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ABSTRACT 

The CPT theorem and the normal connection between spin and 

statistics are shown to.be consequences of postulates of the S-matrix 

approach to elementary particles physics0 The postulates are much weaker 

• than those of field theory0 Neither local fields nor any reference to 

space-time points are used0 quantum coiutation relations and properties 

of the vacuum play no role0 Completeness of the asymptotic states and 

positive definiteness of the metric are not req .uired, thOugh certain 

weaker asymptotic conditions prevail. The proofs depend on unitarity, 

oscpic relativistic invariance, and avery weak analyticity 

re:qtdremerit on the mas.sshe11 scattering functions. The proofs are 

in the framework of the new S-matrix approach to elementary particle 

physics,: which is herein established on a formal basis. 
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I. ThTRODUCTION 

The two most important general physical consequences of relativistic 

field theory are the CPT theorem 1-4 and the connection between spin and 

statistics. 50  The CPT theorem states that for every process occurring 

in nature there is an allowed dual process in which the particles of the 

first are replaced by the'ir respective antiparticles, all spins are 

reversed, and paths are changed to their images under, inversion through 

the origin, in space-time.. Relationships between 'probabilities are stated: 

to be the same for a. process and its dual. The proved connection between 

spin and statistics is that wave functions are synmietric under the interchange 

of variables referring to two 1dentical integral-spin particles and 

antisynetric for the half-integral spin case. 

These important results are derived from the postulates of local 

field theory, which, however, are subject to considerable, doubt. In the 

first place it is not known whether the postulates are sufficiently 

reaistic to include any theories except trivial ones in which the scattering 

matrix is unity. 

Secondly, the postulates are very specialized and restrictive, in 

that they assigu a fundamental role to hypothetical local field operators 

defined over the field of space-time points. Experience does not entail 
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the existence of such points, and the restriction to theories in which they 

play a fundamental role may innnediately exclude all theories connected to 	A 
physical reality0 Because spacetime points are experimentally inaccessible, 

both in practice and in principle, their introduction runs counter to the 

philosophy of quantum mec]anics.. This philosophic inconsistency appears 

to have its analogue in the mathematical structure in which related 

inconsistencies seem to arise0 11,12,13  

Even within the general framework of local field theories, some 

of the postulates are so restrictive that many reasonable theories are 

excluded.0 In particular, the requirements of the completeness of the 

asymptotic states and the, positive definiteness of the metric are assumed 

to hold, not only asymptotically, but also throughout the course of the 

interaction0 But added states of negative, metric not among those observed 

asymptotically seem to be exactly what is needed to remove the apparent 

inconsistencies from field theory0 A theory based on.this possibility is 

among those being most vigorously pursued today JA, , 15 The postulate 

requiring the existence of a 'nondegenerate vacuum also excludes certain 

important theories,h!6  and the fact that one must be cOncerned with the 

propertie,s of nothing lends an unwholesome air to the whole bustness, 

particularly in the light of previous similar experience0 

These abstract objections to the field theoretic approach are 

reinforced by an examination of the course of events in the practical 

sphere0 The .trend today in the practical study of elementary particle 

interactions is away from the solving of equations conjectured, to be 

satisfied by hypothetical field operators0 Rather, the focus" is shifting 

directly to the .S matrix 'and to 'the consequences of the constraints 
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imposed upon it by unitarity,' macroscopic relativistic invariance, and 

assumed ana,iyticity.properties,18  ThiS-matHx approach to elementary 

particle physics is, in practical work, approaching the status of an 
I 

independent theory, its connections to' field theory gradually being 

dissolved0 It becomes appropriate, therefore, to formalize this trend 

and to explore the consequences of the altered framework2 9  History 

encourages the casting away- of formal substructures whose ingredients have 

no counterparts in experience and which are not relevant to practical 

calculations, and the focusing directly on relationships between experi-

mental quantities. The new approach, since it involves only observable 

quaritities and their analytic cOntinuations, has a claim to probable 

physical relevance much greater than that of field theory, with its sundry 

hypothetical ingredients of dubiOus status. 

The calculations need.ed.to  confront the new approach with physical 

fact are, as for the field theoretic case, far from complete. But the 

question arises whether the general results, derived from field theory, and 

in particular the CPT theorem and the connection between spin and statistics, 

ôai be derived also on the basis of the new approach. An affirmative 

answer would be interesting for several reasons. First, it would show 

that the restrictive assumptions of local field theory are necessary only 

to guarantee much less stringent asymptotic properties, which will probably 

remain valid also in possible future forms of field theory. Second, the 

proof would be likely to apply to theories such as those of'Heisenberg and 

Nambu, which are not in the class covered by the usual postulates. Third, 

and most important, if the new S-matrix approach is to constitute an 

independent' approach to elementary particle physics, replacing unworkable 

field theory, then proofs of these important theorems in the framework of 

the new theory are required. 
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_1... 

It is the purpose of this paper to provide these proofs. Because 

the aim is also at thejdest range of generality the postulates have been 

taken in a form that avoids all nieritionof space and time. The CPT theorem 

is consequently proved in its momentum-space form. The way in which the 

concept of macroscopic location would be introduced is briefly discussed. 

In the next section, postulates for the S-matrix approach are 

stated in words., Their mathematical forms will be introduced as they are 

needed in the proofs. 

I, 

r 

t 
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II, THE POSTUlATES 

A. 
• 	

Quantum Theory. 

If the normalized relative frequencies (probabilities) of the 

various possible outcomes of two complete experiments are denoted by P. 

and P '. respectiely, and if these necessarily positive numbers are 

2 	 '2 
written in the forms P. = a 	and P. = a J , then a and. .a 

	

1 	.i• 	J .. 	j 
are linearly related; for all a. and a', 

	

a. 	= ZS.a 

	

J 	jii• 

where S is independent 6f the a 

B. Maroscopie Relativistic Invariance (Weak Form) 

The relationships between the probabilities of the possible outcomes 

of two experiments are the same as the relationships between the corresponding 

outcomes of two experiments related to the first two by a (real) 

• orthochronous proper Lorentz transformation (i.e., the real threntz 

transformations connected to unity). 

B', Macroscopic Relativistic Invariance (Strong Form) 

herelatonship stated in postulate B for probabilities is also 

valid for the corresponding amplitudes, provided the freedom in the choice 

of phases is properly exploited1 

• C.. Particles 	 . 

The measurement of the momentum, spin, and particle type of all 

particles present constitutes a complete experiment, in the sense used in 

postulate A. Such a measurement may be considered possible. only in a 

limiting sense, not necessarily, for instance, during a reaction or at 

finite times.. Projections on linear combinations of spin states are 

permissible observables, as are projections on self-conjugate combinations 

of particle-antiparticle amplitudes. 
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D. Conservation Laws 

The physical interpretation of the mathematical quantities shall 

be such that translation and rotation invariance imply conservation of 

momentumenergy and angular momentum respectively, 

• From postulates A through D, including B, a set of spinor functions, 

called N functions, satisfying unitarity relations can be constructed. A 

consequence of the unitarity relations is the existence of certain 

singularities whose positions are determined by the masses of the (stable) 

particles.. Cuts defined by relativistic scalar equations, and terminating 

at these singularities, can be constructed by using a scale transformation 

on the masses, and a distinguished sheet, the physical sheet, specified. 

E. Maximal Analyticity 

Except at singularities required by unitarity the N functions are 

regular analytic functions in the interior and on the boundary of their 

physical sheets. 

Postulate E, though presumably needed for the derivation of dynamical 

relations, is much stronger than what is needed for the proofs. The 

following much weaker postulate is sufficient, 

E'. Minimal Analyticity 

For each N function, a physical sheet bounded by cuts defined by 

relativistic scalar equations can be defined This sheet contains a domain 

of regularity that includes among its boundary points all physical-type 

points. 

A physical-type point is a point corresponding to real momentum-energy 

vectors and it is to be approached with positive imaginary physical energies 

and momentum magnitudes. It is this type of limit that is expected to give 
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physically interpretable N functions. The physical sheet of a given M 

function is that sheet for which the physical value of the N function is 

assumed at the physical-type limit points along the cut that runs over the 

points corresponding to the process described by the particular N function. 

These matters are discussed in the sectIon on analytic structure. 

F. Physical Connection 

Physically interpretable functions obtained by analytic continuation 

from functions describing, physical phenomena also describe physical phenomena; 

they are not mere mathematical chimeras. Specifically,, the N functions at 

all physical-type points of a physiàal sheet'. correpond to processes 

actually occurring in nature. Regarding interpretation, if a simple 

connection can be set up permitting a consIstent interpretation of the 

quantities appearing in the theory, andl also thOse that coud be . obtained 

by analytic continuation, then this interpretation accords uniformly to 

reality if it accords'at all. 	. . 
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III, REMARKS CONCERNING TILE POSTULATES 

Postulate A is the basic .prmise of quantum theory, the aspect to. 

be used herein being the superposition 	 20 principle. 	Quantum conmiutation 
p 

relations and the quantization ofaction (Plancks constant), or their 

equivalents, are not implied by this postulate. 

The relativistic postulate is stated as a relationship between 

experimental quantities. From this postulate, and others, objects 

satisfying spinor transformation laws will be constructed. No hypothetical 

objects with spinor transformation properties are arbitrarily introduced. 

This procedure is the reverse of that in field theory in which objects 

satisfying spinor transformation laws are hypothesized and the relativistic 

invariance of experimental results deduced. In this latter approach the 

relativistic invariance of the experimental results might be said to be 

derived from more "fundamental t  requirements, but is probably a delusion 

to think that the objects of a mathematical model are more "fundental tt  

than the experimental results the model is designed to describe. In any 

case, by simply requiring the thvariance of the, experimental relationships 

the relativistic requirement is placed in its weakest form; all possible 

ways of achieving this end are included, 

The particle postulate also constitutes a certain completeness 

requirement. This requirement has force only in the asymptotic limit, 

and is therefore much weaker and more satisfactory than the completeness 

postulate in field theory. 

The term particle' appearing in the particle postulate means that 

with every, momentum vector, k. , is associated an enerr component k. 0  , 

fixed by the mass condition (k. ° ) 2  (k)2  (rn)2  , where m Is a 
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constant called the mass of the particle of type t • 
I 	The spin states 

referred to in the postulate shall, to eliminate possible ambiguity, refer, 

for the case of nomnassless partfcles, to rest frames of the particles. 

In such a frame the spin states are to be basis vectors of a finite 

dimensional representation of the rotation group. The theory of this 

group is classical. 21  Only nonmassles particles are treated in the body 

of the text. Massless particles are easily included, as shown in Appendix B. 

That projections on linear combinations of spin states are permissible 

observables isa basic feature of quantum meàhariics. It is in this way 

that spin states referring to diffrent directions are obtained. That the 

projection on he self-conjugate combinations of particle-antiparticle 

amplitudes be a permissible observable of the theOry is a requirement that 

is needed in the present proof of the connection. between spin and statistics, 

but it is believed unnecessary and should eventually be eliminated. 

In the conservation postulate the notion of translational invariance. 

appears for the first and only time. One may completely avoid the 

introduction of space-time coordinates by simply taking energy-momentum 

conservation to be exactly the requiremeht of translatiOnal invariance. 

However, it is apparent that one could perform a formal Fourier transformation 

on the momentum-enerrvariables, •introdüOing thereby formal space-time 

coordinates. Formal translation Invariance is then equivalent to 

enerr-momentum conservation. 

It Is by this Fourier transformation, using wave packets, that the 

notion of macroscopic locatin will be Introduced into the theory. The 

restriction of momentum-enerr variables to the mass shell implies that 

the wavepackets will move as free-particle wave packets. Wave packets 

approximating space-time points cannot .be constructed because of the 
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mass-shell constraint0 The.unit of action, Plancks constant, enters the 

theory for the first time as the scale constant relating physical distances. 

to the formal coordinates introduced.hy this Fourier transformation0 

The ôonnection between momentum-energy and translation operators 

introduced above leads to a connection between angular momenttwi conservation 

and rotational invariance0 However, the connection between invariance 

• properties and conservation laws is much more general, following also, for 

instance,, in classical theory0 The postulate only asserts that this 

general connection Is maintained and, avoiding specific reference to 

space-time coordinates, requires that which' is important to, the proofs, 

the conservation laws0  

Postulate E (Maximal Analy -ticity) asserts that the . only, singularities 

in the physical sheets are those required by unitarity... (These. include the 

usual anomalous and complex singularities, as will be shom0) •.Th ......... 

analrticity requirement evidently contains some extraction of the usual 

locality requirement0 But since it applies only to masssheli functions, 

it is much weaker than its field theoretic counterpart. It may in another 

way be stronger: the postulated domain of.analyticity may be larger than 

the one that can be deduced using field theory. In this case the two 

theories would be different, perhaps mutually incompatible, systems0 

Indeed, this is the expectation0 'ie apparent inconsistencies.of field 

theory are expected to be removed as a result of the weakening of the 	• 

locality requirement0 What relations between masses and coupling constants . 

are imposed by the postulated analyticity is the exciting but still open 

question.0 

The postulate of maximal analyticity, though not used directly in 

the proofs, is important to the, general philosophy0 The object is to start 

OF 
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with a set of postulates that have significance . in their own right as a 

basis for a proposed theory for elementary particle reactions, not to prove 

the theorems starting. from postulates chosen specifically to provide a 

sufficient basis for the proofs. However, this latter procedure has a 

certainmerit if the postulates.are such that an extensive class of possible 

theories are included. For this reason, the weaker postulate E' (Minimal 

Analyticity) is used in the proofs rather than postulate E. The proofs 

thereby become applicable not only to the S-matrix theory, but also to 

field theory., and to varieties of field theory to which the standard 

postulates do not apply. 

The postulate of phsiäai connection states that interpretable 

functiOns obtained by analytic continuation have physical significance. 

This principle is the basis of.the present work. As there is no field 

theoretic substiucture, related physical processes enter only via analy -tic 

continuation. . The principle has its analogue in field theory, where the 

formalism set up to describe particle processes is found to have a natural 

place for antiparticle, processes and the interpretation of the theory is 

correspondingly extended. In order to state the PT theorem as a statement 

having physical relevance, the con ection to physical reality of the 

extended interpretation must be accepted. It is the purpose  of this 

postulate to explicitly state that certain naturally occurring mathematical 

quantities do have physical significance, and to specify the conditions 

under which an interpretation qualifies as "natural". 

The qualifibation. "simple" in simple connection specifies that 

interpretation of a variable referring to one particle is not to depend 

on the numerical value of variables referring to the other particles. A 

connection of this kind is implicit in field theory where each particle 
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has its om field operator, and analytiô continuation in one momentum 

variable does not alter the Interpretation of variables associated with 

the other particles 

For the postulate of physical connection to be operative, the 
	 p 

connection referred to Is required to give a consistent interpretation of 

quantities: that could be obtained by analytic continuation. Specifically, 

the manner of interpretation should be consistent with regions of 

analyticity as large as those given by postulate E'; postulate F should 

not conflict with postulate E'. 

Postulates A through D assert principles similar to those used in 

field theory. Postulates E and F enunciate two general principles 

characteristic of the new S-matrix formalism: the physical sheets of 

the scattering functions contain only singularities required by unitarity, 

and the analytic continuation of a scattering function to various 

physicaltype boundaries of the physical sheet gives functions having 

physical siiificánce. 

We proceed to the application of these postulates. 
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IV. THE M FUIWTIONS AND THEIR PROPERTIES 

Using postulates A through D. including B', one can construct a 

set of functions M(k1 , 	t) with properties similar to the. Fourier 

transforms of the vacuum expectation values of time-ordered products of 

field operators, such as occur In field theory. These N functions are 	 ) 

defined for certain real values of the momentum-enerr variables k that 

correspond to physical processes, and only for real values satisfying the 

mass conditions k12  m 
2 
 , and the conservation law E k = 0.. For each 

momentum-energy vari3e k  , there is an associated index t that 

specifie the type of particle,, and a (2 St + i) valued spin index 

built up out of products of 2 S. . spinor indices. Here S is the spin 
i 

of the particle of type t • The spinor indices can be taken to be lower 

dotted and undotted spinor indices, corresponding to antipárticles and 

particles respectively. The three quantities k, i and t, taken as a 

unit, will be called the variable corresponding to a given particle. 

These N functIons have the following properties: 

A. SpinorCharacter 

For, real values of the k corresponding to physical processes 

the M(k, 	t) satisfy the usual .ransformation lawfor spinor functions0 

Specifically, for these ki , 

M(k1 , 	t.) = 	E 	A5 ' ( f. 1,t1 ' ) N(A ki ,  Li', t1) 
41  

where A is the spinor transformation matrix corresponding to any element 

of the real ortbochronous proper homogeneous Lorentz group and A is the 

related Irentz transformation opérátor, 
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B0.Unitarity•. 

For real yalues.of 	corresponding to real processes the M 

functions satisfy the unitarity relations. 

* 
uI(K, -Ku) + N(Kht, -K') 

r 	- 	_ 
= - 	M(K', -K) K' a M* (KIt, 	K) 

= - 	M(K, 	it)  K ' 	}4*(K 	-I') 

flere * designates complex conjugate, K, K', and K" represent 

normal-ordered sets of variables and -K is the normal-ordered set 

obtained from the set K by reversing the signs on all the momentum-energy 

vectors, reversing the order of the variables, dotting all spinor indices 

and changing the trpe designations to those of the respective antiparticles 

(see below)0 The normal-ordering convention for variables with real 

momentum-energy vectors k requires k/Jk°I 

k 1  , 	 and. k13 ki+l , the various conditions 

in the set being operative if and only if the equality parts of the 

preceding conditions are realized0 The sunmiation is over all normal-ordered 

sets K, and the inteations are over the invariant momentum space 

elements d4k,2m 
i  5(k12  - m. 2  02ic) 3 	The symbol K-a represents a 

product of the (Pauli) spin matrices kY c AB/mi  , one for each spinor 

index of the set K 0 The contraction rule for the spinor indices is such 

as to ensure that the unitarity relation is a proper spinor equation0 

C. Antiparticle Processes 

For certain real values of the ki  (always consistent with mass 

• 	 constraints and the conservation laws) the M(k, 	t) relate the 

I, 
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amplitudes corresponding to possible outcomes of two (complete) experiments,, 

termed the initial and final experiments. If., for fixed 	and t , 

the M(k, ) t) is an analytic function regular in a domain that 

includes two values of some k that are negatives of each other, then 

the only relationship between thQ interpretations of the M(k, 4V t) at 

these two points, consistent with the postulates, is this: If the variable 

in one case specifies a particle occurring In the final (initial) 

configuration, then in the other case it specifies the corresponding 

antiparticle occurring in the initial (final) configuration with the sa 

physical momentum-enerr but with opposite spin, It Is essential that this 

connection is not dependent on the conventions adopted, but follows 

directly from the postulates themselves, chiefly the conservation postulate. 

D. Superselection Rule 

The number of spinor indices is even on all nonzero M functions. 

E. Order of Variables 

The interchange of two variables changes an M function by at most 

a phase. 

With the inclusion of postulate El one obtains: 

F. Symmetry 

The interchange, of two variables of the same type changes an M 

function by at most a sign. For agiven type of variable this sign is 

always the same, irrespective of the numérIal values of the variables, 

the relative positions of the variables, or of the particular N function 

in which the variables occur. 

The construction of the N functions ,and the derivations of these 

properties are given after the main body of the proofs, to which we now proceed. 
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V. EXTENSION TO COMPlEX LORENTZ TRANSFORMATIONS 

According to property (A) the functions M(K', -I") satisfy the 

spinor.transforxnation law 

M(K, 	Iv) = A 1 M(A Ky, 	ptt)  

provided the K 1  and Ktt  specify real momentumenerr vectors corresponding 

to physical processes, and provided the As  and A are taken to be the 

transformations associated with the real orthochronous proper homogeneous 

Lorentz transformations 

By virtue of the constraints imposed by the conservation laws and 

mass conditions, the M(KI, 	") can be considered functions over a 

reduced set of variables, the constraints being then identically satisfied0 

And the reduced.ivariables can be selected so as to be real over the 

(original) domain of definition where the momentum.enerr vectors in K' 

and K" are real0 

Real Lorentz transformations are generated by unimodular spinor 

transformation matrices subject to the constraint that dotted and undotted 

indices are transformed by matrices that are complex conjugates of each 

other. If this constraint is relaxed the corresponding Lorentz transformation 

matrices A are no longer constrained to be real0 However, the invariance 

of scalar products of fourvectors continues to be maintained under this 

enlarged class of (complex) Irentz transformations0 

By the method. of Hall and Wightman22  one can show that the validity 

of Eq0 (51) for real k. and real orthochronoüs proper homogeneous 

Lorentz transformations implies its validity also for the complex Lorentz 

transformations continuously connected to unity, the k. ranging then 

over the d.omain generated from the origthal oneby the complex Lorentz 
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transformations. Specifically, since. A and A are given analytic 
S 

functions of parameters that specify the Lorentz transformation, Eq. (5.1) 

can be used to extend the d.efinition of M(K', -K") over the, range of 

variables generated from the original region by the complex Irentz 

transformations connected to unity. By the method of Hall and Wlghtman. 

this extended definition may be shown to coincide with the analytic 

• 	continuation of M(K, -') into this region, provided that M(K', -k") 

was regular in a neighborhood of the original region. 	• 
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CFT THEOREM 

The special lass :-of :complex Lorentz- transformations of .interest 

to us are those in which•. the.undotted -- indices - are transformed by.. unity 

and the dotted indices by - 	 S 	 1 

A = exp[ iØc ] 	 (61) 

For-real 0 -, these A form a set of unimddulartransformaticins 

continuously connected ) unity0 For 0 = it, Eq0 (6.1)gives A 5  =-.-1 

The corresponding A is also minus unity and all fourvectors are carried 

to their negatives0 The application of (61), with 0 = it , to (51) gives 

M(Kt, 	K") = (l) 
N
M(K, K") 
	

(62) 

where N is the number of dotted indices - of M(K, K1,  and 

epresents the set KI with the siis of all momentum-enerr vectors 

reversed0 Because the phase drops out in the calculation of probabilities 

Eq0 (62) is, in the light of properties (a) and (D), just the statement 

of, the CPT theorem: If a scattering process is invariant under the proper 

orthochronous Lorentz transformations and if analytic continuations of 

scattering functions to all other physically interpretable boundary points 

of the physical sheet give functions corresponding to physical reality, 

then for every process occurring in nature there is a CPT inverse process, 

and relationships between corresponding probabilities are identiáal0 

The requirement, stated in postulate E, that the boundaries of 

the physical sheet are defined by relativistic scalar equations, and hence 

depend on scalar invariants, guarantees that the CPT transformation takes 

a boundary point- of the physical sheet to another boundary point of this 

sheet0 
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The development above is similar to Jost's in its essential use 

of the complex Irentz transformation. Here, however,, the transformation 

is applied directly to the phyically interpretable mass-shell scattering 

functions, and the question of whether certain vacuum expectation values 

of local field operators are identically equal is not raised. 

Ifa field theoretic substructure were assumed, then the original 

connection between the .various ,related processes would be conventionally 

expressed in terms of transformations on field operators, rather than via 

the analytic continuation of 'the scattering functions. Consequently, the 

present remarks do not constitute a proof when considered in a field 

theoretic context. They show that the CPT theorem is valid in the class 

of field theories in which analytic continuations of mass shell scattering 

functions lead to physically interpretable quantities, as specified mt 

postulate F. Relativistic invariance and the conservation laws guarantee 

the existence of the required continuation, the necessary interpretations, 

and the needed numerical relationships. ' 	' 
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VII THE C0NTECTION BETWEEN SPIN AND STATISTICS 

The unitarity condition reads 

M(K', -K") + M (K", -K') 

r. •• - 	M(K', -K) K.a M (K", -K) 

• 	 c • 	 (7.1) 

	

1.. 	_ •* 	 - • 	 •M(K, -K") Ki M(K, K') 

For the case -that K' •=- K" designates self-conjugate: combinations of 

particle-antiparticle amplitudes, appliOation of the CPT transformation, 

followed by an inversion of the order of variables gives 

M(K', K') + M 
*
(K', -Ic') 

	

N 	I 	 . 	*• 
= -(-i) 	aK, 	M(K, -K') Ka M(K, -K') 

N - 	I 	..••'% 	* 	- 
= _(-i) 	aK, _ 	M(K', -K)1QoC M(K', -K) . 

(7.2) 

Here N is the number of spinor indices on the variables of K which, by 

virtue of the superselection rule, can be replaced by the number of spinor 

indices on the variables of the set K' . The factor aI,  is the sign 

coming from the complete reversal of order of the variables, of M(K', -') 

The fact is used that for KI corresponding to measurements of self-conjugate 

combinations of particle-antiparticle amplitudes the sets K' and K' are 

identical except for a reversal of order (see Sec. X), 

Since K-a is a positive definite Hermitian-form, comparison of 

Eqs. (7.2) and (7.1), for the case K' = K" , implies either aK, = 
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or 	) = M(K -') =. 0 for áflK. But if K' contains an odd 

N number of variables with abnormal symmetries then CK, 	and hence 

*Kt,)ad 	 y póétiva±è Et the variables 

be• switched frOm one side to the other and ónsequent1y all N functions 

contaiiiváriábles havingabnórmal symmetries must vanish. 

The` Of the set ' are, in the above, re1red to 

desiguate seif-cóijugatC partiles. Hôiever, the set K is arbitrary. 

If there are conservation laws that distinguish the particle and antiparticle 

parts of the self-conjugate combintion of amplitudes, these separate 

contributions can be distinguished by appropriate choice of the variables 

of K • It follows that the synetry of the self-conjugate combination 

is the same as the symmetry of the individual particle and antiparticle 

parts, and the normal connection between spin and statistics also obtains 

for these latter. 

The above proof is similar to the recent proofs of the connection 

between spin and statistics by Lders and Zumino, 8  and Burgoyne, 9  in that 

it rests on a conflict in the abnormal case between the CPT transformation, 

which follows from relativistic invariance, and certain positive definiteness 

requirements. However, the arguments here involve only mass shell quantities 

and the positive definiteness requirements ari:e directly from unitarity, 

which is much more secure than the general requirement of. positive definite 

metric. 

The essential result embodied in the above parts of the proofs is 

that the OPT theorem and the con ection between spin and statistics are 

contained already in the asymptotic properties of the S matrix. We proceed 

now to the derivation of these properties from our postulates, without 
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reference to field theory. It is necessary to show that the abstract 

postulates themselves ensure the existence of functions with the, stated 

unitarity and spinor transformation properties, that the interpretations 

of the functions arising from analytic continuations of these originally 

defined functions are, by virtue of the conservation laws, uniquely 

determined, and that the analyticity requirement implies the synmietry 

property under interchange of like variables stated above0 

4 
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vIi. UNITARITY 

Let K' and K" be normal ordered sets of variables labelling 

:twopossibleoutcomesof anexperimént.;calledrthe.final experiment. Let 

K be anormal ordered set labelling apossible outcome of an experiment 

called the initial experiment. Then postulate A implies the unitarity 

conditions (see Appendix A: 

• 	 : s(K', -) s*(KTT,  _) - 	K'K" • 	 (8.1) 

The sunation is over normal ordered sets 	, the * denotes complex 

conjugation, and is unity if K' K" and otherwise zero, (Discrete 

variables are assumed temporarily.) Let the possible outcomes of the two 

experiments be placed in a one to one correspondence so that for every 

final outcome labelled by K there is a "corresponding" initial outcome 

labelled by -K • The correspondence will be the physical correspondence 

of "no scattering" which will be discussed below. 

A convention will be adopted whereby if a particle of the final 

configuration is labelled by a momentum-energy vector ki , the corresponding 

particle in the "corresponding" initial configuration will be labelled by 

.ki . Then the conservation law for momentum energy takes the form E k 	0. 

This negative sii for the initial ki  is represented by the minus siga 

in front of, - • In order not to prejudice the arguments, the particle-type 

indices will be taken to have opposite sis for the corresponding variables 

of K and K. 

In terms of .  R(K', -k") 	s(K', BK,Ktt the unitarity 

condition reads 
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R(K', -i") + R*(Ictt
)
_,) = 	R(K, -) R(K",  -) 

If R'(K, 	') 	R(K, - t)( p (K) p(Kt))V2 is introduced, where p(K) 

represents the number ofvalues of K per unit element of the product of 

the invariant momentum elements dk() (k2  - m2 )/(2t) 3  , then the 

suxmnation may be replaced in part by integrations over these elements, 

with RI replacing R 	The prime on R' will generally be suppressed0 

The subtraction of the b 	has a physical basis0 If we were 

to consider processes in a large finite volume V , then over a time T 

one expects an initial momentum eigenstate to gradua1y decay, and other 

momentum eigenstates of the same energy to gradually grow at a rate that 

tends to zero as V increases0 This characteristic difference in time 

dependences allows a particular final momentum state to be correlated with 

each initial momentum state0 This physical correlation is the bais of 

the correspondence between initial and final configurations labelled by 

4 \and K respectively0 The states are correlated so that the 

subtraction of 8Kv 	just removes from S(K', -') the part that 

remains finite as V becomes infinite0 It is the remainder, R(K, 

which when multiplied by (p(K) p(Kn))11'2 , is expected to pass over a 

smooth well-defined continuim limit as V goes to infinity0 This 

expectation is embodied in postulate El which requires the M functions, 

which are spinor forms of the R functions, to be analytic functions0 The 

S functions are neither expected nor required to be analytic0 	
41 

it is the procedure at this point that characterizes the present 

development as strictly an S-matrix approach, and which inserts an 

essential physical ingredient into the present proof of the connection 

between spin and statistics0 
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IX • RElATIVISTIC INVAflIA1WE 

- 	 Postulate B requires, for the case of spinless particles, that 

'- 
R(K', ..-K" 	

2  ) 1 	= . I R(AK', -PXtt ) 2.  , 	. 	 (9.1) 

where AK is the set of variables obtained from the set K by replacing 

each moment-enerr vector,, k1  , of- the set by Ak1  , the vector obtained 

from k1  by the real orthochronous proper homogeneous Lorentz transformation 

A 	For the case with spins let P(s', -s" ) be the projection operator 

for the spin state specified by the set of axial four-vecto (s i ', _s") 

Then postulate. B requires 

Jp(s', -S".) R(K', 	tt) 12 . 	IP(Asr, _As 1 ) R(Ax 	_AYtt) 12 , 	(9.2) 

where P(As', -AS") represents the projection operator corresponding 

the set of spin vectors (As,' _As") 	Using the hermiticity and idempotent 

(P2  = F) character of projection operators, one may write Eq.. (9.2) in the 

form 

p(s, -s") R(K', 	 .i") = • P(AS, -AS")R(AK', _AT1)R*(AK,,  AI") 

where p(st,  -5") now.acts between corresponding indices of R and R 

The order In which the indices are contracted is irrelevant. 

The projection operator p.(s, -5") is a product of the elementary 

projection operators for the individual particles. The actual form of 

these operators depends uon the physical siuificance of the various spin 

states. Or conversely, the physical siificance of the various spin states 

is determiiiedby the form of the projection operators. One Is free, 

consequentlintiie case of nonina.ssless partiàles, to take the elementary 
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projection operators to be. 

P(s) = 	(±s'oa+ 1) , 	 (9. 4 ) 

where .= 	02'  a 3 
 ) is the Pauli matrix vector and s 2  is the value 

of s in some rest frame of the particle0 To eliminate possible arbitrary 

rotations, this rest frame will be taken to be the one obtained from the 

general coordinate system by the Hermitlan spinor Lorentz transformation. 

If Eq. (9.4) is substituted into (9.3) and the known behavi6r of 

under rotations is used, one obtains 

* 	- 	 -1 	- P(s', 	u) R(K, K") R (Ks, K") = p(s, -s")A5 	R(AK?,  AK") 

X [A S-1 R(AK 	fl) 

(9 , 5) 

where A 1  are certain of the usual spinor transformation matrices 

corresponding to the rotation A 0 Since Eq. (9,5) is valid for all S 

and S" , the projection operator P(s, -s' t ) may be removed and the 
* 

resulting equation states that BR is a spinor function relative to the 
* 

rotation subgroup. The indices of BR that are contracted in Eq. (9,3) 

with the left-hand index of a factor (9,4) have the transformation 

character appropriate to an upper undotted or lower dotted spinor index, 

these being the same for rotations.. The right-hand index of Eq. (9.4)  1 
* 

contracted with the correspondixg complex-conjugated factor of BR and 

these indices accordingly have the transformation characters of upper 

dotted or lower undotted indices under rotations. 

In order to construct a true spinor function we introduce the 

opera -tor '), defined to be the product of the Irentz trans-

formations that would take spinors associated with various momentum-energy 
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vectors k.. from their values In the general coordinate sytém to their 

values in the respective rest Bmesj in which the momentum-energy vectors 

become pure time-like. To eliminate possible arbitrary rotations we again 

take those Lorentz transformations represented by the Hermitian spinor 

transformations. Then with the definitions 

M(K', 	(K', -k") R(K'; -k") , 	 ( 9.6) 

and 

p(s', ks", K', -k") 	p(s', -s") 	(K', -) c(K' )  -k") 

(9 , 7) 

condition (9.3) becomes 

•%• 	* 
p(s', -S", K', -K") M(K' )  -K") M (K', -K") 

= P(AS', -AS",AK', -A") M(AK', -AK") M(AK' )  -A"). 
(9.8) 

If the Lorentz transformations are taken to be the ones appropriate to 

the transformation characters of the indices of R obtained above, then 

In p(s', -S", K', -") the elementarypiojection operators are, 

according to Eqs. (9.4)  and (9.7), by dIrec.caictilation, 

P(s, k) = . [(k°o/m) ± sea] = 	Il k/m ± s] a 	, 	( 9 , 9) 

or 

[(k'/m) 	s.] = 	[ k/m 	s] a AB 

(9.10) 

where 

10 v a 	76, + 	 + v1a , 	 ( 9 ii) 

(9,12) 

N 
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The two cases (9.9) and (9.10)  correspond to the alternate choices 

of upper undotted or lower dotted for the transformation character of the 

indicesbfRR contracted with the left-hand ind.exof Eq. (9.4). The first 

parts of the two equations (9.9) and (9.10)  follow by calculation and the 

derived expressions have the transformation characters indicated on the 

far right. Making use of these transformation properties one obtains 

P(st , -s", +ic' , R" ) M(K? , -) M(K' , 

= P(s?, -S", +K', -")A 	M(AK', _A 1 )[A5 ' M(AK?, 

( 13) 

which, being true for all (S', _tI),  implies 

M( K', -K") = A 5 -1•  M( uc' •,• Ar) , exp ia . 	 (9.14) 

Apart from possible phase factors, the M(K', ") constructed in this way 

are spinor functions0 Postulate B' is invoked to permit the choice 

exp ia=l,. andthe M(K',-") are then truespinor functions: 

M(K', k") = A5 1  M(AK', 	t1) 	 ( is) 

The superseiection rule follows immediately fromEq. (9. 15), applied 

to rotations of 2 

Substitution of Eq. (9.6) into Eq. (8.2) gives 

' (K', -.I") M(K' , -k") + ['( K", -i' ) M(K", _t ) 1*.. 

= 	f (K', -) M(K', -)[.2(K", -) M(K", K)] 
K 	 (9.16) 

There is complete freedom in the chOice between the two alternative 

possibilities for the Lorentz transfornations, the construction being 
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equally valid for either case. We will choose to use lower spinor1ndices, 

* 	 * 
for R and R , and, consequently, for M and M , For a lower .undotted 

spinor index the Lorentz transformation in 	(K', -') is 

° (k) = exp [ - 	0- k̂ 	cosh t 	sixth 	Vk /m 
2. 

(9.l7) 

This matrix is Herinitian, as required, so that the complex conjugate 

transformation, which operates on the lower dotted indices, is the transpose 

matrix. 

From the form .(8E2) the requirement that the indices associated 

with -" transform as the complex conjugates of the corresponding ones 

of K t' follows, Equation (9.15) is then conveniently written in the form 

V
i 

	

Kt . a N(K', K") V
r 

 K" . a + V
i 
 K' • a 	M

* 
 (K", K') V K" • 

= -KI 	M(K', -rv' 	'K' 	M*(Ktt, -yVK". 

(9,18) 

where 	 N 

K . 
 

• 	N 	k 	 -. 

= 	II 	(i)(i) 
i=l 	miL. 

= 	II - )(k° - 	a(i)) 
1=1 	i 	 ( 9.19) 

The superscript, (i) - -on •a 	indicates that ac 	is to operate on the 
ith spinor index of--K; and k is.:the-momentum-enerr vector associated 

.J. 	:- 
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. 

with this index The. order;in which..the factors are written down in 

Eq. (9.18) is suh that if 	.cQntainsonly•.undqtte.d indices and 

contains only.,dotted ones, and similarly for K. and -K , then the. 

contraction is always with adjacent indices. For, variables that do not 

satisfy these conditions, the contraction is. with the nonadjacent index 

of the Lorentztransformation matrix, 

The reciprocal of 	(k) i.::, 	S 

= exp { 	.t] = cosh 	+ aksinh 	= V(k.a)/m 

(9.20) 

Multiplication by the appropriate, inverses brings Eq. . ( 9.18) to the 

desired form: 

r 	 , 

M(K, .-K't) ,+ M
* 
 (Ktt , Kt). = - 
	

M(K, ....K)K.c 'N
* 
 (Ku , -K) . 	(9.21) 

K 

The contraction rule is as stated above, and Eq. (921)  has the form of a 

spinor equation, as inspection of Eq. (9.10) shows. 

The above development is independent of the choice of sign of ± 

in Eq. (9.4);  the transformation properties are independent of this sign. 

If one wishes to identify 5g  with the physical spin, then the requirement 

that conservation of 5 angular momentum be a consequence of rotational 

invariance (postulate D) demands that in the operators P(s) acting on 

the same type of indices, the opposite signs of ± 	must be used for 

initial and final configurations, since it is the difference of the 

initial and final physical spins that must enter into the conservation law. 

It is for this reason that the minus sign was placed before the second 

argument of p(st,  S"); then the same mathematical function of the arguments 

may be used for both initial andfinal spin operators. 

The application of the formalism for the case of particles Of spin 

greater than 1/2 is discussed in more detail in an appendix. 
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X. AI\I'TIPARTICLES 	. 

The functions M(K', K) have been defined at real values of the 

momentum-energy variables corresponding to real processes. Because, of the 

mass constraints and the energy-momentum conservation laws, these functions 

are defined only over a restricted subspace of the space of energy-momentum 

variables. Variables appropriate to this subspace may be introduced. 

Consider a possible analytic continuation in these variables from 

a region corresponding to a physical process to a new region where the 

energy-momentum vectors are again real, but with perhaps some different 

sis. For definiteness suppose only one of the energy-momentum vectors 

has a changed sign. Is it possible to give the function in the new region 

a physical interpretation, and if so, is this interpretation unique? 

Because the continuation is in the subspace corresponding to the 

mass constraints and the energy-momentum conservation law, these conditions 

will be formally satisfied also in the new region. But since the sign of 

k is reversed, the contribution of this term' in the formal conservation 

law is reversed. If the interpretation of the other momentum-energy vectors 

(with unchanged sis) is to remain unaltered (see postulate F,), then the 

only way to reconcile the fOrmal conservation law with the physical law 

of conservation of energy-momentum (postulate D) is to associate the new 

• value of the momentum-energy variable with an Initial particle if it was 

formerly associated with a final particle, and vice versa, and to reverse 

• 	the sii of the connection between the mathematical energy-momentum vector 

and the physical quantity. This is, of course, the same connection that 

• • ,one obtains in field theory. Here it Is the only Interpretation consistent 

with th' postulates. 
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If a final particle carries a non-ero unit of any additive constant 

of, the motion, then the Initial particle associated with it by the analytic 

continuation described above must carry thénegative unit; otherwise, the 

conservation laws would require one of the two processes to vanish, and 

by analytic continuation both would vanish. The two particles related by 

this continuation are, consequently., not the same particle, in general, 

although their masses are the same. They will be called antiparticles, 

in accordance with the usual terminology0 

The type designationsof the corresponding variables of K and 

have been taken as negatives of each other. If a variable is called 

a particle or antiparticle variable, according to which of these two it 

specifies when its enerr-sign is positive (i.e. when it refers to the 

final experiment), then variables of oppositely signed type designation 

are particle and antiparticle variables respectively. 

For a fixed spin index the corresponding physical spin is opposite 

for the cases in which the variable refers to a particle of the initial 

or final configuration respectively, as mentioned before. 	
k 

The formalism arrived at is of the Pauli rather than the Dirac type: 

spin particles are represented by two component variables. Particles 

and antiparticles are represented by undotted and dotted indices, respectively. 

Because particle and antiparticle variables have different spinor characters 

and, correspondingly, are contracted differently with the spin operators, 

it is not the simle sum of the amplitudes that is measured when the self-

conjugate combination of particle-antiparticle amplitudes combination is 

measured. A certain (charge conjugation) operation is required to bring 

the amplitudes to a form suitable for direct additipn In the proof of 

the conection between spin and statistics one can first apply the CPT 
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transformation to the various parts that will fOrm the self-conjugate 

combinations, then apply the transformations needed to bring the various 

terms to additive form, next use the: syietry rules to invert the order of 

the combined variables and finally transform the parts back to their. 

original forms. Thus the fact that the amplitudes corresponding to dotted 

and undotted indices do not directly combine does not have an important 

effect on the proof. If both upper and lower indices had been used the 

unitarity relation would have taken a more complicated form, and the fact 

that the syetry rules apply only to proper combinations would then play 

a role, 	.. 	. 	,. 	. 	... 

An alternative formalism in. which the no-scattering part of the 

S-matrix is . taken to be the charge-conjugation matrix 

(o, 	 .i  

= 	 . 

0 

in spinor space is convenient in this respect. With this choice, particles 

and antiarticles can be taken to have the same transformation character. 

The same physical spins are then represented by the same spin operators 

• for particles and antiparticles, and the amplitudes are directly additive. 

The unitarity relation in this formalism contains explicit factors of C , 

and it is the relation . 	= . 	that leads to the factor (_1)N . The 

derivation of the connection between spin and statistics using this formalism 

is given in Appendix C. 
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XI. ORDEROFVARIABIES 
 

A set of variables with real inômentum-energy vectors k, is normal 

ordered only if' the following conditions' are satisfied: (k1)2 	(k+1)2, 

k °/Ik. ° J 	k.+i°/Iki+i°J , 	k. 	> k.+11 , 	ki2 	 , and 

k, 3 > k 	 , each of the conditions of the set being operative if and 

only if the equality parts of the preceding conditions are realized. 

Except for cases of relative zero measure, for which k. = k i 	for 1 	+l 

some I , which can be treated as limiting cases, the normal ordering 

condition gives a well-defined order for the variables corresponding to 

any physical process. For definiteness we specify that when the variables 

are in this order the N function describes the physical process. Stated 

differently, the value of some (say original) ; N function that describes 

the physical processes corresponding to some set of k. will be taken to 

be the definition of the value of the (standard) N function when these 

variables are placed in normal order. If postulates F and Et  were true 

for the original N function they would also be true for the standard one. 

Postulate E' requires all the real points to be (physical type) 

boundary points of a single analytic function. This allows the N function 

to be extended by analytic contimuation and defined for all orders of the 

variables. Observables calculated by using the values of the .M functions 

obtained by analytic continuation must give the physical answer, according 

to postulate F. Hence the various N functions obtained by reorderings of 

the variables can differ only by phases as stated in property (E). If 

postulate El were not valid and certain ranges of variables could not be 

reached from others by analytic continuation, then one is free to establish 

property (E) by decree in cases where it does not follow from analytic 

continuation and postulate F. 
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- 	For the case of variables with the same spin and type indices and 

the same energy-sii, one can obtain a more stringent condition. This is 

because the interchange of such variables, which will be called like 

variables, carries an M function back to itself, though at a new value of 

the arguments. 	. 

Let us denote by M(x) and M( -x) two M functions related by the 

interchange of two like'variabies, and by IM(x),I 2  and IM(-x)l 2 some 

experimental relationship calculated using these M functions. That is, 

we suppress, the remaining variables. According to postulate. F, 

	

JM(x)1 2 	'IN(-x)1 2  

because M(-x) . is the analytic contInuation of M(x) at a new physical-type 

boundary point of the physical sheet, and the two points have.identical 

physical interpretations. 

Separating N(x) into even 1 and odd parts with respect to x one 

obtains 

	

cl(x) 12 	JM()J2  = 	Re M(x) M0*(x) = 0 

This implies that M(x) is either even or odd or that the even and odd 

parts are relatively 'imaginary. ' 

The condition that M(x) and M0(x) be relatively imaginary, 

which we take to include the case in which either one vanishes, must 

obtain for all choices of the remaining (suppressed) observablés. However, 

by appropriate choice of the observablés (Hermitian operators) corresponding 

to the other (suppressed)vb1es one can adjust arbitrarily the phases 

of each orbital angular rnointum state of the two-particle subsystem. This 

is easy to see for te simplest case of the scattering of two spiniess 
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particles, since by choosing the operator for (say) the initial state to 

project onto some chosen combination; of the initial orbital states the 

phases of the final states can be fied a±bitrarily. It is not hard to 

show that this result can be generalized to arbitrary reactions, and that 

the phases of orbital states corresponding to the two.particie subsystem 

can be fixed arbitrari1 by appropriate choice of the Hermitian operators 

corresponding to the observablés for the remaining variables. Thus the 

general vanishing of 4 Re N(x) N*(x)  iinpliesthevanishing of either 

Me() or M0(x), and N(x) must be either synmietric or antisyimnetric 

under the interchange of like variables0 Essential to the proof is the 

assumption, stated in postulate C, that only the variables specifying 

momentum, spin and particle type are needed to label the complete set of 

amplitudes. No other "hidden' 1  variable specifying, for instanáe, , "which 

one of the various identical particles is measuredtt  is permitted. This 

assumption is quite natural when Viewed from the Smatrix standpoint. 

By the application of the fact that the N functions must be either 

syetric or antisynmietric under the interchange of anY two like variables 

to both sides of an equation representing this same fact, one inunediately 

finds that a single rule, either symmetry or antisynunetry, holds for the 

interchange of any two like variables of a fixed., type in a given N function 

with a fixed order of the spin and type indices. Using postulates El and 

F, as abOve, one can extend the rule also to the case in which the ordering 

of the spin and type indices differ and show that the characteristic sign 

for the interchange of like variables depends, for a given N function, 

only on the spin and type designations and possibly on the energy signs. 

The above derivation of the fact that the N functions are either 

symmetric or antisynunetric under the interchange of like variables is based 
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upon analyticity in the physical region and. on the principle, contained 

In postulate F, that different expressions corresponding to- the same 

physical quantity must give the same answer..,. This is an argument involving 

indistinguishability. In ordinary quantum mechanics, the analogous synmetry 

property of the wave fcuntion Is postulated as a boundary condition. In 

field theory, it is the iiediate consequence of the postulae that field 

operators must either coute or anticonnute for space-like separations. 

This locality postulate of field theory draws its support from the principle 

of micocausality; the postulated cônunutation -relations ensure that signals 

never propagate faster than the speed of light, even over very snall 

distances. This support of the postulate is rather unsatlèfaàtory both 

because of the questionability of the principle of m±crocausalityand 

because of the particularity of t--he way in which it is achieved. For 

instance, the possibility that the conutation relations depend 'br the 

states between which the fields -  act is not considered0 The present 

derivation seems more satisfactory because these various possibilities are 

included, and because it is based directly on indistinguishability and 

does riot intertangle the logically separate questions of synnetry and 

relativistic invariance.. 

The snetry.rule can iediately be extended from the case of 

equal ener-signs to the case of unequal enerrsigns using postulate E', 

- because both side's of the equation representing the syetry rule can be 

analytically continued from the region where the enerr-sigus are equal 	- 

to the region where they are unequal. This consequence of analyticity is 

the root of the connection between spin and statistics. 

The methods used above do not lead to Syietry rules for the case 

in which the spin indices differ. Here an interchange of variables carries 



UCRL.98O)i 

38- 

an M function over to another N function in which the order of the iidices 

is different. This is a different function iot connected to the first by 

analytic continuation. From postulate F one obtains a relation like 

1M12(x) 12 = lM21(x) 1 2  

instead of 

- IM(-x)I
2 

 

the spin indices now being displayed, and the arguments used above lead 

to no snetry rules. 

If it is assumed that measurements of linear cornbinations of• spin 

state amplitudes are possible, one may obtain relations of. the second type 

with the spin state 	now representing a linear combination of the 

original states. One obtains, for example, relations which, when eressed 

in terms of the original spin states, read 

(cos2 5) M11() + cos 5 sin 5(M(x) + N21(x)) + sin2  B N2.2(x) 

= ± [cos2  5 M11(-x)+ cos 5 sin 5(M12(-x) + 

+ sin2  B 

where the linearity asserted in postulate A is invoked. Since the relation 

is true for several values of B Qne obtains 

M11(x) = ± M11(..x) , 

N22(X) = ± M22(x) 

and 

M12(x) +M21(+x) 	±[N 2(x) +'M21(-x)] 
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where the same sign holds for the three equations. The first two equations 

show that the same synmietry rule holds for both cases of like spin Indices, 

and by the third line this synmietry also extends to the symmetric 

combination of the spin states. The third line Is generally inconsistent 

with the assumption that the interchange of variables with different spin 

Indices give6 a sign change opposite to the one for the case of equal spin 

indices. Indeed, using the fact that M12(x) and M21(-x) can differ by 

only a phase the relationship M12(x) ± M21(-x) is the only one generally 

consistent with the requirement that the lvi functions be analyiic functions 

of their variables, as one sees by examination of the other solution: 

= ± exp 2ia M* ( x) , 

M12(-x) = ± exp 2 Ia M*21(x) 

and 

a 	arg (M12(x) + M21(x)) 

As in the case of different spin indices, the analyticity 

requirements alone lead to no synmietry .rules for the interchage of 

variables of different types. The symmetries that prevail are direct 

consequences of phase conventions regarding the orders of the variables 

of the N fuflctiOflS. 

In the development above there is the apparently arbitrary phase 

• 	 convention that the singular:part of the S-matrix (i.e., p(K') bK,Kt,)  be 

taken as real and positive when the variables are normal-ordered. It is 

because of this convention that the normal-ordering requirement appears 

in the unitarity relations we use. Making use of this particular form of 

the unitarity requirement, one can carry through an argument quite analogous 

to the one given In the body of the proof: of the connection between spin 
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and statistics, but now without using self-conjugate particles. If one 

assumes that the symmetry under interchange of antiparticle-type variables 

is the same as for the corresponding particletype variables, then one can 

deduce that the symmetry rule for the interchange of a particle variable 

with a corresponding antiparticle variable is in accordance with the 

normal connection between spin and statistics. 

This relationship is of no physical siguificance. All that is 

established is that the symmetry under interchange of particle and anti-

particle variables is in accordance with the normal rule. But nothing 

is said regarding the rules for the interchange of two-particle variables 

or two-antiparticle variables. It is these rules that are relevant to the 

connection between spin and statistics. Moreover, the rule that is 

established is a direct consequence of the original choice of phase 

conventions and can change if other conventions are adopted. 

In field theory there is an analogous situation, it is the 

commutation relation between two like fields that determines the connection 

between spin and statistics0 The commutation -relatithi between a field 

and its adjoint is not relevant unless it is shown that this commutation 

relation must be the same as for a field and itself. In recent studies 

of the connection between spin and statistics 8' it is only the commutation 

relation of a field and its adjoint that is shown to be normal, and the 

arguments consequently do: not prove the connection between spin and 

statistics. Earlier proofs-have been-objected to because they either 

apply only to the nonphysical free field case or assume restrictive 

symmetry requirenents. 

In the extension of the symmetry rule for the interchange of like 

variables to the case of differing spin indices the physical requirement, 
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stipulated in postulate C, that projections on linear combinations of 

spin-state amplitudes be, in principle, observable quantitIes played an 

essential role. In the analogdsextension to particle and antiparticle 

variables the corresponding situation prevails; the requirement that 

' rojections on combinations of the particle-antiparticle amplitudes be, 

in principle, observabies is again essential0 This requirement underlies 

/ 

	

	our proof, which depends critically on the fact that one can choose 

variables referring to the self-conjugate combinations o particle- 

antiparticle amplitudes0 When these variables are used, the CPT transformation 

followed by an inversion of order takes the arguments of N(K', -) into 

identically themselves and there is no phase ambiguity0 Also, the symmetry 

is derived directly for the self-conjugate combinations, and from this the 

synetries of the particle and antiparticle parts are obtained. 

To complete the discussion of order of variables we must show 

that the symmetry rules for the interchange of like variables are the 

same for all M functions, as stated in property (F). This follows from 

the unitarity relation. For real ki , •the unitarity relation reads 

* ov IV- 	* 
M(K', K") + M (K", -Ks) 	M(K'., -K) Ka M (K", -K) 

K 

which, with the introduction of 

M(K' , ..K") 	M (K" , -K' ) , 

becomes 

M(K', 	'.) + 	(K', a"). 	M(;,. 	) ,K 	(K, a") 

This form permits analytic continuation in the variables k 
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Suppose K' contains two like variables with real k 1 	According 

to postulate E ', these may be interch.nged by an analytic continuation. 

An application of the symnietryrulefOr like variables then gives 

(Ktt) M(K', ..jn)  + a'(K") (K', ic") 

= 	
ci(IC) M(K', -i) K° 	(K,-") 

K 

where a(K) is the sign change induced in M(K', _) by the interchange 

of the two like variables, and '(K") is the sign change for the two 

* 	_ 
corresponding like variables of M (K", -K'). 	Forthe case K' =K" we 

have c(K) = a'(K') , since an application of both transformations to 

M(K', -i') must leave the sign unchanged in order not to conflict with 

the sign on the right of the unitarity relation. This gives 

* 	 -r 	 _ * 
q(K')[ M(K',. Kv). + M (K',, -K')] = - 	a(x) M(K', -K) K.a M (1K;; -Ic') 

The integrand factor M(K', -K) K 	M
* 
 (K',. -K) is a positive definite 

Hermitian form, as mentioned earlier, so that comparison of the above 

equation to the original form of the unitarity relation implies 

= 

and the syTmnetry rule under interchange of like variables is the same for 

all 4 functions that can be brought to the form M(K', .). One can take 

K' to contain just the two variables in question, and then all M functions 

containing these variables can be brought to this form using postulate E' 
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- 	XII ANALYTIC STRUCTURE 

Postulate E requires the N functions to be rular in the interior 

of a physical sheet whose boundaries are fixed by unitarity. This needs 

explaining. 

The essential idea is that there are some singularities of the 

N functions which are direct consequences of the unitarity relations; if 

the N functions Occurring on the right of the unitarity relations were 

assumed free of singularities, those on the, left would nonetheless have 

singularities arising from limitations in the range of integrations 

occurring on the right.  

Specifically, the unitarity relation contains on the right terms 

each containing a factor of the form 

[ 

fn 
i 	(2ic) 
 () (2) 8(k2 - mi2 ) e(kio)] (2)(E k1 	T), 

(12 • 1) 

which is multiplied by Other functions that may or may not have singularities. 

Here T is the sum of the Initial (or final) mornenturn-enerj vectors of 

the problem. As is well-known, the delta functions place limits on the 

(real) range of integration and the above factor introduces a singularity 

at T2  = (E rn1 ) 2  that corresponds to the threshold for the reaction 

involving the process described by the k 

Equation (12.1) gives singularities that would occur in one or both 

of the N functions occurring on the left of the unitarity relation even if 

the Mfunctions occurring on the right were free of singularities. Possible 

singularities of the N functions on the right can lead to additional 

singularities On the left. To get some of these, one may substitute the 
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expression for the singular part of the M function obtained from the first 

aplication of unitarity bckintothe right hand side of the unitarity 

relation Proceeding by iteration, one obtains structures of the form 

	

f 	. 	 ( 2m.)(2) (k2.- m. 2 ) e(k.0)] fl(2(z .  

(12.2) 

where E. is a sum over some subset of the k
1  
. , and T. is a sum over 

	

3 	.. 	. 	 .3 

some subset of the (external) momentum-energy vectors of the M function, 

Various structures may be correlated with various Feynman-like diagrams, 

with the lines associated with the mass conservation delta-functions and 

the vertices now involving the arbitrary numbers of particles entering 

into a reaction The conservation laws are maintained at vertices 

The variables k. and T. are originally constrained to be real, 

but one can eliminate the s-functions in favor of contour inteations 

and thereby obtain expressions that can be analytically continued in the 

variables T. 	The set of singularities obtained in this way will be 

called the singularities required by unitarity. It is shown in an 

appendix that the set of singularities required by unitarity coincides 

with the set of singularities obtained in the terms of the perturbation 

solution of field theory. This allows the extensive body of results 

23-32 concerning singularities of the terms of perturbation theory 	to become 

iiediately available. A possible alternative approach of simply asserting 

the singularities to be the same as in the terms of the perturbation 

solution is less satisfactory, since field theory is at once rejected and 

placed in a fundamental role, 
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• The equations. defining the locations of the singularities required 

by unitarity are rélativistically invariant and define manifolds in the 

space of the .scalar invariants of the .1 function. of dimension generally 

one (complex variable) less than the full dimensionality of the space. The 

locations of the singularities depend only on the masses m corresponding 

to the various internal 'lines of the diagram0 Cuts terminating at these 

• singularities can be defined by the locus of singularities obtained with 

the mi  replaced by a m1  , with a a real parameter, independent of i, 

varying between one and infinity0 These cuts separate various sheets of 

the M function0 Postulate E asserts that one particular sheet .of each 

M function,' the physical sheet, is.free of singularities0 

The physical sheet is defined in the,following y: Among the cuts 

there will be one preferred cut that runs over .values corresponding to the 

real moment energy vectcrs,for the process described by the M function. 

The physical values of the M function for the process are required to 

coincide' with the boutdary values .of the M function on the physical sheet 

for the ttphysicaltype" limit along this cut. The physical.type limit is 

the limit approached using points for which the imaginary parts of the 

physical energy and the physical momentum magnitudes k = 	k • k 	are 

positive imaginary... The physical arguments are, of. course, the negatives 

of the mathematical arguments for .va'iables referring to the initial 

moxnentum.energyyectors. 	. 	. 	. '.•..': 	. .. . 

The ..efinition of the physical  sheet, is not arbitrary but is closely 

tied tounitarity, .analy-ticityand.the connection to spacetime variables. 

In order to acquire an orientation, , consider, the . simple case of the 

scattering of a, nonrelativistic particle from a 'everywherefinite 

potential that vanishes, for r > R 	For a particular channel (partial wave), 
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the radial wave funct±oñ f(-k, r) that oes asymptotically like exp[ikr] 

can be shown to exist for all k , real or complex. 33  Generally, these 

functions do not vanish at the origin r = 0 as is required for a solution, 

but the combination 

f(k, r) - .(f(k, o)/f(-k, 0)) f(.k, r) 

has this property, and the Smatrix is 

5(k) = (_l)2 f(k, 0)/f(k, 0) 

This function Is regular for all values of k for which f(-k, a) is 

nonzero. At points of the upper-half k plane, (Im k> 0) for which 

f(k, a) vanishes, the f(-k, r) are (normalizable) eigenfunctions, and 

the enerr eigeñvalues are required, by unitarity, to be real. The 

singularities of the S-matrix in the upper-half k plane are therefore 

confined to the imaginary axis. 34  

If one transfOrms to the E-plane and defines there the physical 

sheet to be the one containing the positive imaginary k axis (on the real 

E axis), then the physical sheet of the E-plane is free of singularities 

except for those on the real axis. These singularities have a direct 

relationship to bound states and physical thresholds, and their positions 

are fixed by the masses of the stable particles. The corresponding 

statement for the ether sheets is not expected to be valid; resonances 

35-38 and unstable particles lead to singula±ities in the unphysical sheets. 

If the condition that the potential vanishes for r > R is 

replaced by the more realistic requirement that it be representable by a 

sum of Yukawa potentials, then the numeratoi function f(k, a) can have 

singularites, but these ré just those coming from unitarity in the crossed 
39,IO channels 	and are therefore among those required by unitarity. 
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The definition of the physical sheet for the relativistic manyparticle 

problem is taken to be the generalization of the one occurring for the 

simple potential scattering problem, and in particular, the momentum vectors 

are required to move to the region corresponding to exponentials that 

decrease at large radius as one goes from the physical point into the 

interior of the physical sheet0 This ensures that bound states give 

singularities below the physiàal threshold and lying on the physical sheet0 

The unitarity relation likewise leads to singularities at locations 

corresponding to these bound states, since they are stable particles0 The 

• unitarity relation is therefore expected to hold below thephysical 

thresholds on the physical sheet0 

• 	The fact that, for the potential scattering problem, the physical 

sheet is free of singularities depends jointly on unitarity and the fact 

that the scattering was from a local potential0 Postulate E can therefore 

be considered some extraction from a locality requirement0 The question 

of exactly what coordinate space conditions are necessary or sufficient 

for the postulated momentum-space analyticity property lies outside the 

scope of the present paper0 
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ME 
• 	

XIII CONCLUDING RER 

he present study provides two useful results apart from the proofs 

that were the primary object0 First, It has been shown how the appeal to 

field theoretic concepts can be completely avoided and the new S-matrix 

formalism built up from simple principles that are relatively secure0 

This development, which was necessary to the proofs, leads also to a 
considerable simplification in practical problems, since the shuttling 

between field theoretic expressions and the scattering functions needed 

in field theory is eliminated; one works only with the directly interpretable 

scattering functions. Second, the treatment of spin is in terms of the 

simple Pauli matrices, and the redundant variables associated with the use 

of Dirac matrices are not introduced. Thus, for instance, the scattering 

of two spin particles is described by a spinor function with sixteen matrix 

elements rather than 256. The troublesome projection operators needed to 

eliminate the redundant variables of the Dirac theory are not required. 

Conditions imposed on the M functions by the separate requirements of 

invariance under spatial reflection, antiparticle conjugation and time 

reversal are easily handled, as shown in some appendices. 
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APPENDIX A 

Derivation of Unitarity from Postulate A 

From postulate A , 

(at,.at) = (Sa,Sa) = (a a) 

for all a 	But the quadratic form determines the bilinear form,1 and 

so 

(Sa, Sb) 	(a, S S b) = (a, b) 

for all a and b • Hence S S = 1 •. Therefore S 	' = a and 

SSt 	.1 is derived from 

(a, a) = (St a' )  S a') = (at, a') 

In effect, the completeness requirement may be taken to mean that the 

metric preserving transformation S is unitary.2 
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APPEI1DIX B 

Massiess PartIcles 

For rnassless particles, which have no rest frame, the procedure 

used in the text breaks down. In this case the assignment of spin quantum 

numbers can be related to the direction of motion of the particle. For the 

spin 	case, the projection operators analogous to Eqs. (9.9) and (9.10) 

can be taken as 

P(k) =  

and 

1 
P(k) = 	- (koc) , 	 . 	 . 	( 9.10') k0  

These have the same transformation properties as the operators to which 

they correspond. Unlike the P(s, k) and (s, k), these operators are 

idempots and they can therefore be directly interpreted as the projection. 

operators for the two states. This allows the transformation to rest frames 

to be eliminated. Unlike the nonmassless case, where both spin states 

could be described using either type of spinor, upper dotted or lower undot, 

here we have one spin state corresponding to one assignment, and the other 

spin state corresponding to the other assignment. If we continue to use 

only the lower indices, then the neutrino will have only one spin state, 

as is experimentally observed. The VA interaction is represented by 

(a) (a) in the present notation. 

The projection operators (9,91) or (9.101)  should be inserted for 

the intermediate states of the unitarity relation, and the symbol K'a 

appearing in the unitarity relation will include this factor for the case 

of massless particles. 
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- 	 APPENDIX C .  

Related Formalisms 

In order that the term 6 	be invariant under rotations, the KIV 

• 	correspondlng::indices of K and - must be transformed by inverse 

matrices; if particle variables transform as lower undotted or upper dotted 

indices (which transform the same, for rotations) then the corresponding 

antiparticle variables must transform as lower dotted or upper undotted 

Indices. We have arbitrarily chosen to use always lower indices. For a 

lower undöttèd Index the Lorent'z transformation applied to R in 

constructing M I (k,./m)1/2.  Had we áhósen to teat't1ié'index'asan 

upper dotted index, then the Lorentz transformation would have been rather 

(k.fii)1/2 ",which is just - the inverse of ,(k,a/m)V2 .. Thusone can 

transform an M function .with an uppei dotted index to the value it would 

have taken if the index had beén treated" as a' lower undotted index by 

multiplying it by (koa/m) . It is purely a matter of choice, which one 

is used. Indeed, in the Dirac formalism b'oth choices are carried along 

in parallel. 

There is no compulsion to take the no-scattering part of S to 

be 6 	 • Another rather useful choice is cfK, , the product of.the 

charge conjugation matrices c = o 	-1 , With this choice, particle 
1 	O 

and antiparticle variables have the same transformation character under 

c rotations and one can, for instance, take all the indices of N to be 
lower undotted indices. In this case the unitarity relations take the 

forms ' 
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, 	* 
a M(K', -K") + [ C.. K' • a M(K", -K') ] 

r 	•-• 	. 	* 	- 
= - 	N(K'•, -K) K•a M (K", -K) , 

and 

TT 	" 
(K'.a) M(K', -K") + [ 	, K"°a M(K", -K') I 

. 1 	 .'.. 
= 	M(K, -K") K a M

*
(K, -_K') 

For K' 	K" representing self-conjugate combinations of amplitudes, 

the CPT transformation followed by an inversion of order tales the right-hand 

sides of these equations into each other. The left-hand sides are also 

transformed into each other, except for a factor .(-l) 
N  needed to change 

to C' • and a factor aK,  needed to reverse the ordering. The 

connection between spin and statistics then follows as before. 
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APPEIDIX D 

• 	 Higher Spins 

The formulas given in the text apply directly to spin zero and 

spin 	particles. For particles of higher spin, one constructs in the 

rest frame an appropriate combination of the elementary spin 	spinors 

using Clebsch-Gord.an coefficients or spin state projection dpertors. The 

Lorentz transformations that take the R matrix, which refers to the rest 

• frame spin states, to the M matrix, commute with S S and hence with 

• the projectiOn operatorse The projection operators can be considered either 

• as acting directly on the N functions, or as contained in the M functions 

as factors. In the latter case the equations of the text apply unaltered, 

but with the Index .i simply a set of spinor indices. In the former case 

the K-  .a appearing In the unitarityrelatlon is replaced by K' F(s) 

where F(s) is the projection operator. For instance, 

p(s), = 	( 3 + 	•, ( 2)) for the case of a spin-i particle. 	The 

projection operators commute with the K 	and can be placed on either 

side, or on both sides of it. 
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APPENDIX E 

Invariance Conditions 

The transformations 

(k10, i, Il i , t.) 
-, (k°, k., 	., t.) 	(k°, .k., 	., 

t.) 	, 

(k °, k, 	, t) -~ (ic.°, j, p.., t.) 	(k°, k., p.., -t.) 	, 

and 

(k. ° , Ic, p.., t.) -# (Ic. ° , 	, t) 	(_k °, Ic, p., -t.) 

take the variables associated with a given experimental measurement to 

those associated with certain transformed experimental measurements 

comiected to the original ones by spatial reflection, antiparticle conjugation, 

and time reversal, respectively. Correspondingly, we can define the 

transformations 

R(K, 	") -' R(K', 
-

") S R(K', .n) 

R(K, -k") -+ R(K, 	") 	R(K', _K"c) 

and 

R(K', 	") - RT(K, 	") 	R(K', 	'T 

If the equations 

R(K, _Tt) = 	H (K',  
p p 

R( K I, 	= a c c B (K', -k") 

and 

R(rc, -k") = aT RT(K ? , 	t ) 

are satisfied, where a , a and aT are phase factors, then the 

relationships between probabilities for the transformed measurements are 
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the same as for the.original experiments, . . 	. 

In the time-reversal operation the change.of sii .Of.the k, 	effects 

the required interchange between initial and final states and the reversal 

of physical momentum and spin.. The transformation to antiparticles that 

it also induces is compensated by the change t -t 

In the operations of charge conjugation and time reversaithe 

change t -, -t can be. generaed by an (up to a phase) equivalent change 

a 	b 	a 	ob k <- k , .x 	ji for the class of R functions in which the particle 

and antiparticle variables can be grouped in corresponding pairs. The ka 

a 	 b and 	are the particle momenta and spin indices, and k and .i are 

the antiparticle quantities. If the R functions are considered matrices 

with the undotted indices on. the left and the dotted indices on the right, 

then the spin transformation is generated by 

R 	_lRtr. 

where Rt' is the transpose of R and C is the product of the elementary 

charge conjugation operators C defined by 

-1 	tr C a C 	.= -a 

The Operator C effects the transformation between dotted and und.otted 

indices. When this form of the antiparticle conjugation transformation 

• 	 is used the three operations are, to within phases, given by. 4,3  

0 	0 .P: 	.k. 	k1  . 	., 	k -' -k. , 	. a _41 a  —{ 	-'i- 

C: 	ka -.k. '°  , 	a-' -a, 	T. of 0. ; 

T: 	(k1o)a 	(ko)b 	ka 	kb , 	a- a, 	T. of 0. 
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Here "T. of 0." represents an inversion of the order of occurrence of all 

Pauli spin matrices a , and 	and 	are corresponding particle 

and antiparticle momentuxn-energy-vectbrs. 

The requirement of invarIance under antiparticle coijugation 

imposes constraints on the N functions describing processes in whichboth 

members of each particle-antiparticle pair occur in the same configuration, 

initial or final. Time-reversal invariance imposes constraints on the M 

functions describing processes in which each particle occurs in both the 

initial and final configurations. The analyticity properties allow these 

constraints to be carried over to the N functions for processes in which 

these constraints are removed. 

It is sometimes convenient to express the variables (K', -k") in 

the form (Ka ;  Kb), where the physical particle variables are in the first 

group and the antiparticle variables are in the second. One may then write 

M(Ka ;  Kb) = [Ka.a R(K; Kb)VKb, c 

where the contractions are now always on adjacent indices. The variables 

represented by the set (K a ; K b)  will be taken to be normal-ordered. 

The smmietry operations and conditions have so far been expressed 

only in terms of the R functions, Let the applications of these same 

operations to the N functions be represented by M(Ka ;  Kb) ,  M(Ka; Kb) 

and r(Ka;  Kb), where the new way of writing the variables is introduced 

for clarity in what follows. We define now the more complicated quantities 
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(Ka Kb) 	Ka, M(K;  Kb)Kb 
p 	••p 

\J K CT R(Ka, KV Kb a  Kb 

R(Ka,  Kb) fb- 

R(Ka;.Kb)Kb. CT  

M(Ka3  Kb) 	K8 a M(K K b  ) Kb.a 

R(Ka;  Kb) VKb 7) K.a 

=cr R(K 	Kb).Kb 	) Kbea 

a R( Ka;  Kb) Kb 

and 

N, .(Ka ;  Kb) 	N (Ka;  Kb) 
T. 	 T 

(-V Ka, CT  R(Ka; KVKa T 

\I Ka. a RT( Ka;  Kb .) VKb a 

• 	Inspection of the last lines in each of these equations shows that the 

conditions of invariance R = a R , R = a H and H = a H imply 
pp 	cc 	 TT 

N = a N , N = a N and N = 	N ., respectivelye These invariance 
• 	 p 	 c 	Ir 

conditions, which might at first appear cumbersome for the cases of parity 

and antiparticle cougation, are in fact quite easy to apply and lead 

innediately to simple forms for the N functions satisfying the various 
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conditions, as examples given 1n subsequent ;appendices show:... 

A double application of any of the syrrnetry operations, shows that 

the phase factors a can only be ±1. The phase factors need not be 

strictly independent of the variables (K', _n), ; parts corresponding to 

amplitudes that cannot interfere may have different factors. Both signs 

may occur therefore, and the set of M functions separate into four parts 

corresponding to the two signs of a and aT . The sign of 	is 

fixed by the CPT theorem and the connection between spin and statistics. 
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APPENDIX F 

Form of the I Function for a Scattering 

of Spinj Particle by SpinZero Particle 

Relativistic invariance requires the M functions to be a sum of 

terms each of which is the product of an invariant scalar times a product 

of spin operators k..a and k. a . These two types of bperátors must 

appear alternately and the former type must appear on each end. Letting 

ka and  kb  be the pyical xnomentum-enerr vectors associated with the 

particle and antiparticle variables of the spin particle, and letting 

the corresponding mass be unity, one obtains as the condition for spatial 

reflection invariance: 

N ()a;  Kb) 	k 	N (K; Kb) k b 
p 	 p 	p I 	

p 

= ka a  M(Ka3  Kb) kb. 

± M(I(a ;  Kb 

Using the relations 

k °a = ko' 	and 	koa.k. 	= kakoa = -1 
p 

one imnediately obtains as. the general solution:. 

M(Ka, b K) 	v.a a 
±., (k..a)(v.a)(k b 'a) 	, 

where 	v 	is a .cobination of the niomentumenerr vectors of the problem. 

The relations 

aoa boa + b.c aa = aa ba 	. ba aa = 2a.b. 

and 

aa b" c°a = i[abc]ea + a.'a(b.c) -. b'c(aoc) + c.a(a.b) , 



UCRL-9804 

S. 

where [abc] 	ab c 6 	are.useful 	
ol23 - 	i). The elementary 

combinations with well-defined a 
p 
 and a

T  are •  

a  
k "a + k b  .a , 	 +1, 	a 	+ 1 ; 

	

a 	b 

	

s2ka.ka , 	 aT  

a 
= n.a + k •a n.ak •a , 	aT = + 1 , 	a = + 1 

a 
=n.a-k.an.ak.a, 	a = 	

0p 

where n=  a +b is the sum of the physical energy-momentum of the 

other particle0 The contribution with n replaced by (p b - p a ) = (ka 
	b 
- k ) 

gives zero for 	, and b4  becomes twice 82  so that nothing new is 

added. One can also use 

= 	
- (ka + kb)[(ka + kb) 	n 

(ka  + kb).(ka + kb) 

if the denominator is nonvanishing. The vector n' is normal to ka + kb 

ab 	 a 	b. and k - k and hence to k and k • All other combinations can be 

expressed in terms of these four forms and we may write 

N = E a i 	 i 
s 	= E a' s'. , 

	

i 	 i 

where s'. represents the S. with n' is used in place of n . Then, 

with s .i 	 i the operator obtained from s by the transformation a -+ -a 

	

. 	 - 

and T. of 0. one obtains 

1 
- Tr s'. N = a'. N'. , 2 	i 	 i 	1 

where 	• 
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(ka + b)(a ± kb) 

kb) , 
N 	= 

( fl ,. fl,(ka _kb)(ka. kb) 

( fl ,. fl )(ka + kb)(ka + kb) 

The expressions have been written . down in terms of the physical 

momentum enerr vectors in the case where the particles occur in both the 

init.al and.final configuration. The vectors 	 b occurring 

here should generally be replaced by the negatives of the corresponding 

mathematical momentum-energy vectors occurring in the arguments of N 

The expressions are then valid for all the processes described by the N 

function. 
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APPENDIX 

The System of Two' Identical Spin Particles 

There are sIx combinations of the elementary spin operators s. 

that are invariant under spatial reflection and time reversal: 

T1 = s1 s1 , 

T2  = s2 s2 , 

T3  = s3 s3 , 

T 	=s s . ,  

T5  = S1  63  + 53  3 j  

and 
T6 

= S1 S 3  - 53 5 

The remaining ten combinations change sign under at least one of the two 

operations. The final combination T6  changes sign under a simultaneous 

interchange of both the initial and final particles and is ruled out for 

identical particles. 

There is also the possibility of using n-decay forms, in which 

there is a contraction on the vector index of operators a or 

appearing in the spin spaces of the different particles. In terms of the 

combinations 

a 	.a 	b 	b 
t = k.a + p.a = k.a + p.a, 

a 	a 	a d = k.a.-. p e a, 

and 
b 	b 	b d 	k a - p a 
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convenient forms are 

a 	'+l, 	•€ 

(t 	t)(t 	t) 	 OT = + 1  

db)a 	db) 	 + 1 , 	€ = + 1 

b 	a 	a' 
(tad)(tad)+(d at)(d 	 aT = 	 6 = - 1; 

and 

(da 	d'°)(t 	) + (da 	t)(t 	db) 

	

+ (t 	db) (da 	t) ± (t 	t) (da 	ab) 

aT = +1, 	€ = +1; 

where the metric 	 is assumed and where € is the sign change 

under interchange of two initial (or two final) :Pt1c1e8.  This interchange 

induces the transformation. kb : 	b (or ka .Z.., a) and an intrchange 

of the initial (final) spin state. The effect of the latter can be 

obtained using the rearrangement theorem 

((a Ial b))((c Ja.f d)) 	- ((aai d))((c I.°I b)) 

The sum and difference of each of these terms with the one obtained from 

it by application of the transformation p are elementary spin functions 

that have well-defined values for a , aT  and .. 
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The Location of the Singularities Required by Unitarity 

With the substitution of the definition 

M(K', -K") 	M (ic". , -Kt ) 

the unitarity relation becomes. 

M(K', -i") + ii(K', -i&) 	
- 	

M(K', -) K. 	( K, -") 

a form that is suitable for analytic continuation from the originally real 

values of the momentum-energy vectors. The right-hand side contains a sum 

of terms each of which contains a factor of the form 

f
n 
	2ic Q(k10) ( k12  - rn.2)]  (2 	(z ki  - 

The delta functions represent the mass constraints and the energy-momentum 

conservation law, and T is the sum of the (external) momentum-energy 

vectors in Kt . or K" 

Because the internal momentum vectors k. are constrained to. be 

real, the factor above vanishes for T 2  < (z rn1 ) 2  but not for T2  > ( rn) 

and introduces, generally, a singularity at T = (z m) into one or both 

of the terms on the left of the unitarity relations It may be assumed for 

the purpose of the construction that the singularity occurs in both terms 

on the left. The othei' alternative would lead only to a smaller set of 

singularities and we.wish to obtain the largest possible set. 

The singularities occurring in the various expressions of the 

above form arise purely from the limits of integration in the unitarity 

relation--those that would occur even if the M functions on the right'of 



UCRL-9804 

-65- 

the unitarity relation were free of singularities.. Singularities in these 

latter would lead generally to additional singularities in the Mfunctions 

on the left. If one substitutes the singular parts of the M. functions 

obtained by the above first application of unitarity back into the right-hand 

side of the unitarity relation and proceeds by iteration, expressions of 

the form 

I i [: 	
2m. e(k ° ) 5(k12 	

2) 

 ] 
II (2 	(z. - 

are obtained. Here E. and T are subsums over the internal and external 
J 	j 

momentum-energy vector respectively, and the 	- T) give momentum- 

energy conservation in the various intermediate states. 

The iterative processes may be represented diaaatica1ly. For 

instance, Fig. H-1 gives as one possible sequence. The lines represent 

the particles (oiitheir mass shells) and the steps represent the 

substitution of particular terms from the unitarity relation. In the 

second step, contributions to the new M functions in which certain of the 

particles do not scatter have been displayed. The singularities corresponding 

to all possible finite sequences will be called the singularities required 

by unitarity. 

The momentum-energy variables are originally constrained to be 

real. As we are interested in singularities also for complex T i , the 

expressions above must be put in a form permitting analytic continuation. 

In particular, the, delta functions must be removed. 

Near the point T = 0 the form is, for nonmassless particles 

(m1  > 0), clearly regular. The analytic continuation will be started 

from this region. Because N >. N , the N momentum-space delta functions 
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can be used to eliminate the last M momentum integrations (by an 

appropriate reordering of variables, if needed). The energy-conservation 

delta-functions may be replaced using the relation 

- . 	2it (x) = Urn ( -. o) 2E/(x2 + 2) , and the energy integrations over 

23% e(k.°) (k12  mi2) replaced by contour integrations clockwise about 

the poles at k. 	= 	\ i M. 	+ k. 	= a. of i/(k. - m. ) 

The functions 2E/(x2 + 2) give dipoles in the planes of the 

various energy variables ki 0 , the locations of which depend on the 

positions of the contours .in the remaining energy variables, and on the 

energy parts of the external variables T. . For T. = 0 these conservation 
1 

dipoles lie in the left-half energy planes, as long as the contours are all 

confined to the right-half planes0 The contours may therefore be deformed 

to run up just right of the imaginary axis, and be completed with large 

semicircles to the right. The dipoles then lie just to the left of the 

imaginary axis, with extensions to the left corresponding to the sernicircies 

to the right. If the energies of the T. are now increased, the dipoles 

move right and the contours must be shifted right to avoid these advancing 

singularities. Singularities in the form cannot occur until the T1  

becomes such that it is no longer possible to distort the contours to 

avoid both the advancing dipole singularities and the fixed mass 

singularities, for arbitrarily small 	
25-27 

For a visual understanding of the boundary of the s ±ngularit.: free 

region it is helpful to bear in mind a plot of the mass singularities. 

These lie at the simultaneous solutions of 

(:Re k0)2 	(im )2 	rn 	+ (Rek)2  + (Im k0.)2 

° Re k Im k = Re ko Im k 
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MU-24436 

Fig. H-i. Typical development of a diagram by iterative 
substitution of singular parts. 

Reor I., k 0  
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/ 
/ 	

MU-24437 

Fig. H-2. Boundary of regular region. 

MU..24438 

Fig. H-3. Intersection of contours with Im k = Re k = 0 manifold 0 	- 
at a vertex singularity. 
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Figure H-2 represents an hyperbola of, revolution about the vertical axis, 

which'represents either Imk0 . or Rek. The interior., orfunnel,. region 

of the diagram is free of mass singularities For T. = 0 the important 

parts of the contours run up the vertical axis. If, with increasing Ti  , 

the contours can be kept inside their respective funnels, for arbitrarily 

small c , then the forms remain singularity free. 

For the special case in which the vector parts ofthe T
i  can.be 

taken to vanish, it is possible to simultaneously keep all contours in the 

vertical planes Im k. = 0 , . for which the mass singularities extend least 

far to the left The point in T. space at which the contours can no 

longer be confined to the tunnels' is at the threshold T. = E. in. 	If, 
J 	31' 

on the other hand, the imaginary vector parts' of the T
i 
 are nonvanihing, 

the various contours cannot all be confined to the planes urn k = 0, and 

mass singularities extending below the threshold energy k. °  = in. can 

become important. For instance, for the simplest vertex part, the limiting 

point is represented in Fig0 H-3, The solid vectors represent, to within 

a sign, the points where the contours pass through.the' region Im k °  = Re k= 0, 

and they are required to lie inside 'their respective circles. The dotted 

lines represent the external momenta. If the dotted figure' can, by an 

appropriate translation, be made, to lie with each of its vertices inside 

its associated circle, then the form remains nonsingular,. This provides 

a direct geometric derivation of the triangle condition of Karplus, Sommerfield. 

and Wicbmann. 23  The same arguients.. carry over to more complicated diagrams. 

ihthe limit C -' 0 only -Points simultaneously in the neighborhood 

of all the conservation dipoles can contribute. One candeform the contours 

so that they always stay clósèto the points at which all the conservation 

dipoles overlap and consider, therefore, the important parts of the contours 
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to be constrained by the conservation laws • It is, when the.. contours. so  

constrained cannot be kept away fromthe. mass singularities thatsingularities 

in the forms can occur. 	 - 

The conditions on the ki  that must be satisfied at a singularity 

are the conservation laws, the mass constraints and the condition that it 

is not possible to distort the contours so as to maintain the conservation 

laws but avoid the mass singularities. Variations, of the k
i 
 consistent 

with the conservation laws are conveniently expressed using Feynman. loops 

(closed loops in the diagram). It is possible to choose the sis of 

momentum-enerr vectors so that. the vectors point in the direction of the 

closed loops, if these are also chosen appropriately. If the variation of 

the momentum of the jth loop is ôq , then the variation of the vector 

k. is 
1 	 •' 

k1  = Z 	. j 6q. , 

where the e, j  are coefficients equal to one or zero, depending on whether 

or not the jth loop passed along the ith line. The variation of quantity 

is then 

5k12  = 2E k1  4E 
ij 
 8q. 

where the 5qj  can be chosen arbitrarily. 

The 6k. 2  can be fixed arbitrarily by an appropriate choice of the 

qj , unless, it is possible to find some a such that 

k1 ij = 0 	 (all i) 

a1 	0 	 (some i) 

- 	(conditiOn A) 
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This is the condition that the variations 6k. 2  be linearly dependent. If 

condition A cannot be satisfied, then it is possible to fix the 8k. 2  

arbitrarily and thereby to distort the contours away from the mass 

singularities without 'conflictig with the conservation'i'equ'irements, The 

necessary condition for a singularity is, therefore, the simultaneous 

validity of the conservation laws, the mass constraints, and condition A. 

21- 	 27 This is just the result obtained by Landau and others as the necessary 

condition for singularities in the terms of the perturbation expansion of 

field theory. 

If condition A is satisfied, the 8k. 2  cannot be arbitrarily fixed. 

However, it may still be possible to distort the contours away from the 

singularities. For instance, if the contours 

2 	2 singularities coming from the side k. <m. 

the form can occur only, if it is not possible 

simultaneously negative. This will be the ca 

are pinched by conservation 

, then the singularity of 

to make all the 8k. 2  

e if it is possible to 

satisfy condition A with a1  0 • 

The dimensionaJjty of the manifolds of singularities are determined 

by counting unknowns and equations. There are N unknown vectors 

and M. vector equations from the conservation laws. There are N-.M vector 

equations in condition A, so the number of vector equations equals the number 

of vector unknowns. There are . N scalar equations, the mass conditions, 

and N variables a. , of which one is an arbitrary scale factor. Thus 

there is one more equation than determinable unknowns,- and one constraint 

is placed on the external variables. Since the equations are relativistically 

invariant the locations of the singularities depend only on scalar invariants 

and the manifold of singularities is a manifold whose position is defined in 

terms of scalar invariants of dimension one complex variable less than that 

of full space, 
44 
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APPENDIX I 	.. 

The Physical Sheet 

The equations giving the locations of the singularities required 

by unitarity are defined over the entire space of the T
i  . However, the 

solutions of physical interest are those in the manifold defined, by the 

mass constraints0 Thus instead of starting the continuation of the function 

giving the singularities from T. = 0 , which may not be in the physical 

manifold, it is more appropriate to consider only those T.. in the physical 

manifold. In this manifold the cuts specifying the physical sheet are 

defined as the locus of singular points under the scale transformation 

m -+ a m. , where in. are the internal masses and a is a scale parameter i. 	, 	1• 	 1 

ranging from infinity to unity. As a decreases the mass singularities 

converge, and the points T.(a) are defined as the values of Ti  for 

which the pinching of contours cannot be avoided as the value a is assumed. 

The cuts are-the locus of points T1(a) for a real and greater than 

unity. 

In defining the M functions, the no-scattering parts. of the S 

functions were identified by their dependences on the volume of space-time, 

and were separated. out. More generally, the S function can - be separated 

into many parts on the basis of volume dependence. The contribution to 

the scattering function corresponding to processes in which various subgroups 

A 	 - 	of particles interact only among themselves will be expected to have one 

added facto' of the volume of space-time for each division into subgroups, - 

This comes from the integration of the interaction center of each group 

over all of 	 . Correspondingly, in moinentum-enerr -. space. there 

will be a separate conservation law constraint corresponding to each - 

subgroup. The N function is then separable,- generally, into parts constrained 
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by different added conservtionlas, These parts are defined over different 

manifolds and the physical sheetisacoflection of physical sheets, one for 

each manifold. 

The analyticity requirement allows the unitarity equations for the 

various parts of the M functions to be isolated and treated separately. Thus 

the M function appearing on the left of the unitarity relation can be 

considered the nonseparable part of the indicated M function, and the 

contributions on the right correspondingly limited. The remaining 

contributions to the unitarityrelation will be identically satisfied if 

the unitarity relations for all nonseparable parts are satisfied, provided 

the separable parts of an N function are the products of the nonseparable 

parts of the N functions corresponding to the appropriate subgroups. This 

decomposition law can be considered either an anzatz or an added postulate. 

But it probably follows from the postulates already given. 

In the construction of the singularities required by unitarity 

the s-function expressions for the density of states factors have been 

expressed as a limit € -* 0 of functions defined for all T . This 

alternate expression gives the basis for practical calculations based on 

unitarity. 

The unitarity relation given in the text was derived using the 

condition that s0(K?, -'), the no-scattering part of the normal ordered 

S function, was unity. More generally, the unitarity relations would read 

M(K_) s(K", .- " ). + s0 (K' , 	) M(K, -' 0. 

r  
M(K', K) Ka M

*
(K", -K) , 

and 
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* 	 M(K", _K") S0  (K', K') + S0(K 11 )  -Ktt ) I"I (K", -Kt ) 

,%. 

- 3 M(K,.-K") K.a M
*
(K, K') , 

where S0(K', -v') is now permitted to be an arbitrary phase factor. For 

• 	K' = K" , appliôation of the CPT transformation and inversion of order to 

each N function takes the first form into 

* 
(-i)  CK, 	M(K"T, _KT)sO (K', -K') + s0(K', _K t ).M(K'T, _K'T) 

= - 	M(, -K') K. 	M*(, _KT)] 

where KT  represents the set K with transposed order. This is almost 

the same as.a special case of the second form of the unitarity relation 

and one can deduce that 

o'T' _K'T) = s0(K', -i') (1)N  (K') 

If . one takes the S Q(K', -k') to be unity, when K' contains only particle 

variables- -no antiparticle variables--then the only solution consistent 

with the decomposition law is 

s0(K', -k') = ( 1)A(Kt) 

where A(V) is the number of abnormal antiparticles in the set K' 

•' 	Here it has been assumed that either the synmietric or antisymmetric case 

obtains and the abnormal particles are those having the abnormal symmetry 

relative to the interchange of the particle and antiparticle variables. 

This form of the unitarity relation, with the (-l) '  on the left, 

leads to a completely different type of analytic structure. Consider an 

analytic continuation from the case where K' = K" contains only particle 
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variables, to the case- where one abnormal inal:- particle has been carried 

over to an initial antiparticle0 In this second case A(Kt)  and A(K tt ) 

differ by unity and it is the di'ference rather than the sum of the two 

M functions that appears on the left0 If there is a region below both 

thresholds where the right-hand sides of both equations vanish, as for 

instance occurs in the scattering of the smallest mass particles, then both 

the sum and difference of the two M ftnctions vanish and hence so must the 

M.functions themselves0 Also, on the right of the unitarity relation the 

analytic continuation takes various contributions into contributions to 

the new unitarity relation, but sometimes with the wrong sign. These 

remarks suggest that the abnormal statistics are inconsistent with the 

postulates, even without the requirement that self-conjugate combinations 

of amplitudes can be considered observable0 	 - 	- 

If one uses an indefinite metric of the form (_l)At) , then the 

above-mentioned factors (_1)A(Kt) 
 occurring in the (pseudo) unitarity 

relation are moved to the right-hand side where they produce no conflict 

with analyticity-. 
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APPENDIX J 

1. Notes on Spinor Analysis 

The following notes on spinor analysis were valuable to.readers of 

• 	 a preliminary draft. 

Four-vectors and 2-by-2 matrices can be placed in a one-to-one 

correspondence by the relation• 

V = va = v0 o
0  + v• 

where a is the Pauli spin matrix vector and ao  is the unit matrix. The 

determinant of V is 

det V = (vo)2 - r.v= v v 

I where v
0  = v and v. = -v 	Consider a transformation  1 

V - V' 	. AV B. if det A = det B = 1 (A and. B •unimodular), then 

det V = det V , and v v = v' v' 	• The transformation leaves 

squares of all four vectors invariant. it consequently leaves inner 

products v w invariant, as one sees by considering the squares of 

v+w and v-w. 

If the matrix V is Hermitian, then the vector v is real. The 

requirement that Hermitian matrices stay Herinitian under V -, Vt demands 

B = A ,• where bar denotes Hermitian conjugate. The transformations 

generated by V V' with B = A are the real Lrentz transformations. . 	.. 

If the constraint B = 	is. relaxed, one obtains the. complex Lorentz 

• transformations. 

The Lorentz transformation matrix L(A, B) is defined by 

• 

V'p . 
= t-(A, B) v 	, 

and it Is clearly a linear transformation. 
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Unimodular 2-by-2 matriôès have six degrees of freedom and can be 

written in the form ........... 

A = exp(eaa) = exp(l.c+ 

where 

= - 0 	, 	= 	, and 	2 = 6ijk • jk 

The matrix B will be defined as 

B = exp( --2 a + 	Xo a) 2 - 2 

Then for real 0 	one has B = A , and real Lorentz transformations are 

generated by real 0 . With complex e 1 	the A and B can be 

arbitrary independent unimodular matrices 	. 

The real Lorentz transformation generated by the unitary 

Ar = exp 1 	£ 	, with real £, generate pure. rotations For 

example,, 

e 	 e Ar = exp [ 	e a3  ] 	cos 	+ 1 a3  sin 	. 

gives 	. 	.. 	 . 	 . 	 . 

v 1 =v1 cos8 + v2 sine 	 . 	. 	., 

and 

v 2 =v2 cos9 - v1 sin0 . 	. 	..., . . 	 .'. 

The pure time-likereal Lorentz transformations are generated by 

the Hermitian (not unitary) matrices 

At = exp [ 	an] = cosh 	+ (cn) sinh 2 	 .2 
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This gives  

0  = V0  v 	cosh e + v. n sixth e 

and 

• n = v' . n. cosh e + V0  sixth e. , 

the other components being unchanged. The square of At  is 

A 2  = exp[8a.n] = coshe+ ansinhe = ra t  

where T= ( cosh 6, nsiith e) is the vector into which a unit time-like 

vector transfbrms under the action of the, transformation. The notation 

At = .V. • a ' is ,often convenient. 

Introducing, the matrix 	 . 	. 	. , 	. 	.. 

.(,0. 	-\• 	.,..,, 	 , 	 ,, 

	

C= 	
( 	 ), 	. 

one verifies (Paun Lectures, University of California, 1958) for any 

2-by-2 matrix, 	 . 	 . 

N 

the identity' 	. 	. . . 	 . . 

Mtr C N = C det N = 'C(r C t) , 
. 	 . 

where (ri C  ) is the real inner product. It follows that,under- 

' =.A , 	= Ar the form (11 C ) is invariant. 
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It is conventional to write C 1  with upper indicesand to define 

a 	- lab-. 	ab (a 	)• 	b 

Then the above invariant takes the form 1a 	. This provides the basis 

for a spinor analysis formally similar to tensor analysis. The two-valued 

indices are called spinor indices, and those associated with the transformation 

matrix B according to I -, 1' = I B are dotted: 

A 	 A 	 A b 
B a 	a 	a a 

Thus the original matrix V will have matrix elements labelled Va 

and the Pauli spin matrices a out of which it was constructed will have 

matrix elements a tab 

Carrying along the indices is rather tedious. It is convenient 

to construct an eq.uivalent matrix algebra. For spinors transforming as 

A A 	 A = 	B we shall define 

-1 trt' 	-1 tr Then ' = C B 	= C B C 	B 	, where for any matrix N, 

C = (M) 	det N 

the last part coming from the Pauli identity. For the matrices B , with 

-1 
dêtIB = 1 , B = B , and for real rotations, which are given by 

unitary B = A , 
	=Ar 	

Therefore, 	and ' transform the 

same way under real rotations, although differently in general. In spinor 

notation, the components of the spinbrs 	and 	would have lower 

undotted and upper otted spinbr indôes respectively. The definitions 

above also imply that 

-1 tr 	 ab 
a 	C 	a 	C= (a0  ,  

11  

4 
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2. Sinor Functions 

Consider M(v) 	v • 	 v = V . Then by definition: 

A N(v) = A M(v) B . 

Generally the operator A applied to a matrix N instructs one to 

multiply each spinor index of, N by the transfortion matrix associated 

with that index From the relationship 

AM(v)B =AVB =V 1  = M(v') 

= M(Lv) = .à 	L(A, B) 

it follows that A a B = a L(A, B) , which can be considered the definition 

	

of L(A, B). Also A M(v) = N(Av) , where now Av 	Lv 

Notice that equations of the form 

	

=TIand 	V71= 

are invariant under Lorentz• transformations, since 

= A, 	 Tj 	Tj= 

	

V-'V' = AVB, 	V-' = 

and 
_-1 	 -1 B = B , 	 A = A 

3. Parity 

The parity operation is generally represented by going to a 

representation. Let 
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Kom 

... 

=0 

	
= 

define v . Then space inversion is represented by 

/0 	i 

P 
0/I

'\  

as one sees by inspection. That there is no matrix A corresponding to 

parity follows from the fact that any matrix A cthnmuting with the rotation 

operators, Ar must commute all three Pauli a and hence with the time 

transforms At 

Ii.. Dirac Equation 

The free-field Dirac equation is 

±kaU(k) = 	mU(k) 

which in terms of 

7(k) 

/ 

becomes the covarlant equations 

(k e ) ( k) = m ZI  (k) 	and 	(k 	a) TI (k) = m 	k) . 

The introduction f 0 defined.by 	.. 	 .. 	 . 

(k) 	At(k) 0 V(ka)m 	0 

gives for the solution 
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we 

= t(k)0 =4(k.)m 1 	0 

in virtue of the identity 

(k •' 	• a) = (k • a)(k • ') = m2  

The free field solutions of the Dirac equation are therefore 

'1 A.1(k)Ø' 

u(k) =( 
• ( 	

(k. a)m' 

V(k 

=(k) u(o) 
0/I  

where t(k) is the Lorentz transformation that takes spinors from the 

frame in 'which the particle is at rest to the frame in which it has 

momentum-energy k 	The charge conjugate, solution is 

• 	/o 	C 

V(k) 	( 	1 i(k) 	E (k) = 	( 	1 	= 	1(k) 
• 	\c 	

0) 	
\(k)J 

which has the same transformation properties as U(k) . If only real 

A 	 * 
Lorentz transformations are allowed, U(k) can be taken to be U (k) 

The spin vectors 0 are not spinors. They are the spin vectors in that 

I ,  
0//I 

rest, frame of the particle obtained from the general coordinate frame by 

the Lorentz transformation 	(k) 

0 

5. Connection between Field Theory and the M-Function Formalism 

In field theory one writes 

d 	 2 (k) = f 	 (km.).e(k6):2m 
(2it) 

[Ua( k,a)e- 'k  a(k,a) + Va(k,a)e 	(k;a)' ] , 

a=l,2 
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where

ao  (a(ka) (k',') Y = 	( 2.) 	5(k- k') 

= 	(.b(k,a) 	(kt;at) )•, 

and 

	

( a(k,a) (x) ) 	= U(k,a) +ikx  

((x) Rx,a) ) 	v(k,a) 

The dependence of the covariant Feynnian scattering function on (x) is 

	

I (x) 	N(x) d1 x , 

and the corresponding contribution to the scattering matrix for a final 

particle (k,a) is 

(a (k,a) f 	(x) 	P i(x) dx 

1* 	\ 	 / 

/ (k,a)\ 

	

u*(k,a) 	N(k) = 
	( 

* 

	

= 	(k,a) 	'(k) + 1:(k,a) 	'(k) 

* 	4' 	a 

	

= 	(k, 	•ra) 	(k) + 	(k,a) 	= 	
c:; 

k. a 	+ 

2 
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where we have taken m = 1 . Thus 

• 	R(k) 	 a 	+ 	Vk •.. 

and 

M(k) = Vk • a 	R(k) = 	'(k) + k 	a Tt(k) 

The '(k) and ri'(k) are analytic functions of k , and cdntinuation gives 

M(-k) = 	- k 	a i(-k) 

The R function, for the antiparticle is therefore

-Vk• M(-k) = 	Vk.. 	'(-k) - 	• a •i'(-k) •. 

This is to be compared to 

f 	(1(x) P N(x) (k, a) )0 dx = - V(k,a) 	N(-k) 

( '/k a 	c Ø*( o)\ 

Vk 	cØ(o)) 

Ø*() tr 	 .'(-) - 	k.. a 

The function occurring in field theory is interpreted by dotting from the 

left on S. a, whereas ours is interpreted by dotting from the right on 

-s• a The extra factor C'  compensates for this difference. 
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