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ABSTRACT 

Bearings are one of the most important components in rotating machinery, and their failure can cause catastrophic 
consequences. Conventional damage detection technologies have been successfully applied to make early warning of defect 
occurrence, mostly via vibration-related quantities due to damage-induced rattling. However, when the operational 
environment is highly variable and the online data suffer large uncertainties, robust early detection becomes challenging. 
Beyond simple detection, however, in-situ prognosis is even of greater interest, since it seeks to determine the remaining 
useful life (RUL), given condition monitoring data. Under realistic conditions, the nominal operation life, usually in terms of 
L10, is not practical when the prognosis is subject to the aforementioned uncertainties. This paper aims at updating the most 
plausible model parameters to obtain an accurate failure curve. From this Bayesian model updating process, the prediction of 
RUL is therefore made, associated with posterior probability. Vibration data are collected from the SpectraQuest machinery 
fault simulator, with gradually deteriorating bearings subject to fine foreign particles in the lubrication. 
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1. INTRODUCTION 

 
Structural health monitoring (SHM) and damage prognosis (DP) ideas have been widely employed in a variety of 
applications, and vibration-based features are often used for early detection of faults. For in-situ SHM/DP, the decision is 
inevitably subject to the influence of noise, thus the performance will be degraded. Nevertheless, sufficient data provide a 
decision-making capability in the statistically significant sense, in which numerous realizations of the inspection are required 
for a reliable and confident decision. However, under a lot of conditions, especially for prediction of system deterioration, 
repeatability is often hard or expensive to obtain. This demands an adaptive algorithm to keep updating the decision, as 
information is accumulating from very limited condition. The Bayesian framework generally connects prior belief with 
posterior confidence via the observed data; in other words, through evidence information. By adopting Bayesian decision-
making, the most plausible feature estimation is given, and as the system is deteriorating, the decision is updated via the 
newly observed evidence. 

Lifetime prediction is often concerned in the context of DP, which usually analyzes the state awareness index and seeks to 
determine the remaining useful life (RUL). In this paper, the RUL of rotary machine bearing is primarily concerned, and 
previous research shows that the average operation life, in terms of L10, can be 20 times different from each other even under 
the same nominal testing condition. As a result, the nominal operation life in prognosis is not meaningful under realistic 
circumstances with uncertainty, and the estimation of RUL should be updated in real time according to the actual state status. 



In addition, most of the current RUL estimation algorithms with physical intuition involve frequent offline inspection, such 
as the measuring the crack dimension, spalling area, corrosion depth, etc. These offline inspections are difficult to embed into 
the in-situ system, and therefore real-time prognosis is unachievable. This paper aims at a data-driven approach, and adopts 
Bayes theory to forecast damage feature growing curve. In the meantime, uncertainty is quantified in terms order statistics. 

The rest of this paper is organized as follows: Chapter 2 reviews the Bayesian prediction approach, and introduces a special 
case, namely the particle filter, which is the closed form of Bayesian framework if normality is held in the state transition; 
Chapter 3 implements the particle filtering of vibration data collected from a ball bearing, and an autoregressive moving 
average (ARMA) model is adopted to describe the state transition; then, Chapter 4 concludes the paper with future work 
suggested. 

 

 

2. BAYESIAN PREDICTION AND PARTICLE FILTER ESTIMATION 

 
Bayes theorem is the core of Bayesian decision-making, which is characterized in Equation (1): 

, (1) 

in which x denotes the damage feature prediction given by the state transition model, and z is the data observation. The terms 
p(x) and p(x|z) are prior and posterior probability respectively, indicating the confidence of feature prediction given before 
and after the observed evidence is available. Likelihood p(z|x) is interpreted as the probability of observing data z given the 
fact that the system state is predicted to be x, while the denominator is probability of occurrence of z, and is interpreted as up-
to-date evidence monitored in the deteriorating process. 

In the context of damage prognosis, the aforementioned condition-based damage features are evaluated from both the model-
based prediction and the observation with contaminated uncertainty. Considering both of the unideal evaluations, Bayesian 
framework fuses the data with state transition model, with respect to maximized plausibility. Assuming the feature state 
vector x at time point k, denoted as xk, is defined in the state space fk, with transition noise mk-1 shown in the flow in Figure 1, 
and similarly, denoted as hk, the measurement zk  is a function of the state variable xk and measurement noise nk. There are 
two major issues to be addressed: (i) consider both the system state transition model and data observation, to estimate the 
most plausible feature value; and (ii) based upon the most plausible state transition model, forecast the curve of feature value, 
therefore predict the RUL given any decision threshold. 

 
Fig. 1 Bayesian prediction and adaptive updating of feature state 

 

In Figure 1, the prior and posterior probability of xk is given by Bayes theorem, in which probability of xk given the 
measurement of z from time 0 to k is calculated. In this paper, fk is determined to be an ARMA(1,1) model and h apparently 
is the transformation between physical value and measurement, which is an identity multiplier in this case. However, the flow 
characterized in Figure 1 is very computationally expensive, especially when the dimensionality is high. For certainty 
problems, such as Gaussian processes, an approximation of the posterior can be calculated via particles, as shown in Figure 2. 
The state space at time k-1 is sampled for N times and denoted as , in which the superscript P indicates the sampled 
“particles”. After transforming the particles from time k-1 to k, the update weights can be calculated by evaluating the 

( ) ( ) ( )
( )
|

|
p z x p x

p x z
p z

=

state transition prediction updating via measurement

( )1 1f ,k k k k- -=x x m ( )h ,k k k k=z x n

[ ]( ) ( ) [ ]( )10: 1 0: 1| | |k k k k kk kp p p d-- -= òx z x x x z x [ ]( ) ( ) [ ]( )
[ ]( )

0: 1
0:

0: 1

| |
|

|
k k k k

k k
k k

p p
p

p
-

-

=
z x x z

x z
z z

[ ]
1
iP
k-x



likelihood of data observation, given the particle value is true, and the weights are approximation of the probability of those 
sampled particles. Therefore the approximation of filtered xk is calculated as the weighted sum. 

 
Fig. 2 Flow of particle filtering as an approximation of Bayesian recursive updating 

 

By means of the particle filter, the measurement can be recursively filtered according to the confidence of model prediction, 
and if the filtered estimation is getting far apart from the measurement, lower weight will be assigned adaptively thus more 
confidence will be put on the measurements. On the other hand, if the measurements are known to be unreliable yet the 
model estimation characterize the state space in a more accurate way, the Bayesian estimation will rely on the model rather 
than the observation.  

 

 

3. IMPLEMENTATION OF PARTICLE FILTER FOR DMAGE PROGNOSIS 
 
In this paper, the Bayesian flow is demonstrated on a rotary machine, in which bearings will deteriorate as long duration of 
operation, as shown in Figure 3. Acceleration data are collected and the total energy of vibration, given by the variance of 
acceleration in the z-direction, is used as the condition-monitoring metric; and without developing sophisticated features, the 
variance of acceleration will be used in the rest of this paper to illustrate the data-driven prognosis process. To accelerate the 
deterioration, foreign particles are added into the lubrication. In order not to induce impact and jamming in the casing, the 
grain size of added sand is controlled to be less than 75 µm. 

   
Fig. 3 SpectraQuest rotary machine test-bed 

 

The test is implemented for 8 hours every day, and stopped during the rest of the day. Figure 4 shows the variance of vertical 
acceleration, as the condition assessment metric, for 10 consecutive days. Every hour, there are 60 samples and each sample 
is the variance of acceleration for the first 5 seconds of each minute. Superposed with the signal, is the uncertainty bounds of 
the sample variance measurements, given by Equation (2): 
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where n is the total number of samples and µ4 is the fourth-order statistical moment. The variance series is very clearly 
partitioned from day to day according to Figure 4, and the general trend is that, the vibration energy starts from a relatively 
low level at beginning of every day and increases rapidly then saturates. After a long period of “resting”, the condition seems 
to be reset. A physical interpretation of the pattern in the curve is concerned with the lubrication and temperature of the 
structure. When the shaft is just started running, the bearing is not working under ideal condition and the vibration increases 
very fast. After about an hour, the lubrication arrives at a good viscosity and all parts are warmed up to a steady temperature, 
therefore the vibration becomes flat. Once the machine starts running after a full night of pause, all the conditions are reset, 
and a similar cycle begins. Despite of all these physics, there is a trend with slowly increasing vibration as the bearing is 
deteriorating. In view of this complicated pattern, it might be difficult to predict long term system behavior because of the 
heavily non-stationary data. 

 
Fig. 4 Variance of acceleration for 10 consecutive days, with uncertainty boundaries 

 

Figure 5 shows the spectrogram of data illustrated in Figure 4, and from day to day, the vibration energy spectrum is moving 
and magnified at high frequency range. The spectrogram shows a slow transforming from baseline to a degraded status, 
mostly because of the spall-induced rattling, but does not quantify the deterioration and predict the RUL given current status. 

 
Fig. 5 Spectrogram of vibration for 10 consecutive days 

 

Deploying the Bayesian framework on an arbitrary single-day data and using the particle filter process described in Figure 2, 
the measurement is filtered ending up with smaller variation, as shown in Figure 6. The first 60 data points, mapping to the 
first hour, are used to build up a training process to establish the ARMA model; thus the particles and expectation of the state 
space at 61st time step are thereby available. Running this process in a recursive fashion at every time point, ARMA model is 
reevaluated based upon the adjacent former 60 points. In the process of forecasting, where the training data are not fully 
available from the observations, the predictions of ARMA model trained by the last available 60 points of observations are 
used instead. In the forecasting process, shown in Figure 6, predicted values from time step 480 to 540, the ARMA models 
have their training data partially from real observation. After time point 540, the forecasts are only dependent on the ARMA 
model itself. Therefore, the forecasting in this region is very smooth, without the influence from the uncertainty in real data. 
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When the condition metric reaches certain threshold, failure can be decided, or operation is interrupted for maintenance. In 
this paper, the time interval between the time of prediction and time of reaching the ceiling is denoted as RUL. Because of 
the existence of uncertainty, from both the model framework and the data observation, the RUL is inevitably a random 
variable. At each time point, the sample variance of acceleration can be accurately modeled as a Gaussian variable under 
central limit theorem, i.e. the one-standard-deviation interval given by Equation (2) corresponds to 68 percentile, but the 
associated uncertainty bounds in RUL estimation generally does not deliver distribution information, therefore no normally 
can be claimed to RUL. In this work, the standard deviation is used to quantify the uncertainty, and in Figure 7, the lower and 
upper bounds of data measurements are also plotted. Using the same ARMA model, the two boundaries can be propagated 
through time, thus the boundaries of RUL are also obtained. 

 
Fig. 6 Particle filter estimate and forecast 

 

 
Fig. 7 RUL prediction and uncertainty boundary 

 

Apparently, the ARMA model and its particle-filtered evaluations are highly dependent on the data, and at different time 
point, different training data sets lead to different forecasts. Figure 8 plots all the forecast curves starting from each of the 
data points after the first 60-minutes. The slope of acceleration is getting flat, so that the point of hitting the ceiling is moving 
to the farther side.  Consider the physics-based interpretation, when the machine just starts to run, the accelerations increase 
rapidly. As a result, the RUL estimation is pessimistic, while when the vibration reaches a relatively stable level, the RUL 
estimation is getting more and more optimistic. 
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Fig. 8 RUL prediction at different time 

The plot on right hand side of Figure 8 shows clearly the RUL as the testing moving forward. Instead of dropping off linearly 
to zero, the RUL in this case maintains a moderate level. In this study, first order ARMA model and one-hour training data 
are used, so that the global trend, especially in the daily time scale, is not captured in the estimation. 

 

4. SUMMARY AND CONCLUSION 
 

This paper adopts Bayesian decision theory, particle filter in particular, to hybridize the data measurements with system state 
model. For a condition-based monitoring purpose, the state assessment metric is decided to be the variance of acceleration, 
which is fully compatible with online-monitoring and prognosis. In this paper, a first-order ARMA model is used to 
characterize the vibration level of bearings, when there is deterioration going on. Foreign particles with very small grain size 
(<75mm) are added in the bearing to accelerate the failure process. Testing data show a consistent pattern which is associated 
with the physical behavior of the lubrication and temperature increase during the long-duration fatigue test. 

Particle filtering is employed to fuse the data observation with the ARMA model, and a smooth time series with less 
uncertainty is obtained. Moreover, the framework forecasts the acceleration level, which can be used to determine the 
lifetime of the bearing, given an arbitrary decision threshold. Uncertainty bounds of the acceleration variance can be also 
propagated in the time axis, therefore the RUL uncertainty is characterized via standard deviation. 

For the data-driven flow adopted in this work, prediction of RUL is made considering the current state. Because of the 
uncertainties in data, and the incompleteness of model in characterizing the entire fatigue mechanism, the RUL prediction 
fluctuates with different stage of operation and training data. Future work will be focused on the model selection process, 
employing statistical machine learning algorithm, to have a better global characterization of the vibration energy curve. Also, 
more sensitive assessment indices will be investigated. 
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