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Abstract

Variation-Aware Modeling and Design of Nanophotonic Interconnects

by

Rui Wu

Optical interconnects have started to replace electrical interconnects in the communi-

cations between racks and circuit boards with potential benefits in bandwidth, delay,

power efficiency, and crosstalk. Silicon photonics has emerged to be a highly promising

enabling technology for the short-reach nanophotonic interconnects because it offers fa-

vorable CMOS compatibility and high integration level. The fast-growing complexity of

photonic integrated circuit (PIC) and close electro-optical integration call for computer-

aided design (CAD) for integrated photonics, and electronic-photonic design automation

(EPDA) including accurate behavior models and efficient simulation methodologies for

integrated electro-optical systems. Also, the nanophotonic devices are highly sensitive to

fabrication process variation and thermal variation effects, which requires proper mod-

eling, optimization, and management schemes. To address these problems, this thesis is

dedicated to the following two tasks: (1) compact modeling and circuit-level simulation of

nanophotonic interconnects, and (2) power-efficient management of the variation effects

in nanophotonic interconnects.

The first part of the thesis develops compact models for key components in nanopho-

tonic interconnects including silicon microring modulators, diode lasers, electro-absorption

modulators (EAM), photodetectors, etc. These compact models are developed based on

their electrical and optical properties, and are then extensively validated by measure-

ment data. The model parameters are extracted from common electrical and optical

tests. Implemented in Verilog-A, the models are used in SPICE simulations of optical
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links, whose results again agree well with measurement data. The compact model library

and the simulation methodology enable electro-optical co-simulations and optical device

design explorations in the circuit-level.

In the second part of the thesis, we propose modeling methods and power-efficient

management schemes for the process and thermal variations in optical interconnects. The

proposed adaptive tuning technique performs on-chip self-tests and adaptively allocates

just enough power for link operations. The technique saves significant amount of power

compared to worst-case based conservative designs, and scales well w.r.t. variations

and network size. We also design power-efficient pairing algorithms for microring-based

optical interconnects. Our algorithms optimally mix-and-match microring-based devices

to minimize the power consumption for tuning. The algorithms are tested on both

measured and synthetic data sets, demonstrating promising results of power reduction

and scalability for handling a large number of devices. Lastly, we decompose and analyze

wafer-scale spatial patterns of process variations in microring modulators. We further

investigate the correlations between the spatial patterns and fabrication process steps,

which is valuable for understanding process variation sources and improving fabrication

processes for uniformity.
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Chapter 1

Introduction

The fast increasing complexity of optical interconnects and its sensitivity to process and

thermal variations pose the great demand for compact modeling, efficient simulation, and

variation management schemes. This chapter introduces background of optical intercon-

nects, motivations of the thesis work, and summary of some related work.

1.1 Background and Motivation

Optical communication posses high bandwidth, high data rate capacity, small prop-

agation delay, low power consumption, small crosstalk, and high tolerance of electro-

magnetic interference over traditional electrical communication. With the development

of optical fibers with low loss, and semiconductor lasers in the 1970s, optical intercon-

nects started to replace electrical interconnects. In the past several decades, the deploy-

ment of optical communications has been spread from long-haul backbone networks to

metropolitan area networks (MAN) and local area networks (LAN). In recent years, fiber-

to-the-home (FTTH) infrastructure are being deployed to address the bottleneck of last

mile to customer. Nowadays, optical interconnects are starting to penetrate into the the
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short-reach datacom regime [6]: Intel just rolled out its silicon photonics based optical

transceivers for data center applications [7]. IBM has been devoted to bringing electrical-

optical interfaces closer to processors and memories for over a decade through the devel-

opment of photonic device and packaging technologies [8]. Oracle’s 3D macrochip system

enables intimate integration and co-manufacturing of photonic chip and electronic chip

[9]. Already achieving the success in rack-to-rack communications, optical interconnects

are highly promising for the board-to-board, chip-to-chip, and eventually core-to-core

communications. The evolvement of the optical interconnect applications is illustrated

in Fig. 1.1 .

Figure 1.1: The evolvement of optical interconnect distance and production volume.
(Courtesy of Intel)

As the distances of optical interconnects decrease, the production volumes grow

rapidly, calling for smaller optical device size and higher integration level, and driving

the need for nanophotonic devices. Meanwhile, smaller interconnection distances require

closer integration of electronics and photonics. Silicon photonics is emerging to meet

these demands because of its CMOS process compatibility, manufacturing cost efficiency,

and some good optical properties. By sharing the same material with CMOS circuits,
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silicon photonic devices can be fabricated side-by-side with electronic circuits (a.k.a.

monolithic integration) [10]. Meanwhile, the legacy of the mature CMOS processes could

greatly reduce the production cost of silicon photonics. Additionally, silicon/silica mate-

rial system has high refractive index contrast and is transparent in optical communication

wavelengths, enabling silicon waveguide with low propagation loss and low bending loss

even for small bending radii [11]. The electro-optical effect (a.k.a. plasma dispersion

effect) [12] in silicon makes some silicon based electro-optical modulators available, such

as silicon microring modulators [13] and Mach-Zehnder modulators [14] that are based

on silicon-on-insulator (SOI) substrates, and are all CMOS process compatible. Though

it is hard to develop light emitting and amplifying devices on silicon due to its indirect

band gap, several workarounds have been developed to wafer bond or directly grow III-V

materials on silicon [15, 16].

With the CMOS friendly silicon photonics technology, the paradigm for future chip

would likely be a hybrid electronic-photonic integrated circuit (EPIC) consisting elec-

tronic processor and memory parts, and optical transmission part. Fig. 1.2 shows a 3D

view of a silicon photonic chip including photonic modulators, waveguides and detectors.

These photonic components are fabricated with electronic transistors back-to-back.

The ever increasing integration level in short-reach optical interconnects drives more

and more components integrated on one photonic integrated circuit (PIC). Fig. 1.3 shows

the number of components on one PIC grows exponentially over time, which somewhat

follows the Moore’s Law of the microelectronics regime. The fast growing complexity of

photonic integrated circuits (PICs) drives the need for photonics design automation tools,

including trustworthy photonic circuit level models and simulators, photonics property-

aware automatic floor planning [17], layout and routing [18], design rule checking (DRC),

and logic vs. schematic (LVS) [19]. Photonics designers need circuit and link level

PIC design, layout, and simulation tools. Meanwhile, electronic circuit designers need

3



Introduction Chapter 1

Figure 1.2: IBM’s silicon photonic chip. (Courtesy of IBM)

accurate compact models of photonic devices to design the complex PIC drivers. All

of these demands call for proper computer-aided design (CAD) tools for photonics and

electronic-photonic design automation (EPDA) softwares.

Thermal variation and fabrication process variation problem significantly arise in

short-reach optical interconnects. The performance and characteristics of optical devices

can highly depend on its operational temperature. In conventional long-range optical

interconnects, optical devices or modules can be individually cooled by dedicated tem-

perature controllers because the conventional optical modules are individually packaged,

and the long-range communications can afford the expense and power of the temperature

controllers. In contrast, the nanophotonic components in short-reach optical intercon-

nects are highly integrated and are even closely placed with electronic devices, which

makes dedicated temperature controllers impossible. Therefore, it is desired to accurately

model and manage the device performance with complicated temperature fluctuations in

a electro-optical integrated system.

Fabrication process variation is another sever problem for nanophotonic devices, since
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Figure 1.3: Number of photonic components integrated on one photonic chip over
the past decades for three integrated photonics technology platforms. (Courtesy of J.
Hulme)

the photonic device dimension enters the hundred of nanometers regime, and the absolute

process variation amount takes a large portion of the device dimension. The process

variations can cause performance degradation or even failure of the optical devices and

systems, and therefore need to be modeled and managed effectively and efficiently.

In summary, silicon photonics based short-reach optical interconnect raises problems

in CAD for photonics, and management of thermal and process variation effects. This

dissertation focuses on these two problems.

1.2 Overview of Optical Interconnects and Devices

Fig. 1.4 illustrates an optical interconnect structure including one transmitter (Tx)

and one receiver (Rx)1. The CMOS die consists modulator driver, and receiver circuits.

Processor cores or memories could be placed on the CMOS die in on-chip or chip-to-

chip interconnects. In this scheme, light is generated by an off-chip multi-wavelength

1It can be easily extended to multi-Tx/multi-Rx structure or network using optical switches.

5



Introduction Chapter 1

light source, and then coupled onto chip by a grating coupler. To avoid the coupling

loss, on-chip heterogonously integrated III-V on silicon lasers could be utilized [1], while

the heterogonously integration will increase the process complexity. The light propa-

gates through the silicon waveguide, and is modulated by an array of silicon microring

modulators. The microring modulator is capable of modulating the light at a specific

wavelength. The colors of the microrings in Fig. 1.4 represents various wavelengths. Sim-

ilarly, in the receiver side, light at a corresponding wavelength is routed by a microring

filter to a photodetector (PD). These wavelength selective microring structures imple-

ment wavelength-division multiplexing (WDM) without dedicated (de)multiplexers. The

Tx and Rx could be on the same chip, on different chips, or different boards, connect-

ing by on-chip waveguides, on-board polymer fibers, or optical fibers to achieve on-chip,

chip-to-chip, or board-to-board communications.

Figure 1.4: A silicon photonics based optical interconnect structure.

Here we introduce the SOI-based silicon photonics platform, and several selected

photonic components.
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1.2.1 SOI Platform and Silicon Waveguide

Silicon photonics usually utilize SOI wafers to fabricate photonic components, since

the light confinement needs a high refractive index core and low index claddings, and

the buried oxide (BOX) under the silicon layer in the SOI wafer can server as the lower

cladding. The upper cladding could be either air or SiO2. Fig. 1.5 (a) shows a silicon

waveguide fabricated on the SOI platform, which serves as a basic building block for

other complex silicon photonic components. The waveguide is defined by partially or

fully etching the silicon layer, constructing wire2 or rib waveguide. The partially etched

rib waveguide needs careful control of etch depth, while it has the advantages that the

rib could serve as the current path in active devices, and it is more tolerant to sidewall

roughness and less likely to have resonance splitting in microrings than the fully etched

waveguide. SOI wafers with various silicon thicknesses are being used, for example: 220

nm in [20], 250 nm in [21], and 500 nm in [1].

Figure 1.5: Cross section of a silicon waveguide and its optical mode illustration

Fig. 1.5 (b) illustrates the optical mode profile (or the optical power distribution)

of the silicon waveguide. Silicon wire or rib waveguide could support certain number of

discrete optical modes, depending the waveguide index profile and geometry [22]. Each

mode has its effective refractive index neff , from which the propagation constant could

2a.k.a strip waveguide
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be calculated. Usually on-chip waveguides are designed to be single-mode such that it

supports only the fundamental mode.

1.2.2 Laser

Silicon is not suitable for light generation due to its indirect band gap. III-V materials,

the traditional material to provide optical gain, could be bonded to SOI wafers. Fig. 1.6

shows a heterogenous III-V on silicon distributed feedback (DFB) in-plane laser and a

microring laser. III-V material pieces are bonded to pre-patterned SOI substrates through

low temperature bonding process[1, 2]. An InP layer helps the crystal transition between

the III-V quantum wells and SOI. The III-V material layers generate optical gain when

current is injected into the quantum wells. Optical taper structures allow the light to be

evanescently coupled into the III-V layers from SOI waveguides (i.e. the optical mode

appears both in the III-V and the silicon regions). In this way, light is generated in the

III-V region and transferred to the silicon waveguide.

Figure 1.6: 3D view of in-plane and microring heterogeneous silicon lasers [1, 2].

Researchers also grow III-V quantum dots on SOI substrate [16, 23]. Quantum dots

are investigated for direct growth because they could mitigate the unwanted dislocations

caused by material difference between compound semiconductors and III-V and silicon.

Additionally, quantum dot lasers promise high temperature stability and low threshold

8



Introduction Chapter 1

current density due to three dimensional carrier confinement compared to quantum well

lasers.

1.2.3 Microring-based Modulator, Filter and Switch

A basic microring resonator consists of a silicon microring waveguide and one or two

straight waveguides. Fig. 1.7 (a) shows microring resonator with an input waveguide and

a drop waveguide. The light is injected into the input port and is coupled into the mi-

croring waveguide. When the the optical path length around the microring is an integer

number of the light wavelength (i.e. the resonance condition is met), the constructive in-

terference lets the light energy build up within the microring. Consequently, the through

port energy reaches a minima and and the drop port energy reaches a maxima. This

wavelength selectivity property could be used to realize a modulator: In Fig. 1.7 (b),

current is injected into the microring waveguide by p and n doping, such that the silicon

index is changed and resonance wavelength is shifted, achieving on-off keying modula-

tion. Additionally, the routing property of microring resonator makes it very suitable as

the building block for complex optical switches [24, 25].

Figure 1.7: (a) Microring resonator, (b) microring modulator, (c) an SEM image of a
microring resonator [3].
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1.2.4 Photodetector

Silicon photonic interconnects usually use CMOS process-compatible Ge or SiGe pho-

todetectors to convert optical light to photocurrent [26, 27]. In p-i-n based photodiodes,

input light could generate electrons and holes in the intrinsic region. With negative bias

on the diode, the photocurrent is approximately proportional to the input light energy.

The weak photocurrent is usually amplified by receiver circuit.

1.3 Literature Review

There have been a number of prior studies on device-level modeling, and link- or

system-level design space exploration of optical interconnects. This section summarizes

selected work on device-level and system-level.

1.3.1 Compact Modeling of Photonic Devices

Similar to transistor models, compact photonic device models are needed for accurate

link-level simulations of complex optical interconnects. Kononov [28] presented several

simple photonic device models. These models were further implemented in Verilog-A

by defining new optical natures to describe the optical magnitude and phase. Verilog-

A is a analog hardware description language, and can be accepted by many modern

versions of SPICE simulators (e.g. Synopsys HSPICE, and Cadence Spectre). Verilog-

A photonic device models can be co-simulated with electronic circuits, and has been

more and more attract for photonic device modeling: Christen et al. implemented a

model of vertical-cavity surface-emitting laser (VCSEL) for efficient simulation of optical

links [29]. Zhu et al. developed a detailed Verilog-A model for a traveling-wave silicon

Mach-Zehnder modulator, successfully capturing its optical and distributed electrical
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properties, and simulating optical eye diagrams [30]. The carrier-depletion based silicon

microring modulator was modeled in Verilog-A by describing its optical and electrical

behaviors [31]. In [32], the authors developed basic and composite models in Verilog-A,

and simulated a WDM interconnect system and a frequency stabilization system. Many

photonic foundry service providers are also developing their device models in Verilog-A,

such as IMEC [33], and CEA-Leti [34].

1.3.2 System-Level Design of Optical Interconnects

Optical interconnects have been proposed to be used in network-on-chip (NoC) ar-

chitectures (a.k.a. optical NoC). The unique properties of optical interconnect call

for system-level design and management strategies. In the architectural design aspect,

Vantrease et al. proposed Corona structure based on a fully-connected 64 · 64 optical

crossbar, and a all optical, token-based arbitration scheme. A Clos optial network was

proposed in [35] that used point-to-point optical links for state-to-stage communication

and electrical routers for routing. Pan et al. proposed Firefly architecture that used

hybrid electrical and optical interconnects for intra-cluster and inter-cluster communica-

tions, respectively [36].

System-level simulation and analysis of optical NoCs are done in many work: Chan et

al. presented PhoenixSim, a system-level simulator for optical NoC taking into accounts

of many photonic device features [37]. Sun et al. developed NoC modeling tool called

DSENT that could accommodate both electrical and optical networks [38]. Authors in

[39] performed systematic crosstalk noise analysis of various optical NoC architectures.

Microring-based optical interconnect suffers from sever thermal and process variation

effects: The full system simulation with realistic applications in [40] demonstrated that

process and thermal variation poses significant reliability challenges for nanophotonic
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on-chip networks. The authors further modeled the reliability and proposed run-time

thermal management guidelines regulating the peak temperature and the thermal gradi-

ent [41]. Similarly, Zhang et al. proposed a job allocation technique that minimizes the

temperature gradients among the microring modulators/filters [42]. Cross-layer and ther-

mal aware placement and floorplanning for optical NoC chips are performed in [43, 17].

To address the wavelength mismatch issue in an energy efficient manner, Zheng et al.

proposed several techniques which greatly saved the total tuning power consumption

[44, 45, 17]. The techniques include channel remapping, sub-channel redundant rings,

transceiver-based network, fabricating fewer rings, and tuning fewer rings. Observing the

fact that power consumption of an optical link scales with its data rate, authors in [46].

1.4 Thesis Outline

This thesis mainly consists two parts: Chapter 2-4 presents our work on compact

modeling and link-level simulation of optical interconnects. Chapter 5-8 discusses mod-

eling and management techniques of process and thermal variations in silicon photonic

interconnects.

Chapter 2 presents compact models for various characteristics of microring-based

modulators and filters. Several other common photonic devices are modeled in Chapter

3 including their optical and electrical models, forming a device model library together

with Chapter 2. Chapter 4 demonstrates circuit-level simulation results of two fabricated

links based on the well validated device library.

In Chapter 5, an adaptive tuning technique is proposed to save power consumption

by allocating just enough power for each link through on-chip self tests. Chapter 6 de-

signs optimization algorithms that pair microring-based optical transceivers so that their

thermal tuning power is minimized. Spatial patterns of wafer-scale process variations are
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decomposed and analyzed in Chapter 7. Lastly, this thesis is concluded by Chapter 8.
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Chapter 2

Compact Models for Silicon

Microring-based Modulators and

Filters

In this chapter, we developed compact models for silicon microring modulators, an impor-

tant and versatile component in silicon photonic platform, in several important aspects

including its design space, spectra at bias, electrical properties and large-signal dynamic

behavior. The model is extensively validated by measurement data and then implemented

in Verilog-A that is compatible with CMOS simulators.

2.1 Introduction

In silicon photonic interconnects, microring modulators are of great importance. The

carrier-injection p-i-n type and the carrier-depletion p-n type are widely reported [47,

48, 49, 50, 51, 52, 53]. The carrier-depletion type has a high intrinsic bandwidth, as

it does not rely on slow diffusion of minority carriers [51, 52]. However, the carrier-
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injection type outperforms the carrier-depletion one in modulation depth and insertion

loss due to the large change of refractive index [53, 47]. Meanwhile, the speed of the

carrier-injection microring modulator can be greatly enhanced by a pre-emphasis driving

scheme [47, 48, 49, 50].

Integrating silicon photonic devices into modern CMOS-VLSI design flows requires

co-design of electronic and photonic integrated circuits, in which compact models for

nanophotonic devices are needed. Researchers have proposed Verilog-A compact models

for the Mach-Zehnder modulator [30], the VCSEL [33], and the pulsed optical source

and the photodetector [34]. The carrier-depletion microring modulator has also been

compactly modeled in many photonic link simulators (e.g., Lumerical Interconnect [54],

RSoft OptSim Circuit [55], and DSENT [38]). Sacher et al. proposed a dynamic model

for microring modulators in [56]. However, the characteristics of the carrier-injection

microring modulator, e.g., the resonance wavelength shift with respect to bias conditions,

have not been accurately modeled. In this work, we develop compact DC and small-

signal models for carrier-injection modulators to provide physical insights to the device

performance for a variety of designs.

The resonance wavelength shift in the microring modulator is essential for the on-off

keying modulation. Therefore, we derive a theoretical equation for the resonance wave-

length shift. The equation is capable of distinguishing the electro-optical blueshift effect

and the thermo-optic redshift effect, enabling the analysis of the device design parame-

ters’ impact on the modulator’s DC performance. Additionally, the quality factor Q and

the extinction ratio ER are important to determine the link power budget and signal

quality [4]. Meanwhile, the Q and the ER of the carrier-injection microring modulator

change significantly with injected current. Therefore, we quantify the dependence of the

Q and the ER on the injected current.

In order to characterize the high-speed behavior of the carrier-injection microring

15



Compact Models for Silicon Microring-based Modulators and Filters Chapter 2

modulator, we propose a small-signal circuit model. The small-signal circuit parameters

are extracted from S11 measurements. The small-signal circuit matches the device struc-

ture and provides insights to the dependence of small-signal capacitances and resistances

on bias points and design parameters. The small-signal model, together with the DC

spectrum model, is implemented in Verilog-A to facilitate co-simulations of photonic and

electronic circuits.

2.2 Device Designs and Fabrications

Fig. 2.1(a) shows a microscopic image of a microring modulator fabricated in CEA-

LETI’s silicon photonic SOI process. The rib section of the microring waveguide is 250

nm x 450 nm, and a slab section of 50 nm is used to inject carriers from the p-doped (3×

1019cm−3) and n-doped (3× 1019cm−3) regions, as shown in the Fig. 2.1(b) inset. There

are several device design variants including microring diameter, guard distance (GD)

between the boundary of doped region and rib waveguide, and the coupling gap between

the ring waveguide and the bus waveguide. As part of process development, 25 wafers

are used for engineering purposes. A set of short-loop wafers (Batch B) are processed

through some subset of the total process steps to provide a snapshot of process reliability

and modulators performance before the final delivery. We find that the contact resistance

in this batch is significantly higher than the expected value due to miscalculation of the

via etch depth. This contact resistance error has been corrected in the final delivery

(Batch A).

In the experimental setup, vertical fiber-to-chip grating couplers are used to provide

optical input and output access. Using a tunable laser, a DC voltage source, and an

optical power meter, we measure the transmission spectra sequence of a microring mod-

ulator with respect to different bias current as shown in Fig. 2.1(b), where the colorful
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Figure 2.1: (a) A microscopic image of a microring modulator with 10 µm diameter;
(b) Transmission spectra sequence with bias current ranging from 0 to 0.5 mA.

The guard distance (GD) is 0, 0.2 µm, and 0.4 µm in our device designs.

dots represent measurement results, the black lines represent model results, and the in-

set shows the cross section of the microring waveguide. The microring modulator has a

quality factor of 12,000 at zero injection, and achieves an on/off extinction ratio of 12

dB.

2.3 Device Design Space Model

In order to model the Q and ER of microrings in the device design space, we first

model the dependence of Q and ER on coupling coefficient and optical loss in the mi-

croring, and then model the relationship between coupling coefficient and coupling gap.

Here we define δ1 as the through port coupling ratio, and δ2a as the sum of ring cavity

loss and drop port coupling ratio (both in terms of power):

δ1 = κ2t , δ2a = κ2d + αL (2.1)
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Where κt (or κd) is through (or drop) port coupling coefficient in terms of field amplitude

ratio; and αL is the round trip loss of optical power in the microring.

Bogaerts et al. presented equations for Q and ER of microring resonators in [57]. We

simplify their expressions based on the approximation that both δ1 and δ2a are close to

zero:

Q =
2πλr

FSR · (δ1 + δ2a)
, ER =

(
δ1 + δ2a
δ1 − δ2a

)2

(2.2)

In these expressions, FSR is the free spectral range of the microring spectrum. From

the measured optical spectra of the microring resonator, we can extract Q and ER, and

then δ1 and δ2a. By defining δc = δ1 + δ2a, we have:

δc =
2πλr

Q · FSR
(2.3)

When the microring is under-coupled:

δ1 =
δc
2

(1− 1√
ER

), δ2a =
δc
2

(1 +
1√
ER

) (2.4)

And when the microring is over-coupled:

δ1 =
δc
2

(1 +
1√
ER

), δ2a =
δc
2

(1− 1√
ER

) (2.5)

From Eqs. (2.4) and (2.5) we can see that the calculation of δ values depends on the

coupling condition. Fortunately, we have 7×7 devices where the microring test structures

were fabricated with different Gthru and Gdrop as shown in Fig. 2.2. Some of the gap

combinations lead to critical coupling indicated by high extinction ratios. Then we can

identify under coupled devices with a larger Gthru and a smaller Gdrop than the critical

coupled devices, and vice versa (dot line and label in Fig. 2.2).
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Figure 2.2: A subsection of design space of the microring resonators, with microring
spectrum fitting, and the separation of critical, over, and under coupled conditions.

We first extract Q and ER from measured spectra of the microring resonators, and

then extract δ values from Q and ER based on Eqs. (2.4) and (2.5). The extraction

results in Fig. 2.3 show that δ1 mainly depends on Gthru, and δ2a mainly depends Gdrop.

These dependency trends are consistent with the definitions of δ1 and δ2a. The measured

data of the microrings with Gthru = 300 nm is not included because of the weak coupling

and unclear resonance dips.

Since there are some fluctuation errors in Fig. 2.3, we calculate the average δ1 (or

δ2a) for different Gdrop (or Gthru) and replot the data in Fig. 2.4. It can be seen that

the values of δ1 and δ2a are close to zero, which confirms our previous approximation.

Based on both the experimental data trend and theoretical analysis [22], we propose an

exponential model for the two δ as shown in Eq. (2.6), where a, b, and c are fitting
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Figure 2.3: Extracted (a) δ1 and (b) δ2a from the measured Q and ER.

parameters. Fig. 2.4 shows that this exponential model can fit the measured data well.

δ1 = a1 · exp (−b1 ·Gt) + c1

δ2a = a2 · exp (−b2 ·Gd) + c2

(2.6)

In summary, Eq. (2.6) can be used to calculate the coupling coefficients, and Eq.

(2.2) to calculate the Q and ER. To validate our model, we compare the Q and ER

values predicted by the model with the ones extracted from experiments, as shown in Fig.

2.5. The low relative errors indicate that our analytical model can accurately predict the

Q and ER of the microring resonators. Also, this design space model is developed for

passive microring structures, and therefore is valid to both microring-based modulators

and filters.
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Figure 2.4: Average (a) δ1 and (b) δ2a with fitting results of coupling coefficient model,
where circles are measured data, and red lines are fitting results.

2.4 Electro-Optic Modulation Model

The electro-optic modulation of microring resonators utilizes the plasma dispersion

effect, in which the refractive index and optical loss of silicon are altered by changing the

carrier concentration [12]. As the silicon index changes, the resonance wavelength shifts.

Meanwhile, the quality factor and extinction ratio also change due to the increase of the

optical loss. we derive theoretical models for the resonance wavelength, the extinction

ratio, and the quality factor.

2.4.1 Resonance Wavelength Shift

The electro-optic (EO) effect changes the silicon refractive index, the mode effective

index, and in turn the resonance wavelength. The relationship between the EO effect

induced resonance wavelength shift ∆λEOr and the carrier concentration change ∆N is

given by:

∆λEOr = −λr
ng

Γnf∆N (2.7)
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Figure 2.5: Model prediction relative error of the Q and ER, where ER is represented
by A = 1− 1/ER to avoid the large ER values close to critical coupling. The 7 × 7
matrix represents the design variants of the microring modulator with different Gthru
and Gdrop.

where ng is the group index of the optical mode; Γ is the mode confinement factor [58, 59];

nf ≈ 2.13× 10−21cm3 is the ratio between the change of silicon index and the change of

carrier concentration when ∆N ∼ 1018cm−3 [47, 12, 22].

The steady state injected charge Qinj in the p-i-n junction can be described by the

following nonlinear equation [60]:

Qinj = Iτc = I
τ0

1 +Qinj/Q0

⇒ Qinj =
Q0

2

(√
1 +

4Iτ0
Q0

− 1

)
(2.8)

where τ0 is the carrier lifetime at a low carrier density; Q0 is a fitting parameter describing

the dependence of carrier lifetime on the carrier density [60]. Considering the carrier

concentration change ∆N = Qinj/qV where V is the junction volume, we can derive the

lumped equation for the EO effect induced resonance wavelength shift:

∆λEO
r = −λrΓ

ng
nf

Q0

2qV

(√
1 +

4Iτ0
Q0

− 1

)
, −a · (

√
1 + I/I0 − 1) (2.9)
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In a practical carrier-injection modulator, the thermo-optic (TO) effect caused by the

self-heating of the injected current is non-negligible. The silicon index increases with the

temperature:

∆nSi =
dnSi

dT
·∆T (2.10)

The temperature rise ∆T can be characterized as ∆T = θI2R, where θ is the thermal

impedance of the p-i-n junction. Therefore, the TO effect induced resonance wavelength

shift is:

∆λTO
r =

λrΓ

ng

dnSi

dT
θR · I2 , c · I2 (2.11)

Consequently, the total resonance wavelength shift is given by:

∆λtotal
r = ∆λEO

r + ∆λTO
r = −a · (

√
1 + I/I0 − 1) + c · I2 (2.12)

The ∆λr model in Eq. (2.12) results in excellent fitting with the measured data from

different device designs and fabrication batches, as shown in Fig. 2.6 and Fig. 2.7, where

symbols represent measured data, and lines represent model fitting results. It should be

noted that though the injection current in the testing experiments goes up to 3 or 4 mA,

the actual bias of the device is usually limited in order to avoid the excess I · V power

consumption and severe degradation of Q and ER. For comparison, the measured ∆λr

is also fitted using the empirical polynomial model (∆λr = −a · I + b · I2) in [61]. The

fitting results demonstrate that the maximum fitting errors using our proposed model are

only about 10% for Batch A and about 20% for Batch B of those using the polynomial

model. Overall, our model provides a much better fitting accuracy than the polynomial

model, since out model captures the nonlinear dependence of the EO effect on the injected

current.

Our model can decompose ∆λr to electro-optic (EO) effect and thermo-optic (TO)
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Measured data

Proposed model
(max error: 0.021 nm)

Polynomial model
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Figure 2.6: (a) Measured resonance wavelength shift with fitting results using our
proposed model and empirical polynomial model; (b) Decomposition of wavelength
shift to eletro-optic and thermo-optic effect.
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Figure 2.7: Resonance wavelength shift of modulators with model fitting: (a) Batch
A with different diameters (D in µm) and guard distances (GD in µm); (b) Batch B
with different slab heights (in nm) and GDs (in µm).
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effect separately as shown in Fig. 2.6 (b). The EO and TO effect coefficients summarized

in Fig. 2.8 have several implications on the device design parameters: (1) The modulators

with a 5 µm diameter have a slightly smaller EO effect than that of 10 µm diameter in

terms of the metric a/
√
I0, while D5’s TO effect (in terms of c) is about twice as that

of D10. (2) For all devices, as the guard distance increases, the EO effect decreases

while the TO effect fluctuates irregularly. (3) The devices with a 30 nm slab height

have slightly greater EO effect and about two times TO effect than those of a 50 nm slab

height. (4) By comparing the modulators with a 10 µm diameter and a 50 nm slab height

from Batches A and B, one can see that Batch A’s EO effect is much greater than that

of Batch B, because the process error has been corrected in Batch A and the injection

efficiency is greatly improved.
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Figure 2.8: Fitting results of the resonance wavelength model for devices with different
fabrications, diameters (D), and slab heights: (a) EO effect (metric: a/

√
I0); (b) TO

effect (metric: c).

2.4.2 Change of Extinction Ratio and Quality Factor

When carriers are injected into a microring modulator, ER and Q change since the

optical loss within the microring increases. The dependence of ER and Q on the intra-
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microring optical field loss coefficient α can be derived from Yariv’s transmission relation

in [62]:

T (λ) = 1− (1− t2)(1− e−2αl)
(1− te−αl)2 + (2t1/2e−αl/2 sin(πneffl/λ))2

(2.13)

where t is the through-coupling coefficient that is related to the cross-coupling coefficient

κ by t2 + κ2 = 1; l is the microring circumference. The transmission spectrum around a

resonance wavelength (λr = neffl/m) can be approximated by:

T (∆λ) = 1− A

1 + (2Q ·∆λ/λr)2
(2.14)

with

A = 1−
(
t− e−αl

1− te−αl

)2

, Q = mπ
t1/2e−αl/2

1− te−αl
(2.15)

where A is related to ER by ER = 1/(1− A). The loss coefficient α increases with the

increase of the carrier concentration:

α = α0 + na∆N = α0 + na
Q0

2qV

(√
1 +

4Iτ0
Q0

− 1

)
(2.16)

By incorporating Eq. (2.16) into Eq. (2.15), we can obtain the models for ER and Q as

functions of the injected current I.

The effectiveness of the models is demonstrated by three devices with different cou-

pling gaps on three coupling conditions as shown in Fig. 2.9, where the devices are from

Batch B with a 5 µm diameter, a 0.4 µm guard distance, and a 50 nm slab height. In the

over coupled case, the fitting parameter t < exp(−α0l). As the injected current and thus

optical loss increases, the exp(−αl) decreases to be equal to t and then smaller than t.

As a result, the ER (or A) first increases to reach infinity (or unity) from over coupled to

critical coupled, and then decreases into the under coupled regime. Our model is consis-
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tent with the non-monotonic change of ER. In the over coupled case, the relatively large

discrepancy between the model and the measurement may be due to the abrupt change

of ER around the critical coupled condition. In the critical coupled (or under coupled)

case, our model shows both good fitting results as well as reasonable fitting parameters

with t equals to (or greater than) exp(−α0l).
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Figure 2.9: Measured data (circles) and model fitting results (lines) for (a) extinction
ratio and (b) quality factor of devices with different coupling gaps and coupling cases.

2.5 Electrical Model

2.5.1 DC Model

The governing equation describing the static I-V characteristics of the carrier-injection

modulator is given by [60]:

I = IS exp {q(V − IR− Vt)/(nkT )} (2.17)
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where IS is the reverse saturation current; R is the total series resistance including p/n

doped region resistance, interconnect resistance and DC probe contact resistance during

testing; n is the ideality factor. As illustrated in Fig. 2.10, the model shows that

the devices with a diameter of 5 and 10 µm (denoted as D5 and D10) have similar Vt

and n, while the resistance of D5 is almost twice of that of D10 because the microring

circumference of D5 is half of that of D10.

Figure 2.10: Measured and model fitted I-V curves of modulators with different diameters.

2.5.2 Small-Signal Circuit Model

In order to better understand the high speed performance of the carrier-injection

modulator, we develop a small-signal circuit model with physical origins as shown in

Fig. 2.11(a)(b). In the small-signal circuit, CD and RD respectively model the capaci-

tance and resistance in the forward-biased p-i-n diode junction; COX denotes the capac-

itance through the cladding and buried SiO2 layers; Rs1 and Rs2 model the resistances

of doped silicon; Cp represents the capacitance between the electrodes. The small-signal

circuit parameters are extracted by measuring and curve-fitting the S11 test data. The

Fig. 2.11(c)(d) demonstrates the good curve-fitting results using the small-signal circuit
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model.
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Figure 2.11: (a) The small-signal circuit model with circuit values at 1mA bias points;
(b) The cross-section of the microring waveguide; (c)(d) Curve-fitting of the measured
load impedance ZL of the modulator with a 10 µm diameter. (bias points: red 1 mA,
green 2 mA, blue 3 mA)

Using the small-signal circuit model, we estimate the RC-limited 3dB frequencies for

devices with different diameters and injection levels (Fig. 2.12). The equation for the

RC-limited 3dB frequency is 1/(2π((Rs1 + Rs2)//RD)CD), based on the approximation

that both Cp and COX are much smaller than CD. From Fig. 2.12, one can see that the

RC-limited device bandwidth increases with the increasing of the injection level. The

Fig. 2.12 also demonstrates that the device with a 5µm diameter has a higher RC-limited

bandwidth than that of 10 µm. In Fig. 2.12, the minimum bias point is 0.1 mA instead

of 0 mA because the p-i-n junction needs a positive bias to be turned on for small-signal

modulation. The guard distance of the microring modulator is 0. It should be noted that
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though the carrier-injection modulator inherently has a low electrical bandwidth limit,

the optical modulation speed can be greatly improved by using pre-emphasis schemes

[47, 48, 49, 50].
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Figure 2.12: The RC limited 3dB frequency predicted by the small-signal circuit model
for devices with diameter of 5 µm and 10 µm at different bias points.

2.6 Large-Signal Dynamic Model

In order to simulate the high speed behaviors of microring modulators, we develop

a comprehensive large-signal model as illustrated in Fig. 2.13. The model framework

includes the electrical model and the optical model. The large-signal electrical model

is obtained by combining the electrical DC model and small-signal model, where RS is

the total series resistance, IS is the reverse saturation current, n is the diode ideality

factor, VT = kT/q is the thermal voltage, and CD is the diffusion capacitance [63, 64]. In

the DC situation, the large-signal electrical model is reduced to the typical exponential

diode IV equation, which naturally fits our measurement data well. The output of the

electrical model ID (the current flowing through the intrinsic region of the diode) is

then converted to resonance wavelength shift by ∆λr = −kmod · ID, where kmod is the

modulation efficiency (nm/mA).
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In the optical model, the ∆λr is related to the optical transmission T . Lastly, the

optical dynamics of the microring modulator are modeled as a low pass filter in a phe-

nomenological approach, describing the cavity photon lifetime effect in the microring

resonator. In the filter model, the cavity photon lifetime limited 3dB bandwidth can be

calculated as fopt = c/(λQ), where Q is the quality factor of the microring resonator.

Figure 2.13: The large-signal model framework of the microring modulator.

In the large-signal model above, the parameters RS, IS, and n are extracted from

static I-V test, the capacitance CD is extracted from small-signal scattering parameter

S11 test, and the parameters A (or ER) and Q are extracted from optical spectrum test.

Our model is validated by the comparison of eye diagrams simulated by the model

and measured by our experiments. Our high-speed test setup ultilizes pre-emphasis

driving scheme to boost the intrinsically low bandwidth of the carrier-injection microring

modulator as shown in Fig. 2.14 (a). Meanwhile, we incorporate our large-signal model

into Cadence simulation environment to simulate the optical eye diagrams 2.14 (b), where

the optical power intensity is represented by the electrical voltage. The simulated eye

diagrams agree well with the measured results for the microring modulators with 10 and
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5 µm diameters (D10 and D5), as shown in Fig. 2.15. Both the measured and simulated

eyes for D10 ring at 20 Gb/s and D5 ring at 25 Gb/s show that they are close to their

bandwidth limits. The D5 ring is able to work at a higher data rate partly because it

has lower quality factor and higher photon lifetime-limited bandwidth.

Figure 2.14: (a) The external pre-emphasized driving scheme synthesized by com-
bining DATA and delayed DATA. (b) The Cadence simulation schematic for the
modulator with a pre-emphasized driving signal.

In order to further validate our model, we take measurement and compare the results

with the simulated optical eyes of a D10 ring at 12.5 Gb/s with optimal and several sub-

optimal driving conditions. The highest data rate is not chosen for model validation since

the measured eyes at the highest data rate are noisy due to our present test setup noise.

we first set the driving condition to the optimal (Vpp1=2V, Vpp2=1.5V, delay=30ps,

DC offset=0.9V) as shown in Fig. 2.16 (b), and then deviate one parameter at a time.

In Fig. 2.16, the simulated eyes are in good agreements with the measured results. For

example, the overshoot phenomenon is well captured by our model when the offset is
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Figure 2.15: The experimentally measured and model simulated high-speed eye dia-
grams of microring modulators.

lower than optimal, or the Vpp2 is higher than optimal, or the delay is longer than

optimal, as shown in Fig. 2.16 (a)(e)(g). Additionally, fast rising edges and slow falling

edges are observed in both measured and simulated eyes in Fig. 2.16 (c)(d), which is also

consistent with the discussions on extra falling edge delay in [47].

In summary, the measured eye diagrams at various data rates and driving conditions

extensively validate our large-signal model.

2.7 Summary

In this chapter we have compactly modeled the silicon microring modulator in several

aspects, including its design space, the spectra under electrical bias, its electrical char-

acteristics, and its large-signal dynamic behavior. The design space model for microring

resonators quantifies the Q and ER w.r.t. various through port and drop port gaps. The

electro-optical (EO) modulation model accurately describes the spectra under bias volt-

age. The large-signal model framework combines the large-signal circuit model and the
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Figure 2.16: Measured and simulated eye diagrams with optimal and several sub-op-
timal driving conditions
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EO modulation model, and is able to simulate the modulation eye diagrams. This model

stack could be used together to comprehensively describe DC and AC, electrical and

optical performance of the microring modulators, and to study the design parameters’

impact on device performance.
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Chapter 3

Compact Models for Other Common

Silicon Photonic Devices

In this chapter, we study a heterogeneous silicon photonic NoC including high speed mod-

ulators and photodetectors. Several key components in the NoC are compactly modeled,

including their optical and electrical properties. The models can fit the measurement

data well, paving the way to a photonic PDK model library.

3.1 Introduction

Among the common integrated photonics technology platforms, the heterogeneous

III-V/silicon platform can both enable laser integration and enjoy the CMOS compati-

bility by bonding III-V material epitaxial layers on silicon-on-insulator (SOI) wafers [15].

Integrating lasers on silicon is challenging due to silicon’s indirect bandgap, but is very

critical in making robust, energy efficient, and scalable interconnect systems [65]. To

address this challenge, our target optical network-on-chip (ONoC) was fabricated on the

heterogeneous silicon platform, which fully integrated lasers, high-speed modulators and
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detectors, and other photonic components on a single chip and successfully demonstrated

a total bandwidth of 2.56 Tb/s (40 Gb/s/channel × 8 wavelength-division multiplexing

channels × 8 transceiver nodes).

To date, photonic designers are still heavily replying on empirical schematic design,

manual mask layout, and manual design rule checking (DRC). The fast growing complex-

ity of photonic integrated circuits (PICs) drives the need for photonics design automa-

tion tools, including trustworthy photonic circuit level models and simulators, photonics

property-aware automatic floor planning [17], layout and routing [18], and DRC and

logic vs. schematic (LVS) [19]. A number of system- and link- level studies for optical

interconnects have been reported [66, 67, 68, 69], but due to the analog nature of pho-

tonics, it is imperative to perform accurate circuit-level (or equivalently SPICE-level)

modeling and simulation of nanophotonic interconnects. Circuit-level compact models

of a variety of photonic devices have been reported, e.g., carrier-injection [64, 63] and

carrier-depletion [31] based silicon microring modulator, Mach-Zehnder modulator [30],

etc. However, there is a lack of effort for integrating such models to enable simulation,

validation, and optimization of a full optical link.

In this chapter, we develop accurate circuit-level models for the photonic devices

in the heterogeneous ONoC. These models are implemented in Verilog-A so that the

optical interconnects can be simulated in a SPICE environment. The photonic device

models are extensively validated in several aspects using the measurement data from our

implemented ONoC.

3.2 Overview of the ONoC

Our ONoC includes eight WDM transceiver nodes all connecting to a circular bus

waveguide through eight broadband optical switches as shown in Fig. 3.1 [70]. Each
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WDM transmitter (Tx) has eight wavelength channels. In each channel, a single wave-

length distributed feedback (DFB) laser emits the light at the channel wavelength [1].

The light is then externally modulated by an electroabsorption modulator (EAM) [71].

The EAM has the advantages of wide wavelength and temperature operation range, and

large bandwidth compared to silicon microring modulators [71]. The optical signals in the

eight wavelength channels are multiplexed into a Tx bus waveguide by a silicon arrayed

waveguide grating (AWG).

Figure 3.1: (a)(b) Our ONoC architecture with a zoom-in of a transmitter (Tx)
and a receiver (Rx), where LD: laser diode, EAM: electroabsorption modulator, PD:
photodetector, λ1∼8: channel wavelengths; (c) The microscopic image of the fabricated
ONoC including 8 transceiver nodes.

The Tx bus waveguide is connected to the receiver (Rx) bus waveguide and the

circular bus waveguide by a broadband switch, which is implemented by a silicon Mach-

Zehnder interferometer (MZI) with two 3-dB adiabatic couplers. The switch’s connec-

tivity can be configured by tuning the TiPt local heater. In this way, a Tx can transmit

data either to the local Rx at the same node, to an Rx at a different node, or to the edge
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coupler for off-chip communication. At the receiver side, light is demultiplexed by an

AWG into eight channels, and then sensed by InGaAs/silicon photodetectors (PD) [72].

3.3 Device Modeling and Parameter Extraction

This section describes the compact behavior models for the photonic devices in our

ONoC. The compact models are implemented in SPICE-compatible Verilog-A, where the

optical power is described by the potential between an optical signal line and a dummy

optical ground. Model parameters are extracted from measurements including scattering

parameter S11 test, IV test, and optical test. We then successfully validate the models

by comparing the model simulated data (e.g., optical power, frequency response, etc.)

with the measurement data.

3.3.1 Laser

Diode lasers utilize carrier injection in a p-i-n junction to provide stimulated emission

and optical gain. A diode laser can be used for either continuous wave (CW, or static)

operation with an external modulator or direct modulation, where the former mode is

used in this work. The output light power vs. driving current (LI) of a diode laser can

be expressed by (3.1) [73].

P = ηd
hν

q
(I − Ith) (3.1)

The two performance parameters in the LI model are the threshold current Ith and

differential quantum efficiency ηd. The DC electrical characteristics of the diode laser

follows the Shockley diode equation as shown in (2).

I = I0 exp
q(V − IR)

nkT
(3.2)
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Where R is the series resistance, n is the emission factor, I0 is the saturation current, k

is the Boltzmann constant, and T is the temperature.

Model Validation: The optical and electrical models of diode lasers are implemented

in Verilog-A and simulated in SPICE. Fig. 3.2 shows the simulated and measured LI and

IV curves, which have good agreements. With these two models, designers can accurately

determine the driving voltage and power of the laser based on the optical link’s power

budget.

Figure 3.2: Measured and model simulated single facet light-current (LI) and volt-
age-current (IV) curves of the DFB laser.

3.3.2 Waveguide

Single mode silicon waveguides are widely used to guide the light on chip due to its

low loss. We use (3.3) to model the loss along the waveguide with a length L.

Pout = Pin · 10−αL/10 (3.3)
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Where α is the waveguide loss per length in dB/cm, which is estimated to be 1 dB/cm

in this work.

3.3.3 Electroabsorption Modulator (EAM)

EMAs utilize a reverse biased p-i-n junction to apply electrical field and to modulate

the optical absorption coefficient [73]. We find that the dependency of the EAM optical

transmission on the bias voltage can be described by the logistic equation in (3.4).

Topt(Vj) = IL · ( 1− b
1 + exp(−k(Vj − V0))

+ b) (3.4)

Where Vj is the voltage on the p-i-n junction, IL is the insertion loss, V0 is the transition

voltage, b is the residual optical transmission at a strong bias voltage. Fig. 3.3 (a) shows

that our proposed model in (4) matches the measurement data well.

By applying a DC bias around V0 and an AC modulation driving signal, the EAM

can perform on-off keying (OOK) modulation of the optical signal.

The electrical characteristics of the EAM can be described by an equivalent circuit

model as shown in Fig. 3.3 (b), where Rsm is the device series resistance, Cim is the

junction capacitance, Vj is the junction voltage that determines the optical absorption

and transmission in (3.4), and Ip is the photocurrent generated by the absorbed optical

power and fed back into the electrical circuit [74]. Fig. 3.3(c) shows the IV curve of the

photocurrent element, which can be equivalent to a resistance of multi kilo-Ohm. The

photocurrent element has trivial influence on the EAM’s scattering parameters S11 and

S21, since the Rsm is in the order of 10 Ω.

The values of Cim and Rsm are extracted from the scattering parameter S11 data

measured by a lightwave component analyzer (LCA). The measured S11 is first converted

to the device or load impedance (ZL), as shown in Fig. 3.4. Then it is observed that the
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Figure 3.3: EAM: (a) Measured and model fitted optical transmission at 1550 nm
wavelength; (b) Equivalent circuit model; (c) Measurement photocurrent generated
by the absorbed optical power (input optical power = 316 µW); (d) Directly measured
and model calculated small-signal E-O (electrical-to-optical) responses.
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imaginary part of the device impedance is inversely proportional to the frequency, from

which the Cim value is extracted. Meanwhile, the Rsm can be estimated from the ZL

real part at high frequency. Based on the extracted Cim and Rsm values, we in return

calculate the S11, which is in good agreement with the directly measured S11 data as

shown in Fig. 3.4. This agreement is one of the key evidences of the validity of our EAM

circuit model.

Figure 3.4: S11 and device impedance data of the EAM, where blue dots represent
measurement data and red lines show model results.

Model Validation: An EAM’s total bandwidth is subject to both RC limit and carrier

transit time limit. However, the EAM in this work has a thin intrinsic region and a small

carrier transit time. Therefore, the EAM here is only subject to RC limit, and we can

use the extracted Rsm and Cim values to predict the EAM’s frequency response. Fig. 3.3

(d) shows that our model predicted electrical-to-optical frequency response matches well

with the directly measured S21 data, which is another piece of evidence for the validity
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of our model. The measurement setup has a 50 Ω configuration.

3.3.4 Multiplexer and Demultiplexer

The structure of the multiplexer and demultiplexer in our design is an AWG, which

utilizes phased-array to multiplex or demultiplex the light at a series of wavelengths with

certain channel spacing [75]. A typical AWG spectrum is shown in Fig. 3.5, where eight

colors represent eight channels. Each channel of the AWG functions as a bandpass filter,

and can route the optical signal at its center wavelength in or out of the bus waveguide.

Figure 3.5: A typical optical spectrum of AWG.

The AWG will reduce the amplitude of the high speed optical signal due to its spectral

filtering effect [76]. In order to illustrate the spectral filtering effect, we plot the optical

spectrum of a commercial bandpass filter (BPF) in Fig. 3.6 (a), where fc is the central

carrier frequency, and fm is the modulation frequency. By modulating the optical carrier

wave using a sine wave, two sidebands located at fc±fm appear, which will be suppressed

by the slope of the filter’s optical spectrum. The small signal optical-to-optical (O-O)

response of the filter can be calculated as T (fc + fm)/T (fc), where T (f) is the optical

power transmission at frequency f . Fig. 3.6 (b) shows that our calculated frequency

response using this approach agrees well with the directly measured frequency response
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using an LCA.

Figure 3.6: (a) Measured optical spectrum of a commercial bandpass filter (BPF); (b)
Measured and calculated small signal responses of the BPF.

During our experiments we observed that the small signal response of the AWG

cannot be directly measured by LCA due to large edge coupling loss. Therefore, we

calculate the AWG’s O-O small signal response based on the optical spectrum that can

be easily measured using the aforementioned approach, as shown in Fig. 3.7. Because the

measured AWG spectrum is asymmetric, the average of the spectrum’s left-side slope and

right-side slope is used to calculate the small signal response. The AWG’s small signal

response can be well approximated by a two-pole low-pass filter (LPF) as described in

(3.5) up to 45 GHz.

H(f) =
1

(1 + j · f/fLPF)2
(3.5)

Based on this approximation, we implement the AWG’s dynamic model in Verilog-A

using integral operators. The AWG Verilog-A model also includes the insertion loss effect,

which is 1.5 dB in our experiments when the channel center wavelength is well aligned

with the laser wavelength. Our AWG model does not include multi-channel wavelength

information, since our focus is on modeling and simulating the dynamic characteristics

of the device and the link at one channel wavelength. However, extension to considering
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Figure 3.7: (a) Measured single channel optical spectrum of the AWG; (b) The cal-
culated frequency response using AWG’s optical spectrum, with an approximation by
a low pass filter (black line).

multi-channel wavelengths should be quite straightforward.

3.3.5 Photodetector

The PD studied in this work is made of reverse-biased p-i-n junction, which generates

photocurrent when there is light input. The PD’s responsivity Rsp is defined as the

photocurrent over input optical power. The electrical characteristics of the PD can

be modeled by an equivalent circuit as illustrated in Fig. 3.8 (a), where the current

source represents the photocurrent generated by the input light with power PO and the

dark current Idark, CD is the diode capacitance under reverse bias, and Rs is the series

resistance. The values of CD and Rs can be extracted in a similar approach as the

EAM. Fig. 3.9 shows how the CD and Rs are extracted from ZL real part and imaginary

part respectively, and that the calculated S11 agrees well with the measured data which

validates our model.

Model Validation: Similar to the EAM, the PD in this study is also only subject to

the RC limit since its intrinsic region is thin (400 nm). So we can calculate the PD’s

frequency response using the extracted Rs and CD values. Fig. 3.8 (b) shows that the

predicted frequency response agrees well with the measured O-E S21 frequency response,
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Figure 3.8: (a) PD’s equivalent circuit model; (b) Directly measured and model cal-
culated small-signal O-E (optical-to-electrical) responses of the PD at -3V bias.

Figure 3.9: S11 and device impedance data of the PD at -3V bias, where blue dots
represent measurement data and red lines show model results.
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which is a strong piece of evidence of the validity of our PD model. The measurement

setup has a 50 Ω configuration.

3.4 Summary

In this study, we develop accurate circuit-level models for silicon photonic devices

based on their electrical and optical properties. Our models have been successfully val-

idated in multiple aspects based on the measurement data of the fabricated photonic

devices. These models are implemented in Verilog-A, and thus are compatible with all

SPICE simulators. This work paves the way to a photonics PDK and link-level simulation

and design space explorations of various types of optical links.
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Chapter 4

Circuit-Level Simulations and

Design Space Explorations of

Nanophotonic Interconnects

Based on the well established models in the previous two chapters, we perform Cadence

simulations and design space explorations (DSE) of two optical links. The simulated

results agree well with measurement data. The DSEs demonstrate our capability of

including photonics device design into the electro-optical co-simulations.

4.1 Introduction

State-of-art PIC has becoming more and more complex, and has been working closely

with electronic circuits. It is imperative to efficiently and accurately simulate the behav-

ior of PICs and their interactions with interface circuits. In this chapter, we simulate two

optical communication links by incorporating the well established compact models for

photonic devices. The simulation results are verified by the link measurement data. Our
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models and simulation approach enable the electro-optical (EO) co-design and optimiza-

tion of the photonic devices with electronic interface circuits that have been designed

separately in the past. Additionally, the enrichment of photonic device library paves the

way to a process design kit (PDK) for silicon photonics, and an EDA-style design process

for PICs and electro-optical systems.

4.2 Optical Transceiver based on Silicon Microring

Resonators

We simulate the transceiver in Fig. 4.1 (a) in Cadence as illustrated in Fig. 4.2 which

reproduces our transceiver test setup. In the schematic, the comprehensive model of

microring modulator combines the design space model and the dynamic behavior model.

Similar to the microring modulator, the microring filter model first calculates Q and ER

based on the design space model, and then use a low pass filter to capture the photon

lifetime effect. The photodetector (PD) model mainly consists a diode capacitance and

a series resistance [77]. The CW laser model simply provides the function of outputting

a given optical power at a certain wavelength.

Figure 4.1: (a) Microscopic image of our back-to-back optical transceiver; (b) Cross
section view of the microring waveguide.

During the transceiver measurements, the tunable laser is aligned to the resonance

wavelength of the Tx microring modulator. The modulator is driven by an external pre-
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Figure 4.2: Cadence simulation schematic for the back-to-back optical transceiver.

emphasized driver (Fig. 2.14). Firstly, the modulated optical signal passes through the

Rx and is received by a digital communication analyzer (DCA) as shown by the yellow

eye diagrams in Fig. 4.3. Secondly, the Rx microring filter is thermally tuned to be

aligned with the Tx microring so that the optical signal is routed to the on-chip drop

port PD. The electrical signal from the on-chip PD is observed on the DCA (the green eye

diagrams in Fig. 4.3). It can be seen that the electrical eye diagrams are more distorted

than the optical ones due to the limited Rx microring bandwidth. The simulated eye

diagrams well captures this phenomenon, as well as the eye closing trend toward high

data rates. The good agreement between measurement and simulation again validates

our model.

We also study the effect of device geometry (drop port gap) on the link performance,

because we have integrated the design space model with the dynamic model of the mi-

croring modulator. In the three simulations, the Gdrop of the microring modulator is

swept from 175 nm to 275 nm, while other device geometries and driving conditions

are the same (Gthru = 200 nm, data rate = 20 Gb/s). The resulting eye diagrams are

shown in Fig. 4.4, where three different Gdrop result in three coupling conditions. The

under-coupled case has a small optical modulation amplitude (OMA) due to the small

extinction ratio. The over-coupled case has a similar OMA as the critical-coupled case.

This is because the Gdrop is fairly large, the drop port coupling is weak, and the over-
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Figure 4.3: Measured and simulated optical and electrical eye diagrams of the back–
to-back transceiver.
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coupled case does not significantly deviate from the critical coupling condition. Fig. 4.4

also shows a trend that the link’s bandwidth decreases as the Gdrop increases. This is

because a large Gdrop leads to a small δ2a and a high Q based on Eqs. (2.6) and (2.2),

respectively. A microring with a high Q would have a low photo lifetime-limited band-

width. The consistency between simulations and theory again supports the validity of

our model.

Figure 4.4: Simulated 20 Gb/s optical and electrical eye diagrams of the optical
transceiver with respect to microring modulators with different Gdrop.

4.3 Optical NoC on III-V/Silicon Heterogeneous Plat-

form

We simulate an end-to-end single channel transceiver link in the heterogeneous opti-

cal NoC (Fig. 3.1) in Cadence Virtuoso. Fig. 4.5 shows the simulation schematic that

reproduces the measurement setup. The measurement setup has a 50 Ω configuration

(i.e., all testing equipment, RF cables and probes are 50 Ω matched), so in the simulation
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schematic two 50 Ω resistances are added at the EAM driver and the PD receiver, respec-

tively. The EAM is driven by a random bit sequence source swinging between -1∼-2 V,

and the PD is biased at -3 V. The broadband switch model simply describes its insertion

loss effect, since our switch has a wide wavelength operation range (1550∼1570 nm) and

will not impose a bandwidth limitation to the link [70].

Figure 4.5: The Virtuoso simulation schematic of the entire transceiver link using our
developed models.

We first perform AC simulations of the full transceiver link. Fig. 4.6 shows that the

simulated frequency response matches well with the measurement data. Then transient

simulations are run to obtain the eye diagrams of the link. Fig. 4.7 demonstrates that the

simulated eye diagrams have good agreements with the measured ones. The simulations

accurately capture the transmission bandwidth limit and pattern dependent noise of the

optical link. The measured eye diagrams are noisier than the simulated ones because the

large signal measurements includes noises and degradations from electrical components

(e.g., RF probes, cables, amplifiers). Both the simulated and measured eye diagrams

show that the link’s data rate is close to its bandwidth limit seen from the increasing
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inter-symbol interference (ISI) and decreasing optical modulation amplitude (OMA).

Therefore, we can conclude that the AC and transient simulations give us high confidence

that our models are sufficiently accurate.

Figure 4.6: Simulated and measured frequency responses of a single channel transceiver link.

4.3.1 Design Space Exploration of the PD Design

Our photonic chip includes a large variety of individual PD test structures with

different device lengths and widths, only a subset of which are used in the fabricated

full transceiver links due to layout space limitation. In Table 4.1, PD #1 is used in the

full transceiver link in Section IV; PD #2, 3 and and 4 are fabricated as individual test

structures; the parameters of PD #2* are projected based on PD #2, 3 and 4. The PD

#1 and the projected PD #2* have the same area (width × length). The resistances

and capacitances of fabricated PDs are extracted from S11 measurements and the the

bandwidth (BW) is obtained by the (R+50)C. It can be observed that the responsivity

increases while the bandwidth decreases with the PD length.

We simulate the full link with the various PD designs above and obtain the link eye

diagrams at 40 Gb/s, from which we extract the OMA values as shown in the last column

in Table 4.1. The simulation results show that PD #4 leads to the highest OMA mainly
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Figure 4.7: Simulated eye diagrams of the PD current, and measured eye diagrams of
the RF amplifier that connects to the PD for a single channel transceiver link.
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Table 4.1: PD Design Space and Simulated OMA

PD #
Width
(µm)

Length
(µm)

Resp.
(A/W)

Cap.
(fF)

Res.
(Ω)

BW
(GHz)

OMA
(µA)

1 4 30 0.45 38.9 38.9 46.0 29.3
2 2 50 0.48 38.6 52.0 40.4 30.6
2* 2 60 0.52 43.4 46.9 37.8 32.8
3 2 75 0.56 54.8 36.0 33.8 34.4
4 2 100 0.66 71.5 29.4 28.0 38.3

because of its high responsivity. The PD #2* has the same area of PD #1 but results

in a higher OMA than PD #1. 1 The observations show that the PD design could be

optimized together with the full link configurations to optimize the link performance.

This study of PD designs demonstrates that, with our models, the designers can now

include photonic device designs in whole system optimization.

4.3.2 Optimization of the EAM Driving Voltage

In the link simulations above, 1 Vpp voltage is used to drive the EAM, which saves

energy but compromises the OMA. This can also be seen from the EAM’s transmission

vs. voltage curve in Fig. 3.4 (a), where 1 Vpp is not enough to swing the optical

transmission to the maximum or minimum point. We increase the EAM’s driving Vpp,

re-simulate the eye diagrams at 40 Gb/s, and extract the OMA and modulation energy

consumption as plotted in Fig. 4.8 (other device parameters and driving conditions

are the same as those in Section IV. A). The simulation results show that the OMA

could be enhanced by increasing the EAM driving Vpp at the cost of consuming more

transmitter power. A higher OMA reduces the requirement for the receivers sensitivity,

which in turn reduce the receiver’s power consumption [78]. Therefore, with our photonic

models and simulation methodology, the transmitter and receiver could be co-optimized

1A higher OMA will result in a better signal to noise ratio (SNR) and, in turn, a lower bit error rate
(BER).
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for minimizing the overall power consumption while meeting the transmission quality

requirement.

Figure 4.8: The OMA and modulation energy consumption with respect to different
EAM driving Vpps.

4.4 Summary

In this chapter, we have simulated two full optical links in SPICE using our pho-

tonic device model library. The simulation results are in excellent agreement with the

measured results. The simulations of the microring-based back-to-back transceiver uti-

lize the comprehensive model of the microring modulator, which enables both device

design explorations and dynamic behavior simulations. For the end-to-end link in the

heterogeneous optical NoC, we perform two case studies for photonics-aware design space

exploration. The studies reveal the benefits of exploring photonic devices for design op-

timization, and exploring the trade-off between the transmitter power, OMA, and the

receiver power. Overall, we have successfully demonstrated that our models and simula-

tion methodology enable electro-optical co-simulation, allowing designers to co-optimize

photonic devices with electronic circuits seamlessly.
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Chapter 5

Variation-Aware Adaptive Tuning

Technique

In this chapter, we propose an energy-efficient adaptive tuning technique to address the

process and thermal variation problems in optical interconnects. The adaptive tuning

flow allocates just-enough power for fabricated links, which effectively saves the power

consumption.

5.1 Introduction

Nanophotonic interconnects provide high bandwidth, low energy consumption and

low latency compared to traditional electrical interconnects. It becomes increasingly

promising that the nanophotonic interconnects could replace the electrical links in short-

reach applications, such as data centers, inter-chip, and intra-chip communications [79].

The microring resonator is widely used in many optical network-on-chip (NoC) ar-

chitectures [35, 80, 81, 36, 82, 83], because of its functional versatility, power efficiency,

and compact footprint. However, the microring resonator is very sensitive to fabrication

59



Variation-Aware Adaptive Tuning Technique Chapter 5

process variation and runtime thermal variation. As a result of the process and thermal

variation effects, the resonance wavelength of the ring resonator deviates from the de-

sirable carrier wavelength, which leads to performance degradation or even failure. This

wavelength mismatch problem has been extensively studied: many power-efficient tuning

and channel arrangement schemes have been proposed [84, 69, 85]; several feedback-

based wavelength stabilization circuits have also been implemented [78, 86]. Existing

work on thermal and process variations mainly focuses on the tuning of the resonance

wavelength[41, 87, 88, 37, 89]. However, the process variation induced variations of qual-

ity factor (Q) and extinction ratio (ER) of the microring resonator have not been well

studied.

We have fabricated batches of microring modulators and filters on 8 inch silicon-on-

insulator (SOI) wafers at the CEA LETI foundry. The optical transmission spectra of

the fabricated microring devices across the wafer are measured, from which the quality

factor and the extinction ratio are extracted. We notice significant variations of Q and

ER from both our fabricated microring resonators and literature [4, 20]. Meanwhile, the

Q and ER are very important to determine the BER and power budget of an optical

link[4]. Our simulation results show that the variations of Q and ER lead to significant

variation of BER of the links. If the link design is targeted at the average performance

of the devices, some of the links do not satisfy the BER requirement. Therefore, the

variation effects of Q and ER must be carefully addressed.

A naive worst-case based fixed design can guarantee that most of the links satisfy the

BER requirement. However, such a fixed design leads to excessive power consumption.

In this work, we propose a power-efficient adaptive tuning approach that tunes each link

individually and allocates just enough power to meet the BER requirement. The adaptive

tuning approach relies on on-chip fast BER estimation circuitry to monitor the link BER,

and adaptively tunes either the laser or the photonic receiver to reach the target BER.
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We evaluate the power savings gained by the adaptive tuning approach with respect to

different NoC architectures, variation values, and link configurations. Overall, the work

makes the following contributions:

� Characterizes the process variations of microring-based photonic devices using mea-

sured data.

� Demonstrates that the BER of the optical links could vary significantly due to the

process variations of microring devices.

� Proposes an adaptive tuning approach that reduces the power consumption than

the worst-case based fixed design with reasonable time and area overhead.

� Evaluates the adaptive tuning approach and demonstrates its scalability with re-

spect to different levels of variations and various topologies.

5.2 Background

Nanophotonic interconnects mainly consist of light sources, waveguides, photonic

modulators and photonic receivers (Fig. 5.1). On-chip laser arrays and off-chip comb

lasers are common choices for the light source [65]. In this work, we consider a distributed

feedback (DFB) hybrid silicon laser as an example of the on-chip single-wavelength laser

[1], and a Gaussian shape comb laser for the off-chip laser [65]. Silicon waveguides are

widely used to guide the light on SOI platforms. At the transmitter side, compact and

energy-efficient microring modulators perform the on-off keying modulation of the light

signal. At the receiver side, the light signal is redirected by the microring filter and

sensed by the photodetector (PD).

The microring structure is critical in the nanophotonic interconnects, and a basic

model is introduced here. When an integer number of the incident light wavelength fits

the microring perimeter, the microring is on-resonance. At the on-resonance state, the
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Figure 5.1: Schematics of wavelength-division multiplexing (WDM) nanophotonic
interconnects using (a) an off-chip comb laser or (b) an on-chip DFB laser array.

through port power reaches its minima and the drop port power reaches its maxima. The

optical transmission spectrum of the through port and the drop port can be described

by the Lorentzian shape models [64] (Fig. 5.2):

Tthru(λ) = 1− Athru
1 + (2Q · (λ− λr)/λr)2

Tdrop(λ) =
Adrop

1 + (2Q · (λ− λr)/λr)2
(5.1)

where λr is the the microring’s resonance wavelength; Q is the microring’s quality factor;

Athru is a parameter that is related to the microring’s extinction ratio: ER = 1/(1 −

Athru). Furthermore, we denote the optical transmission at the on- (off-) resonance state

as Ton = T (λ = λr) (Toff = T (λ = λr+∆λ)), where ∆λ is the wavelength detuning for the

off-resonance state. In this way, when the microring functions as a modulator, the optical

transmission at logic “0” and logic “1” are T0 = Tthru,on and T1 = Tthru,off , respectively.

When the microring functions as a filter, the input port to drop port insertion loss (the

drop port efficiency) is Tdrop,on. Microring structures could also be used to build optical

routers [25, 24]. For instance, in the five-port optical router reported in [25], the west-
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Figure 5.2: The optical transmission of the through port and drop port of a microring
(blue and green: measurement; red: model). The inset shows a microscopic image of
a fabricated microring modulator.

to-east insertion loss could be expressed as Tdrop,on · T 4
thru,off · TWG loss.

Based on the theoretical device models above, we obtain the equation for the bit-

error-rate (BER), a widely used figure of merit for communication quality:

BER =
1

2
erfc

(
z√
2

)
, z = Plaser

∏
i

ILi ·Rpd
T1 − T0
σ1 + σ0

(5.2)

where Plaser is the laser output power; ILi is the insertion loss of the photonic component i

along the optical path; Rpd is the responsivity of the photodetector; σ1(σ0) is the standard

deviation of the logic “1” (“0”) corresponding noise.

5.3 Variation Challenges

Similar to deep submicron electronic devices, the nanophotonic devices (e.g., mi-

croring modulators, microring filters, grating couplers, photodetectors) also suffer from

significant process variations [20]. In this work, we mainly focus on the severe variation
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effects in microring based devices, while our variation-aware analysis and design can also

accommodate variations in other types of devices.

The microring structure is very sensitive to runtime thermal variation and fabrication-

induced process variation. Due to the thermal variation effect, the optical transmission

spectrum redshifts as the temperature rises. Due to the process variation effect, the

device geometry and the waveguide sidewall roughness vary in the fabrication process.

Consequently, the λr, Q and ER deviate from the designed values. Both thermal and

process variation effects will cause the mismatch between the resonance wavelength and

the carrier wavelength. Many tuning schemes and circuits have been proposed to address

the wavelength mismatch problem [84, 69, 90, 78, 86]. However, few tuning schemes take

into account the variations of the Q and the ER.

Here we characterize the variations of the Q and the ER based on measured results.

Fig. 5.3 plots our wafer-scale inter-die measured data of the fabricated microring devices,

together with the intra-die variation testing result reported in [4]. Both the inter-die and

intra-die measured results show wide distribution ranges of Q and ER, which may have

great impact on the communication BER. From the histograms, one can see that the

distribution of the parameter A and the Q approximately follow normal distributions.

The electrical tuning is usually utilized to compensate for the wavelength mismatch

because it’s more power efficient than the thermal tuning [44, 41]. However, the Q and the

ER degrade significantly when the tuning voltage is applied to the microring resonator

(Fig. 5.4). The severe degradation of Q and ER caused by the electrical tuning may

greatly deteriorate the communication BER, which also needs to be carefully considered

during the link analysis.

The Q and the ER are important to determine the microring’s optical transmission

and the BER (Eq. 5.1 and 5.2). The large variations of Q and ER may result in

significant variation of the BER. We perform Monte Carlo simulations of a simple single-
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Figure 5.3: (a)(b) Histograms of parameters A and Q of our inter-die measurement re-
sults; (c) Scatter plot of our inter-die measurement and Peng’s intra-die measurement
in [4]; (d) Mean and standard deviation (std) of the three measured data sets.

1317.5 1318 1318.5 1319
-20

-15

-10

-5

0

Wavelength (nm)

N
o
rm

a
liz

e
d
 o

p
ti
c
a
l 
tr

a
n
s
m

is
s
io

n
 (

d
B

)

-1-0.50
5

10

15

20

Resonance wavelength shift (nm)

E
R

 (
d
B

)

Figure 5.4: The measured spectra series of a microring modulator at different bias voltages.
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writer single-reader (SWSR) link [35]. The process variation statistics of our fabricated

devices are used (the first line in Fig. 5.3d), which has better ER and uniformity than

the Peng’s devices in [4]. The simulation results in Fig. 5.5 show that the BER has a wide

distribution range. About half of the links do not satisfy the BER requirement if the link

design is based on the mean parameter values of the devices. Naively, a worst-case based

fixed design could guarantee that most of the links satisfy the BER requirement (the red

line in Fig. 5.5). However, such a fixed design requires excessive power consumption.

For instance, in our simulation the laser output power needs to be increased by 20% to

guarantee that 99% of the fabricated links satisfy the 10−12 BER requirement.
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Figure 5.5: The BER distribution in the presence of process variations and the elec-
trical tuning. The blue line represents the link configuration based on the means of
the device parameters. The red line enhances the link optical power by 1.2X

5.4 Adaptive Tuning Approach

Instead of the power-consuming, worst-cased based fixed design, we propose an adap-

tive tuning approach that tunes each optical link individually to meet the BER require-
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ment. At a given BER and data rate, the minimum required optical modulation ampli-

tude (OMA) is determined by the receiver sensitivity Psense:

Plaser
∏
i

ILi · (T1 − T0) = Psense (5.3)

If the ILi, T1, and T0 vary due to process and thermal variations, we could tune either the

laser output power Plaser or the receiver sensitivity Psense to satisfy the above equation.

Intuitively, we could tune the DFB laser’s output power by varying its driving current

as illustrated in Fig. 5.6 a), where dots represent measurement result from [1], and

line represents model results. However, for interconnect schemes using an off-chip comb

lasers, it’s inefficient to tune the laser’s output power. This is because a comb laser

has a fixed optical spectrum distribution; and individual wavelength cannot be tuned

independently.

Fortunately, we notice an effective mechanism to trade off the power consumption for

the receiver sensitivity as illustrated in Fig. 5.6 b), where the adaptive photonic receiver

is from [78]. The supply voltage of the receiver circuitry, i.e. the trans-impedance

amplifier (TIA), has a significant impact on the gain, bandwidth, and noise performance

[78]. As the TIA supply voltage increases, the circuitry consumes more power and the

receiver achieves a better sensitivity (Fig. 5.6 b). Another benefit of tuning the receiver

is allowing the sharing of on-chip lasers [43]. In summary, for optical links using on-chip

DFB lasers, we could tune either the laser output power or the receiver sensitivity. For

links using off-chip comb lasers, we could only tune the receiver sensitivity.

Fig. 5.7 illustrates the flow of the adaptive tuning approach. At the beginning,

a specific writer-reader communication pair is activated. The TIA supply voltage or

the laser driving voltage is set to a relatively low value based on the best-case device

parameters. Then an on-chip BER testing circuitry performs the BER test. The TIA or
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Figure 5.6: (a) The laser output power as a function of the driving current of a DFB
laser; (b) The sensitivity and power consumption versus supply voltage of an adaptive
photonic receiver.

laser voltage is gradually increased until the BER is below a pre-set target (eg. 10−12).

Finally, the just enough TIA or laser driving voltage is stored in the flash memory as

a lookup table (LUT). At runtime, the laser or the TIA voltage is configured based on

the corresponding data stored in the LUT. This adaptive tuning flow could be activated

before shipment, after deployment, or whenever an abnormal error rate is observed by

higher level blocks (e.g., by using parity check) during operation . It should be noted that

when the electrical tuning is applied, the TIA or laser power should also be increased

accordingly at runtime to compensate for the degradation of Q and ER.

One of the key enabler in the adaptive tuning scheme is the fast on-chip BER testing

circuitry. The brute-force BER testing method is unaffordably time-consuming (over

100 seconds for 10−12 BER at 10Gbps data rate) for the proposed adaptive tuning.

Fortunately, there are fast BER estimation methods that leverage voltage offsetting or

sampling time offsetting [91, 92]. As illustrated in Fig. 5.8, the BER decreases when the

received power decreases or when the sampling time deviates from the ideal sampling

point. Therefore, the voltage offsetting method or the sampling time offsetting method

could be leveraged to accelerate the BER test. These two methods use an additional
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Figure 5.7: The adaptive tuning flow.
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comparator that intentionally decreases the received power or deviates the sampling

time. By comparing the additional comparator’s output with that of the normal data

comparator, eye closure could be detected much faster. For instance, if our target BER

is 10−12, the BER after voltage or sampling time offsetting can be intentionally increased

to about 10−10. It takes only several seconds to estimate such an increased BER for a 10

Gbps link.

Figure 5.8: The two fast BER estimation methods: (a) offset the voltage; (b) offset
the sampling time. The data in the left two figures are from [5].

There are two overheads associated with the adaptive tuning approach: the hardware

overhead and the tuning time overhead. The hardware overhead, mainly in the BER

monitor, includes an additional comparator with offset control and a small logic circuit,

which takes about 30 µm x 30 µm area for a 65 nm CMOS technology [91]. For a multi-

receiver link, its hardware cost can be amortized by sharing the BER monitor, as the

multiple receivers on one link cannot receive signal simultaneously. In this way, for a
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64-cluster crossbar with 64 WDM channels, the total area cost of the BER monitors is

only 1.0% of the chip area (366.1 mm2 in [43]). The tuning power overhead is avoided at

runtime as the BER monitor circuit is switched off after the tuning process is complete.

The tuning time overhead for a link is proportional to the number of communication

pairs times the BER estimation time. For a WDM link, all wavelength channels could

be tuned concurrently. For instance, assuming the BER estimation time is about 5 s, the

tuning time for a many-writer single-reader (MWSR) link with 64 clusters (e.g., Corona

[80]) is 320 s, which is reasonable for a one-time overhead. Overall, the hardware and

time overheads are reasonable for practical applications.

5.5 Evaluations

In this section, we perform simulations and analysis of several common photonic

NoC architectures to evaluate the power saving gained by the proposed adaptive tuning

approach. Several representative types of link structures are identified (as illustrated in

Fig. 5.9) for experiments among the common photonic NoC architectures:

� Single-writer single-reader (SWSR): The SWSR point-to-pint link is used in the

three-stage Clos network [35]. The Clos network uses SWSR optical links for stage-

to-stage communication and electrical routers for routing.

� Many-writer single-reader (MWSR): The MWSR optical links can be used to

construct optical crossbars for optical NoC. For instance, the Corona architecture

replicates the MWSR channel 64 times to fully connect the 64 clusters [80]. For

the adaptive tuning, each possible communication pair is individually tuned and

the just enough TIA supply voltages are stored in a LUT.

� Single-writer many-reader (SWMR): Similar to the MWSR structure, the SWMR

links can also be used in crossbar structures. For instance, the Firefly architecture
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Figure 5.9: Five types of link structures. Notions: W: writer or photonic modulator;
R: reader or photonic receiver; S: photonic switch or router. In a WDM system, the
laser represents a multi-wavelength light source; each microring represents a microring
array for multiple wavelength channels
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uses a SWMR-based crossbar for inter-cluster communication and a concentrated

mesh for intra-cluster [36]. Additionally, the SWMR structure is used in an optical

bus-based NoC architecture to broadcast the optical signal [81].

� Many-writer many-reader (MWMR): LumiNOC leverages the MWMR structure

for subnet design, where each cluster is connected with a writer and a reader such

that any cluster can communicate with any other cluster [82].

� Optical router based mesh: Microring-based optical routers are used in mesh-

based NoC architectures in a manner of circuit switching. For instance, Petracca et

al. proposed a non-blocking mesh NoC architecture using 4x4 optical routers [83].

The light source for each node is either from its own lasers or from optical power

waveguides.

5.5.1 Experimental Setup

We perform Monte Carlo simulations to calculate the power consumptions by the

fixed design and by the adaptively tunable design. The process variation statistics of

parameters A and Q in the first line of Fig. 5.3 d are used to generate random instances of

microring devices. The standard deviation of resonance wavelength caused by the process

variation is 0.44 nm [41]. The channel spacing is set to 0.9 nm (160 GHz) to match the

grid of the laser [93]. Since the electrical tuning is power-efficient and the electrical tuning

range (1 nm in Fig. 5.4) can cover the channel spacing (0.9 nm), we therefore adopt the

electrical tuning with the channel remapping (or reshuffling) technique to compensate

for the wavelength mismatch [84, 69]. Other than specified for parameter sweeps, the

number of clusters is set to 16; the maximum temptation variation is set to 17◦C [41];

the laser type is on-chip DFB laser. The length of the longest communication path is

set to 4 cm to accommodate the chip area (366.1 mm2 in [43]). The waveguide loss is
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assumed to be 0.74 dB/cm [94].

The fixed design uses the same TIA supply voltage for all photonic receivers; the yield

target is set to 99%. The adaptive tuning leverages the sensitivity-adaptive photonic

receiver illustrated in Fig. 5.6 b, and configures each TIA’s supply voltage individually

depending on the present communication pair. Each writer (or reader) in the many-

writer (or reader) structure is assumed to have the same probability to write (or read).

The average power consumption of a TIA for the fixed design and the tunable design

are reported in the simulations. Fig. 5.10 shows the Monte Carlo simulation result of a

SWMR link, where the fixed design has to set the TIA power as high as 1.32 mW while

the adaptively tunable design achieves an average TIA power of 1.05 mW.

Figure 5.10: The simulated TIA power consumption for the fixed design and the
tunable design.

5.5.2 Process and Thermal Variations

From Fig. 5.3 (c)(d), one can see that the process variation statistics are very distinct

for different fabrication processes. In order to evaluate the performance of the adaptive

tuning approach at different process variation levels, we sweep the standard deviation of

the parameter A, which is an important factor to determine the link’s BER. Fig. 5.11

shows that the average receiver power by the adaptive tuning is decoupled from the

process variation.
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Figure 5.11: The average receiver power consumption at different process variations
and for different link structures with 16 communication nodes.

Temperature variations of an NoC is design- and workload- dependent. We simulate

the average receiver power at different maximum temperature variation values. The

simulation results in Fig. 5.12 show that the receiver power of both the fixed design and

the tunable design are decoupled from the temperature variation. This is because the

channel remapping technique [44] decouples the required tuning distance from the the

thermal variation when the process variation (3σ = 1.32nm) is greater than the channel

spacing (0.9 nm). This decoupled phenomenon has also been observed in [44, 69].

Figure 5.12: The average receiver power consumption at different temperature varia-
tions and for different link structures with 16 communication nodes.
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5.5.3 Number of Clusters

We also evaluate the power savings with respect to different numbers of clusters. Fig.

5.13 shows that, for SWMR, MWMR, and Mesh links, the power saving will be greater

for a design with more clusters. This is due to the fact that the communication path

lengths are highly non-uniform in SWMR, MWMR, and Mesh links, as illustrated by

the shortest and longest paths in Fig. 5.9. The shortest and longest paths potentially

lead to very distinct best-case and worst-case link performance [39]. In other words,

the non-uniformity of the communication path lengths, together with the process and

thermal variations, contribute to the power savings.

Figure 5.13: The average receiver power consumption at different numbers of clusters
and for different link structures.

5.5.4 Type of Lasers

Previous simulations all assume the links use on-chip DFB lasers as the light source.

Comb lasers intrinsically have non-uniform output power at different wavelengths, for

which the adaptive tuning should achieve even greater power saving. We simulate the

comb laser based optical links with 16 channels. The output spectrum of a Gaussian

comb laser is described in [65]. In the simulations, we assume that the output power
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of the comb laser at its center wavelength (the maxima) equals the DFB laser output

used in previous simulations plus the fiber-to-chip coupling loss. The simulation results

confirm that the adaptive tuning leads to greater power savings for comb lasers based

links (Fig. 5.14).

Figure 5.14: The average receiver power consumption for different laser types and for
different link structures. The numbers denote the ratios of the average receiver power
by the tunable design to the fixed design.

In summary, the adaptive tuning approach scales well with the process variation, the

thermal variation, and the number of clusters, especially for comb lasers based links and

for link structures with non-uniform path lengths.

5.6 Summary

Microring resonator based nanophotonic interconnects are very sensitive to process

and thermal variations. In this work, we model the microring based photonic devices and

their variation effects using the measured data. Taking into account the process and ther-

mal variation effects, our simulations show that the BER of optical links has significant

variation. Since the worst-case based fixed design consumes much excessive power, we

propose a novel power-efficient adaptive tuning approach. The proposed approach could
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tune each link individually and allocate just enough power to meet the BER requirement.

This approach offers good power efficiency with reasonable area and time overhead. Our

simulation and analysis demonstrate that the proposed adaptive tuning approach scales

well with respect to different process variations, thermal variations, numbers of clus-

ters, and laser types. Particularly, the adaptive tuning could save more power for link

structures with non-uniform communication path lengths and/or using comb lasers.
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Chapter 6

Optimal Pairing of Microring-based

Optical Transceivers

In this chapter, we will first introduce the schematic and the tuning scheme of the

microring-based transceiver. The optimal assignment and pairing algorithms are de-

signed to mix-and-match microring-based transceivers to minimize the overall tuning

power consumption. The optimization algorithms demonstrates effective power saving

on both realistic and synthetic data sets.

6.1 Introduction

Silicon microring-based optical transmitters and receivers are very attractive due to

its compact footprint, low energy consumption, and MUX-free WDM implementation

[21, 95, 96]. Microring resonators are highly wavelength selective and can modulate

or route optical signals [13, 24]. However, the microring resonators are very sensitive

to fabrication process variations. The geometry variations of the fabricated microrings

could lead to a variation of the microring resonance wavelength as large as 5 nm. In
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contrast, the microring modulator and filter usually have a high Q factor and a small

passband (0.1∼0.2 nm). Consequently, the resonance wavelength of a microring needs to

be tuned to align with the carrier wavelength.

In microring-based optical interconnects, the tuning power accounts for a non-trivial

portion of the total power budget [69]. It is desirable to design a scheme to effectively

reduce the tuning power. Zheng et al. proposed several techniques to reduce the av-

erage tuning power. However, some of its assumptions were not valid for realistic de-

vices and their proposed techniques were not tested on realistic data sets [84]. In this

work, we study the assignment and pairing problem of fabricated microring-based WDM

transceivers. The problem we attempt to address is formulated based on real fabricated

WDM transceivers: a batch of microring-based devices that are subject to process vari-

ations could be optimally mix-and-matched to form transmitter-receiver pairs with the

objective of minimized tuning power. A Hungarian method and a simulated annealing-

based algorithms are designed to tackle the problem in two cases, naming as separable

and inseparable transmitters and receivers. Our proposed algorithms are tested on both

measurement data from batches of fabricated devices and well established synthetic data

sets, both of which show excellent results of power saving and algorithm scalability w.r.t.

the device count for pairing.

6.2 Background

In this section, we introduce the schematic of our objective microring-based transceiver.

Then its process variations and thermal tuning are illustrated. A model of the wavelength

process variation in multi-microring transceiver is also developed here in order to generate

synthetic data sets to test our optimization algorithms in Sections 6.3 and 6.4.
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6.2.1 Overview of the Optical Transceiver

The WDM optical transceiver in this study is based on microring modulators and

filters as illustrated in Fig. 6.1. The transmitter (Tx) and the receiver (Rx) are fabricated

side-by-side on 200 mm SOI wafers at CEA Leti. Corresponding Tx and Rx CMOS

circuits on electrical dies will be bonded to the optical die. The microring modulators

and filters have 10 µm diameters and 13.9 nm free spectral ranges (FSR).

Figure 6.1: Schematic of the WDM optical transceiver.

In the optical Tx, light is generated by a multi-wavelength off-chip laser (e.g. a WDM

comb laser [21]), and then coupled onto the optical die by a silicon grating coupler. The

light is modulated by the silicon microring modulator at a certain wavelength. Local

heaters based on doped silicon are placed inside the microrings in order to tune the

wavelength aligning with the laser wavelength grid through thermal tuning. In the Tx

microring modulators, monitor photodetectors (PD) at the drop waveguide are used to

detect the resonance wavelength during thermal tuning. At the output of the Tx, light

is coupled out through a grating coupler to optical fibers or on-board polymer waveguide

depending on the applications [97]. In the optical Rx, light at a certain wavelength is

routed to the drop waveguide of the microring filter. The light is further detected by a

high-speed PD.
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A 200 mm SOI wafer consists 49 dies as shown in Fig. 6.2. The microring Each die

has 9 transceivers where 5 of them have 80 GHz channel spacing and 4 of them have

160 GHz channel spacing. 9 representative locations of the wafer, highlighted in the Fig.

6.2, were tested, while the lower Rx data was not correctly measured for one of the 9

locations. As a result, we have 40 valid transceiver devices data with 80 GHz channel

spacing, and 31 valid transceiver devices data with 160 GHz channel spacing due to the

lack of clear resonance dips in one transceiver data.

Figure 6.2: The silicon photonic transceiver wafer.

6.2.2 Process Variations and Tuning

Due to inevitable fabrication process variations, the actual resonance wavelengths

would deviate from the nominal values. Fig. 6.3 shows our measured optical spectra of

a Tx and an Rx in a transceiver block. The resonance wavelengths of Tx and Rx need

to be tuned to align with each other, as well as to match the WDM grid with certain

channel spacing. In this work, the channel spacing of the off-chip comb laser is 80 GHz.

The comb laser’s absolute wavelengths could be shifted by controlling its temperature,

and the laser’s tuning power is not counted toward the on-chip tuning power budget.
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Figure 6.3: Measured optical spectrum of a transceiver

Fig. 6.4 shows the resonance wavelengths before tuning (the red and blue solid dots)

and after tuning (the dashed vertical lines) of a transceiver. The absolute wavelengths

of the WDM grid are chosen so that the total tuning distance is minimized, and each

wavelength is only red shifted. Only thermal tuning is applied in this work, because

electrical tuning (biasing the microring p-i-n junction) would make it difficult to achieve

optical high-speed driving conditions [63] 1.

Depending on the design and fabrication details, the Tx and Rx in one transceiver

block would either be separated and individually packaged, or not be separated and be

packaged as a whole transceiver. The overall thermal tuning distance and power could

be minimized by optimally assigning a Tx to an Rx, or optimally selecting transceiver

pairs for point-to-point links. These two cases are discussed in the following two sections.

1The choice of tuning type only affects the tuning cost matrix and does not change the following
optimization algorithms.
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Figure 6.4: Illustration of the thermal tuning of 10 microrings in a transceiver, where
∆λc = 0.64 nm.

6.2.3 Process Variation Model

In order to characterize the process variations in multi-microring transceivers, we pro-

pose a model for the resonance wavelengths of transceivers. From a number of measured

transceiver spectra (Fig. 6.3 and others), we observe that the transceiver wavelengths

are subject to both a large inter-transceiver global variation (GV ) and a small intra-

transceiver local variation (LV ). Also, within one transceiver, the Rx wavelengths have

an obvious offset from Tx wavelengths, which is described by a Tx-Rx variation (TRxV )

term. Taking into account these factors, we express the wavelength of transceiver #i’s

channel #j, λTX/RX(i, j), in Eq. (6.1), where i is the transceiver index, j is the channel

index (j = 1 ∼ 5 for the data in this study), λ0 is the average wavelength of channel #1,

∆λc is the channel spacing (0.64 or 1.28 nm in this work).

λTX(i, j) = λ0 +GVi + (j − 1)∆λc + LVj

λRX(i, j) = λ0 +GVi + TRxVi + (j − 1)∆λc + LVj

(6.1)

84



Optimal Pairing of Microring-based Optical Transceivers Chapter 6

We use the measured wavelength data to validate the model in Eq. (6.1), and to

extract the variation components (GV , LV , and TRxV ). Firstly, each wavelength is

shifted based on its channel index to be nominally aligned with channel #1: λ′(i, j) =

λ(i, j) − (j − 1)∆λc. Then the variances of GV and LV are computed based on Eq.

(6.2), which essentially describes the inter-transceiver and intra-transceiver variations

respectively.

var(GV ) = var
i

{
mean

j
(λ′(i, j))

}
var(LV ) = mean

i

{
var
j

(λ′(i, j))

} (6.2)

The random variables of GV and LV are visualized in Fig. 6.5. The histograms show

that both of GV and LV follow normal distributions with zero mean. The variance of GV

is much larger than that of LV , which in turn confirms our model based on separable

GV and LV . The GV � LV is also consistent with the conclusion that wavelength

mismatch between devices is linearly dependent on their physical distance in [98].

Figure 6.5: The distribution of random variables of global and local variations for our
80 GHz data set.

To quantify the variance of TRxV, we calculate the difference of the two equations in

Eq. (6.1), and obtain Eq. (6.3). The random variable of λRX(i, j)−λTX(i, j) is visualized
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in Fig. 6.6 which demonstrates a normal distribution shape with zero mean. Therefore,

the distribution of TRxV is also regarded as a normal distribution with zero mean. The

variance of TRxV can be obtained from Eq. (6.3).

var(TRxV) + 2var(LV ) = var
i,j
{λRX(i, j)− λTX(i, j)} (6.3)

Figure 6.6: The distribution of random variables of λRX − λTX for our 80 GHz data set.

The analysis of the measured data set with 160 GHz channel spacing reached similar

results. In summary, our model well characterizes the process variation of the wave-

lengths. The statistics of the random components in the model can be extracted from

the wavelength data.

6.3 Optimal Assignment of Transmitters and Receivers

When the Tx and Rx in a transceiver are diced and separately packaged, Tx and

Rx originally from different transceiver blocks could be matched to minimize the overall

tuning power. Fig. 6.7 shows the schematic of separately packaged Tx and Rx connected
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by an an off-chip fiber 2. The five microrings in the Tx and the five microrings in the

Rx need to be tuned as illustrated in Figs. 6.3 and 6.4. Due to fabrication process

variations, the actual resonance wavelength of the microrings are random. Among a

pool of fabricated Tx’s and Rx’s, we could optimally assign Tx to Rx to minimize the

microring tuning power consumption.

Figure 6.7: A schematic of an individual Tx connected to an individual Rx.

The optimal assignment procedure of Tx and Rx devices is as follows: the resonance

wavelengths of Tx and Rx devices are measured after their fabrication. Then we construct

a tuning cost matrix for a pool of n Tx devices and n Rx devices. The cost matrix element

cij is the tuning cost of matching Tx #i with Rx #j that can be easily calculated from

Fig. 6.4. In this way, this problem is formulated as a classical assignment problem and

could be solved by Hungarian algorithm in O(n3) time.

This optimal assignment algorithm is tested on two batches of measured data sets.

The optimal assignment results are shown in Table 6.1, assuming a heater efficiency of

0.15 nm/mW. The optimal assignment algorithm can gain some power savings compared

to the local assignment scheme where each Tx is assigned to the local Rx in the same

original transceiver.

We also test our assignment algorithm based on synthetic data sets. The synthetic

2could also be a polymer waveguide on board.
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Table 6.1: Optimal Assignment of Tx to Rx using Realistic Data

Channel spacing
(GHz)

Average tuning power
per pair (mW)

Local assignment

Average tuning power
per pair (mW)

Optimal assignment
Power saving (%)

80 25.7 24.1 6.2
160 24.7 21.3 13.8

data sets are randomly generated based on the established process variation model in

Section 6.2.3. Table 6.2 summarizes the experimental results w.r.t various Tx and Rx

numbers to be assigned. The power saving is calculated by comparing the optimal and

local assignment results. Due to the random nature of the synthetic data sets, a number

of synthetic data sets are tested for each configuration to achieve converged values of

average power saving. Table 6.2 shows that the algorithm has comparable power saving

on the synthetic data sets with the same number of devices as the realistic data sets. It

also shows that greater power saving can be achieved when there are more devices.

Table 6.2: Optimal Assignment of Tx to Rx using Synthetic Data
Channel spacing

(GHz)
Number of Tx and Rx Power saving (%)

80 40 11.2
80 400 23.2
80 1000 25.8
160 31 14.4
160 301 27.1
160 1001 30.2

6.4 Optimal Pairing of Transceivers

When the fabricated transceiver block is inseparable and is packaged as a whole, there

also exists optimization problem of forming transceiver pairs for optical links to minimize

the overall tuning power. Here we consider the point-to-point (P2P) optical link as a
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simple case. In a P2P link, two transceivers (# i and j) are paired as shown in Fig. 6.8,

where the Tx in the transceiver # i (or j) is connected to the Rx in the transceiver #

j (or i). The transceivers from a pool could be optimally paired to minimize the overall

tuning power.

Figure 6.8: A schematic of two connected transceivers in a P2P link.

Different from the classical assignment problem, it is hard to find a polynomial time

exact algorithm for this pairing problem. There is a dynamic programming algorithm

based on the following equation: d(S) = min {|TiTj|+ d(S − {Ti} − {Tj})}, where d(S)

is the minimum total tuning power for the transceiver set S, and |TiTj| is the tuning

power for transceiver pair # (i, j). However, this dynamic programming algorithm fully

explores the state space of O(2n), so its time complexity is also O(2n). Here we use
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simulated annealing (SA) algorithm to tackle this problem as illustrated in Algorithm 1.

Algorithm 1: Simulated annealing algorithm for transceiver pairing

1 Construct the cost matrix based on the tuning cost for transceiver pair (i, j), i 6= j

in O(n2) ;

2 Run greedy pairing algorithm: iteratively select the transceiver pair with the

minimum tuning cost (O(n3));

3 Use the greedy algorithm result as the initial pairing of the simulated annealing;

4 //Begin simulated annealing algorithm;

5 Set some SA algorithm parameters: initial and final temperature, cooling rate,

number of loops per temperature;

6 temperature ← initialTemperature;

7 while temperature ≥ finalTemperature do

8 for i = 0 to loopNumPerTemperature do

9 Randomly select two pairs and shuffle the four transceivers;

10 Compute ∆E, the change of cost due to the shuffle;

11 if ∆E < 0 then

12 Accept the new pairing;

13 else

14 Accept the new pairing with probability of exp (−∆E/kT );

15 end

16 end

17 temperature ← temperature × coolingRate;

18 end

19 Return the pairing with the minimum cost during the whole SA process;

In our experiments, we observed that the greedy algorithm could provide a fairly

good pairing result, so the greedy algorithm result is used as the starting point for the
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SA algorithm to shorten the execution time. However, the tuning power of the transceiver

pairs in the greedy algorithm results tend to have large variances (shown by blue lines in

Fig. 6.9). Since uniform product performance and power consumptions are desirable for

industrial productions, we include the standard deviation of the transceiver pair tuning

power in the cost function:

E = µ(A) + λ1σ(A) (6.4)

Where A is the vector of the tuning power of the transceiver pairs, and λ1 is a weight

coefficient for the standard deviation of the tuning power.

We run this SA-based algorithm on the two realistic data sets with the weight co-

efficient λ1 swept from 0 to 2. The results are compared with the greedy algorithm as

plotted in Fig. 6.9. The statistics of the algorithm results are summarized in Table

6.3, where the baseline, the nearest pairing scheme, naively pairs transceiver #(i, i + 1)

(i = 1, 3, 5...) together. The results show that the SA algorithm greatly reduces the mean

and variance of the tuning power compared to the naive nearest pairing scheme. In the

SA algorithm, a larger weight λ1 could result in a smaller tuning power variance at the

cost of sacrificing the tuning power mean a little.

Figure 6.9: The results of SA and greedy algorithm on two realistic data sets.
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Table 6.3: Optimal Pairing of Transceivers using Realistic Data
Channel spacing

(GHz)
Algorithm & configuration Power saving (%) Std. Reduction (%)

80 Nearest pairing 0 0
80 Greedy 52.2 28.3
80 SA with λ1 = 0 59.5 67.7
80 SA with λ1 = 1 59.5 68.7
80 SA with λ1 = 2 58.4 70.3
160 Nearest pairing 0 0
160 Greedy 55.1 70.0
160 SA with λ1 = 0 58.1 88.3
160 SA with λ1 = 1 57.5 90.5
160 SA with λ1 = 2 53.6 94.5

The relative power savings here in Table 6.3 are much larger than the Tx/Rx assign-

ment case in Table 6.1 in Section 6.3. This is because the baseline here, the scheme of

pairing nearest transceiver block, involves inter-transceiver global variation. The pairs

in the baseline scheme here are less spatially correlated than the baseline assignments in

Section 6.3. Intuitively, the baseline here is expected to have worse performance than in

Section 6.3, resulting in larger relative power savings.

The SA-based optimal pairing algorithm is also tested on synthetic data sets. The

weight λ1 = 1 in the SA algorithm. The device counts of 301 and 1001 are chosen to test

the cases with odd device counts. The results are shown in Table 6.4, where the mean

tuning power saving and power standard deviation reduction are calculated by comparing

the SA and the nearest pairing results. Similar to the assignment algorithm for Tx and

Rx, the TRx pairing algorithm also demonstrates better power saving with more devices.

Also, the optimal pairing algorithm offers significant reduction in tuning power variance,

yielding uniform power consumption of the transceiver products.
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Table 6.4: Optimal Pairing of Transceivers using Synthetic Data
Channel spacing

(GHz)
Number of TRx Power saving (%) Std. Reduction (%)

80 40 66.1 81.7
80 400 72.7 90.3
80 1000 75.4 77.1
160 31 60.8 78.8
160 301 66.3 87.1
160 1001 72.9 84.0

6.5 Summary

The resonance wavelengths of fabricated microrings would deviate from their nominal

values due to process variations, which requires proper tuning to realign the wavelengths

in an optical link. In this work, we have proposed optimal assignment and pairing al-

gorithms for microring-based optical transceivers to minimize the tuning power. For

the separable Tx and Rx case, the Hungarian algorithm finds the optimal assignment

of Tx with Rx to minimize the tuning distance and power. For the case of inseparable

transceiver-based P2P link, a simulated annealing-based algorithm is applied to achieve

transceiver pairs with low and uniform tuning power. The two algorithms are tested on

both measured data from batches of fabricated devices, and synthetic data sets based

on well established models. The results of the algorithms show significant power sav-

ing compared to the nearest assignment or pairing scheme, and demonstrate excellent

scalability w.r.t. the device count.
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Chapter 7

Spatial Pattern Analysis of Process

Variations in Silicon Microring

Modulators

In this chapter, the measured wafer-scale process variation data of microring modulators

are decomposed and analyzed, which provides useful insights for locating the process

variation sources.

7.1 Introduction

As the dimensions of silicon photonic devices dive into submicron era, the device

performance suffers from significant fabrication process variations. In order to better

understand and further control and manage the process variations in fabrication pro-

cess level, device design level and system design level, the process variations need to be

systematically modeled.

The process variations have been studied in many previous work such as [98, 99],
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which, however, did not systematically analyze the spatial patterns in the process vari-

ations. In this work, we quantitatively analyze the spatial patterns in the wafer-scale

variations of microring modulators performance and local heaters resistance. The wafer-

scale measured data is decomposed into two spatial pattern components, which are very

valuable in analyzing the process variation sources and improving the fabrication steps.

7.2 Spatial Pattern Decomposition and Analysis

We first measure and then decompose the wafer-scale device characteristics. Though

the resonance wavelength is a good fingerprint of the microring modulator, it requires

additional efforts to track a specific resonance wavelength when the resonance wavelength

drifts over one free spectral range (FSR) across the wafer. Therefore, as a proof of

concept, we choose the electrical characteristics of the microring modulator that can be

measured accurately and efficiently. We perform S11 test at 1 mA bias of the modulators.

Then the S11 test data is fit into the small signal model in Fig. 2.11 with high accuracy

to extract the model parameters, among which the RD is plotted in Fig. 7.1.

The wafer-scale measured values are decomposed into the leveling component ax+ by

and the radial component c1
√
x2 + y2+c2(x

2+y2) as described by the following equation:

zm(x, y) = ax+ by + c1
√
x2 + y2 + c2(x

2 + y2) + d+ ε(x, y) (7.1)

Where zm is the measured value; x and y are the coordinates of the device-under-test

(DUT) on the wafer with the wafer center as the origin; d is a constant representing

the DC part in the measured value, which is included in the leveling component in the

wafer-scale maps; ε is fitting error or the residual component. The weights of different

components are evaluated by the variance of the component divided by the variance of the
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Figure 7.1: Measured value and decomposition results of the diode resistance RD.
The center die is burnt. The radial component is not rotationally symmetric with
respect to the wafer center since the DUT deviates from the die center.

measured values. It should be noted that the sum of the weights of all the components is

not necessarily one, because the leveling and radial components are not orthogonal basis.

Using the decomposition approach above, all the extracted model parameters in the

small-signal model are well explained by the two spatial components. Here we plot RD

in 7.1 as a representative due to space limitation, which shows significant leveling and

radial components.

The RC-limited 3dB bandwidth of the microring modulator is calculated based on

the small signal model parameters [64], as plotted in Fig. 7.2, which shows significant

radial component and some leveling component.

We measure the local heater resistance by I-V test across the same wafer as shown

in Fig. 7.3, where three outlier dies are eliminated. Good probe contact is confirmed by

repeated measurements with repeating error less than 1 Ω. The decomposition of heater

resistance data shows a large radial component and a trivial leveling component.
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Figure 7.2: Measured value and decomposition results of the wafer-scale RC-limited
bandwidth.

Figure 7.3: Measured value and decomposition results of the wafer-scale heater resistance.
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7.3 Implications on Fabrication Process Steps

The variation decomposition results show that the leveling component in CD and

RD are respectively 15% and 16%, which are much larger than that in the local heater

resistance (3%). Comparing to the local heater with simpler geometry, the modulators

PIN junction has additional dependencies such as the waveguide width (Fig. 1 ab).

Therefore, the unique leveling component in the PIN junctions CD and RD is mainly

introduced by the waveguide width variation, which is caused the imperfect leveling of

silicon waveguide photomask during the lithography step.

Both the PIN junctions RD and the heater resistance show significant radial pattern

with higher resistance at the wafer edge. Additionally, the foundry measured SOI wafer

thickness shows a radial pattern with 8 nm thicker at the wafer edge. Therefore, other

contributors of the radial pattern, such as the silicon dry etch step and contact via etch

step, also play important roles. Meanwhile, by noticing the weight percentages in Fig. 2,

the contribution of the wafer thickness and the dry etch depth to the RDs total variation

effect is about 2.5 times (40% : 16%) as large as that of the leveling of the silicon

waveguide photomask.

7.4 Summary

We have decomposed the wafer-scale process variation data of microring modulators

and local heaters into two spatial pattern components (leveling and radial). The electri-

cal characteristics of the modulators PIN junction demonstrate both radial and leveling

patterns, while the local heater resistances are dominated by radial pattern. The spa-

tial pattern analysis implicates variation sources of waveguide photomask leveling, SOI

thickness, and the dry etch depth.
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This work is limited to wafer-scale global variations due to the small number of DUTs

on a wafer. With more dedicated test structures in future fabrication runs, and optical

spectrum measurements, we can expect more accurate and informative analysis of both

global and local variations using this approach.
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Chapter 8

Conclusions and Future Work

This thesis documents the efforts of compact modeling, circuit simulation, and variation

management of nanophotonic interconnects. The key contributions and findings are as

follows.

Microring modulators are extensively studied and modeled in various aspects includ-

ing its device design space, electrical and optical properties, and its dynamic behavior.

The models for various aspects are compiled into a comprehensive model, which is then

used in circuit-level simulations. Components in a heterogeneous silicon optical NoC are

also compactly modeled. We have performed circuit-level simulations of a microring-

based transceiver and a heterogeneous optical link in Cadence. The simulation results

show excellent agreement with measurements, and demonstrate the electro-optical co-

simulations and photonics-aware design space explorations.

Observing the significant process variations of Q factor and extinction ratios in mi-

crorings, the adaptive tuning technique has been proposed to allocate just enough power

for the fabricated links. The adaptive tuning saves the receiver power consumption and

scales well w.r.t variation ranges, NoC sizes, and laser types. We have also designed

optimization algorithms to mix-and-match the microring-based devices to minimize the
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tuning distance and power in each link. The optimal pairing algorithms demonstrate

good performance and scalability on both measured and synthetic wavelength data sets.

To characterize the spatial patterns of the process variations, we have decomposed the

wafer-scale process variation data of microring modulators. The resulting spatial patterns

are explained by certain fabrication process steps, which is helpful in process debugging

and improvement.

The future work can include:

� Enrich and improve the photonics device model library: model more types of pho-

tonic components; include the device design parameters in the model to facilitate

early state design space explorations of PICs; add more photonics-specific informa-

tion to the model description (e.g., phase, noise, chirp, etc.)

� Co-simulate the photonic device models with realistic CMOS circuits: simulate

realistic CMOS driver circuits with photonic devices to study their interactions

and co-optimizations.

� Study the device mix-and-match problem in more complex situations: consider the

tuning of not only transmitters and receivers but lasers; optimally arrange optical

devices in network architectures with optical switches.

� Perform more variation-aware system-level and architectural study of optical in-

terconnects and NoC based on the well established compact device models and

variation models.
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