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ABSTRACT
Thé'GPT'theorem and the normal connection between spin and

statistics are shown to.be conmseguences of poétulates of the S-matrix

“approach to eléméntary particles physies. The postulates are much weaker

-than those of field theory. Neither local fields nor any reference to

spaéeatime points are used. Quantum commutation relations and properties
of the vacuum play no role. Completeness of the asymptotic states and
positive definifeness of the metric are not required, though certain

weaker asymptotic conditions prevail. The préofs depend on unitarity,

m&é&oscopic relativistic invariance, and a very weak analyticity

requirement on the mass=-shell scattering'fﬁnctions. The proofs are

: in.the framework of the new S-matrix approach to elementary particle

physics, which is herein established on a formal basis.
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I. INTRODUCTION
The tﬁo most important general physical conseqpences of relativistic

1-k

field theory are the CPT theorem and the connection between spin and
statistics.5-1o The CPT theorem states that for évégy process occurring
in nature there is an allowed dual process in which the particles of the
first are replécéd'éy their respective aﬁtiparticles, all spins are‘.
reversed, and paths arg'ghanged to their images under_inversion through
the_origip_in space-ﬁime. Relﬁtionshigs betweeh‘probabilities are gtated
to beathe same for a process andlité'dual? The proved connection between
spin and stétistics isvthat wave functions ére symmetfic under the interchange
of variables referring to two identical integral-spin parficles and
antisymmetric for the,halffintegrél spin case.

These importgntvresults are;derived from the postulates of local
field theory, which, hdﬁever, are éubjeét to considerable_doubtf In.the
firSt place it is not known whether the postulates are sufficienfly
realistic to include any theories exéept trivial ones in which the scattering
matrix is unity. |

Secondly, the postulates are very specialized and restrictive, in

that they assign a fundamental role to hypothetical local field operators

defined over the field of space-time points. Experience does not entail
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the existence of sueﬁ ﬁeints,vand the restrlctlon to theories in which they
play a fundamental role may immedlately exclude all theories connected to
physical reallty.. Because spaceatlme p01nts are experimentally inaccessible,
both in practlce and in prlnciple, their introduction runs counter 1o the
philoseophy of quantum mechanlcso This phllOSOpth inconsistency appears
to have its analogue in the mathematieal stfucture in which related
inconsistencies seem to arise.ll’le’15
Even Within the general framework of lpcal field theories, some
of the postulates are so restrictive that many reasonable theories are
excluded. In»particular, the reqpirements of the completeness of the
aéymptotic states and the positive definiteeess of the metric are assumed
to hold, net only aéjmptoticaliy, but also throughout the course of the
interaction, But added states of negative_metric not among those observed
asymptotically seem_to be exactly what is needed to remove the apparent
inconsistencies from field theory. A theory based on this possibility is
among those being most vigorousiy pursuedtoday‘.;lh’,l5 The postulate
requiring the existence of a'nondegenerate vacuum also excludes certain
important t‘neories,lh -16 and the fact that one must be concerned with the
properties of nothing lends an unwholesome air to the whole business,
partieularly in the light of previous similar experience,

. These abstract objections to the field'theoretic approach afe
reinforced by an examination of the eourse of- events in the practical
sphere. iThevtrend today in the,practiee; study of elementary particle
interactions is away from the solving of eqpations conjectured to be
setisfied by hypothetical field operators. Rather, the focus is shifting

17

directly to the S matrix™ ' and to the consequences of the constraints
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imposed upon it'by unitarity, macroscopic relativistic invdriénce, and
assumed analyticitf,properties.ls' Thié_S;ﬁatfix'approach to elementary
particle physics is, in practical ﬁoik, ap§roaching the status 6f’éﬁ'

independent theory, its connections to field theory gradually being

‘dissolved. It becomes appropriaté;:therefore, to formalize this trend:

19 History

and to explore the consequences of the altered framework.
encourages the casting éway'of'formal substfuctureé,ﬁhose ingredients have
no counterparts in experience and which are not relévant to practical

calculations, and the focusing directly on relationships between experi-

mental quantitiés° The new approach, since it involves only observable

Aqnanﬁities and their analytic continnétions, has a claim to probable

physical relevance much greater than that of field theory, with its sundry
hypothetical‘ingredignts of dubious status.

‘The calculations_néeded.to confront the new'approachiwith physical
fact are, as for the field theoretic case, fgr'frdm complete. But the
question érises whethef the generéi results derived from field theory, and
in éarticular the CPT theorem and the connection-between spin and statisties,
éaﬁ be derived also on the basis of the new appi‘oach° An affirmative
answer would be interesting for several reasoné.v First, it would show
that the restrictive assumptions of local field theory are neéessary only
to guarantee much less striﬁgent asymptotic_properties, which will probably
remain valid also in possible future forms of field theory. Second,vthe
proof would.be likely to apply to theories such as those_of'Héisenberg and
Némbu, vhich are nof in the class coﬁered'by the usuval postulates. Third,
and most important, if the new S-matrix apprﬁach is to constitute an
indgpendent?approach to elementary particle physics, replacing unworkable

field theory, then proofs of these important theorems in the frémewofk of

the new theory are required.
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It is_thelpy;pqggfgﬁ_th;§fpape; tq provide these prgqfs._ Because
rthe aim is also at theiw;Qegt;fénge“of gene;ality the,postglates havgxbeen
faken in a form tpaﬁ‘avpidsﬂall.menyionxpf space and time. The CPT theorem -
is consequently p:ovéd_in‘its_momentup—space form. The way in which the
concept‘qﬁ macroscopic locgtipn‘would_be introduced ié briefly‘discussed.

» In fhe next section, postglatés for the S-matrix approach are
stated ih_wordsa Thgirlmathematical forms will be introduced as they are

needed in the proofs.

N

I
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II. THE POSTULATES

AL Quantum Theory :

If the normalized relative frequencies (probabilities) of the
various poss1b1e outcomes of two complete experiments are denoted by P

and P, - respectively,»and if these necessarily positive_numbers are -

J.
e e rg g 2 o
written in the forms P, = |a and P, = |a , then a, and a

B i .i»-'_ gl s e ogy e

are linearly related; for all a. and .a',

aj = I sji'ai 2

where S is independent 6f the a, .

i

B. Macroscopic Relativistic Invariance (Weak Form)

The relationships between the probabilities of the possible outcomes

of two experiments are the same as the relationships between the corresponding

outcomes of two experiments related to the first two by a (real)

orthochronous proper Lorentz transformation (i.e., the real Lorentz
transformations eonnected to unity).

B'. Macroscopic Relativistic Invariance (Strong Form)

The- relationship stated in postulate B for probabilities is also
valid for the corresponding amplitudes, provided the freedom in the choice
of phases is properly exploited. B

" C. Particles

The measnrement of the'momentum, spin, and particle type)of all
particles present constitntes a complete experiment, in the sense used in
postulate A. Such a meaSurement may be considered possible only in ab
limiting sense,.not necesSarily, for instance, dnring a reaction or at
finite times. Projections‘on linear>eombinations of spin states are

permissible observables, as are proJjections on self—conjugate combinations

of particle—antiparticle amplitudes.
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Doh Conservation Laws

™

The physical interpretatlon of the mathematlcal qnantities shall

T

bbe such that translatlon and rotation 1nvariance imply conservation of
momentumeenergy and angular momentum respectively°

"-From_postulates A through D, including B', a set of spinor funétions,
called M functions, satisf&?ng unitarity relatiqns'can be constructed. A
éonsequence of.the unitarity reiationé is the existence of certain
singularities whose positions are determined by the masses of the (stable) .
particles. Cuts defined by relativisfic scalar equations,'and terminating
at these singularities; caﬁ be coﬁstruéted by using a scale transformation
on the masses, and a diStinguished sheet, fhe physical sheet, épecified°

E. Maximal Analyticity

Except at:sinéularities required by unitarity the M functions are
regular analytic functions in the interior and on the boundary of their
physical sheets. |

Postulate E, though presumably needed for the derivation of dynamical
Arelations, is much stronger than what is needed for the proofs° The
follow1ng much weaker postulate is sufflclent

E'., Minimal Analyticity

For each M function, a physicai sheet bounded by cuts defined by
relatiﬁistic scalar eqpatiqps can be defined. This sheet contains a domain
of regularity that includes.am§né ité boundary poinﬁs all physical-type
points. o |

A phys1cal=type pomnt is a point correspondlng to reél momentum-energy
vectors and 1t is to be approached with positlve imaginary physical energies

and momentum magnltudesa It is this type of limit that is expected to give
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'physically interpretable MAfunctions.' The physical sheet of a given Mv‘
function is that sheet for which the physiéal'véluefgf the M function is
assumgd at fhe physiéal-ﬁiﬁe limit points‘along'the cpt that runs over the
points corrésponding‘tO‘ihe process described by the particular M‘fﬁhctioﬁ.
These matters are disgussed'in the section.oh analytic étructureQ

F. ,Physicai Connection

Physically interpretable,fﬁnctions obtained by analytic continuation

from-functionS‘desc:ibingiphyéical phenomena -also describe physical phenomena;

‘they are not_mere'mathematical chimeras. Spécificaily,,thé M functions at

all physiéalftypé‘points ofha,physiCal sheetﬁ,correépqnd to‘prqcessés
acﬁdaliy‘occurring.iﬁ'naturé. Regarding‘intérpretation, if‘a‘simple
connection can be set up permitting a cdhéistenf interpfetation of the
quantities appea:ing'invthe theory, andiélso those that cduld be_ébtained
by analytic‘continuation, theﬁ this intefpretatioh écqords uniformly to

reality if it accords at all. .
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III. REMARKS CONCERNING THE POSTULATES
Postulate A is the basic premise of'qpantum‘theOry,'the aspect to.
be used herein being the supe;positipnLprincip;eogo Quantum commutation
relations and the quantization'gflaction (Planck's constant), or their
equivalents, are not implied by this postulate.
The relativistic postulate is stated as a relationship between

eXperimental q_uan_tities_° From this postulate, and others, objects

satisfying spinor transfprmation.lgws will be constructed. No hypothetical

objects With.spinor transformation properties are arbitrarily introduced.

This procedure is the reverse of that in field theory in which objects

satisfying spinor transformation laws are hypothesized and the relativistic

vinvariance of experimental results deduced. In this latter approach the
relativistic invariance of the experimental results might be said to be
derived from more "fundamental" requirements, but is probably a delusion
to think that the objects of a mafhematical'mddel are more "fundamental"
than the experimental results the model is designed to describe. In any
case, by simply requiring tﬂe invariance of thé,experimental relationships
the relativistic requirement is plaéed in its weakest form; all possible
wayé of achieving this'end are included.
The particle postulate also constit&tes a cértain completeness

rerirement, This requirement has force only in the asymptotic limit,
and is therefore much weaker and more satis}actory than fhe completeﬁess
postulate in field the&ryo

| The term "particle” appearing in the particle postulate means that
witﬁ every momentum vector, Ei , is associated an energy cbmponenﬁ kiO 5

| 0.2 2 2 \
fixed by the mass condition (ki ) - (Ei) = (mt ) , where m, is a
' i i
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constant called the mass of_thé‘particle qf type ti .. The spin states
referred to in the postulate shall, to eliminate possible ambiguity, ?efer,
for the case ef‘nOnmaséieés particles, to rest.f:ames‘of the pérticles.
In such a frame the spin states éré to be basis vectors‘of a8 finite
dimensional representation Qf\the»rotatich'group.- The theory of this
group 1is ClﬁSSicaloal Only’nqnmassless particlgs‘are treated in the body
of the text. _MBSSléés particles are easily included, as_shown in Appendix B.
That pfdjeétionS'on'linear'combinéfions of spin stateé are permissible
observébles is a basic féature of qpantﬁm.meChanics. It is in this way
that spin statés referring to.différént difections are obtained. That the
projectioﬁ,on the,self-conjugatexcombinafions_of particlé-antiparticle
amplitudes be & permissible observable of the theory is a requirement that
is negded ih fhe present proof ofvthe connection:beﬁween spin and statistics,
bﬁt if is beliévgd ﬁﬁnécessary and éhould eventually be eliminated.

" In the’céﬁservation posfulate the notion of translational invariance.
appears for the first ana only time. -One may completely avoid the
introduction of”spaceAtimé coofdinates by Simply taking energy-momentum
conse;vatign»to be exactly the requiremeht of trénslatiOnal invariance.
Hovwever, it is apparent that one coﬁld_perform a formal Fourier transformation
on the‘momentum-enérgy variables, intfodﬁéing the:qby formal SPace-time
coordinates. Formal tranSlation invariance is then equivalent to
energy-momeqtum conservation.

it is by this Fourier transfofmation; using wave packets, that the
notion of macroscopic locatién will be introduced into the theory. éhe

restriction of moméntum—energy variables to the mass shell implies that

the wave packets will move as free-particle wave packets. nge packets

'.approximating space-timé points cannot be constructed because of the
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mass-shell constraint. The unit of a¢tion,vPlan¢k”s constant, -enters the
.theory for the first time as the scale constant relating physical distances .
‘to the_formal coordinates introduged¢by this Fourier transformaticn.
The'Canection bétween mementum-energy and translation operators
introduced abqve‘leads to a eonnectiop between angular momentum conservation
and rotational invariance. However, the connection between invariance
.:‘prgperpies;and conservation laws is much more general, following alsc, for
Aiqétance, in clgssical theory. The postulate only asserts that this
general connecfion is maintained ana, avoiding specific reference to
space~-time coordinétes, requires that which is important to. the proofs,
the conservation lavs. .v
) PostulgtétE (Maximal Analyticity) asserts that the only singularities
in the physical.éheeté arelthose required by unitarity.  (These inelude the
usual énomalous and complex singularities,-gs will be shown.) .This
analyticity réquirement:evidently confains some extractionlpf the usual
locality req_uiremen‘b° But since it applies only to masseshell functions,
it is much weaker than i?s_field theoretic counterpartg It may in another
way be stronger: the postulated dcmain of.analyticity may be larger than
the one that can be deduced using field theory. In this case the two
theories would be different, éerhaps mutuélly incompatible, systems.
Indeed, this is the expectaﬁiqng ‘fhe apparent inconsistencies.of field
ﬁheory are expected to be removed as a result of the wegkening of the
locality requirement. What relations between masses and coupling constants ¥
are imposed by the postulated analyticit& is the exciting but still open
question,
The postulate of maximal analyticity, though not used directly .in

the proofs, is important to the general philosophy. The object is to start
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with a set of postulates that have significance in their own right as a

'basis,for a proposed theory for elementar&'particle reactions, not to prove

the theorems starting from postulates. chosen specifically to previde a

sufficient basis for the proofs. However, this latter procedure has &

‘certain merit’if ﬁhe postulateS]ere sﬁch that an extehSive class of possible

theories are inclﬁded; For this reeson, the weakervpostulate E' (Minimal

Analyticity) is: used in the proofs rather than postulate E. The proofs

thereby become appli cable not only to the S-matrix theory, ‘but also to

" field theory, ahd to-Varieties of field theory to which the standard

postulates do not apply. | . }

The postulate ef.physiCal_eonnection'ststes_that ihterpretable
funetions obtained‘byfanalyfic centinnation haverphysicel'significance.
This principle is the:basis of.the preSent work; As there 1s no field
theoretic substructure, related physical processes enter only via analytic
continuation. The principle has its analogue in field theory, where the
formelism set up to describe particle processes is‘found to haye a natural
place for'antipartiele_processes,snd the'interpretetion ofrthe theory is

correspbndingly extended. In order to state the.CPT theorem as a statement

having physical‘relevance, the eonnection»to physieel'reality of the

extended interpretetibn must be accepied. It is the purpose of this
postulate to explicitly state that certain naturally occurring mathematical
quantities do have physical signifiearee,band to specify tﬁe conditions
under which an interpretation qualifies as "natural". |

The qualification “simple" in simple connection specifies that
interpretation of & variable referring to one particle is not to deﬁend_
on the numerical value of Variables referring 10 the other particles. A

connection of this kind is implieit in field theory where each particle
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has its own field operatorz and analytlc contlnuatlon in one momentum
variable does not alter the interpretation of variables assoclated with
the other particles,_‘;. ‘w'

For the postulate of phy51cal connection to be operative, the
connectlon referred to is reqpired to give a consistent interpretation of
‘quantlties that could be obtained by analytic continuation. Specifically,
the manner of 1nterpretat10n should be consistent with reglons of
analyticity as large as those given by postulate E'; postulate F should
not confliet with postulate EY. -

Postulates A through D assert princlples simllar to those used in
field theory. Postulates E and_Fvenunciate two general principles
characteristic of the new S-matrix formalism: +the physical sheets of
'the scattering fuﬁetionS‘contain only singuleri£ies required by unitarity,
,and the analytic continuatlon of & scattering function to Varlous
physicalutype boundarles of the physical sheet gives functions having
'physical mgm.fmanoe°

We proceed to the applicetion of these postulates.
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IV. THE M FUNCTIONS ANb THEIR EROPERTIES
Using postulates A through D, including B', one can construct a
set of functions M(ki’ My ti)- with properties similar'to the Fourier
transforms of the vacuum expectation values of time-ordered products of
field operators, such as occur in field theory. These M functions are

defined for certain real values of the momentum-energy variablés ki that

correspond to physical processes, and'only_for real values satisfying the

2 2

mass conditions ki = mo and the conservation law X k, = 0. For each

. i
momentum-energy'vexiéﬁb>';i , there is an associated index 'fi - that
specifie@:theitype of particle, and a (2 St. + 1) valued spin index My
built up:out ofbprodecﬁe of 2 Sti .spinor i;dices,»'ﬁere  st is the spiﬁ
of'thevpartiele of type t . The'spindr indices can be taken to be lower
dotted and undotted epinor indices, cerresponding'to antiparticles and
parﬁicles respectively. The threevqnantities vk,»‘u and t, taken as a
unit, will be called the variable corresponding to a given particle. |

These M functlons have the follcwing properties'

A, .Spinoerharacter

For real values of the" ki éorreépondihg to physical processes

vtheé M(ki’ pi; ti) satisfy thefusual,transformation law for spinor functions.

Specifically, for these ko

) -1 o ' i h o
My, wgs b)) = AL 5 a7 G ) Mg, )
1wy -
where As isuthe spinor transformation matrix corresponding to any element
of the real orthochronous proper homogeneous Lorentz group and A is the

related Lorentz transformation operator. -
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i

. For real values.of :ki.-correspgnding to real processes the M

functions satisfy the unitarity relations“

M(K', -K") + M (K", -K')

_JE- M(K*, -K) K-o M (K", -K) .-

n

- j{ Mk, X) k¥ uE K) .

Here ¥ désigﬁates complex conjugate, K, K', and K" represent:
normal;éideréd éets of variables and -K ié the normdi;ordered Set
obtained from the set K by.reversing the sign;.éﬁ'éll»the momentﬁm-energy
vectbrs, reversing:the ordef of thé variableé, dofting‘ali spinor indices
énd changinéAfhe'type'designations:to‘those of thé respective antiparticles

(see below). The normal-ordering convention for variables with real

SO : C e e 1. © o 0 o
momentum-energy vectors k, requires ki‘/lki I > ki+l/|ki+ll s

1 1 2 2 -3 3 ' . '
ki 7 ki+l 5 ki > ki+l" and ki > ki the various conditions

in the set being operative if and only if the equality parts of the
preceding conditions are realized. The summation is over all normal-ordered
sets K, and the integrations are over fhe invariant momentum space

h 2 2 3 . ~ X
elements d'k, 2m, 5(ki - m, )/(2x)” . The symbol K-0 represents a
product of the (Pauli) spin matrices ki“;o“‘AB/mi , one for each spinor

index of the set K . The contraction rule for the spinor indices is such

as to ensure that the unitarity relation is a proper spinor equation.

C. Antiparticle Processes

For certain real values of the ki (always consistent with mass

constraints and the conservation laws) the M(ki, My ti) relate the

Lad

AN
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amplitudes corresponding to possible outcomes of two (complete) experiments,
!

|
i

the M(ki’ “i’.ti) is an analytic function regular in a domain that

includes two values of some k., that are negatives of each other, then

i
the only relationship between the interpretations of the M(ki’ y ti) at
these two points, consistent with the postulates, is this: If the variable
in one case specifies a pafticle occurring in the final (initisal)

configuration, then in the other case it specifies the correspoﬁding

antiparticle occurring in the initial (final) configuration with thé'same_

‘physical momentum-energy bu£>with bpposite'spin,' It is essential that this

connection is not dependent on the conventions adopted, but follows

directly from the postulates theméelves, chiefly the conservation postulate.

D. Superselection Rule

vThe number of spinor indiées is even on all nonzero M functions.

E. Order of Variables

The interchange of two variables changes an M function by at most
a phase,

With the inclusion of postulate E' one obtains:

F. Symmetry

The interchange of two variables of the same type changes an M

function by at most a sign. For a given type of variable this sign is

always the same, irrespectivé_of the numErical values of the variables;
the relative positions of the variables,'or of the particular M function
in which the variables occur,

The construction of the M functions and the derivations of these

properties are given after the main body of the proofs, to which we now proceed.
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V. EXTENSION TO.COMPIEX LORENTZ TRANSFORMATIONS
According to property (A) the functions M(K', JK“) satisfy the

spinor. transformation law '

MKr, -K") = As*l M(A K¥, -AK") , N (5.1)

provided the KI? aﬁd K" :sfecify reél mome#tum-energy vectors corresponding
to physical processes, and'prgvided the As, and A are taken‘to be the |
transformations associated with the reél ofthochronous proper hpmogengous'
Loreﬁtz transf_ormatioﬁso | |

By virtﬁe of the constraints imposed ﬁy tﬁe conséryation lawé and
mass condiﬁions,vthe‘ M(K', =K") ecan be cénsidered functions over a
reduced set éf variables, thé constraints being then identically satj.sfied°
And the reduced,variables can be selected so as to be real over the
(original) domain of definition ﬁhere the momentum-energy vectors in K'
and K" are real,

Real Lorentz transformations are generated by unimodular spinor
transfqrmation matrices éubject to the constraint’that dotted and undotted
indices aré transforﬁed by éatrices that are éomplex cénjugates of each
other. If this constraint is relaxed the corresponding Lorentz transformation
matriées A are no lénger constrainéd to be real. However, the invariance
of scalar products of four-vectors continues to be maintained under this
enlarged class of (complex) Lorentz transformations.

By the method of Hall and Wightman22 one can show that the validity
of Eq. (5.1) for real -k, and real orthochronous proper homogeneous
Lorentz transformations implies its validity also for the complex Lorentz
transformations continuously connected to unity, the ki’ ranging then

over the domain generated from the original one by the complex Lorentz
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transformations. Specifically, since As and A a;e glven analytic
functions of'parameters_that=specify the Lorentz}transfofmatian, Eq. (5.1)
can be used to extend fhe definition-&f M(K',---E")"over'the_range Qf
variables generated from the originﬁl region by fﬁe-complerLofentz
transformatioﬁs connected to unity. By the ﬁethqd_of Hall and Wightman

this extended definition may be showh to coincide with the analytic

" continuation of M(K', -K") into this region, provided that M(K', -K")

was regular in & néighborhbod of the original region.
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~ VI, ‘THE..CPT THEOREM
,,The;specialvclass:ofjcomplex‘Lorentz-fransformations of .interest
"to. us are those in,whichifhe:undotted“indiceé1are-transformed-bynunity

_and the dotted indices by

AS = e}{p [ i ¢ OZ ] o » i o v ) v ‘ (601)
For real @ , these As form a set of unimodular transformations
~ continuously connected-to unity. For @ = n-, Eq. (6.1) -gives A = -1 .

The corresponding A is also minus unity and all four-vectors are carried

to their negatives. The application of (6.1), with @ = , to (5.1) gives

MK, -8) = (-1)F M-k, %) . | (6,2)
" where N is the number of dotted indices of M(K‘, »ﬁ"),, and <K'
represents the set K' with the signs of all momentﬁm-energy vectors
reversed. Because the phase drops out in the calculation of probabilities
Eq. (6.2) is, in the light of>pr0perties (C) and (D), just the statement
of the CéT theorem: If a scéttering process is invariant under the proper
orthochronous Lorentz transformafions and if analytic continuations of
scattering functions to all other physically interpretable boundary points
of the physical sheet give functions corresponding to physical reality,
then for every process occurring in nature there is a CPT inverse process,
and relationships between corresponding probabilities are identical.

The requirement, stated in postulate E', that the boundaries of
the physical sheet are defined by relativistic scalar equations, and hence
depend on scalar invariants, guarantees that the CPT transformation takes

a boundary point of the physiéal sheet to another boundary point of this

sheet.

LD,
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The development above is similar to Jost'su-in its essential use
of the complex Lorentz tranéformatiqa. Here, howeyer,;the transformation
is applied directly to the phyéicélly interpretaﬁle mass-shell écattering
functions, andlthe gquestion of whether éerfainvvaeuum expectation vaiues
of local field operators are.identically equal is not raised.

If -a fiéld theéretic substructure were assumed, thenythé original
connection between the.variéus;relafed procésses would'be convéntionally
expressed in terms of transformations on field‘operators, rather than via
the analytic continuation of the scattering :t‘unc:'!:ioﬁzsfw Consequently, the
present remarks do p@t constitute a proof whéngéonsidered in a8 field
theeretic.context. They show‘that the CPT. theorem is vélid in the class
of field theories in which analyti¢ continﬁatians of mass shell scattering

functions lead to physically‘interpretablé guantities, as specified int

’postulate F, Belativistic.invariance and the'cdnserVation laws guarantee

the existence of‘thé required continuation, the necessary interpretations,

and the needed numerical relationéhips°
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© VII. THE CONNECTION BETWEEN SPIN AND STATISTICS

The unitarity condition reads =~ . A

Mk, -K") + M (K", -K')

o~

Y . A ~ . ¥, ~
»é Mk, K) k.5 M (K", -K)

(7.1)
T é M(K’ -K") Ko M‘(K) -K') «
- | . o _

“For the case “that K' = K" designates self-conjugate: combinations of
particle-antiparticle amplitudes, application of the CPT—transfdrmation,
followed by an inversion of the order ‘of variables gives

M(K', -K') + M (K', =K')
. N ~V : L * ~
= =(-1) Or 7 MK, -K') K-0 M (X, -K')
= ‘»"(“1).::N. Ok é MK*, -K)K-o M_(K': -K)
| (7.2)

Here N 1is the number of spinor indices on the variables of K which,'by_
virtue of the superselecfion rule, can be repiaced by the number of spinor

indices on the variables of the set K! . The factor is the sign

Oy
coming from the complefe reversal of order of the variables of M(K?, -E'),

The fact is used that for K! corresﬁonding to measuremeﬁts of self-conjugate
combinations of particlenantiparticle amplitudes the sets K' and X' are “© o
identical except for a reversal of order (see Sec. X).

Since K-o is a positive definite Hermitian-form, comparison of

Egs. (7.2) and (7.1), for the case K' = K" , implieé either Ogr = (-’1)N
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or M(K', K) = M(K, -K') = 0 for all' K. But if K' contains an odd

nunber of veriables with abnormal’symmetriss then o, = -(-1)" and hence

M(k', -K) "and  M(K, -K') 'muét venish. By postulate E' the variables

fcaﬁfbé'swi%éﬁédbfrdmréné’éi&éﬁtorﬁﬁézoﬁhei'and“ééﬁééénehtlyféii'M functions

conﬁéiﬁiﬁé”vaﬁiéblés"hajihgléﬁnérmal symﬁétrieé must vanish.

DS S ol ab188 of the set K' are, in the above, required to
designate self?déﬁﬁﬁgéﬁé'partiéles. -ﬁéﬁeﬁér;ithéfééﬁijﬁ iéiééﬁiifdfj,
If there are conservation laws that aistinguish the particle and antiparticle
parts of the self-conjugate combination of amplitudes, these separate
contributions can be distinguished by aﬁpropriate choice of the variables
of K. It follows that the symﬁetry'of the self-conjugate combination
is the same as the symmetry of the individual particle and antiparticle
parts, and the normal connection between spin and statistics also obtains
for these latter.

The above proof is similar to the recenf proofs of the connection
between spin and statistics by Luders and Z_u‘mino,8 and Burgoyne,9 in éhat

it rests on & conflict in the abnormal case between the CPT transformation,

- which follows from relativistic invariance, and certain positive definiteness

requirements. HOwever, the(arguments here involve only mass'shell quantities
and the positive definiteness requirements arise: directly from unitarity,
which is much more secure than the general requirement of positive definite
mefrie.

The essential result embédieq in the above parts of the proofs is

that the CPT theorem and the connection between spin and statistics are

contained already in the asymptotic properties of the S matrix. We proceed

now to the derivation of these properties from our postulates, without
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reference to field.theory.h‘It is necessary to show that thg abstract
postulates themselves ensure the existence of functions with the,statéd
unitarity and spinor trgqsformation properties, that the interpretations
of the functions arising_from analytic-continnations of these originaliy
defined functions are, by virtue of fhe conservation laws, uniquely
determined, and thgt the analyticity requirement implies_the'symmetry

property under interchgngéfof'like variables stated above.
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VIII.» UNITARITY

Iet K' and K" be normal ordered. sets of variables labelling

'Hfitw0'possible‘outcomesfof:anaexperinédticalled-the.final eXperiment; Let

K- be' & ‘normal ‘ordered set labelling a- posSible outcome of an experiment
called the initial experiment. Then,postulate A implies the unitarity
conditions (see Appendix A):-

* ' :
S(K ' -ﬁ) S '.(K" "’K) K'K" °

(-K) (8.1)

The summation is over normal ordered sets {ﬁ » the * denotes complex

conjugation, and SK'K" 1s unity if K" E K" and otherwise Zero. (Discrete

) variables are assumed temporarily ) Let the possible outcomes of the two

A experiments be placed in a one to one correspondence so that for every

final outcome labelled by K there is . a "corresponding initial outcome '
labelled by :ﬁ . The correspondence will be the physical correspondence
of "no scattering which Wlll be discussed below.

A-convention(will be adopted whereby if a particle of the final
configuration is labelled by‘a momentumAenergy vector ki s the corresponding
particle in the “corresponding" initial configuration will be labelled by
-k, . Then the conservation law for momentum energy takes the form Z ki 0.,

i

This negative sign for the initial k, 1is represented by the minus sign

i
in front of K. In order not to prejudice the arguments, the particle~type

indices will be taken to have opposite signs for the corresponding variables

of K and K o

the unitarity

In terms of R(K' _-E“) = sk, X") - By

condition reads
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3(K' -K") + R (K" 1"S-K’) = - ZK R(K', -K) R (K" -K) . (8.2)"

If Rf(Kl, =%")_;E. R(K*, ~K")(p(K!) po(K"))" /24 is. introduced, where p(K)
_.represents the number of values of K per unit element of the product of
the invariant momentum_elemgntsi,d%k(zm) S(k_2 -_m2)/(-_2n')3 , ‘then the
‘summation may be replaced in part by integrations over these.eleménts,
with R' replacing R . The prime on R' will generally be suppréssed:

The subtraction of the § has a physical basis. If we were :

K'K"
. to consider processes in_a,large finite volume VV s then over altime T .
‘one:ékpectscaﬁ initial momentum eigenstate iolgfadually decay, and other
ﬁomentum eigénstates of the same energy‘td gradﬁally grow atlé raté that
tends to zero as V increases. This cﬁaracteristié difference in time
dependences allows a particular final momentum state to be correlated with
each initial m.om.entum-staten This physical correlation is the basls of
the correspondence between initial and final configurations labelled by
»ﬁ ‘and K respectively. The’étates are correlated so that the
subtrﬁction'of SK'K" just removes from>'S(K', -K") the part that
remains finite as V becomes infinite, It is the remainder, R(K', -K'),

1/2 , 1s expected to pass over a

whiéh when multiplied by (p(K') p(X"))
smooth Wélladefined:continuﬁm limit as V goes to infinity. This
vexpectation is eﬁbodied in pdstulate E' which reqﬁires the M.functions,
which are sp{ﬁof fofﬁs of the'R'functions, to Be analytic functions. The
S functions are neither eipeéted ﬁor féqpired to bé analyfié,

It is the procedufe ét this point thap characterizes the present
development as strictly éh S-matrixvapproach, and wﬁiéh inserfs an

essential physical ingredient into the present proof of the connection

between spin and statistics.

&
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IX. RELATIVISTIC INVARTANCE -

Postulate B re@uires; for the case of spinless particles, that
| v P 2 . Ton 2 -
| R(k", -K") |7 = | R(AK', -AK") |7, | | (9.1)

where AK 1is the set of variables obtained from the set K by replacing

each momentum-energy vector, k , of the set by Ak the vector obtained

i i’

from ki by the real orthochronous proper homogeneous Lorentz transformation

A . For the case with spins let P(S', -S") be the projection operator

for the spin state specified by the set of axial four-vectors (si , ~Sj") .
Then postulate B reqpires |

o ‘ LAY ) 2 . ” | Tt 2

[P(s!, -s") R(K', -K")|" = |p(AS', -AS") R(AK', -AK")|®, (9.2)

where P(AS', -AS") represents the projection operator corresponding
the ‘set of spin vectors (Asi',*eAsj") . Usihg the hermiticity and idempotent
(P2 = P) character of projection operators, one may write Eq. (9.2) in the

form

P(s?, -8") R(K', R Rk, K = ,P(A_S','-AS"‘)R(AK',‘ AR (AKT, -AR")
| | | | | (9.3)
where P(S'; —Sh) now acts between'cerresponding indices of R and R% .

The order in which_the indices arencontfacted is irrelevant.

~ The prdjecfioﬁ operator 'P(S', ;S") is a product of the elementary
projection operators for'the‘indiv;dual pafticlee. The actual form of
these -operators depends ﬁpoﬁ the physical significance'of the various spin"
states. Or conversely, the physical’ signlflcance of the varlous spin states

is determined by the form of the progection operatorso One is free,

consequently, ‘in ‘the case of nonmassless particles, to take the elementary
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projection operators to be .
P(s) = 5 (fsheg+1), : (8:4)

where ¢ = (ol, Oy 03) is the Pauli matrix veotor and s' 15 the value

of 8 in some rest frame of the»particle° To eliminate possible arbitrary

rotations, this rest frame will be taken to be the one obtained from the

general coordinate sysfem by the Hermitian spinor Lorentz transformation.'
If Eq. (9.4) is substituﬁed into (903) and the known behavior of

8' under rotations is used, one obtains
. ~ * ~ - ~
p(s', -8") R(K', -K") R (XK', -K") = P(s’, «-S")AS ,lR(AK', ~AK™")

*
x [As’l R(AK', -AK") ] ,
(9.5)
where Astl are certain of'the usuai spinor transformation matrices
N corresponding to the rotation A . Since Eq. (9.5) is valid for all §°
and S" , the projection operator P(S', -S") may be removed and the
resulting eqpotion states that RR% .is a spinor function relafive to the
rotation subgroup. - The indices of RRf that are contracted in Eq. (9.3)
with the left-hand index of a factor (9.4) have the transformation -
character appropriate to an upper undotted or lower dotted spinor index,
these being the same_for.rotations, The right-hand iﬁdex of Eq. (9.4) is
‘contracted with the corresponding'oomplox-conjugated factor of RRf and
these indices accordingly have the- transformation characters of upper
~dotted or lower undotted indices under rotations.
In order to construct & true spinor function we introduce the
operator CZj(K“, uﬁ"),vdefined to be the product of- the Lorentz trans-

formations that would take spinors associated with various momentum-energy

&y

~,
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vectors k, from their v@lues'in the géneral.céordihatédsyéfém to their
values in the_respeétive,reettffaﬁess in which tﬁe'ﬁoﬁéﬁtuﬁ—enefgy vectors
become pure time-like.‘fTo eliminate possible‘arbitrafy roéations we again
take those lorentz transfbrmafioné represented by~the Hermiﬁién_spinor
transformatiensg‘ Theh with the définitidns |

M(K", -K") -la‘ ;fjl (x*, -:-%') R(K‘.‘; -E"') , | ' . (9.6)

and -

P(S': QS", K, 'f{") = P(S': "S") df(K') ."ﬁ") f(K" ‘K") ’ |

| - (9.7)
condition (9.3) becomes
' Y T VR *, ~
P(S': -S", K, 'K") M.(K'; “K’) M‘(K'; ‘K")
= P(AS', -AS", AK', -AK") M(AK', -AK") M(AK', -AK").
: ' : ' ’ : ' (908) N
If the Lorentz transformations are taken to be the ones appropriate to
the transformation characters of the indices of R obtained above, then
in P(8', -8", K', -K") the elemehtary”projection operatoré.are,
according to Egs. (9.4) and (9.7), by direct calculation,
P(s, k) = = [(keo/m) £s-0] = l[mk“/m R I i (9.9)
M 2 " _ - 2 uAB ’
or :
Bs, k) = 3 [(&3/m) T 3] = 2(&/m & ouAB , |
' (9.10)
where » '
VO = VTRV g E.'v@-+;vidoi*43- BRI A (9.11)
v"; = vo - X:g" E"V\QV\'.!’*—:‘Vi‘Ei ’.'i'.j"" R '.“-'_, . N ’ (9,12)
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The two cases (9 9) and (9 lO) correspond to the alternate choices
iof.upper undotted or lower dotted for the transformation character of the
t.'lndicescﬁ‘RR ontracted with the left-hand index of Eq. (9 h) The first
tﬁparts of the two eqpatlons (9 9) and (9 10) follow ty calculatlon and the

derlved expressions have the transformation characters indlcated on the

far right. Making use of these transformation propertles one obtains
p(s', -8", +K', -K") m(x’, -K“) M (K', -K")
.P(S" s" % }"»Eu' -1 ' Nayra L ! .~n *
= By Oy, +K s =F )AS M(AK s =AK ;),[As_ M(AK s =AK )] 3
(9.13)
which, being true for all (8', -S"), implies
M(K', -K") = As-'ll'M(vl‘\K\",v‘ -AK') x expia . (9.1k)

Apart from possible phase factors; the * M(K', -K") constructed in this way
are spinor functions. Postulate B' is invoked to permit the choice
exp i@ =17y and?the’iM(K’,~;ﬁ") are thén true spinor functions:
Mk, -K") = As"l M(AK', -AK") . . (9.15)

The superselection rule follows immediately from Eq. (9.15), applied

to rotations of 2n .

Substitution of Eq, (9 6) 1nto Eq. (8 2) gives o

L, K e, &) to?’<K" &) wre, -ﬁ')}*,;

i

fo‘(’(x' -K) M(K", -K)[of(x" -K) M(K" -K)] .
. (9.16)

- There is complete freedom in the choice between the two alternative

possibilities for the lorentz trsnsformations, the construction being

~

L
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eqpal}y;valid for either case. We will choose to use lower spinor indices,

I 3

' * . : * "y
for R and R , and, ‘consequently, for M and M . For a lower undotted

Y

spinor index the Lorentz transformation in aZ’(K' K') is

J’(k) = exp [ - g E;E ] = cosh g - Eyg_sinhlg = Y koo/m o
. A | S - (9.1
‘5 .

This matrix.is Hermitién,‘as reqpired,_SO that the complex conjugate
transformation, whiéh operates on fhé lower dotted indices, is theltransposé
matrix. |

- From the form (8.2) the reqpirement that the indices associated
with -ﬁ" transform as the complex conJugates of the corresponding ones

of K' follows. Eqpation (9. 15) is then conveniently written in the form

VK*-o ‘MK, K) V.o VK'-a M(K" K1) Vg5

’ ‘f){ K'.B M(K': 'E) -\[K'E _\fK-'E _ M*(K") 'E) v K""E )

(9.18)
.where N
e3 = I (25
i=1 i
N Tk 1
= Il ()5 M
- i= i ‘
¢ ;N.‘ 1 o (1)

" = ] ¢ (k,” = k, g . o .

iI=11 my : Lo ) B | (9.19)

Y

-~ The superscript. (i)“~on -c(i),uindigatés that o(i) is to operate on the

ith spinor index of‘~K5'and‘rkiﬂ isrthe: momentum~energy vector associated
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-with this index. The order in which.the factors are written-down in -
Eq. (9.18) is sunh thateif "K' .contains-only undotted indices and ﬁ“
contains only dotted ones, and similarly for K- and -? , -then the
contraction is always with adjacent 1nd1ces° For,'variables that do not
satisfy these conditlons, the contractlon is with the nonadJacent index
of the Lcrentz=transformation matrix.

The reciprocal of _{,(k) is

éfﬁl(k) =v'exp [‘g- Qgg;j‘ = "éésh'g + Agfg_einh‘g =. Y (k-c)/m .
| | | (9.20)
Mﬁlt;tpiicatien by the ebpropzjiete 1nverses brings Eqﬂ _ (‘9,18,) to the
desired form:. | | | | |
M(K*, -K") + M*-(K_", Ky o2 e }[ M(K', -'K)KeE_M*(K", Ky . (9.21)

K _ oo
The.contraction rule is as stated above, and Eq. (9.21) has the form of a
spinor equation, as inspection ef Eq;>(9,1®)vshows.
The above development is independent of the choice of sign of +‘§j s
in Eq. (9. 4), the transformation properties are independent of this sign.
If one wishes to identify s! with the phy51cal Spln{ then- the reqplrement
that conservation of angular momentum be a consequence of rotational

1nvariance (postulate D) demands that :in the operators P(s) actlng on

the same type of indices, the opposite signs of st must be used for - PR

initial and final configurations; since it is the difference of the
-initial and final physical spins that muet entef'into ﬁhe eoﬁservation law,
It is for this reason that the minus sign wes pleced before.ihe‘secend
argument of P(S°', ;S");-then.fhe same mathematical funefioh of the arguments
may be used for both initial and'final spin operators. ‘ '

The application of the formalism for the case of particles 6f,spin

greater than 1/2 is discussed in more detail in an appendix.
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- X. ANTIPARTICLES

The functions M(K', K") have been defined at real values of the

N ,
- momentum-energy variables corresponding to real processes. Because of the

mass constraints and the energy-momentum conservation laws, these functions

are defihéd(onlyvover a restricted subspace ;f-the space»of energy-momentum

variables. Variables ap?ropriate to this shbspaée may be introduced.
:Conéider a possible analytic continuation in these variables from

a region corresponding to a physical process to a new region ﬁhere the

energy-momentum vectors are again real, but with perhaps some different

_signs. For definiteness suppose only one of the energy-momentum vectors

has a changed sign. Is it-possiblé_toggive the function in the new'region
a physical interpretation, énd if so, is this interpretation unique?

Becéuéé the continuation is in the subspacé corresponding té,the
mass conétraints and the energy-momentum conservation law, these conditions
will be formally satisfied also ih'the new reglon. But since the sign of
k 1is reversed, the contribution of this term in the formal conservation
law is reversed. - If the interpretation of the other momentum-énergy vectors

(with unchanged signs) is to remain unaltered (see postulate F), then the

" only way to reconcile the formal conservation law with the physical law

ofvconservation of energy;momentum (postulate D) is to associate the new

value of the momentum-energy variable with an initial particle if it was

formerly aéSQciated'with a final pérticle, and vice versa; and to reverse

- the sign of the éonnectipn between the mathematical energy-momentum vector
~ and the_physiéal guantity. This is, of course, the same connection that

".Lone'obtginé in field theory. Here it .is the only interpretation consistent

>
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If & final particle carries a non-zero unit of any additive constant -
of the motion, then the initial particle associated with it by the analytic *
" continuation déséribed‘above must carry the negative unit; otherwise, the
conservation laws would require one-of the two" processes to vanish, and
by analytic continwation both would Vénish° The twd particles related ﬂy
this continuation are, consequently, not the same particle, in genefal,
although their masses are the same. They will be called antiparticles,
in accordénce with the usual terminology.

The type'designatiénsvof:thé corresponding variables of K and
K have been taken as negatives of each other. If a variable is called
g particle or antiparticle vafiable, according to which of these two it
specifies when its énergjasign is positive (i.e. when it refers to the
final experiment), then variables of oppositely signed type designation
are particle and antiparticle variables respectivély.

For a fixed spin index the'correspondiﬁg phjsical spin is opposite
for the cases in which the variable refers to a particle of the initial
or final configufation respectively, as mentioﬁed beforei | N

The formalism arrived at is of the Paﬁli rather than the Dirac type: ’
épin % particles are represented by two coﬁponent variables. Particles
and antiparticles are represented by undotted and dotted indices, respectively.
Because particle and antiparticle variables have different spinor characgers
and, correspondingly, are contracted differently with the spin operators,
it is not'the simple sum of the amplitudes that is measured when the self- d
conjugate combination of particle-antiparticle amplitudes combination is \
measured. A certain (charge conjugation) 0perafion is required to bring

the amplitudes to a form suitable for direct addit}‘pno In the proof of -

the connection between spin and statistics one can first apply the CPT
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transfofmaﬁion to the various parts that will form the self-conjugate
combihations, then apply the transformations needed‘to bring the various

terms to additive form, next use the symmetry rules to invert the order of

' the combined variables and finally transform the parts back to their

ofiginal'forms, Thus the fact that the amplitudes corresponding to dotted
and undotted indices do not directly combine does not héve an important

effect on the’prdof.v If‘both'uppef,and lower indices had been used the

unitarity'relation would have taken a more cOmplicatedbform, and the fact
that the symmetfy rules‘apﬁiy ohly,to proper combinatioﬁs would then play
a role. | | o |
| An élternafive'formalismvin,whiCh the no-scattering part of fhe

S-matrix is taken to be the charge~-conjugation matrix
0 -1
1 -0

in spinor space is convenient in this respect. With this choice, particles
and'antiparticles.can be taken to have the same transformation character.

The same physical spins are then represented by the same spin operators

‘for particles and antiparticles; and the amplitudes are directly additive.

The unitarity relation in this formalism contains explicit factors of C ,
« o ,

and it is the relation C° = -C that leads to the factor (--1)N . The

derivation of the connection between spin and statistics using this formalism

is given in Appendix C.
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XI. ORDER OF VARIABIES

A set of variables with real momentum-energy vectors ki' is normal

ordered only if the following conditions are satisfied: (ki)e' >“l(ki+l)2,
o1, © o e) 1 a1 2 . . 2

VA S I 2 VR4 LT PR P A I T PP

kiB > ki;15 , each of the conditions of the set being operative if and

only if the eqpality,parts of the preéeding.bonditiohs are reaiizjédo
' Except for cases of relative zet§ measure, for which ki = ki+l for
somev i, which can be treated as limiting cases, thevnOrmal 6rdering
"condition gives a well-defined order for the variables correspondiﬁg to
any physical process. For definitenéss we specify that when the'variables
are in this Ofder'thé M function describes the physical process. Stated |
differently, the value of some (say original) M function that describes
the physical processes corresponding to some set éf ki will be taken to
be the definition of the value of the (standard) M function vhen these
variables are placed in normal ordei'° If poétulates F and EY were true -
for the original M function they would also be true for the standard one.
Postulate E' requires all tﬁe real pointé to be (physical type)
boundary pointé of a singlé analytic_functién° This allows the M function
to be extended by analytic contiﬁuétion and definéd for ali.orders of the
variéblesov Obsérvables calculated by using fhe values of the M functions
obtained by analytic continuatioﬁ ﬁﬁst give the physical answer, according
to postulate F. Hence the varioﬁs M functions obtained by fecfderings of
the ﬁariébles can differ only by phases as sﬁateé in proéerty (E). 1If
poestulate E' were not vélid and certain ranges of variables could not be
feached from cthers by analytic continuation, then one is free to establish

property (E) by decree in cases where it does not follow from analytic

continuation and postulate F.
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For the case of vgriables with the saﬁe spin and type indices and
the same energy-sign, qﬁe_cam obtain a more. stringent condition. This is
because the 1n£erchange of suéh variables, which will be called like
variables, carries an M function back to itself, though at a new value of
the arguments;

Let us denote by M(x) and  M(-x) two M functions related by the

interchange of two like variables, and by .IM(x)_I2 and IM(-x)I? some

expefimental relatibnship calculated using these M functions. That is,

we suppress. the remaining variables. According to postulate F,
' 12 | 2
Pp(x) |7 = (%) 1",

because M(-x) is the analytic continuation of M(x) at a new physical-type

' boundary point of the physical sheet, and the two points have identical

physical interpretationsav
| Separating M(x) in£§ evenfand odd parts with respect to x one
obtains | |
, 1M(x)[2 - [M(--x)'l2 = %4 Re Me(x) MO%(X) = 0 .‘

This implies thaf"M(x) isieither even or odd or that ﬁhe even and odd
parts are relétivéiy'imhginary,

The condition thét"Mé(#) and MO(X) be relatively imaginary,
which we take o iﬁéiudé’the‘éésé iﬁ which either one‘vanishes; mast
obtain for all éhciéesfbf‘thé reméining (suppressed) observables.” However,
by apéropriate'éhéiéé of.fhesébSérvablés'(Hermitian operators) correspording

to the other (subpréssédf{va;iéﬁiééione can adjust arbitrarily the phases

' of each orbital angular momentum state of the two-particle subsystem. This

is easy to see for the simplest case of the scattering of two spinless
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particles, since by choosing the operator for (say) the initial state to
project onto some chosen combination of the initial orbital states the
phases of the final states can bé fixed arbitrarily. It is not hard %o
show that this result can be generalized to arbitrary reactions;‘éﬁd that
the phases of orbital states corresponding to the two=particle.subsys£em»
can be fixed arbitrarily by,apprdpriaﬁe choice of the Hermitian operators
‘corresponding to the observablészfdr theiremainiﬁg variables;' Thus the
general vanishing of 4 Re Me(x)’Mé*(x) iﬁpliesAthe'vanisﬁiﬁg’5f‘éither
Me(x) or MO(X)’ and M(x) must be either symmetric or antisymmetric
under the interchange of like variables. Essential to. the proof is the
assumption, stéted in postulate C, that eﬁiy the variables specifying
momentum, spin and particle type are needed to label the complete set of
amplitﬁdeso No other "hidden" variable specifying, for instanee;}fwhich
one of the various identical particles is measured” is permitted; This
assumption is quite’natural;when'Viewed‘from the S-matrix standpoint.
| By the application of the fact that the M functions must be either
symmetric or antisymmetric under the interchange of;any-twq like variables
to both sides of an equation representing this same_fact, one immediately
finds that a single rule, either symmetry or antisy@metry, hol@s for the
interchange éf any two like variables of a fixed type in a given M function
with a fixed order of the spin and type ipdiqés,. Esing postulates E' and
F, as above, one can extend the rule also to the case’;n which the ordering
of the spin and type indices differ and show that the characteristic sign
for the interchange ofvlike fariables dgpends, for a given M function,
only on the spin and_type designations and possibly on the energy signs.

The above derivatipn of the fact that the ¥ functions are either

symmetric or antisymmetric under the interchange of like variables is based
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upon analyticity in the physical region and. on the principle, contained

in postulate F, that different expressions corresponding to. the same
physical‘quantity must give the same answer4”~This'is an argument involving
indistinguishabiiity. In ordinary quantum mechanics, the analogous symmetry
property of the wave fcuntion is postulated as a boundary condition. In
field.theory, it is the immediate consequence of the postulate that field
- operators must either commute or anticommute for space-llke separations.
This locality postulate of field theory draws its support from the principle
of microcausality; the postulated commutation relations ensure that signals
never propagate faster than the speed of light, even over very small’
distances. This‘suppoft of the postulate is rather unsatisfactory both
because of the questionabilityvof the principle of microcausality and |
because of the particularity ofvthefway in which it is achieved. For
instance, the possibility that the commutation relations depend on the
states between which the fields‘act is not-considered; The‘preSent
derivation seems ‘more satlsfactory because these various p0351billties are
included and because it is based directly on indistinguishability and
does not intertangle the logically separate questions of symmetry and
relativistic invarianceo.

The symmetry:rule can immediately be extended from the case of
equal energy»signsvto_the case of wnequal energy-signs usingvpostulate E,
because bctﬁ sides‘of.the equapidﬁarepreseﬁtiné the symmetiy rule can be
amalytically-continued from the reglon where the energy-signs areaequal
to the region where they are unequal. This consequence of analyticity is
the root of the connection between spin_and statistics,

The methods used above do not lead £o7symmetry rules for the case

in which the spin indices differ. Here an interchange of variables carries
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“an M function over to another M function in which the order of the indices
is different. This is a different function not connected to the first by

"analytic continuation. From postulate F one obtains a relation like -

i

IMJ_Q(X) |2 ».'Mgl(_'x) !2 I

instead of

1

2
lMll( -X) ' ‘ 2

an(’_‘) 2 |

the spin indi¢es now Being-displayed; and the arguments used above lead
to no symmetry rules.

If it is assumed that measurements of linear combinations of spin
state amplitudes are possible, one may obtain relations of.the second type
with the spin state "1" now representing a linear combination of the
original states. Oné obtains, for example, relations which, when expressed

in terms of the origimal spin‘states, read

2 | - o 2
(cos” &) Mll(x) + cos & sin 5(M12(x) + MQl(x)) + sin® & Mzg(g)

= % [0052 8'Mll(-x) + cos & sin S(Mlg(-X) + M21(-x))

2 |
+ sin“ & Méz(-x)] 5

where the linearity assérted in postulate A is_invoked. Since the relation

is true for several values of & one obtains

M (x) = M, (-x) ,
Mp(x) = =M (-x) ,
and.
%&ﬁ’#Mme)= ﬁ%é¢)?%ﬁmH,
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where the same sign holds for the three equations. The’first two equations

show that the same symmetry rule holds for both cases of like spin indices,

. and by the third line this symmetry also extends to the symmetric

cémbination of the spin.states. The third line ig generally inconsistent
with the assumption thatvthe interchangé of variables with different_spin
indices giveb a sign change opposite to the one for the case of equal spin‘
indices. Indeed, using the fact that M, () and My, ( -x) can differ by
only a phase the relationship Mle(x) = % M21(-x) is the only one geﬁerally

consistent with the requirement that the M functions be analytic functions

, of their variables, as one sees by examination of the other solution:

My, (ex) = texp2ia M, x)
M (%) = to M, (x)
19\ 7%) = T exp2iaM,,(x),
.and
a = arg_(Mla(x) + Mél(x)) .

As in the case of different spin indices, the analyticity

requirements alone lead to no symmetry_rples for the interchange of

. variables of different types. The symmetries that prevail are direct

consequences of phase conventions regarding the orders of the variables
of the M functions. |

Ig the develoﬁment above there is the apparently arbitrary phase
convention tﬁat the singular .part of the S-matrix (i.e., p(K') 5K'K") be
taken as real and positive when the variables are normal-ordered. It is
because of this convention that the normal-orderiné requirement appears

in the unitarity relations we use. Making uée of this particular form of

the unitarity:reqpirgmegt,’Qne can- carry through an argument quite analogous

to the one given in the body of the proof of the connection between spin
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and statistics, but now Wiﬁhbut'using Self;cohjﬁgéteﬂﬁértiéles, Ifiéﬁe
assumes that the symmetry under iﬁtérchénge 6faaﬁtiparticléutype variables_
is the same as for the coffespondiné pérficlééfype'Variables; then one can
deduce that the symmetry rule for the interchange of a particle variable
with a correspomdingAantiparticlé‘variabie-ié iﬁ éccordance with the
normal connectioﬁ between spin anﬁvstétiétics,.

‘This relationship is of no physical significance. All that is
establishéd is that the symmetry undér interchange of particle and anti-
particle variables is in égcordanée with the normal rule. But nothing
is said regarding the rﬁles fqr.thevinterchange of two-particle vériables
or two-aﬁtiparticle variables. It is these rules that are releﬁant to the
cehnection between spin and statistics. Moreover, the rule that is
established is a direct consequence of the:original choice of phase
conventions aﬁd can change if other conventions are adopted.

In field theory there is an analogous_situation° It is the
commutation relation between two like fields that determines the connection
between spin and statistics.. The commutation relation between a field
and its adjoint is notbrelevant unless it is shown thaﬁ this commutation
relation mist be the same as for a field and itself. In recent studies
of the connection between spin and statistics8’9 it is only the commutation
relation of a field and its adjoint that is shown to bevnormal, and'the
arguments consequently do not prove the connection betweeh spin and
statistics. Earlier proofs have been -objected to bécausé thgy either
apply only to the nonphysical free field case-dr assumé festrictive
sym@etry requirements.

In the extension of the symmetry rule for the interchange of like

variables to the case of differing spin indices the physical requirement,
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stipulated in postulate C,}that projectione on linear combinations of
spin-state amplitudes be, in principle, obserVable Qpantities played an

essential role. In'the_analogdus,extension_to particle and antiparticle

variables the corresponding situation prevails; the requirement that

}rojections on combinations of the partieleéantiparticle amplitudes be,

in principle, observables is again essential. This requirement underlies

our proof, which depends critically on the fact that ome can choose

Variables referring to the self-conjugate combinations of particle-~
antipartlcle amplitudes° 'When these variables are used the CPT transformation

followed by an inversion of order takes the arguments of M(K' -?’) into

»identically themselves and there 1s no phase ambiguity. Also, the symmetry

is derived directly for the self-congugate combinations, and from this the
symmetries of the particle and antiparticle parts are obtained,

To complete the discussion of order of variables we must show
that fhe symmetry rules for the interchenge of like Variables are the
same for all M functions, as stated in property (F). This follows from
the unitarity relation. For real ki , the unitarity relation reads

~ : ~ . ~ ~ * ~
M(K*, -K") + _M_(K", -K') = .-%#i MK, fK) K-¢ M (X", -K) ,
i K '

nhich, with the introduction of

o *, K e K
MK, «K") = M(K", X" ) , °

" becomes

Mke, K1)+ Mk, -K") = - J{ Mk, -K) KT WK, Kv)

" This form-permits analytic continuation in the variables ki .
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‘Suppose K' ‘conmtains two 1ike variables with real ﬁi'a ‘According
'to postulate E', these may be interchéﬁééd'by an analytic continuation.

“An application of the symmetry rule for like variables then gives
o(k") M(K', -K") + .o'(K") ﬁ(K',.=K")

- - J*[ o() MK+, ) KF WK, R")
5 ko S S
where- c(K) is the sign change induced in M(K' -K) by the interchange
“of the two llke varlables, and o'(K") is the sign change for the two
correspondlng 11ke variables of M (K": -K') . For the case K' = K"vae
have olK') = ¢ (K‘) , since an appllcatlon of both transformatlons to
M(k; eK’) must leave the sign unchanged in order not to confllct With
the slgn on the right of the unitarlty relatlon, ThlS glves “- o
o(x7) [ M(K*,f K1) + M%(K’;'i’;. i)l = -};{ o(k) MK, -K) KT M (K K') .
, K
The integygnd factor M(K‘,I-ﬁ)'Keg M%(K',.-K)_ is a positivé definite
Hermitian form, as mentioned earlier, so that comparisqn of the above

equation'to the original form of the unitarity relation implies

o(K) = o(K*) ’

and the symmetry rule under interchange of like variables is the same for
all M functions that can be brought to thé form M(X', -ﬁ). One can take
K* to contain just the two variables in question, ard then all M functions

containing these variables can be broughi to this form using pcstulate Ef,
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- XII., ANALYTIC STRUCTURE , |

4fostu;§te_ﬁ requires the M functions to be regular in the interior
.of a physical sheet whdée boundaries“are'fixediby.unitarity. Tﬁis needs
explaining. | | |

' The essential idea is that there are some gingﬁlarities of the
M functions which are direct consequences of the unifarity relations; if
the M functions océurring bn the right of the unitarity reiations were
assumed free of singularities, those on the left would nonetheless have
singularities griﬂing from limitafions in the range of integrations
occurring on the right.

.Specifigally,'the‘unitarityvrelationrcontains on the right terms
each containing a factor of the form |

-l a'x - | '
f];LI z_;“__:;.u (2mi) (21{) 6(1;12 - mie) e(kio) (Eﬁ)h\?)(z ki - T) p)

(12.1)

which is multiplied by othér functions that may or may not have singuléritieso
H?re T 1is the sum of the initial (or finai) mqmentum—energy vectors of

the problem. As is well-known, the déita functions place limits on the

(real) range of integrafion and the'above factor introduces'a singularity

at T° = (= mi)2 that corresponds to the threshold for the reaction

;-

EQuation'(lEol) gives singularities that would occur in one or both

of the M functions occurring on the left of the unitarity relation even if

‘the ‘M functions occurring on the right were free of singularities. Possible

singularities of the M functions on the right can lead to additional

singularities on the left. To get some of these, one may substitute the
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expression for the singular part of the M function obtained from the first
‘application of unitarity back into the right hand side of the unitarity

”?felatioho Proceeding by iteration, one obtains structures of the form

i
| f M| &k (2m )(ex) o012 - m®) o(x,%) | ] (20 83, - 1))
S (2n) . 5 J
(12.2)
where >EJ is a sum over some subsét of the k ; and TJ is a sum. 0vef-
scme subset of the (external) momentum—energy vectors of the M functlon.
Varlous structures may be correlated with various Feynmancllke dlagrams,
Wlth the lines a35001ated with the mass conservatlon delta- functlons and
the vertlces now involving the arbitrary numbers of partlcles entering
into a reaction. The conservation laws are maintained at vertices.
The variables ki and Ti are originally constrained to be real,
but one can eliminate the &-functions in favor of contour integrations
and thereby obtain eipressions that canvbe analytiecally coptinued in the
variables Ti .. The set of singularities obtained in this way will be
called the singularities required by unitarity, It is shown in an
appendix that the set of singdlarities fequired by unitarity coincidés
- with the set of singularities obtained in the terms of the perturbation
solution of field theory. This allows the extensive body of results

25-32

concerning singularities of the terms of perturbation theory to become *
immediately available. A possible alternative approach of simply asserfing'
the singularities to be the same as in the terms of the perturbation

solution is less satisfactory, since field theory is at once rejected and

placed in a fundamental role.
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.. The eqyations\defining_the locations of the singularities required

by unitarity are félatiyistigélly,invariant and define manifolds in the

space of the scalar invariants of the M function.of dimension generally
one (complex variable) less than the full dimensionality of the space. The
locations of'the‘singularities dependvonly'on the masses m, corresponding

to the various ihternal'lines of the diagram. Cuts terminatihg at these

. singularities can be defined by the locus of singularities obtained with

s - with o a real parameter, independent of 1,

varying between one and infinity, These cuts éeparate various sheets of

the M function. Postulate E asserts that one particular sheet of each

- M function, the physical sheet, is free of singularities.

?he,physical sheet.is defiged in the following way: Anwong thevcufs
there will be one preferred cut that runs oﬁer,values corresponding tc the
real momentum-energy vectors for the procéés.described by the M function.
The physical values ofjthe M function for the process areuregpired to
coincideywith_the boundgry.yaluesiof the M function on the physical sheet

for the "physical-type" limit along this cut. The physical-type limit is

~the 1imit approached using pqints for which the imaginary parts of the

physical_energy.and the physieal'momentum magnitudes k = V'E_o k  are

et

positive imaginary.. The physical arguments are, éf,course; the negatives

" of the_mathématical arguments for variables referring’tolthe initial

momentum-energy vectors.

Thezdefini;ion of the-phyéica} sheet is not arbiltrary but is closely

tied to'unitarity,_ana;yﬁicity;and.the,conneqtiqn-tq space~time variables.
~ In order to acquire an orientation, consider the simple case of the

' scattering of-a,nonrelativistic,particle f:om anfeverywhergnfiniﬁe -

potential that_vanishes:for‘ r >R, _For a particular channel (partial wave),
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the radial wave function f(ék,lr) thét‘éoes asymptotiéaily like explikr]

can be shown to exist for all k ,vreal orbomplex.55 Geherallyy these
functions do not vanish at the origin r = O as is required for e solution,

but the combination
£k, r) - (£(x, 0)/2(-k, 0)) £(-k, 1)

" has this property, and the Sematrix is

i

s(k) = (-1)% £(x, 0)/£(-k, 0) .

This function is regulér for all values of k for which f(%k,io) ‘is
nonzerc. At points ofrthe upper-half k plane, (Im k> O) foerhiéh
f(-k, 0) vanishes, tBE‘Vf(-k, r) are (normalizable) eigenfunctions, and
the energy eigenﬁaluésvare réqpifed, by unitarity, to be real. The
singularities of the‘S—matrix in the uppéruhalf‘ k piané ére therefore
confined to the imaginary axiSOBu |
vaone transforms toithe'Euplane and defines there the physical
sheet to be the one containing the'poéitive:imaginary' k axis (on the real
E axis), then the physical sheet of fhe E-plane is free of singulafities
except for those on the real axis. Tﬁese‘singularities‘have a direct
relationship to bound states and physical threshblds, and their pesitions
are fixed by the masses of the stable particles. Tﬁe correspondiﬁg
statement for the other sheets is not expected to be‘Valid;'resonanées
‘and unstsble particles lead to §iﬁgulafities.iﬁ £he unphysical sheets.35°58
If the condition that the ﬁbﬁeﬁfiai'vanishes for r>R is
replaced by fhe’ﬁoreireélistié féQpiremeni that it be representable by a
sum of Yukaws péfentialé; then the numerator function f(k,‘o) can have
éingﬁlarities, but these are juéﬁ thééé cominé from dﬁitarity in the crossed

39,40

channels and are therefqre among those required by unitarity.
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The definition of the physical sheet for the relativistic many-particle
problem is taken tq be the generalization of the 6ne-occurring for the
simple:potential scattering problem? ana in particular, the momentum vectors
are reqﬁired.to move to the region cqrrespohding to exponentialé that
decrease. at large radius as one goes from the physical point into the
interior of the physicalAéheet, This ensures that bound states gi?e :
singularities below the physiéal threshold and lying on the»physical_sheet.
The‘unifarify,relation likewise léads to singularities at locations
corrésponding_to these‘bouﬁd states,_siﬁce they are stable particles. The
unitarify relation is therefore expected to hold bélow_the physical
thresholds on the physiéal sheet,_ |

The fact that, for the pbtentia% scattering problem, the physical
sheet is free of singularities depends jointly on unitarity and the fact
that the scattering_was from a local potential. Postulate E can therefore
be considered some extraction from a locality requirement. The question

of exactly what coordinate épace conditions are necessary or suffiecient

for the postulated_mbmentum-spéce'analyticity-property lies outside the

scope of the present paper.
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SFe 7 XTTIT. CONCLUDING REMARKS
E E'Théibfééent'study prbvides”two'useful feéults apaft froﬁ the proofs
"ﬁhét'wefélthé'priﬁary object;i.First,'it has been shown how the appeal to
field theoretic concepts can be cdmplétely avoided and the new S-matrix
formalism built up from simple principleé'that are relatively'_secure°
This development, which was necessary to the proofs, leadé also to &
‘considerablevsimplification in préctical problems, since the”shuttling
between field the@retic‘expreséions and the scattering functions needed
in fiéld theory is eliminated;'oné works only with the directly ihterpretable
seattering'functionsa Second, the‘treatment:of spin is in terﬁs‘of the
simple Pauli matrices, and the redundant variables associated with the use
" of Dirac matrices are not introduced. Thus, for instance,.the'scattering
of two.spin<%:particles is deScribgd by a spinor function with sixteen ﬁatrix
elements rather than 256, The troublesome projection operators needed to
eliminate the redundant variables of‘the Dirac theory are not reqguired.
Conditions imposed on the M functions by the separate requirements of
invariance uhder spétial refleetion, anfipartigle conjugation and fime

reversal are easily handled, a&s shown in some appendices.
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- APPENDIX A

Derivation of Unitarity from Postulate A

From postulate A , o

(a', a') = '(Sa,'Sa) = (a; a)
for all a . But the quadratic form determines the bilinear form,hl and
50
(se, 5b) = (a, s" 5b) = (a, b)
for all a and b . Hence § S = 1 . Therefore s a' = a and
s,s* = 1 dis derdived from

:(a, a) ,; '(S1ia', -St'af) = (a', a") .-

In effect, theICOmpleteness feqpirement may be taken to mean that the

metric preserving transformation S is ur_lzl.tary.)+2
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APPENDIX B

‘Massless Particles

For massless particles, which ha§e no rest ffaﬁe, the procedure
used in the text bfeaks down. - In this case the assignment of spin quantum
numbers can be related to the direction of motion of the particlee For the
.spin % case, the projectien operetors analogous to Egs. (9.9) and (9.10)

can be taken as

P(k) = 2—% (ko) , | (9.9")
and
| -E(k') - '51%3 (k:3) . | N o - (9.10%)

These have the same transformation properties as the operétors to which
they correspond. Unlike the P(s, k) and ?(s, k), these operators are
idempots and they can ﬁherefore be directly interpreted as the projection.
operators for the two states. ' This allows the transformation to rest frames
to be eliminated. Unlike the nonmessless case, where both spin states
could be describeq using either ﬁype of spinor, upper dotted or lower undot,
here we have one spin state corresponding to one assignment, and the other
spin state corresponding to the other assigmment. If we continue to use
only the lower indices,'then the neutrino ﬁill have only one spin state,
as ie experimentally observed. The V-A inﬁeraction is repreéented by -
(ou) (ou) in the present notationo.

The projection operators (9,9')_or7(9,lQ“)'should be inserted for
the intermediate states of the unhitarity relation, and ‘the symbol K-o
appearing in the unitarity relaiion will include this factor for the case

of massless particles.
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APPENDIX Cc

Related Formallsms

In order that the term B be invariant under\rOtations, the

K! K"
corresponding: indices of K and -K oust be transformed by inverse
"matrices; if particle varlables transform as lower undotted or upper dotted
indices (whlch transform the same for rotations) then the correspondlng
antiparticle variables must-transform as lower dotted or upper undotted
indices. We have eroitrsrilyvohosen £0 use alﬁays lower indices. For a
‘lower undotted index the Lorentz transformation applled to R in
" constructing M is (k G/m)l/2 . Had we ¢hosen to treat the ‘index ‘as an
upper dotted indéx, then the Lorentz transformation would have been rather
:‘(kog/ﬁ)l/g“,mwhich is jusf-thé'inverse”of «(k?c/m)1/2 . ThoS"one can
transform an M fuhction-with an upper dotted index to the value it would
have taken if the index had been'treated as & lower Undosfed indéx by
maltiplying it by .(k»o/m) . It is purely a matter of choice‘wﬁich one
- is used. Indeed,'in the Dirac formalism both ohoices'are carried along
in—parsllelo |

There is no compulsion to take the no-scattering part of S5 to

"« Another rather useful choice is C% the product of the

0 -1
1 0
and antiparticle variables have the same transformation character under

'K" H

be 5K‘K“
)4,¢ With this<choice, particle

charge conjugation matrices C = -(

rotations and one can, for instance, take all the indices of M to be
lower undotted indices. In this case the unitarity relations take the

forms
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Cx-5 Mx', -¥') + [CK'-o MK', -K') 1

= - }f MK', -K) K-c M (K", -K) ,
and : _ _
T . e e e
Q (K'G)M(K:“K) + [CK"U M(K:"K_)]‘_
= - j{ MK, -K") K-g M (K, -K*) .
For K' = K" ; representing self-conjugate qombinations of amplitudes,
the CPT transformation followed by an inversion of order takes the right-hand
sides of these equations into .each other. The left-hand sides are also
transformed into each other, except for a factor _(-l)N_ needed to change
_needed to reverse the ordering. The

K

connéction between spin and statistics then follows as before.

C - to Cir ~and a factor .o



UCRL-9804
-53-

APPENDIX D

Higher Spins
The formulas given in'thé text apply.diiectly to spin zero ana
spin % particies. For particles of higher'spip; one constructs in the
rest frame an‘appropriaﬁe combiﬁation of the elementary spin x spinors

2

» using Clebsch-Gordan coefficients or spin state»projectioh»oPefators. The
LorentthréhsformatiOhs:fhat take the R matrix, Aﬁhich refers to the rest
- frame spin stateé, to the M matrix, commite with ‘§~° §_ and hénce with

. the projection 0perator$. The projection operators can be considered either
as acting directly on tye M fﬁngﬁions, or as contained_in the M functions
as factors. In tﬁé lattef cgse.the_equations of the text apply unaltered,
but with the index u simply a set of'spinor'indices; In the former case
the ‘Kws apbearing in the unitarity'relatidn is replaced by K-o P(S)
~where P(S) 1is the projection 6perator, For ihétance,

P(8) = % (3 +-g£l> o‘ggg)) for the case of a spin-1 particle. The
?rojection opérators commute withvthe k 'vg and can be piaced on either

side, or on both sides of it.
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Invariance Conditions

The transformations

(o]

, ) . o . | ) o .
(kl b4 "1“{"1, 'J'i} ti) nd (ki 2 ,.IE_iJ ui) ti)p - ' (ki 2 "}S,il ui’ ti) 2
o ' o ; - ) _ '
(ki 2 __lii) p'i) ti) -’ (ki 2 b—lsi’ p'i} ti)c - (ki 2 Ei, p‘il ti) 2
and
o] " o o = (. © z

take the variables‘as$ociated %ith évgiven experimental measurement to

‘those associated with certain transformed experimental measurements

connected to the original ohes.by spatiai refléction, antiparticle conjugation,
and time reversai,.respectiveiy, Cofrespondingly, we can‘define the

transformations

R(K' , K" )

R(k', -K") - R (K', -K"
( b ) d p( :» ) P p’

R(K', -K") - R(K', K") = R(x', -K") ,

(]

and

1]

R(K', -K") - RT(K', -K") R(K'T, .—K"T) .

If the equations

R(Kk', -K") = o, RP(K', -K")

R(K', -K") = o, R (K, K")
and v

R(K', -K") "= o; Ry(K', -K")

are satisfied, where op )y - O, and Op are phase factors, then the

relationships between probabilities for the transformed measurements are
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the same as for the:drig;nal experiments.
VIn;thé.ﬁime-reversal 6peration fhe change of sign of the kio ~effects
thé required interchange,betweén initial and final states and~the reversal
of physical'mOmentum énd spiﬁ., The transfcrmation to antiparticles that
it also induces 1is compenéated by.the change t - -t . |
" In the operations of charge conjﬁgation and ﬁime reversal -the
change t - -t can be_generaﬁed by an (up to a phase) eqpiva}ent change
b

ka >k, paie4 ﬁb for the class of R fundtions:in which the particle

and antiparticle variables can be grouped in corresponding pairs. The K2
and 'ug are the partiéle momenta and spin indices, and kb and ﬁb are
. the antiparticle quantities. If the R functions are considered matrices

with the undotted indices on the left and the dotted indices on the right,
then the spin transformation is generated by
R - c—l R‘tr' a_,
where Rtr ié the transpose of R and C is the product of the elementary

charge conjugation operators C defined by

The operator c effects the transformation between dotted and undotted

indices. When this form of the antiparticle conjugation transformation

is used the‘ﬁhree gpérations are, to within phases) given b;;;ﬂl'{5
Piok ek, Keok s e
c kiawkib’ o= -0, T. of 0, ;
T (ki")a -=-_(ki°)b T A “*liib S T. of O.
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Here "T. of 0." represents an inversion of the -order of ‘occurrence of all
Pauli spin matrices ¢ ;rand‘ﬁkia*'énd“Lkib’“dre~¢orre5ponding'Particle
and antiparticle momentﬁm—energy-véctors."”

The requirement of invariance'ﬁndef.antipartiCle conjugation
imposes constraints on the M functions deséribing'proéesses in which :both
members of each‘particle-antiparticle pair occur in the same configuration,
‘initiai or final. Time-reversal invariance imposes constraints on the M
functions describing processes in which each particle océurs in both the
‘initial and final configurations. The énalyticity properties-allow these
constraints to be carried over to the M functions for processes.in which
" these constraints afe removed.,

It is sometimes convenient to express the variables (K', -K") 4n
the form (Kgé Kp), where the physical particle variables are in the first

group and the antiparticle variables are in the second. One may then write

M k%) = Vo REH K)VEo o,

where the contractions are now always én adjacent indices. Thé variables
represénted by the set (Ka; Kb) will be taken to»be normal-ordered.

The symmetry operations and conditions have so far been expressed
only in termé of the R fﬁnctions. Let'the‘épplicétions of these same
operations to the'M functions be repréSen%ed by Mp(Ka;'Kp), Mc(Ka; Kp)
and Mé(Ka; Kb){ whére the neﬁ way ofvwriting the variébies is inffbduced
for clarity in what follows. We define now the more complicated qpantities

-
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M (k%K) = k% M (& )Py
3 P o “p |
= K ge;, V K “.0. R (Ka;.Kp) V. K b-o"’besg S
P P o P P ,
= V2.5 R (Kaijb) K b.E
P P i
- 'V Ka-o.c_. Rp(Ka;_, Kb) \.,. Kb°0' ,
M- (K ) = Ko Mc(Ka; K°) k.o
g . ,
= Kaoo (V2.0 Rr(x%; Kb) V_Kb-d )c.Kb‘U
= Ko (V ¥%G R (K% )V KT ) Ko
= Ko Rc(Ka; ) Vi°.o ,
and | -
M (k% k) = M (K% K°)
T T :

= (Vo RS O)VE o )

U

VK. o Rp(K%; K°) ViPeo .

Inspection of the last lines in-each of these equations shows that the

conditions of invariance R = ob Rp s R= ac Rc and R = OT RT imply
M=¢g M , M=¢ M and M= g, M , respectively. These invariance
P35 c T . T T

conditions, which might at first appear cumbersome for the cases of parity
and antiparticle conjugation, are in fact quite easy to apply and lead

immediately to simple forms for the M functions satisfying the various
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.conditions,.as examples given{iﬁgsﬁbSeqpeht;gppéﬁdices shdw;,'“"
A double application. of any of the symmetry operations sho%s that
the phase factors wb.'caﬁ only be il; .The'bhaée factors need not be
strictly ihdependént of the vériablés (Kf, -ﬁ")A; parts corresponding %o
amplitudes that cannot interfere may havé Aifférént factors. Both signs
-may occur thefefore, and the set of M functions separate intd four parts‘
corresponding to the two signs Qf cp .aﬁd OT « . The sign of 9, is

fixed by the CPT theorem and the connection between spin and statistics.
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APPENDIX F

~ Form of the M Function for a Scattering

of Spin‘% Pdfticle by Spin Zero Particle

Relatiﬁistic invariance requires the M functions to 5é a.ssm of
~ terms each‘of which is the product of an invariant écalﬁr times a product
of spin operators kiéé and kj;s . These two types of 0pérators must
appear'alternatély and the former type must appear on each ehd. ‘Létting
x* and kb be the_ghzsical momentumnenergy.vectors associated with the
~particle and antiparticle variables of the spin_% particle, and letting

the correspopding‘mass be'unity, one obtains as the condition for spatial

reflection invariance:

M (x%; &°)

= k%% M (¥% k°) k °-%
P P b b
= k%o MK 2% k°)xPeo
LR
= £ MK K°) .
Using the relations
k0 = koo &nd  keokeT = keGkeo = 1,

p

one immediately obtains-aszthe general solution: .
M(K?, Kp) = Ved iz‘(kaoo)(v~3)(kbva) s

where v is a combination dffthéimoﬁeniﬁm;enéfgy‘veéférs of the problem.
The relations |

8- b3 + beG 86 = &0 beg +:be0 as0 = 2a.b
and |

8.0 beg co = il[abcl-o + a-0(b.c) = b-o(asc) + c.o(a-b) ,
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where [abc] = a p c’ uVQK are useful (60125 = + 1). The elementary
combinations with well defined cp and" GT are
y a . : _
fsl =K o0 + k g s o UT = 417, op_ = + 1 ;
- a b : ,
®, = kivg -k -0 , Op = - 1, | o? = -1
‘e, = n;o + k%0 n ~-kb- = + 1, o = +1;
.féﬁ = neov—‘ka.o n.o kboo s : O = o+ 1, o, = =~1 ;

where n = pa + pb is the sum of the physical energy-momentum of the
other particle. The contrlbutlon with n replaced by (p - pY) = (k -k
gives zero for s5 ) and su becomes twice 52 so that nothing new is

added. One cah also use

(2 + k) [(x% +x°) « n ]

(&® + k%) (x* + k°)
if the denominator is nonvanishing. The vector n' is normal to k2 + kb
and k& - kb and hence to k> and kb'. All other combinations can be

expressed in terms of these four forms and we may write

— — | B 1
M = Z ai si = X a N s ;2

where s'; represents the s; with- n' is used in place of n . Then,
with gi the operator obtained from s by the transformation g - -0

and T. of O. one obtains

..J; ¥ ~' y J— l' 1 : .
5 Tr s i M = a 5 N i 2

where
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’/»(ka " kb‘)(kAa‘,‘ N kb) .’
A e LGV

i
“ (e - KPS0

i\ (‘;;'.nfi_),('ka £ 1) + ) . )

‘The eXpressibns have been wfitten,ddwn in terms of -the physical
momentum energy vectors in.the case whére.the particles occur in both the
initial énd.final configﬁration. The vectors kbf and pb Occurriﬁg
here shéuld génerally be replaced by the negati#es of the corresponding
mathemaiical momentum-energy veqtdrs occurfing in the arguments.of M.
The expressions are then validvfor,ali the processes described by the M

function.
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APPENDIX G -

The System of Two Identical Spin % Particles

There are six combinations of the elementary spin operators 8,

that are invariant under spatial reflection and time reversal:

Tl = Sl Sl_": :
Uy =
3 © 53830
Tu. = sh Sk s
T5 = sl 55 + 35 s1 s
and
: T6 = Sl 33 - S5 Sl °

The remaining ten combinaﬁions change éign under at.least one of the two
operationéi The final combination T6 changés sign under a simultaneous
interchange of both the initial and final particles aﬁd is ruled out for
identical particles.’

There is also the possibility of using B-decay fofms, in which
there is a contraction on the vector index of operators 'ou or 39
appearing in the spin spaces of the different particles. In terms of the

combinations
t = k .0 + 'paoo = kb°0' + pboc s

= x*.0 - peo ,

and

d" = k-0 =~ pboc )
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convenient forms are
(U)(G): v°fT=+1) € = =13
(t o, t)(t Eﬁ t) op = +1, € = -1;
_(da'zﬁ db)(da Eu db) ’y | ' Op = +1 ;, € = +1;
(t 5 a®)(t 7T aP) + (a® 3 rt)(da T t) s s € = -1;
M B R ! ’ T ? d

and

a ~ b T~ .8~ C A b
da a t) + (4 )t d
(a” o, )t o, ) +( 9, X S, )

. ~ bb a& » ~ N }_a;"
+ (to-da)(da g %)+ (% t)(d d
(63, @)@ T, 6) + (85, (a5,

Op = + ; sy € = + 1 ;

Wheré the metric (+,-,-,e)‘ is assumed and,whefe é 'ié the sign change
underrinterchangevbf two initial (or two final)_particleé. This interchange
induces the transfqrﬁatiOn. K s pb (or X° eﬁjﬁa)v_and an interchange

of the initial (final) spin state. The effect of the latter can be

obtained using the rearrangement.theorem .
(o lo,] Do lg, | @) = - (Galg ] ace lol oy -

The sum and difference of each of these terms with the one obtained from
it by,application'of the transformation. 5 are elementary spin functions

that have well-defined values for o Orp- and . € .

P J
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APPENDIX H

The Location of the Singularities Required by Unitarity

With the substitution of the definition
.ﬁ(K':,A-E“_) - e, B
the unitarity relation becomes.
IWKU-iﬁ + WKQ iﬁ %”-fiMKu-i)K% Mk, &),

a form that is suitable for analytic continuation from the originally real
values of the momentum-energy vectors. The right-hand side contains a sum
of terms each of which coﬁfains a factor of the form

b
ak,

j'l;[ (Tn)-l: omy o Q(kio) 6(k-i2 - miz)

(2n)* 8% (2, - 1) .
‘The delta functioﬁs;represent the mass éonstraints and the energy-momentum
conservation law, and T is the sum of the'(external) momentuﬁ~energy
vectors in K' - or K" .

Because the internalvmomentum vectors ki are constrained to,Pe
real, the factor above vanishes for ™ < (= mi)2 but not for > fi_mi)z
and introduces, genérally, & singularity at T2 = (= mi)2 into one éf’both
of  the terms on the left of the unitarity relation. It may be assumed for
the purpose of the,construction that the singularity occurs in both terms
on the left. The other alternative would lead only to a smaller set of
singularities and we wish to obtain the largest possible set.

The singularities occurring in the various expressions of the

above form arise purely from the limits of integration in the unitarity

relation--those that would occur even if the M functions on the right -of
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the unitarity relatibn were free of singularities.: Singularities in:these
latter would lead generally to additional singularities in the M functions

on the left. If one substitutes the singular parts of the M functions

obtained by the above first épplication of unitarity back into the right-hand .
 side of the‘gnitarity relation and proceeds by iteration,>exp?es$ions of

the form

J(II- 4———H m, e(k ) §(k - mig) {} (En)h S(Zj - Tj)

are ob'tained° Hére ij and Tj are subsums over the internal and external
momentum-energy vector respectively, and the S(Zj - Tj) give momentum=-
energy conservation in %he various intermediate states.

The iterative processes may be representéd_diagr&mm&tically, For
instance, Fig. H-1 gives as one possible sequence. The lines represent
the particles (onwthéir mass shells) and the steps represent the
substitution of'particular terms from the unitarity relation° In the
second step, contributions to the new M functions in which certain of the
particles do not scatter have been displayed. The singularities coffesponding
to all possible finite sequences will be called the singularities reqﬁired
by unitarity.

The momentumaenergy variables are originally cénstrained to be
>real° As we are interested in singularities also for complex Ti , the
expressions above must be put in a‘form permitting analytic continuation.
In particﬁlar, the,delta‘functions must be removed.

Near the point Ti = 0 the form is, for nonmassless particles

(mi > 0), clearly regular.‘ The analytic continuation will be started

frbm this region. Because N > M , the M momentum-space delta functions
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'cah be used to eliminate the last M momentum integratiohs‘(by an
appropriate reordering of variables, if needed). The energy-conservation
delta-functions may be replaced using the relation

2 8{x) = 1lim (e - O+) 26/(x2 + e2) , and the energy integrations over

replaced by contour integrations clockwise about

2)

' T 2 2
2n e(ki ) S(ki - m )

°

the poles at. kio = TV(HE? + Eﬁg = o, of i/(ki2 - m
‘The functions Eé/(x2 + 62) give dipoles in the planes of the
various energy variables ‘kio , the locations of which depend on the
positions of the contours in the remaining energy variables, and on the
energy parts of the external variables Ti . For 'I‘i = 0 +these conservatiocn
dipoles lie in the left-half energy planes, as'long ;s the contours are all
confined to the right-half planes. The contours may therefore be deformed
to run up Jjust right of the imaginary axis, and be completed with la;ge
semicircies,to the right. The dipoles then lie just to the left of the
imaginary axis, with extensions to the left corresponding to the semicircles
toe the right. If the energies of the Ti are now increaséd, the dipoles
move rigﬁt and the contours must be shifted right to avoid these advancing
singularities. Singularities in the form cannot occur until the Ti
becomes such that it is no longer possibie to distort the contours to
avoid both the advancing dipole singularities and the fixed mass
singularities, for arbitrarily small € R
For a visual undefstanding of the boundary of the singularity: free
region it is helpful to bear in mind a plot of the mass s{ngularitieso

These lie at the simultaneous solutions of

(Re %) & (Im©)? - u° + (Re)® + (mmx%)°

i
=
)

5
-
8

=

Re k° Im x°
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MU -24436

Fig. H-1. Typical development of a diagram by iterative
substitution of singular parts. , :

RekorImkg

MU =24437

FigA. H-2. B'oundary of regular region.

. -MU-24438

Fig. H-3. Intersection of contours with Im k0 = Reb = 0 manifold
at a vertex singularity.
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Figure H 2 represents an hyperbola of revolution about the vertlcal axis,
Whion'represents either Im kO' or. Re k ; The interior, or,funnel,_reglon
of theriagramgis;free”of mass singularities. For T, = 0 wthe.important
parts of the conrourslrun up the vertical axis. If, with increasing Ti R
theheonﬁonrs can be kept inside their respective funnels, for arbitrarily
small € B then the forms remaln 51ngularity free.

For the spec1al case 1n vhich the vector parts of the f can be
- takén to vanish, it is possible to simultaneously keep all contours in the
vertical planes Im k = 0 , for which the mass singularities extend least
far to‘the leftd The point in Ti' space at which the contours can no
longer be confined to the funnels is at the threshold Tj =-Zj mo. If,
on the other hand, the imaginary vector Parts of the Ti are nonVaniShing,

~ the various contours cannot all be confined to the planes Im = 0, and

5y
m,

mass singularities extending below the threshold energy k ° . can

i
become important. For instance, for the simplest vertex part, the 11mit1ng
point is represented in Fig. H=3. The solid veotors represent, to within
a sign,'the points where the contours pass’through;the'region Im k° = Re k=0,
and they are required to lie inside their respective circles. The dotted
lines represent the external momenta, If the dotted figure can, by an
appropriate translation, be made-to lie with each of its vertices inside
its associated circle, then the form remains nonsingular° This provides
a direct geometric derivation of the triangle condition of Karplus, Sommerfield
and Wichmann.23 The same arguments carry over to more complicated diagrams.

In the limit € - O only points simultaneously in the neighborhood
of all the conservation dipoles can contribute. One can deform the contours
- so0 that they always stay'Eloseﬁﬁo'the points at which all the conservation

dipoles overlap and consider, therefore, the important parts of the contours
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to be constrained by the conservation laws. It is when the.contours so
constrained cannot be kept away_from.the‘mass singularities that singularities
in the forms can occur.

The conditions on the k, that must be satisfied at a singularity"

i
are the‘conservation laws; the mass constraints and the condition that it
is_ﬁot possible to distort the contours so as to maintain the conservation
laws but_avoid the mass singularities.. Variations of the ki consistent
with the conservation laws are conveniently expressed using Feynman loops'
(closed loops in the diagram). It is possible to choose the signs of \.
momentum-energy vectors so that the vectors point in the directién of the

closed loops, if these are also chosen appropriateiy. If the variation of

the momentum of the jth loop is qu , then the variation of the vector

k., 1is
1

: 5ki = Z ’eij 5qj )
where the. eij ‘are coefficients equal to one or zero, depending on whether
or not the jth loop passes along the ith line. The variation of quantity
ki2 is then t

8k,° = 25k, e, b
A T B T N

where the :qu. can be chosen arbitrarily.
The EkiQ can be fixed arbitrarily by an eppropriate choice of the

qu R unless it is possible td find some ai such that
Z a k e, =0 SR (811 j) ,

@, # o (some 1) .

(condition A)




UCRL-980k

.;:70-v

This is the condifion'thét the variations sékie be linearly dependent° If
" condition A cannot bé satisfied,>theﬁ it is possible to fix the Bkiz
arbitrarily and thereby to distort the contours awéy from the mass
singularities withouf'conflictiﬁg'with ﬁhe conservation""‘requirements° The
necessary condition for é singularity is, thereforé, the simultaneous
‘validity of the conservétion laws, the mass constraints, and condition A.

27

This is just the result obtained by Landaugh and others as the neceséary
condition for singularities in the termé of the pertufbation expansion of
field theory.

If condition A is satisfied, the 6ki2 canﬁot be arbitrarily.fixed.
However, it may still be possible to distort the contours away from the
singularities. For instance, if the contours are pinched by conservation

2 5 then the singularity of

singularities coming from the side kig < m,
the form can -occur only if it is not possible to make all the Bki2
simultaneously negative. This will be the case if it is possible to

satisfy condition A with «, > 0 .

i
The dimensionalify of the manifolds of singularities are determined

by counting unknowns and equations. There are N unknown vectors ki 5

and M vector equations from the conservation laws. There are N-M vector

.equations in condition A, so the number of vector equations equals the number

of vector unknowns. There are N scalar equations, the mass conditions,

and N variables Q of which one is an arbitrary scale factor. Thus

there is one more equation than &eterminable unknowns, and one constraint

is placed on the external variables. Since the equations are relativistically

invariant the locations of the singularities depend only on scalar invariants

and the manifold of. singularities is a manifold whose position is defined in
terms of scalar invariants of dimension one complex variable less than that

of full space,ug
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APPENDIX I

The Physical Sheet .

The equations giving the locations of the singularities required
by unitarity are defined over the entire space of the Ti“ However, the
solutions of physical interest are those in the manifold defined by the
mass constraints. Thts instead»df starting thé continuation of the function
giving tﬁé singularities from Ti = 0 , which may not be in the physical
manifold, it islmore appropriate to consider only those Ti‘ in the physical
manifold. In this manifold the cuts specifying the physical sheet are
defined as the locus of:siﬁgular pdints under the 9cgie_transformation
mi ~amn , where ‘m, are the internal masseé and @ is a scale parameter
ranging from infinity to unity. As « decreases the mass singularities
converge, énd_the points Ti(a) are defined as the valﬁés of Ti for
which the pinching of contours cannot be avoided as the value q is assumed,
The_cuté are the locus of péints Ti(a) for « real and greater than
uni@yo- | “

“In defining the M.funétiéns, the no-scattering parts of the S
functions were“identified by their dependences on the voiume of space-time,
and were séparated out. More generally, the S function can be separated
“into many parts.on the basis of volume dependencé. The contribution to
the scattering function correspondiné to processesAin which various subgroups
of pérticles interact only among themselves'will be e#pected to ha#e one
added factor of the volume of space ~time for each division into subgroups.

. This comes from the integratlon of the interaction center of each group
over all of space»time. Correspondingly, in momentum-energy space. there
will be a separéte conservatioﬁ.iaw'constraint cdrrespondingvto each

subgroup. The M function is then separable, generally, into parts constrained
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by different addedvconservatidn’ia%é?F‘These parts are defined over different .
manifolds and the physical sheeffisfé?éollection of physical sheets, one for
‘each maﬁifold. :

The analyticity reqpiremeﬁt aiidﬁs the unitarity equations for the
various parts of the M functions to be iSOlatéd'and treated separately. Thus
the M function appearing on the left of the unitarity relation can be
considered the nonseparable part of the indicated M function; and the
contributions on the right cofréSpondingly limited._ The remaining
contributions: to the_unitarity'relatipn will be identically satisfied if
the unitarity relations for all nonseparable parts are satisfied, provided

-the‘separable parﬁs ofvan M function are the products of the nonseparable
parts of ﬁhe M functioﬁs correspOnding to the appropriate subgroups. This
decomposition law can be considered either an anzatz or an added postulate.
But it probably followé from the postulates alfeady givenbv

In the coﬁstruction of_the singularities required by'uﬁiéérity
the d-function expfessions for the density of states factors havé:béeﬁ
expressed as a limit € - O of functions defined for all Ti'. »This
alternate expression gives'the>basis for practical calculations based on
unitarity.

The unitarity relation given in the text was derived using the

condition that SO(K', -X'), the no-scattering part of the normal ordered

S'function, was unity. More generally, the unitarity relations would read
‘| . i X T | ' ) * %,
M(K', -K") 5, (K", -K"). + S,(K', -K') M (K", -K')
= - 3[ M(K’, -K) K- M (K", -K) ,

and
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~T3=

I4

R
Mxe, R) s Nk, K)o+ s kv, R) MUk, R)

- 'jg MK, -K") K- M (X, -K') ,
where - SO(K'gihﬁ') s noﬁ'permitted to be an'arbitrary p'hase'factorv For
K' = K" , application of the CPT transformation and inversion of order to
each M function takes the first form into
-1V ¢

£ {M(K"T_, “Kig) S, (K, Rr) 4 os (kr, R MRy, -Krp)

C - f Ry o s R, op |

where K; Tepresents the set K with trensposed order. This is almost
the same as a special case of the second form of the unitarity relation

and one can deduce ‘that
~ ~ N : .
K =K1 = 1 =K1 - 3
%WT,xT) %m{ K') (-1)7 o(Kk') .

If one takes the SO(K‘, K1) to be unity, wvhen K' contalns only particle
veriables--no antiparticle variables--then the only solution consistent

with the decdmposition law is
~ A(K*)
sk, K1) = (MK

where A(K') ~is the number of abnormal antipartigles in the set,'K' .
Here it has:beén aésumed that either the symmetric or antisymmetric case
obtains and the abnormal particies afe those having the abnormal symmetry
relative to the interchange of the particle and antiparticle variables.
This form of the unitarity relation, with the '(-l)A(Kf) on the-left,
leads fo.a completely different type of analytic structure. Consider an

analytic continuation from the case where K' = K" contains only particle
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variables, to the case- where ong;abnormalffinglzbérticle has been carried
over to an initial antiparticleO\ In this second éase A(K') and A(K")
differ by unity and it is the differencefrather'than the sum of the two

»M functions that appears on the left. If there is a region below both
thresholds where the right-hand sides of both equations vanish, as for
instance occurs in the'écattering of the smallest mass particles,  then both
the sum and difference of the tﬁo M functions vanish and hence so must the
M functions themselveé; Also, on theJrigﬁt of the unitarity relation the
analytic continuation takes various‘contributions into contributions to

the new unitarity relation, but éometimes with the wrong sign. These
remarks suggest that the abnormal statistics are inconsistent with the
postulates, even without the requirement that self-conjugate combinations
of amplitudes cén be considered observable. :
A(K")

If one uses an,indefinite metric of the form (-1) , then the

)

1 p .
above-mentioned factors (-l)A(K occurring in the (pseudo) unitarity
relation are moved to the right-hand side where they produce no conflict

with analyticity.



ol

UCRL-9804

~ APPENDIX J

1. Notes on Spinor Analysis

The following notes on spinor analysis were valuable to.readers of
a preliminary draft.

Four-vectors and 2-by-2 matrices can be placed in a one-to-one

‘correspondence by the relationi

. o - .
V = e 0“ v o, + vVeo ,

where ¢ 1is the Paull spin matrix vector and % is the unit matrix. The

determinant of V 1is

def vV o= (vp)2 - V.. = v o,
where v, = v° and Vi ‘= -v" .. Consider a transformation
V+V' = AVB., If detA = det B=1 (A and B unimodular), then
det V = det V' , and  v" v, o= vk Vlu' . The transformation leaves

'squéres of all four vectors invariant. It consequently leaves inner -

products _v“ wu-_invériant; as one sees by coﬁsidering the squares of
v+w and v - % o o o |

If the matrix V Iis Hermitian, then the vector v 1is real. The
regquirement that Hermitian matrices Stéy Hermitian under V-é'V' demands
B=A ;- where bar denotes Hermitian conjugate. The transformations
generated by V- V' with B = A éfe the real Ldrentz transformations.
If~th? ¢onstraint; 3 = A is}relaxed;_éne_cbtains the.complex Lorentz
transformations. o | )

The Lorentz transformation matrix LP;(A; B) 1is defined by

Y

and it is clearly a linear transformation.
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Unimodular 2-by-2 matrices have six degrees of freedom and can be

written in the form

wy

A= em(F oo o)) - em(ba-g+3x-9,

where

ny - 26}0 , and 2 = LIk

The matrix B will be defined as

O
ol

B = exp( - = Q0 +’

emar

rog -

Then for real e“y one has B = A , and real Lorentz transformations are
generated by real 6uv . With complex e”’) the A and B can be
arbitrary independent unimodular matrices.

The real Lorentz transformation generatéd by the unitary

Ar = exp [ % f - ﬁLJ ; With real & , generate pure rotations. For
example, .
Ar = exp [ 5 ) 0 ] = cos 5 * 1og sin 5
gives
. .
vy = Vl cos e’ + Vo sin & ,
and
L - i .
Vi, = v, cos QM v, sin e

The pure time-liké'réal'Lorenfi transformations are génerated by

the Hermitian (not unitary) matrices

o

At = exp |

)
v eone

e L . (S
n)] = cosh.§:5+’ (g_:hgz sinh 5 -

»
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This gives .
o‘]'j fo} ’ ’ . o
v = v cosh® + v .n sinh & ,
and
v' «.n = Vv'.+«n ‘cosh év + v sinh ©. ,

the other components being unchanged. The square of -At is

g

_ At = exp [ © g“«-gb] = cqsh 0 + :29‘ E,?inh e =>.T "

where 7 = (cosh ®, n sinh 6) is the vector into which a unit time-like

vector transforms under the acfion of the_transformatioh.' The notation

A, = Vor-0 is often convenient.

t
'Introducing_the'matrix'

one verifies (Pau‘_l;,' Lectures, University of California, 1958) for any

2-by-2 matrix,

]

M= (¢n)

. the identity

MTCM = CdetM = ¢(ncCt),

where (n C ) is the real inner product. It follows that under: ' -

§~ & =Af, n->17'=An the form (n C &) is invariant.
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It is conventional to write C-l with upper indices and to define

-1l.ab . . ‘ab
) €

e = (C E, = g, -

&, This provides the basis

Then the above invariant takes the form -na 13
for a spinor analysis formally similar to tensor analysis. The two-valued

indices are called spinor indices, and those associated with the transformation

matrix B according to E-* E' = @‘B are dotted:
A AL AD
g 8T = BBy -

Thus the original matrix V will have matrix elements labelled Vaﬁ s

and the Pauli spin matrices cu -out of which it was constructed will havgﬁ
matrix elements cgag .
Carrying along the indices is rather tedious. It is convenient

to construct an equivalent matrix algebra. For spinors transforming as

o N . N\

E->E' = E B we shall define
~y -l‘ A
g = C g .

Then &' = ¢t gt - ¢t Btr'C T = BT , where for any matrix M,
Mo ¢t e = ) taetm

the last part coming from the Pauli identity. For the matrices B , with

det'B = 1 ’ B = B'l s and for real rotations, which are given by
unitary B = A R §r = Ar : Therefore, . £ and E transform the
same way under real rotations, although differently in generél° In spinor
notation, the coﬁponénts of the S§in0rs' fz and' E :ﬁoﬁld have lower
undotted and upper dotted spinor ihdiéésArespéctiveiy. The definitions

above also imply that

~ "'l tI‘ ->. ab
o] = C o C = o -0 = g .
moT M ( 0’ =9 B
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2. Spinor Functions

Consider M(v)_ = V.0 = LR W v . Then by definition:

A Mv) = A'M(-v) B .

Generally the operator As .applied to a matrix M inétructs one to

maltiply each spinbr index of M by the transformation matrix assoclated

“~with that index. From the relationship

AM(v)B = AVB = V' = My')
- M) = 6 . TPL(4, B) v’
it follows that A 6B = o L(A, B) , which can be considered the definition
of L(A, B). Also A M(v) = M(Av) , where now AV = Iv .

Notice that equations of the form
Ve =1 amd VY = &

are invariant under Lorentz transformations, since

E> &' = AE, Tt = By,
V+V' = AVB, V-V = BVX,
and ’ .
g = B-l’ K.:: A-l -
3. Parity

The parity operation is generally represented by going to a 4-by-k

representation. Let
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T EEE \
7/ = R } = Y | M - o a“ ‘
0 \' ,f! \ o /
7 p./
u .

define v . Then space inversion is represented by

P = l‘ : = 6
\ I 0

as one sees by inspection. That there is no matrix A cbrresponding to
parity follows from the fact that anyvmatrix A'cdmmuting with the rotation
operators, Ar , must commute all three Pauli o, and hence with the time

transforms At'.

L. Dirac Equation

The free-field Dirac eqﬁation is
+ +
3 @ U(k) = pmU(x),

which in tefms of

[ &(x)

T(x) =
' (k)

becomeé the covariant eqpations
(k - 0) &k) = ma(k) and (k- o) n(k) = m &(k) .

The introduction of ¢ defined by -

tk) = a) ¢ = \x-omt g,

gives for the solution
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) = K g = [kt 4
in virtue of the 'identity
v (k o)k +0) = (x« o)k - E)» = m .

The free field solutions of the Dirac equation are therefore

a0\ /o™ ¢
v(k) - B e 1= M) o)
| +Emg/ & V- sl g/ -

where 0Zi-'l?(k) is the Lorentz transformation that takes-sginors from the

T

frame in which the particle is at rest to the frame invwhich'it has

momentum-energy k'° The charge conjugate solution is

~

o ¢ - n(,kj c ¢

V(k) = U(k) = EU(k) = | = LK)
¢t o - T(x)/ -C ¢
which has the same transformation properties as U(k) If only'real '

Lorentz transformations are allowed, U(k) can be taken to be U (k)
The.spin vectors ¢ are not spinors. They are the spin vectors in that
rest frame of the particle. obtained from the general coordinate frame by

the Lorentz transformation °Zf(k)

<

5. Connection between Field Theory and'the‘NhFuhction Formalism

In field theory one writes _

fz,—d—l:‘m, 2n 8(k% = n0) o(kg) 2m

x Y [u k006 ™ a(k,0) + V_(k,0)e" I B(k,0) |
0=1,2 '

v (k) =
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where
o) Binen ) = 2 (@07 sl- k00,
= ( o(k,0) B(k';0') )
. o
and

(alk,0) ¥x) ) = U (k,0) et1EX

{(Wx) B(x,0) >(') = Vike) e

The dependenée of the covariant Feynman scattering function.on W(x) is
e v
J ¥W(x) B N(x)dax ,

and the correspondihg coﬁtfibution to the SCattering matrix for a final

particle (k,o) is

(s (0) [ ¥ ), B H(x) '

kil

| //g*<k,o) /e (x)
‘U%(k,a) B N(kx) = \ ' B (

\ 77 (x,0) (k)
\n: o {] y
- M) V) + THk0) (k)
- 0 B0 s P00 0 =

AC) [\/ko (k) + VE-T g'(k)]
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where we have taken m = 1 . Thus

Voo 5+ VEIS w0,

R(k) = _
and _ | v oo
Mk) = Vk-o Rk = (k) + ko (k)

The ’gf(k) and n'(k) -aiefanalytié;fuﬁétions of k ,vénd cdntinuatisn gives
M-k) = (k) - ko n'(-k) -

The % function,fpr‘the antiparticle is‘therefore  _
V x oé M-x) = m £'(-k) - Ve ’_a.- nf(él::)' .

Thié is fo bevéompared‘to | | | |

[ (¥(x) B N(x) Bk, o) >od“x = '--V*k'k,-o) B N(-k)
k-0 .,G ¢*(o) _

- ] (k)
- Vi - 3 Cv‘¢*_,(c) |

.
1

]

¢%(c) ct* [ Vk + G _§‘-'(-k) - Vk - o n'(-k)] .

The function océurfing in field théory is interpreted by:dotting frbm the
left on .§_‘;9,5 whereas ours is interpreted by dotting from the right on

-8 + 0 . The extra fgctor 'Ctr: compensates for this difference.

—
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