disk mass and lower Qmin than their groovy counterparts, do not show an exponentially

growing phase during the duration of the simulation. A growing groove mode is detectable down

to qD = 0.08 (Model 6), but does not show a resolvable exponential phase for qD = 0.06 (Model

7). The m = 2 groove instability in Model 6 is growing about as fast as Model 13, which is four

times as massive.

Figure (5.5) shows the evolution of the azimuthally averaged density profile for the

two lowest-mass unstable models (Models 5 and 6); the surface density groove is filled in by the

growing spiral modes, as shown by the time evolution of the surface density at the center of the

gap. An approximate estimate for the effective “alpha”-type viscosity coefficient (Shakura &

Sunyaev 1973) is derived by a procedure similar to that employed in Laughlin & Rozyczka (1996),

although the effective viscosity given by gravitational instability is not too well characterized by

a local prescription. We solve the time evolution given by the diffusion-type equation for surface

density and compare it with the surface density evolution in the hydrodynamical simulation, once

the spiral pattern has established itself. This simple estimation yields α ∼ 0.16 for qD = 0.13

and α ∼ 0.04 for qD = 0.08, and agrees approximately with the timescale for closing the gap by

129



viscous diffusion.

5.5 Discussion and conclusion

In this letter, we have found that disk self-gravity may play a significant and as-yet

largely unstudied role in disks in which a planet has opened and is maintaining an annular

gap in the surface density profile of the disk. Gravitational torques from massive protoplanets

necessarily impart a surface density gap in a disk, and the formation of a gap provides the

structure needed both for a feedback amplifier (e.g. Toomre 1981) as well as for the groove mode

(Sellwood & Lin 1989). In essence, a gap provides a pressure gradient which can locally reduce

the effectiveness of the epicyclic frequency in stabilizing the disk against its own self gravity, thus

allowing instability at low surface densities. In the absence of a perturbing planet, the nonlinear

outcome of a groove instability would be to destroy the sharp density gradient that promoted

the instability in the first place. In a planet-forming disk, however, the embedded Jovian planet

will exert torques whose net effect is to maintain the gap. The competition between the GI-

induced spiral torques and the planetary torques may thus lead to a significant modification

of the criterion for gap opening, which in turn can have a significant effect on the resulting

migration of the protoplanet. We have found that this effect is likely to be relevant even when

the overall disk mass is lower than the qD > 0.1 − 0.2 value at which significant gravitational

spiral instabilities are generally thought to occur (see, e.g. Shu et al. 1990, Laughlin & Rozyczka

1996, Boss 1997). By comparison, the typical mass within 30 AU assumed for the Minimum

Mass Solar Nebula yields qD ≈ 0.01 (this likely underestimate the actual mass of the solar

nebula by at least a factor of 3). Further afield, Andrews & Williams (2005) surveyed 153 young

stellar objects in the Taurus Aurigae star-forming complex, and found a median disk mass of

qD = 0.5%. While these disks span a variety of ages, and show a variety of masses, it is not clear
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how massive the average protoplanetary disks is at the time when a massive protoplanetary core

enters the rapid gas accretion phase, and whether the mass might be enough to trigger the class

of instability studied here. It must also be kept in mind that while the idealized disks in the

simulations shown here display no instability for qD < 0.08, the limited numerical resolution and

high intrinsic numerical viscosity allows us to identify only modes with intrinsically rapid growth

rates. Further work with more realistic disk models is required to find the true minimum mass

for the instability. We are eager to continue this analysis by (1) including the planetary potential

in both our linear analysis and in our nonlinear simulations, (2) carrying out the simulations at

higher numerical resolution, and (3) adopting more realistic disk models.
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Figure 5.1: Toomre Q = κcs/πGσ profiles for the disk models considered (dashed lines: models
with a groove, solid: models without a groove). Like colors correspond to equal qD.
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Figure 5.4: Top panel: normalized amplitudes of the m = 2 mode for disk models 1-3, 12,
13. Bottom panel: normalized amplitudes of the m = 2 mode for disk models 4-6, 14-16. The
predicted growth rate of a mode, when resolved by our linear analysis code, is indicated by the
slope of the dashed lines.
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Figure 5.5: Evolution of the density at the gap for models 5 (left panel) and 6 (right panel).

136



Chapter 6

Planet Formation in the Kepler 16

System

6.1 Abstract

The recently discovered circumbinary planets (Kepler-16 b, Kepler 34-b, Kepler 35-b)

represent the first direct evidence of the viability of planet formation in circumbinary orbits.

We report on the results of N -body simulations investigating planetesimal accretion in the

Kepler-16 b system, focusing on the range of impact velocities under the influence of both stars’

gravitational perturbation and friction from a putative protoplanetary disk. Our results show

that planet formation might be effectively inhibited for a large range in semi-major axis (1.75

. aP . 4 AU), suggesting that the planetary core must have either migrated from outside 4

AU, or formed in situ very close to its current location.
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6.2 Introduction

The discovery of extrasolar planets around main-sequence stars is one of the major

observational breakthroughs of the last decade. The size of the planetary census, propelled

by radial velocity (RV) surveys and dedicated missions such as Kepler , has grown to include

planetary systems where a variety of interesting dynamical interactions can be observed. Such

systems include 61 exoplanets discovered around stellar binaries1 (including both planets orbit-

ing one of the stellar companions and circumbinary planets). While for the majority of these

planets the binarity of the system represents only a weak perturbation on the gravitational pull

of the central star, a few single-planet systems have been detected in binaries with abin . 30

AU (such as HD 41004, Gliese 86, HD196885 and γ Cephei), with each planet in a circumstellar

(“S-type”) orbit. Only one multiple system with abin . 100 AU has been found (HD177830,

Meschiari et al. 2011).

The existence of these systems represents a major challenge to the current paradigm

of planet formation. In fact, a number of simulations attempting to model the dynamics of the

growth of planetary embryos from km-sized planetesimals in presence of a binary companion

have hit significant difficulties (among others, Marzari & Scholl 2000, Thébault et al. 2002;

2004; 2006, Thebault 2011, Paardekooper et al. 2008, Fragner et al. 2011). The most important

parameter controlling planetesimal accretion is the mutual encounter velocity; indeed, runaway

growth requires it to be less than the escape velocity for efficient accretion. The presence of

the companion can stir up the relative velocity between planetesimals, interfering with run-

away growth. Relative velocity is often excited beyond a fiducial threshold velocity at which

all encounters are erosive, potentially slowing down planet formation or halting it altogether.

Simulations taking into account a static background gas disk (representing an unperturbed

1http://www.exoplanets.org, retrieved on January 15, 2011.
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protoplanetary disk at some point in time) initially posited that disk-planetesimals interaction

induces a phasing of the orbits, making the environment more accretion-friendly (Marzari &

Scholl 2000). Nevertheless, if the protoplanets interact with the gas disk through aerodynamic

drag alone, the phasing induced by the gas disk is clearly size-dependent, and protoplanets with

different sizes will collide with large encounter speeds over the majority of the range in semi-

major axis sampled (Thébault et al. 2004). Finally, a misalignment between the orbital plane

of the binary and the gas disk can significantly affect the dynamics of the planetesimals. Small

inclinations (iB < 10◦) can favor planetesimal accretion somewhat (Xie & Zhou 2009). On the

other hand, large inclinations (30◦ < iB < 50◦) can significantly perturb the planetesimal disk,

causing planetesimals to “jump” inwards and pile up into a smaller inner disk, where encounter

velocities are more favorable to accretion (Xie et al. 2011).

Most of the works in the literature have focused on observed or plausible circumstellar

configurations (e.g. a planet orbiting one of the two stellar components), in light of the lack of

direct evidence of the existence of circumbinary planets orbiting main-sequence stars, outside the

realm of science fiction. Therefore, only a handful of articles have considered planet formation

in circumbinary orbits (“P-type”; e.g., Moriwaki & Nakagawa 2004, Quintana & Lissauer 2006,

Scholl et al. 2007, Marzari et al. 2008, Pierens & Nelson 2008a;b), and they lacked a reference

observed configuration.

Kepler 16-b (Doyle et al. 2011) is the first circumbinary planet that has been detected

with Kepler. The presence of a third, planetary object came from transits on both star A

(tertiary eclipse) and star B (quaternary eclipse) and the deviations of the timing of the stellar

eclipses from a linear ephemeris. The planet was determined to be a Saturn-mass planet (MP ≈

0.33MJup) on a nearly circular 228-day orbit; long-term integrations have shown the planet to

be stable, with an eccentricity oscillating between 0 and ≈ 0.08. The binary stellar system is

composed of two main-sequence stars in an eccentric 41-day orbit, with a mass of 0.69 and 0.2
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M� (mass ratio µ ≈ 0.2), respectively. The close coplanarity of the binary and planetary orbital

planes suggests that the three bodies were formed in a common disk. This was bolstered by the

measurement of the Rossiter-McLaughlin doppler shift by Winn et al. (2011), which indicated

that the spin of the primary is aligned as well.

Recently, Welsh et al. (2012) reported the discovery of two additional circumbinary

gas giants (Kepler-34 b and Kepler-35 b). The relative abundance of these systems among the

more than 2,000 eclipsing binaries monitored by Kepler (Slawson et al. 2011) implies a lower

limit of ≈ 1% in the frequency of circumbinary planets with comparable transit probabilities.

Interestingly, all three planets lie just outside the stability boundary for test particles. Their

pericenter distance is, respectively, only ≈ 6% (Kepler-34 b), 9% (Kepler-16 b) and 20% (Kepler

35-b) larger than the critical semi-major axis, as estimated by the empirical fit in Holman &

Wiegert (1999). This represents an important constraint for the formation of the planetary core.

Indeed, a natural scenario would entail the planetary core migrating inwards until near the edge

of the disk cavity (which will be comparable in extent to the stability boundary for test particles),

where the steep gradient of the disk surface density can halt migration (Pierens & Nelson 2007).

Pierens & Nelson (2008b) simulated the evolution of a 20 M⊕ core, initially placed at the edge

of the cavity and free to accrete gas to become a Saturn-mass planet. They found that once

the planet depletes the gas in the coorbital region, it will resume a slow inward migration,

until its eccentricity is excited and a phase of runaway outward migration is experienced. This

runaway migration appeared to stop once the planet crossed the 5:1 resonance with the binary,

at which point slow migration is resumed. The ultimate fate of the planet in these simulations

is uncertain, due to the long timescales involved. However, it is expected that disk dispersal will

ultimately strand the planet on a circular orbit around the binary. Tantalizingly, Kepler-16b

lies somewhat close (and outside of) the 5:1 period ratio with the binary.

In this paper, we investigate the conditions for the formation of planetary cores in
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circumbinary orbits around the Kepler-16 binary system, using a simplified numerical model.

We consider the evolution of a disk of km-sized planetesimals and determine the impact velocities

among planetesimals over 105 years, the typical timescale for runaway and oligarchic accretion

(Kokubo & Ida 2000). These preliminary N -body simulations will be used to assess the viability

of core accretion as a function of the barycentric semi-major axis.

The plan of the paper is as follows. In §6.3, we briefly discuss our numerical model and

limitations of our current approach. In §6.4 and §6.5 we discuss the results of our simulations

in the context of planet formation, and conclude in §6.6.

6.3 Numerical setup

To conduct our simulations, we use a new hybrid code, SPHIGA (Meschiari et al.,

2012, in preparation). SPHIGA is an N -body code that evolves a system of non-interacting

test particles (e.g. the planetesimals) subjected to the sum of gravitational forces of massive

bodies (e.g. the binary system). In addition, it calculates the frictional force acting on the test

particles caused by a putative protoplanetary disk. By default, this is accomplished by following

the complete hydrodynamical evolution of the disk with the Smoothed Particle Hydrodynamics

scheme (SPH; see, e.g., Rosswog 2009, Price 2012; for recent reviews) in two and three dimen-

sions. The same algorithm used to interpolate the hydrodynamical quantities can be used to

interpolate the local gas density and flow and locate possible planetesimal impactors in the same

loop, leading to significant computational savings. Modelling the self-consistent perturbations

from the binary on the disk can alter the planetesimal evolution and potentially increase impact

velocities (Marzari et al. 2008). Indeed, we expect that non-axisymmetric structure, such as

global spiral patterns, will be imposed by the binary, adding a complex time-dependent term.

The actual impact of the full hydrodynamical evolution is still uncertain, however. Even bulk
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quantities such as the disk eccentricity induced by a binary companion appear to depend sensi-

tively on the computational scheme (e.g. the wave damping prescription in Paardekooper et al.

2008) and the amount of physics modeled (e.g. the equation of state and whether self-gravity

was included in Marzari et al. 2009, Marzari et al. 2012).

However, significant computational effort is still required to follow the evolution of

the combined disk, binary and planetesimal system (with Npl + Ngas > 105 − 106 particles)

for at least ≈ 105 binary revolutions. Therefore, for the purpose of this paper, we will use an

alternative code path that activates a fixed gas background and follow the procedure of Marzari

& Scholl (2000) and later papers. A more complete description of the system, including the full

hydrodynamical evolution of the protoplanetary disk, will be pursued in a follow-up paper.

The particles are integrated forward in time using a “drift-kick-drift” leapfrog integrator

with a fixed timestep. Although this numerical scheme is low order, it is adequate for the

problem, since planetesimals lie in low-eccentricity orbits. Additionally, it has the advantage

that it is one of the integrators suitable for the full SPH simulations (e.g., Wetzstein et al.

2009), enabling detailed comparison between the present runs and future full hydrodynamical

simulations. We verified the validity of this assumption by comparing runs without gas drag

(Section 6.4) with the output of the RADAU integrator, as implemented in the Mercury code

(Chambers & Migliorini 1997), finding good qualitative agreement between the two.

For lack of better observational constraints, we use the standard prescription of a

minimum-mass solar nebula (MMSN; Hayashi 1981), with a density profile ρg(a) = ρ0(a/1AU)−p,

where a is the barycentric semi-major axis and we take ρ0 ≈ 1.4×10−9 g/cm3 and p = 2.75. This

prescription for the protoplanetary gas disk will exhert a frictional acceleration at the location

of the planetesimal given by

f = −K|δv|δv , (6.1)
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In Equation (6.1), δv = vpl − vgas is the relative velocity of the planetesimal with respect to

the Keplerian flow of the gas and K is the drag parameter

K =
πCρgR

2
pl

2Mpl
. (6.2)

The drag parameter is defined in terms of the planetesimal radius Rpl, the planetesimal mass

Mpl (calculated assuming ρpl = 3 g/cm3), and the dimensionless coefficient C (C ≈ 0.4 for

spherical bodies).

To evaluate the collisional speeds among planetesimals, we follow the dynamical evo-

lution of 30,000 test particles uniformly distributed with barycentric semi-major axes between

0.66 and 6 AU; this range includes the current location of the planet (aP ≈ 0.7 AU). Particles

that travel into the inner boundary or become unbound are removed from the simulation.

The inner boundary was determined by running a simulation with test particles in

circular barycentric orbits covering semi-major axes in the range (1.2ab; 5ab) for 104 years.

Particles that suffer close encounters with the central binary or escape the system are deemed

unstable. The largest semi-major axis outside which all particles are stable is taken as the inner

boundary. The final value for the inner boundary is in excellent agreement with the fitting

formula in Holman & Wiegert (1999).

In the full simulation, we take the initial eccentricities and inclinations to be uniformly

distributed between 0 and 10−5, though the actual choice of the upper bound is somewhat

unimportant given the fact that the initial distribution of orbital parameters is quickly erased

within a few orbits of the binary. To obtain reasonable collision statistics for the duration of

the simulation, we track planetesimal collisions using the inflated radius prescription (Brahic

1976, Charnoz et al. 2001), with rinfl = 5 × 10−5 AU. Collisions are detected by populating a

tree structure at each timestep (as part of the SPH algorithm) and walking the tree to locate

the nearest neighbors to each planetesimal with d < 2rinfl (e.g., Barnes & Hut 1986, Hernquist
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& Katz 1989).

6.3.1 Impact classification

The system is initially evolved to 105 years. After this interval, planetesimal-planetesimal

close encounters are recorded, with the most important parameter being ∆v, the impact velocity.

We follow Fragner et al. (2011) and Thebault (2011) and adopt the prescription for classifying

disruptive impacts for planetesimals presented in Stewart & Leinhardt (2009; SL09). The

latter work offers a criterion for catastrophic disruption, the main parameters being the re-

duced kinetic energy, the masses of the impactors and material properties and constants derived

from fits to numerical and laboratory data. SL09 presents fits for classifying catastrophic en-

counters in two limiting regimes: weak aggregates (“rubble piles”) and strong rocks. For each

encounter, we calculate the escape velocity vesc(R1, R2), the erosive velocity for weak aggregates

vweak(R1, R2,∆v) and the erosive velocity for strong aggregates vstrong(R1, R2,∆v). In regions

where ∆v < vesc, unperturbed, runaway accretion is possible. Impacts where vesc < ∆v < vweak

are assumed to still be accreting, though runaway accretion might be disturbed. Finally, we

classify impacts where vweak < ∆v < vstrong and ∆v > vstrong as “uncertain” and “erosive”,

respectively. Locations where the majority of the encounters are classified as erosive can be

deemed as unsuitable for the formation of planetary cores. This limitation is size-dependent,

since larger planetesimals are more resistant to fragmentation. Therefore, it could, in line of

principle, be overcome if the km-sized stage of planet formation is bypassed, and the initial

population comprises larger objects (e.g. Rpl > 100 km).

In our nominal runs (Section 6.4 and 6.5) we assign a planetesimal radius for each par-

ticle, randomly distributed between 1 and 10 km. We allow for a non-flat primordial distribution

in planetesimal sizes by assigning a weight f(R1, R2) to each impact between planetesimals of

radius R1 and R2. Following Thébault et al. (2008), we use a Maxwellian weighting function
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centered around 5 km with σ = 1 km. A priori, this choice should yield a more accretion-

friendly environment, since it weighs collisions between same-sized planetesimals more than

different-sized planetesimals.

Finally, we generously classify a radial bin as “accretion-friendly” when more than 50%

of all impacts have an outcome of accretion, disturbed accretion or uncertain outcome.

6.4 Simulations without gas drag

We first show the impact statistics for a fiducial simulation without gas drag. In

this case, the planetesimals are perturbed by gravitational stirring from the binary companion

alone, which is size-independent. Therefore, their eccentricities will oscillate around the forced

eccentricity at that semi-major axis,

ef =
5

4
(1− 2µ)

aB

a
eB (6.3)

(Moriwaki & Nakagawa 2004), such that the upper envelope of the eccentricity oscillations is

≈ 2ef (Figure 6.1). Although the excited eccentricities are large, the planetesimals are initially

weakly phased because the oscillations are coherent and spatially extended; therefore, impact

velocities tend to be low. However, the frequency of the oscillation around the forced eccentricity

increases with time, ultimately leading to orbital crossing (Thébault et al. 2006). The orbital

crossing boundary across sweeps outwards in semi-major axis, increasing impact velocities. In

our simulation, collisions are recorded after t = 105 years. As evidenced in Figure 6.1, regions

outside ≈ 3.5 AU (≈ 13aB) have not experienced orbital crossing after 1.5× 105 years. This is

expected, since across is a weak function of time (Thébault et al. 2006). Therefore, encounter

velocities will be lower in the outer part of the disk.

Figure 6.2 shows the relative fraction of accreting encounters, disturbed accretion, and

encounters that might be erosive for one or both the prescriptions described in Section 6.3.1.
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Figure 6.1: Eccentricity e and longitude of pericenter $−$B after 104 (top panel) and 1.5×105

years (bottom panel), in absence of gas drag.
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Figure 6.2: Fraction of accreting (dark gray), disturbed (medium gray), uncertain (light gray)
and erosive impacts (white), as a function of semi-major axis, for the nominal gas-free run.
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For this binary configuration, impact speeds are too high for core formation everywhere inside at

least ≈ 4 AU. On longer timescales, even the outer parts of the planetesimal disk may become

hostile to accretion, as the orbital crossing boundary moves outwards and raises the impact

velocities.

6.5 Simulations with gas drag

Simulations where gas drag is active present a radically different dynamical picture.

As expected, gas drag tends to damp the eccentricity oscillations towards the forced eccentricity

value (Figure 6.3). The gas drag acceleration (Equation 6.1) is size dependent (proportional

to R−1
pl ). Therefore, damping and periastron phasing will be more effective for smaller bodies.

However, the eccentricity spread remains somewhat large at small semi-major axes, where the

gravitational perturbation of the central binary acts to pump eccentricities. At large semi-major

axes, where the damping timescale is longer, the values of eccentricity tend to their counterparts

in the simulations without gas drag.

Inside 1 AU, the planetesimal disk is severely depleted due to radial drift. The radial

drift timescale can be estimated by assuming the planetesimal loses angular momentum slowly

due to the torque from the headwind of the gas (Weidenschilling 1977). For the drag prescription

of Equation 6.1, we find an estimate for the infall timescale (in units where GM = 1) is given

by

τrd =
apl

vrd
≈ 4

3
C−1M∗

ρpl

ρgas

Rpl

a
1/2
pl

(δv)
−2

, (6.4)

where ρpl is the density of the planetesimal andM∗ is the total mass of the binary. In the case

of planet formation around single stars, eccentricities are very low and δv ∼ h2
0vkep is mainly

determined by the local scale height, with a typical timescale at 1 AU of 106 years for a 5-km

planetesimal.
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Figure 6.3: Eccentricity e and longitude of pericenter $−$B as a function of semi-major axis.
Planetesimals are colorized with respect to their size: light gray (1 < Rpl < 4 km), medium
gray (4 < Rpl < 7 km), black (7 < Rpl < 10 km. The dashed line shows the forced eccentricity.
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Figure 6.4: (Top) Planetesimal number binned in semi-major axis, normalized by the initial
distribution in semi-major axis. The N -body run (black line) and the output from an analytic
model for the single star case (gray line) and with a forced eccentricity term (dashed line) are
shown. (Bottom) Fraction of planetesimals with 1 < Rpl < 4 km (solid line), 4 < Rpl < 7 km
(dotted line) and 7 < Rpl < 10 km (dash-dotted line).
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Figure 6.5: Fraction of accreting (dark gray), disturbed (medium gray), uncertain (light gray)
and erosive impacts (white), as a function of semi-major axis, for the run with gas drag. The
location of the fiducial ice line is plotted (dashed line).
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In the circumbinary environment, the perturbation from the binary companion acts to

raise eccentricities throughout the planetesimal disk, such that the dominant term contributing

to δv is given by the time-varying speed of the planetesimal sampling different gas velocities at

the apsides. In this case, drift timescales are a strong function of semi-major axis (∝ a−5/2),

such that radial drift from the outer parts of the disk cannot replenish the inner disk effectively.

Figure 6.4 shows the distribution of planetesimals after t = 105 years, binned in semi-major axis.

We compared the planetesimal distribution of our N -body run with an analytic model based on

Equation 6.5. Assuming δv ≈ 0.5efvkep, we find good agreement between the two. Finally, the

second panel of Figure 6.4 shows that the distribution of planetesimal sizes is skewed towards

larger planetesimals at small semi-major axes, since larger planetesimals are less affected by the

gas drag. This can contribute to making the inner region more accretion-friendly for two reasons.

Firstly, larger planetesimals can withstand larger impact velocities. Secondly, the spread in sizes

will be reduced, which means that the spread in the phasing of the planetesimals will also be

reduced.

Figure 6.5 shows the fraction of accreting encounters as a function of semi-major axis.

We found that the following qualitative situation holds for different radial locations:

1. between the stability boundary and 1 AU, eccentricities are pumped to high values and

planetesimal number density is low due to the low radial drift timescale. The majority of

encounters are erosive.

2. for a small range in semi-major axis outside 1 AU, the spread in e and $ is smaller

and planetesimal distributions are skewed towards larger planetesimals. The majority of

encounters are accreting.

3. between 1.75 AU and 4 AUs, the magnitude of the eccentricity and the differential phasing

raises the impact velocities, such that the majority of the encounters are erosive.
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4. outside 4 AUs, orbital crossing has not been realized and gas drag is weaker due to the

steep radial dependence of the gas density; therefore, orbits are only weakly phased. The

majority of encounters are accreting.

We conclude that planet formation is inhibited only for a small range in semi-major axis

(location (d), between 1 and 4 AUs). This range in semi-major axis includes the nominal location

of the ice line for an irradiated disk, estimated from the scaling aice ∼ 2.7AU (M/M�)2 ≈ 2.3

AU (Ida & Lin 2004), assuming M =MA +MB.

What is the impact of this “forbidden region” for planet formation? It is instructive to

refer to the predictions of the standard core accretion paradigm for single stars; in particular, the

outcome of large-scale Monte-Carlo planet synthesis models (e.g. Ida & Lin 2004, Mordasini et al.

2009). Mordasini et al. (2012) recently conducted a Monte-Carlo planet synthesis simulation

for a variety of disk masses and metallicities, for the nominal case of a 1 M� central star. In

the core accretion paradigm, metallicity represents a threshold quantity for the formation of

planetary cores. Accordingly, they found that the cores of giant planets (M & MJ) tend to

preferentially form outside the ice line when the metallicity (which acts as a proxy for the solid

content of the disk) is low. The actual location of the ice line scales with the disk mass, which

contributes to the spread in semi-major axis.

In Figure (6.6), we plot a different subset of the output of the simulations of Mordasini

et al. (2012)2, focusing on the ensemble of embryos that acquire masses comparable to Kepler-

16 b (0.2MJ < M < 0.4MJ). The initial location of the embryo is plotted as a function of

metallicity. For disks of solar or super-solar metallicity, such planets are formed throughout

the disk, with a substantial fraction formed inside 2 AU (about 40%). At subsolar metallicities

comparable to Kepler-16 ([Fe/H] ≈ −0.3 ± 0.2), however, such cores are only found outside 2

AU, with a minority lying in location (c) (about 20%). While the synthetic population refers

2http://www.mpia-hd.mpg.de/homes/mordasini/Site7.html
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to the nominal 1 M� single star case, with one embryo per disk, it suggests that in-situ planet

formation in location (a) might be hampered by the low surface density in solids at 1 AU.

It is also crucial to recognize that in the inner disk, non-axisymmetric perturbations

from the disk might be important. The eccentric central binary will likely excite spiral structures,

which might act to pump the eccentricity of the inner planetesimals and alter the phasing of

their orbits. Indeed, Marzari et al. (2008) conducted full 2D hydrodynamical simulations with

a small number of tracer planetesimals embedded in the disk, and found significant oscillations

in the eccentricity and longitude of pericenter around the equilibrium value.

6.6 Discussion

Planet formation in presence of close binaries presents a number of challenges to the tra-

ditional core accretion paradigm. Historically, most of the theoretical effort has been expended

to study pathways to planet formation in S-type orbits for planets that had been observed

through RV surveys, or targets with observationally desirable properties (e.g., α Cen). With

the launch of Kepler , however, we expect that the sample of planets in P-type orbits around

eclipsing binaries will rapidly outnumber the handful of planets in circumstellar configurations

detected with RV surveys. Indeed, a sample of 750 Kepler targets are eclipsing binaries for

which eclipses of both stars are observed, and a subset of 18% exhibited deviations in the timing

of the eclipses (Welsh et al. 2012). Since the definitive determination of the planetary nature

of a putative KOI relies on the detection of tertiary and quaternary eclipses, we expect that as

the baseline of the observation increases, more KOIs will be confirmed as genuine circumbinary

objects.

In this paper, we have conducted a preliminary simulation of the feasibility of circumbi-

nary planet formation in the Kepler-16 system. In accordance to an earlier study conducted by
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Scholl et al. (2007) for a different set of binary parameters, we have found that, for generous

initial conditions that favor planetesimal accretion, planet formation appears to be feasible far

enough from the central binary. However, we have identified a radial span between 1.75 and 4

AU where planet formation is strongly inhibited. Within the planet accretion framework, the

most likely sequence of event is the formation of a core outside the forbidden region, followed by

inwards migration driven by tidal interaction with the protoplanetary disk (Pierens & Nelson

2007). Although we measured impact velocities favorable to accretion in the inner AU of the

disk, formation in situ of Kepler-16 b is less likely due to the low metallicity of the star and

non-axisymmetric perturbations from the disk, not modeled in this simulation.

We remark that the simulations presented in this paper only demonstrate that, choosing

the most favorable conditions for planetesimal accretion and an assumed initial planetesimal size

of 1-10 km, the formation of an embryo outside the critical semi-major axis acrit is viable, with

traditional migration processes subsequently moving the planet to its current location. Due

to computational limitations, we disregarded the evolution of the protoplanetary disk and the

collisional outcome of planetesimal impacts. For the former, we plan to follow approximately the

hydrodynamical response of the disk with the SPH algorithm included in the Sphiga code in a

follow-up paper. For the latter, the numerical procedure of Paardekooper & Leinhardt (2010)

represents a possible approach to follow the evolution of the planetesimal size distribution.
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Chapter 7

Discussion

In light of the rapid observational and theoretical progress in the field and the breadth

of the exoplanetary “bestiary” uncovered by Kepler, in this section I briefly discuss some of the

most recent follow-up work in the context of this Thesis and indicate future directions for this

work.

7.1 Transit Timing Variations

Much of the excitement in the diagnostic power of TTVs originally resided in its ability

to detect terrestrial planets, which would be outside the reach of Doppler surveys. Terrestrial

planets residing in mean motion resonances with giant planets would be easily discovered even

when their transits were not detected, since they exert TTV signals of the order of several

minutes (Agol et al. 2005, Holman & Murray 2005, Steffen & Agol 2007).

However, despite significant observational effort and a few tantalizing signals (e.g.,

Steffen & Agol 2005, Miller-Ricci et al. 2008, Nascimbeni et al. 2011, Maciejewski et al. 2011),

this method seemingly failed to live up to its promise. In Chapter §3, we identified a funda-
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mental issue in the characterization of low-mass planets detected through TTVs alone. Indeed,

systems that are in or close to a mean motion resonance, which produce the most readily de-

tectable TTV amplitudes, generate signals that are highly degenerate. Consequently, a range

of masses and periods of the non-transiting planet can fit the signal, preventing a precise char-

acterization. This degeneracy is due to the fact that, for configurations close to a first-order

period commensurability (PC), the dominant frequency and amplitude of the TTV signal are,

respectively,

PTTV ∼ Ptrε−1 (7.1)

ATTV ≈ µε−1Ptr (7.2)

where Ptr is the period of the transiting planet, µ is the mass ratio of the perturber to the

central star and ε is the offset from the nominal resonance (Agol et al. 2005). These scalings

do not single out one PC over another (the same is true for higher-order PCs; see, e.g., Boué

et al. 2012). If the signal is well characterized by this single frequency, for instance because noise

suppressed other harmonics, then the degeneracy is inevitable (Nesvorný & Morbidelli 2008).

Since the launch of Kepler , the use of transit timing variations has become pervasive

and indispensable for characterizing multiple-transiting systems. Since, in this specific case,

periods and phases are known for all bodies, then a TTV dataset coupled with N-body integra-

tions can pinpoint the planetary masses (e.g., Holman et al. 2010, Cochran et al. 2011, Lissauer

et al. 2011) or at least ascertain their planetary status through dynamical stability considera-

tions (e.g., Fabrycky et al. 2012a). The detection of low-mass planets with the TTV method

as outlined above, however, has been far less fruitful. One of the chief reasons is likely the

relative paucity of observed multiple-planet systems where the inner planet is close to a period

commensurability with the other planets. Although Fabrycky et al. (2012b) found an excess

of planets close to first-order resonances, the pile-up is distinctively wide of the resonance and
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clusters around ε ≈ 0.025 (ζ1 ≈ −0.15). In between PCs and for low-eccentricity orbits, taking

the latter fact into account yields an order of magnitude estimation of

Attv ≈ 30 s

(
Mpert

1M⊕

)(
Ptr
3 d

)
(7.3)

i.e., on the order of tens of seconds, a signal far more challenging to detect and characterize even

with Kepler .

Ballard et al. (2011) presented the first non-transiting planet discovered with Kepler.

Kepler 19-c exerts transit timing variations with an amplitude of 5 minutes. Because of the issue

of degeneracy, several scenarios were considered. The planetary status of c was argued on the

grounds of dynamical stability (in the case of high eccentricity of the perturber) and constraints

from the radial velocity dataset. The culled set of possibilities, nevertheless, spanned many

orbits near period commensurabilities. These included perturbers in PCs internal and external

to Kepler 19-b and co-orbital perturbers. As anticipated in Chapter §3, the presence of a RV

dataset helped exclude Mc > 6MJ ; however, the small dataset could not pinpoint the mass

precisely. Recently, Nesvorný et al. (2012) identified a planetary system (KOI-872) where the

inner, transiting planet displayed a TTV signal with large amplitude (2 hours). In this case, the

perturber was determined to be a Saturn-mass planet (M ≈ 0.37MJ), after ruling out other

fits yielding a higher χ2.

The detection of non-transiting Earth and even super-Earth class planets through the

TTV method will likely remain extremely challenging, given the intricacies of interpreting the

TTV signal and the low amplitudes found sufficiently away from period commensurabilities

(e.g., Veras et al. 2011). We note that obtaining RV datasets of precision comparable to that

advocated in Chapter §3 is likely not feasible; this was not anticipated at the time of writing.

Indeed, as mentioned in Chapter §1, stars in the Kepler sample are typically too faint and active

for the kind of RV precision advocated. However, in some circumstances, RV datasets may aid
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Figure 7.1: (Left) Amplitude of the instability as a function of time for several gap depths A
(from left to right, A = 0.999, 0.99, 0.9, 0.5, 0.25, 0.1; the evolution of the first three cases is
identical). The disk mass is qD = 0.16. (Right) Growth rate as a function of the gap depth.

in excluding massive planets in higher-order resonances from the list of possible configurations.

Dynamical stability considerations, in the case of putative massive perturbers, will also help

rule out unstable, degenerate solutions.

7.2 Gravitational instabilities driven by planetary gaps

Chapter §5 presented a series of two-dimensional simulations of moderately massive

protoplanetary disks, on which a deep gap in surface density was imposed. In our simulations,

we found that the presence of the gap drove a strong global instability, even in disks that were

not massive enough to be gravitationally unstable otherwise.

Lin & Papaloizou (2011) confirmed our findings by self-consistently following the de-

velopment of a gap opened by introducing a planet in a smooth disk. They found that global

GI modes were launched during the development of the gap of a Saturn-mass planet, when the

gap depth is only 20-30% relative to the unperturbed disk. This is much shallower than the

disks considered in Meschiari & Laughlin (2008). For the same models in Meschiari & Laugh-

lin (2008), we have also found that the instability is active even at moderate and small gap
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depths (Figure 7.1, unpublished). The disk in Lin & Papaloizou (2011) was slightly less massive

(qD & 0.06M∗) than that considered in this work, although still more massive than the typical

MMSN models.

In regards to their effect on planetary migration, they found that the torques exerted

by the spiral modes are time-depended and oscillatory. In a follow-up work, Lin & Papaloizou

(2012) found outward migration of the planet in models where the Toomre Q decreases radially.

As anticipated in Chapter §5, the presence of the spiral modes significantly influences migration.

In particular, the gravitationally unstable gap cannot be maintained cleanly as they are disrupted

and replenished by the spiral modes (e.g. Figure 5.5). In their simulations, the planet may move

rapidly outward and form new gaps, in turn launching new instabilities. Overall, it seems likely

that standard, steady-state Type-II migration cannot provide an accurate description of the

evolution of gap-opening planets embedded in moderately massive disks.

As noted in Chapter §5, it will be crucial to identify the lower limit in disk mass at which

the gap instability is active. This will require further high-resolution numerical simulations.

Finally, gas accretion on the planet has been, to date, neglected in hydrodynamical simulations;

given the high effective viscosity at the gap location, we remark that this could have further

implication in the mass growth and migration of the planet. We will address these questions in

a forthcoming study.

7.3 Planet formation in binary systems

Chapter §6 investigated the feasibility of circumbinary planet formation in the Kepler-

16 system. We remark that the study presented in Chapter §6 is only preliminary, and a full

study including the hydrodynamical evolution of the disk will likely severely modify the ranges

in semi-major axis favorable to planetesimal accretion. In fact, we anticipated that the non-
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axisymmetric perturbations from the central binary would prevent embryo formation inside the

inner AU, even if the pure N -body simulations indicate it as a possible site for runaway accretion.

We remark that other processes may be at work as well to inhibit planet formation.

Indeed, simulations presented in the literature to date have assumed that the disk in which the

planetesimals are embedded resemble smooth, MMSN-type models initialized on a sub-Keplerian

flow, at least as a starting condition. This is likely not representative of real protoplanetary disks,

which are expected to experience density fluctuations and small-scale clumpiness as a result

of MRI turbulence (Balbus & Hawley 1991). For instance, Laughlin et al. (2004) conducted

hydrodynamical simulations, in which a protoplanet embedded in a gaseous disk experienced a

random walk as a result of turbulent torques, overwhelming the smooth Type-I migration. They

derived a simple prescription for the stochastic turbulent torques, informed by MHD simulations.

Each turbulent wake exerted a torque T on a planet of mass MP of the form

Tm = −mAξΓMP

r1/2
e−(r−rc)2/σ2

sin(mθ − φ− ΩCt) sin(πt/∆t) (7.4)

modeling a m-fold density fluctuation of amplitude Aξ, centered on rc, with pattern speed Ωc

and lifetime ∆t; Γ is an attenuation factor which translates the strength of the torques used to

sustain turbulent fluctuations into the actual torque exerted by the turbulent fluctuation thus

generated. Ida et al. (2008) argued qualitatively that km-sized planetesimals are likely in a

highly erosive regime even in presence of nominal levels of turbulence. Nelson & Gressel (2010),

using global 3D MHD and shearing box simulations, showed that turbulence excites the velocity

dispersion of the planetesimals and dominates their radial migration. Figure 7.2 shows a typical

turbulent torque pattern generated by Equation 7.4.

This is likely to be relevant in the configuration examined in Chapter §6 as well.

Indeed, we can compare the gas torque (Equation 1.8) with an order-of-magnitude estimate of

the summed turbulent torques operating on a planetesimal of radius RP (Laughlin et al. 2004).
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Assuming Equation 1.12 for the typical planetesimal speed relative to the gas and the frictional

torque of Equation 1.8, then we estimate that the critical amplitude AC at which turbulent

torques equal the frictional torque from the gas is given by

AC = 5× 10−4

(
1AU

a

)9/2(
1 km

Rpl

)(
3 g cm3

ρpl

)(
M∗
M�

)2(
0.05

h

)(
0.22

aB

)2(
0.15

eB

)2

P (7.5)

where a, Rpl and ρpl are the semi-major axis, radius and density of the planetesimal, respectively,

M∗ is the total stellar mass and h is the scale height of the disk. The factor P takes into account

that the turbulent torques accumulate in a stochastic fashion; therefore, the critical AC over the

course of an entire simulation is larger by a factor P ≈ (tsim/Porb)
1/2, where Porb represents

the typical timescale of a turbulent fluctuation and tsim is the time over which fluctuations

are summed (i.e.., the length of the simulation). Although this formula is valid only within an

order of magnitude, we can infer from Figure 7.2 that planetesimals outside about 4 AU will

be strongly perturbed by the turbulent fluctuations. This is confirmed by preliminary N-body

simulations, as shown in the last panel of Figure 7.2.

The presence of these fluctuations is likely to hinder planet formation for several rea-

sons. First, significant eccentricity jitter is added to the planetesimal which is not effectively

damped by the gas disk. Second, they alter or destroy the weak phasing in the outer plan-

etesimal disk. This is potentially more problematic than in single-star environments, as the

randomization of the pericenter brings these planetesimals, which are already endowed with rel-

atively high eccentricities from the binary perturbations, to collide on different phases of their

orbits (potentially at speeds in the erosive regime). Finally, especially at higher values of A,

there is a significant component of radial random walk (similarly to Laughlin et al. 2004).

We plan to conduct a future study to investigate this issue. A more precise model

of the turbulent torques is the most pressing issue; although Equation 7.4 is a numerically

convenient prescription, it is still an ad-hoc, order-of-magnitude ansatz. Full hydrodynamical
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simulations will help characterize a more accurate parametrization of the turbulent torques, to

be incorporated in the Sphiga code.
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2007, A&A, 474, 273

Fabrycky, D. & Tremaine, S. 2007, ApJ, 669, 1298

Fabrycky, D. C., Ford, E. B., Steffen, J. H., Rowe, J. F., Carter, J. A., Moorhead, A. V.,

Batalha, N. M., Borucki, W. J., Bryson, S., Buchhave, L. A., Christiansen, J. L., Ciardi,

D. R., Cochran, W. D., Endl, M., Fanelli, M. N., Fischer, D., Fressin, F., Geary, J., Haas,

M. R., Hall, J. R., Holman, M. J., Jenkins, J. M., Koch, D. G., Latham, D. W., Li, J.,

Lissauer, J. J., Lucas, P., Marcy, G. W., Mazeh, T., McCauliff, S., Quinn, S., Ragozzine, D.,

Sasselov, D., & Shporer, A. 2012a, ApJ, 750, 114

Fabrycky, D. C., Lissauer, J. J., Ragozzine, D., Rowe, J. F., Agol, E., Barclay, T., Batalha, N.,

172



Borucki, W., Ciardi, D. R., Ford, E. B., Geary, J. C., Holman, M. J., Jenkins, J. M., Li, J.,

Morehead, R. C., Shporer, A., Smith, J. C., Steffen, J. H., & Still, M. 2012b, ArXiv e-prints

Fischer, D. A., Laughlin, G., Butler, P., Marcy, G., Johnson, J., Henry, G., Valenti, J., Vogt,

S., Ammons, M., Robinson, S., Spear, G., Strader, J., Driscoll, P., Fuller, A., Johnson, T.,
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Pepe, F., Lovis, C., Ségransan, D., Benz, W., Bouchy, F., Dumusque, X., Mayor, M., Queloz,

D., Santos, N. C., & Udry, S. 2011, A&A, 534, A58

Pierens, A. & Nelson, R. P. 2007, A&A, 472, 993

Pierens, A. & Nelson, R. P. 2008a, A&A, 478, 939

Pierens, A. & Nelson, R. P. 2008b, A&A, 483, 633

Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y.

1996, Icarus, 124, 62
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Appendix A

Radial velocity data

Star Julian Date RV [m/s] Uncertainty [m/s]
HD128311 2450983.8269 -12.95 1.45
HD128311 2451200.13787 -21.49 1.92
HD128311 2451342.85836 62.75 2.05
HD128311 2451370.82904 105.66 1.88
HD128311 2451409.7466 125.71 1.62
HD128311 2451410.74909 118.14 2.01
HD128311 2451552.16457 68.78 1.85
HD128311 2451581.17009 13.35 1.64
HD128311 2451680.02544 -60.10 2.17
HD128311 2451974.16142 62.03 1.74
HD128311 2451982.15276 32.30 1.48
HD128311 2452003.02274 12.76 1.87
HD128311 2452003.90155 29.10 1.98
HD128311 2452005.13013 27.90 1.55
HD128311 2452061.87832 -40.29 1.54
HD128311 2452062.86745 -11.26 1.67
HD128311 2452096.77585 -28.60 1.85
HD128311 2452098.84799 -29.98 1.47
HD128311 2452128.76635 0.34 1.92
HD128311 2452162.72385 20.45 1.69
HD128311 2452308.17255 145.33 1.68
HD128311 2452333.15973 116.19 1.70
HD128311 2452335.11752 110.11 1.74
HD128311 2452362.99402 147.81 1.63
HD128311 2452364.0802 146.12 1.64
HD128311 2452389.99056 102.62 1.69
HD128311 2452390.95689 107.14 1.75
HD128311 2452445.82646 84.67 1.67
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Star Julian Date RV [m/s] Uncertainty [m/s]
HD128311 2452486.82719 23.42 1.47
HD128311 2452488.77091 41.04 1.70
HD128311 2452515.73138 -28.04 1.74
HD128311 2452653.17621 -77.69 1.63
HD128311 2452654.16042 -91.95 2.01
HD128311 2452681.16095 -89.58 1.61
HD128311 2452683.06288 -63.52 1.61
HD128311 2452712.00457 -29.41 1.59
HD128311 2452712.9736 -42.69 1.97
HD128311 2452776.96054 -38.47 1.64
HD128311 2452777.88355 -20.30 1.52
HD128311 2452803.89833 -27.27 1.56
HD128311 2452804.95803 -30.48 1.37
HD128311 2452805.7997 -15.74 1.68
HD128311 2452806.8411 -10.35 1.43
HD128311 2452828.83471 -13.99 1.40
HD128311 2452832.73928 -8.04 1.41
HD128311 2452833.78281 -0.25 1.65
HD128311 2452834.8681 27.73 1.48
HD128311 2452848.79535 6.40 1.37
HD128311 2452849.79819 -8.08 1.40
HD128311 2452850.8023 -3.43 1.51
HD128311 2452897.71788 40.35 1.73
HD128311 2453015.15236 17.69 1.42
HD128311 2453016.16984 -32.96 1.51
HD128311 2453017.15716 -74.27 1.42
HD128311 2453018.1667 -43.69 1.51
HD128311 2453046.17351 -32.26 1.55
HD128311 2453069.13345 0.15 1.45
HD128311 2453072.09787 15.05 1.56
HD128311 2453074.0121 13.54 1.56
HD128311 2453077.14425 -3.24 1.69
HD128311 2453153.86726 73.53 1.42
HD128311 2453179.85039 79.98 1.37
HD128311 2453180.8187 99.09 1.39
HD128311 2453181.81424 110.06 1.39
HD128311 2453195.80089 86.89 1.37
HD128311 2453196.84413 111.83 1.42
HD128311 2453238.75863 118.34 1.32
HD128311 2453239.75002 113.54 1.36
HD128311 2453240.79285 118.12 1.36
HD128311 2453369.16921 97.05 1.32
HD128311 2453370.16823 106.49 1.45
HD128311 2453425.10853 0.00 1.33
HD128311 2453479.98589 -54.65 1.26
HD128311 2453480.82755 -36.91 1.29
HD128311 2453483.85825 -72.19 1.29
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Star Julian Date RV [m/s] Uncertainty [m/s]
HD128311 2453550.83029 -88.99 1.27
HD128311 2453777.10722 47.45 1.45
HD128311 2453841.99566 27.22 1.52
HD128311 2453927.85578 -37.32 1.31
HD128311 2453984.74394 -0.37 1.61
HD128311 2454139.13869 104.91 1.46
HD128311 2454294.83885 66.98 1.37
HD128311 2454300.80781 32.49 1.34
HD128311 2454313.81904 24.38 1.34
HD128311 2454335.76089 -14.90 1.36
HD128311 2454343.73608 -30.73 1.68
HD128311 2454491.09174 -47.96 1.46
HD128311 2454545.06007 -64.56 1.31
HD128311 2454545.06167 -64.23 1.53
HD128311 2454545.06326 -64.43 1.45
HD128311 2454546.05466 -46.06 1.51
HD128311 2454546.05637 -40.64 1.48
HD128311 2454546.05822 -40.13 1.43
HD128311 2454547.04719 -23.55 1.53
HD128311 2454547.04965 -24.17 1.47
HD128311 2454547.05175 -23.06 1.45
HD128311 2454601.04411 -33.27 1.33
HD128311 2454601.04662 -36.03 1.43
HD128311 2454601.05113 -32.03 1.42
HD128311 2454601.90825 0.41 1.36
HD128311 2454601.90973 1.35 1.44
HD128311 2454601.91119 3.33 1.46
HD31253 2450838.75189 -1.44 1.97
HD31253 2451043.12399 -11.98 1.64
HD31253 2451073.03263 -10.12 1.43
HD31253 2451170.90537 6.52 1.78
HD31253 2451228.78516 11.64 1.38
HD31253 2451411.13343 3.54 2.19
HD31253 2451550.87137 -20.13 1.58
HD31253 2451581.85884 -4.86 1.69
HD31253 2451757.13309 7.45 1.58
HD31253 2451793.11793 8.50 1.78
HD31253 2451883.00052 2.05 1.80
HD31253 2451884.08282 -0.63 1.73
HD31253 2451898.01005 6.44 1.61
HD31253 2451898.99796 -2.59 1.54
HD31253 2451899.99476 1.53 1.48
HD31253 2451901.00753 -1.13 1.47
HD31253 2451973.74609 -7.57 1.83
HD31253 2451974.76077 -7.26 1.63
HD31253 2452235.85335 1.28 1.62
HD31253 2452536.0926 0.00 1.55
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Star Julian Date RV [m/s] Uncertainty [m/s]
HD31253 2452575.9947 8.16 1.79
HD31253 2452898.09851 -11.51 1.50
HD31253 2453241.13429 5.63 1.52
HD31253 2453338.87214 -6.96 1.37
HD31253 2453339.99226 -7.29 1.50
HD31253 2453984.09331 16.52 1.44
HD31253 2454084.05142 14.81 1.55
HD31253 2454130.84528 7.33 1.60
HD31253 2454131.74964 12.59 1.62
HD31253 2454138.73395 2.24 1.57
HD31253 2454396.90266 -9.87 1.52
HD31253 2454398.01742 -2.69 1.67
HD31253 2454464.89612 3.30 1.61
HD31253 2454491.84891 14.32 1.44
HD31253 2454545.76603 15.23 1.50
HD31253 2454872.8586 4.84 0.89
HD31253 2455202.8103 -10.39 0.94
HD31253 2455257.82885 -9.67 0.73
HD218566 2450366.85498 4.96 1.16
HD218566 2450666.08942 -5.59 1.20
HD218566 2450690.03236 -5.47 1.27
HD218566 2450714.98919 2.14 1.22
HD218566 2450715.94463 3.39 1.16
HD218566 2450983.10118 2.63 1.14
HD218566 2451012.0364 5.34 1.35
HD218566 2451050.944 1.41 1.24
HD218566 2451071.96025 -1.88 1.19
HD218566 2451343.03657 -10.88 1.26
HD218566 2451369.03547 -9.64 1.23
HD218566 2451410.98964 -1.87 1.24
HD218566 2451440.89265 -3.74 1.36
HD218566 2451552.72759 -4.50 1.49
HD218566 2451900.73713 4.46 1.17
HD218566 2452096.07187 -0.44 1.28
HD218566 2452242.72507 -5.51 1.47
HD218566 2452488.04912 -4.53 1.57
HD218566 2452535.87165 1.94 1.27
HD218566 2452575.73785 1.66 1.63
HD218566 2452806.11771 9.82 1.47
HD218566 2452828.95884 6.88 1.33
HD218566 2452898.94265 -2.34 1.31
HD218566 2453195.98598 1.18 1.29
HD218566 2453303.88246 11.50 1.22
HD218566 2453603.06616 -9.95 1.34
HD218566 2453969.05624 -0.58 1.29
HD218566 2454279.10762 -6.49 1.08
HD218566 2454286.09348 -3.75 1.47
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Star Julian Date RV [m/s] Uncertainty [m/s]
HD218566 2454295.07876 -2.51 1.24
HD218566 2454429.76038 6.90 1.19
HD218566 2454430.7458 6.11 1.28
HD218566 2454455.76108 -0.65 1.25
HD218566 2454456.75051 0.00 1.31
HD218566 2454457.73398 -2.57 1.35
HD218566 2454460.7473 -2.97 1.41
HD218566 2454461.77092 -0.23 1.12
HD218566 2454634.09288 16.87 1.32
HD218566 2454635.06583 13.14 1.09
HD218566 2454636.05577 13.31 1.25
HD218566 2454637.11095 11.36 1.38
HD218566 2454638.06397 15.15 1.20
HD218566 2454639.07829 13.05 1.21
HD218566 2454641.10707 12.30 1.13
HD218566 2454642.12403 8.85 1.27
HD218566 2454674.93117 -2.08 1.28
HD218566 2454688.94686 0.48 1.20
HD218566 2454689.96737 -0.90 1.47
HD218566 2454717.93868 -7.51 1.30
HD218566 2454719.95623 -4.17 1.24
HD218566 2455202.76214 -5.92 1.05
HD177830 2450276.02505 -16.32 0.94
HD177830 2450605.0434 -5.29 0.95
HD177830 2450666.88551 -17.61 1.03
HD177830 2450982.93951 0.32 1.11
HD177830 2451009.93206 -9.34 1.04
HD177830 2451068.81716 -30.65 0.95
HD177830 2451069.85005 -30.62 1.05
HD177830 2451070.8953 -28.30 1.00
HD177830 2451071.83118 -31.40 1.01
HD177830 2451072.82007 -27.97 1.00
HD177830 2451073.81795 -25.70 0.89
HD177830 2451074.80785 -33.00 0.98
HD177830 2451075.89814 -36.45 1.08
HD177830 2451311.10969 30.25 1.07
HD177830 2451312.10751 29.00 1.17
HD177830 2451313.10582 18.91 1.02
HD177830 2451314.12858 27.42 1.09
HD177830 2451341.95441 27.81 0.96
HD177830 2451367.91448 15.43 1.03
HD177830 2451368.90654 11.00 1.17
HD177830 2451369.91809 12.37 1.26
HD177830 2451409.84682 -14.23 1.07
HD177830 2451410.80182 -21.64 1.05
HD177830 2451411.7991 -10.96 1.09
HD177830 2451438.74187 -19.97 0.94
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HD177830 2451439.76021 -21.77 0.94
HD177830 2451440.86979 -15.17 1.06
HD177830 2451441.72339 -17.34 1.08
HD177830 2451488.723 -18.59 1.07
HD177830 2451679.0564 37.36 0.97
HD177830 2451680.09782 34.51 0.98
HD177830 2451703.07726 44.29 1.10
HD177830 2451704.01943 50.70 1.13
HD177830 2451705.06457 40.08 1.16
HD177830 2451706.03088 43.40 1.04
HD177830 2451707.09076 38.21 0.99
HD177830 2451754.88242 27.80 1.07
HD177830 2451755.95107 20.80 0.91
HD177830 2451792.76348 10.88 1.06
HD177830 2451972.15641 -3.68 0.90
HD177830 2452008.12955 16.41 1.31
HD177830 2452031.09883 34.39 1.27
HD177830 2452061.99221 32.14 1.22
HD177830 2452094.87498 30.09 1.38
HD177830 2452128.88145 35.41 1.20
HD177830 2452445.97578 29.87 1.41
HD177830 2452536.83488 22.53 1.23
HD177830 2452832.84731 26.84 1.27
HD177830 2453180.04734 -6.76 1.07
HD177830 2453479.09184 -15.74 0.85
HD177830 2453546.9159 -23.27 0.95
HD177830 2453550.00554 -22.80 1.17
HD177830 2453551.0872 -22.60 0.95
HD177830 2453552.03093 -20.95 1.01
HD177830 2453842.1199 -3.60 0.97
HD177830 2453927.8927 -17.17 0.97
HD177830 2453982.89128 -14.60 0.88
HD177830 2454250.06746 -3.40 1.10
HD177830 2454309.06516 -27.53 1.19
HD177830 2454337.79715 -22.34 1.02
HD177830 2454343.76189 -26.49 0.97
HD177830 2454396.73487 -12.53 1.13
HD177830 2454546.12536 38.66 1.00
HD177830 2454547.13854 46.41 1.13
HD177830 2454549.12824 41.49 1.25
HD177830 2454601.10229 26.24 0.98
HD177830 2454634.02218 8.79 1.23
HD177830 2454641.86106 2.98 1.23
HD177830 2454673.06538 -7.09 1.18
HD177830 2454674.85466 -5.25 1.30
HD177830 2454702.932 -19.50 1.08
HD177830 2454721.8108 -24.46 1.18
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HD177830 2454819.6869 6.80 1.08
HD177830 2454820.703 9.61 1.34
HD177830 2455022.06235 17.50 0.67
HD177830 2455024.07549 17.97 0.59
HD177830 2455049.9886 3.13 0.62
HD177830 2455051.99471 1.72 0.61
HD177830 2455053.99914 -2.06 0.61
HD177830 2455143.76056 -19.72 0.82
HD177830 2455166.72642 -16.43 0.79
HD177830 2455168.719 -22.96 0.80
HD177830 2455259.15406 17.08 0.65
HD99492 2450462.11396 -2.62 1.51
HD99492 2450546.98786 -3.46 1.39
HD99492 2450837.93254 -2.66 1.58
HD99492 2450862.89899 -4.70 1.51
HD99492 2450955.87664 -7.05 1.18
HD99492 2451172.1016 -4.12 1.59
HD99492 2451228.0359 -6.80 1.53
HD99492 2451311.81632 3.26 1.63
HD99492 2451544.17265 -6.23 1.27
HD99492 2451582.97494 0.43 1.34
HD99492 2451704.80591 -1.45 1.60
HD99492 2451898.154 -14.46 1.41
HD99492 2451973.05309 3.64 1.37
HD99492 2452095.75205 -0.65 1.55
HD99492 2452097.75372 -7.23 1.56
HD99492 2452333.13941 6.24 1.65
HD99492 2452334.07988 0.68 1.62
HD99492 2452334.96832 1.21 1.59
HD99492 2452364.06813 3.76 1.44
HD99492 2452445.76826 -6.52 1.50
HD99492 2452654.0096 4.61 1.66
HD99492 2452681.12348 -9.59 1.49
HD99492 2452711.85884 -1.61 1.38
HD99492 2452804.76559 -7.22 1.50
HD99492 2452805.8763 3.93 1.56
HD99492 2452806.76363 -0.41 1.34
HD99492 2452989.17142 -15.59 1.64
HD99492 2453015.11944 12.03 1.58
HD99492 2453016.13436 5.95 1.50
HD99492 2453017.12192 7.38 1.43
HD99492 2453044.12757 -0.95 1.56
HD99492 2453045.99907 5.04 1.49
HD99492 2453071.87076 -5.55 1.50
HD99492 2453073.94075 -6.96 1.58
HD99492 2453076.98361 -3.05 1.45
HD99492 2453153.80258 -0.24 0.90
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HD99492 2453179.8227 0.03 1.05
HD99492 2453180.78204 5.64 1.82
HD99492 2453181.80817 0.78 1.38
HD99492 2453195.77591 -7.65 1.43
HD99492 2453196.79478 -5.25 1.47
HD99492 2453339.15773 9.35 1.25
HD99492 2453340.15072 6.86 1.26
HD99492 2453369.11509 8.69 1.26
HD99492 2453425.00213 4.15 0.99
HD99492 2453480.7608 -0.12 0.99
HD99492 2453725.10303 -6.29 0.99
HD99492 2453747.14058 11.43 0.98
HD99492 2453748.09771 12.59 0.98
HD99492 2453753.04165 1.96 0.97
HD99492 2453754.0226 -1.19 0.94
HD99492 2453775.98197 2.52 0.92
HD99492 2453776.97819 3.21 1.00
HD99492 2453777.95159 3.59 0.94
HD99492 2453779.9725 8.18 0.99
HD99492 2453806.9178 -7.76 0.84
HD99492 2453926.76507 -6.52 0.98
HD99492 2453927.76293 -10.13 0.91
HD99492 2454084.15598 4.58 0.99
HD99492 2454139.06371 8.81 0.84
HD99492 2454216.89805 -6.64 1.00
HD99492 2454246.79967 6.69 0.89
HD99492 2454248.81168 2.27 1.32
HD99492 2454250.80061 2.98 1.35
HD99492 2454251.80481 3.25 1.34
HD99492 2454255.7664 6.56 0.92
HD99492 2454277.74307 12.18 1.37
HD99492 2454278.74994 12.42 1.25
HD99492 2454279.74851 6.76 1.16
HD99492 2454285.75191 -1.62 1.33
HD99492 2454294.75867 3.43 1.39
HD99492 2454300.73897 -2.32 1.41
HD99492 2454455.10965 -3.78 1.11
HD99492 2454456.13058 -3.21 0.97
HD99492 2454491.02322 -6.50 1.49
HD99492 2454493.13458 -8.64 1.77
HD99492 2454544.98228 0.55 1.38
HD99492 2454546.96314 7.37 1.58
HD99492 2454547.87194 7.70 1.46
HD99492 2454548.84741 9.15 1.54
HD99492 2454635.75444 8.39 1.40
HD99492 2454638.75095 1.07 1.37
HD99492 2454967.94781 -8.07 0.84
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HD99492 2454968.85572 -5.80 1.11
HD99492 2455021.77564 -2.02 1.07
HD99492 2455023.7545 1.08 1.72
HD99492 2455168.15578 -7.30 1.05
HD99492 2455201.10543 4.16 0.82
HD99492 2455203.03618 -4.10 0.78
HD99492 2455258.06769 -10.91 0.85
HD74156 2452007.90133 99.69 1.97
HD74156 2452236.00802 -35.73 2.08
HD74156 2452243.12308 -35.62 1.89
HD74156 2452307.88593 35.08 2.32
HD74156 2452573.14014 14.26 2.12
HD74156 2452682.96251 0.00 2.31
HD74156 2452711.82095 -43.62 2.32
HD74156 2452777.80074 -18.09 1.76
HD74156 2453017.86356 -135.63 2.06
HD74156 2453339.08245 -3.45 1.83
HD74156 2453426.89112 -169.07 1.87
HD74156 2453746.94049 153.42 1.91
HD74156 2454428.06769 117.86 1.83
HD74156 2454461.07193 -68.78 2.26
HD74156 2454464.99262 32.97 2.02
HD74156 2454490.94372 106.20 1.98
HD74156 2454492.91425 105.85 1.93
HD74156 2454545.88984 94.84 2.01
HD74156 2454601.82659 77.13 1.95
HD74156 2455202.89314 -1.01 1.41
HD74156 2455258.00214 0.38 1.28

Table A.1: Keck radial velocity data for HD128311, HD31253,

HD218566, HD177830, HD99492, and HD74156.
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