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Abstract

Detection of brain metastases is a paramount task in cancer management due both to the number 

of high-risk patients and the difficulty of achieving consistent detection. In this study, we aim 

to improve the accuracy of automated brain metastasis (BM) detection methods using a novel 

asymmetric UNet (asym-UNet) architecture. An end-to-end asymmetric 3D-UNet architecture, 

with two down-sampling arms and one up-sampling arm, was constructed to capture the imaging 

features. The two down-sampling arms were trained using two different kernels (3 × 3 × 3 

and 1 × 1 × 3, respectively) with the kernel (1 × 1 × 3) dominating the learning. As a 

comparison, vanilla single 3D UNets were trained with different kernels and evaluated using 

the same datasets. Voxel-based Dice similarity coefficient (DSCv), sensitivity (Sv), precision 

(Pv), BM-based sensitivity (SBM), and false detection rate (FBM) were used to evaluate model 

performance. Contrast-enhanced T1 MR images from 195 patients with a total of 1034 BMs 

were solicited from our institutional stereotactic radiosurgery database. The patient cohort was 

split into training (160 patients, 809 lesions), validation (20 patients, 136 lesions), and testing 

(15 patients, 89 lesions) datasets. The lesions in the testing dataset were further divided into two 

subgroups based on the diameters (small S = 1–10 mm, large L = 11–26 mm). In the testing 

dataset, there were 72 and 17 BMs in the S and L sub-groups, respectively. Among all trained 

networks, asym-UNet achieved the highest DSCv of 0.84 and lowest FBM of 0.24. Although 

vanilla 3D-UNet with a single 1 × 1 × 3 kernel achieved the highest sensitivities for the S group, 

it resulted in the lowest precision and highest false detection rate. Asym-UNet was shown to 

balance sensitivity and false detection rate as well as keep the segmentation accuracy high. The 

novel asym-UNet segmentation network showed overall competitive segmentation performance 
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and more pronounced improvement in hard-to-detect small BMs comparing to the vanilla single 

3D UNet.
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brain metastasis; medical imaging; asymmetric Unet

1. Introduction

Brain metastasis (BM) develops in approximately one-third of cancer patients throughout 

their disease courses (Walker et al 1985). Treatment options for BMs include whole-brain 

radiation therapy (WBRT) or stereotactic radiosurgery (SRS), with or without surgical 

resection (Suh et al 2020). In patients with a limited number of BMs, SRS has been shown 

to reduce cognitive decline and improve quality of life compared to WBRT (Brown et al 
2016, Sahgal et al 2015, Yamamoto et al 2017). However, close surveillance with magnetic 

resonance imaging (MRI) is necessary to assess for local and distant recurrences (Chang 

et al 2009). Earlier detection of BMs with advanced neuroimaging and improvement of 

systemic therapies has increased survival in patients with BMs, further demanding accurate 

assessment of follow-up MRIs (Chang et al 2018). These factors necessitate the review of 

multiple, longitudinal MRIs, which can be challenging due to the volume of images needing 

evaluation and astute detection of sub-centimeter BMs. Fast and accurate detection and 

segmentation of new and recurrent BMs with the assistance of a computer algorithm is thus 

of paramount clinical importance.

Computer-aided diagnosis (CAD) has become one of the major research topics in medical 

imaging and diagnostic radiology. In CAD, clinicians use the computer as a ‘second 

opinion’ to assist their final decision (Abd-Ellah et al 2019). CAD is useful for lesion 

detection and segmentation of BMs for SRS treatment planning and can serve as a second 

check of tumor contours. However, vanilla computer vision methods have not been widely 

adopted because they still heavily rely on human supervision, which did not significantly 

alleviate the workload (Doi 2007). The development of deep learning has pushed the limits 

of what is possible in the domain of digital image processing. Significantly improved 

performance has been reported on solving difficult problems, including image colorization, 

classification, segmentation, and detection using deep learning. Among them, convolutional 

neural networks (CNNs) have been mostly studied to improve prediction performance using 

a large amount of pre-labeled data (Lecun et al 1989, Chen et al 2016). Specifically, CNNs 

have achieved remarkable success in 2D and 3D medical image segmentation (Ronneberger 

et al 2015, Long et al 2015, Tong et al 2018, 2019, Tang et al 2019, Gou et al 2020). 

Nonetheless, relatively few studies have reported the detection and segmentation of the BMs 

(Liu et al 2017). Among them, Losch et al were the first to investigate the use of deep 

learning to detect and segment BMs (Losch et al 2015). Charron et al adapted an existing 3D 

CNN (DeepMedic) by training 164 patients to detect and segment BMs on multimodal MR 

images. The authors used Dice similarity coefficient (DSC) which quantifies the normalized 

overlap between the manual and automated segmentation, and achieved an average DSC 

of 0.77 with the best DSC score of 0.79 (Charron et al 2018). Grovik et al built a 2.5D 
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GoogleNet CNN to detect and segment BMs on multisequence MRI (Grøvik et al 2020). 

One hundred five training data points were involved, and the average of voxel DSC is 0.79 

calculated based on patients. Although the average performance could be clinically useful, 

these studies used a combined DSC measurement for a patient with multiple BMs of varying 

sizes, which is insensitive to the detection and segmentation errors of small BMs. Realizing 

this limitation, Hu et al divided the brain metastases into small size (<1500 mm3) and large 

size (>1500 mm3) when combining 3D UNet and DeepMedic to detect and segment BMs 

(Hu et al 2019). Their average detection sensitivities are 0.61 and 0.98 for small- and large-

sized BMs, respectively. Their average voxel-based DSC is 0.47 and 0.82 for small- and 

large-sized BMs. Besides the relaxed threshold set for small BM, which has an equivalent 

diameter of 14 mm, the steep decline in detection sensitivity and accuracy with BM size 

suggests the challenge of small BM detection. Further improvement in the segmentation 

performance, particularly for lesions smaller than 10 mm, is essential for the clinical utility 

of automated methods. In the study, we propose a novel asymmetric UNet (asym-UNet) 

architecture to detect and segment brain metastases using a single T1 contrast-enhanced MR 

sequence.

2. Methods and materials

2.1. Clinical data

Following IRB approval, contrast-enhanced T1 MR images from 195 consecutive patients 

with multiple BMs were solicited from our institutional SRS database. We focus on more 

challenging multiple BMs detection and segmentation, so patients with single BM were 

not included. The BM segmentations were verified by radiation oncologists with >5 years 

of experience of treating BMs with SRS. A total of 1034 BMs in the 195 patients were 

manually contoured for SRS planning and treatment. Figure 1 shows the distribution of BMs 

in axial, sagittal, and coronal views. BMs from all patients were overlaid in a common brain 

mask to qualitatively demonstrate the locations of metastases in the main from all cancer 

types. The patient cohort was split into training (160 patients, 809 lesions), validation (20 

patients, 136 lesions), and testing (15 patients, 89 lesions) datasets. The means and range of 

ages for training, validation, and testing data are 60.4 (19–92), 59.5 (28–81), 56.8 (25–68), 

respectively. The 89 lesions in the testing dataset were further divided into two groups based 

on their largest diameter: small, S (1–10 mm, N = 72) and large, L (11–26 mm, N = 17). 

Figures 2(a) and (b) show the distribution of BM binned by the diameters in the training and 

validation datasets.

2.2. Image pre-processing

Treatment planning and subsequent surveillance MR scans were performed with T1 

sequence after intravenous gadolinium contrast injection on 1.5T Symphony™ (Siemens, 

München, Germany), with original volumetric dimensions of 256 × 256 × 80, a spatial 

resolution of 1.016 × 1.016 × 2 mm, TR (repetition) of 738 ms, and TE (echo time) of 16 

ms. FOV (percent phase field of view) of 100 mm2 and flip angle of 180°. BMs contours 

were created by neurosurgeons, physicists, and radiation oncologists at the time of the 

gamma knife treatment planning. DICOM files containing the images and tumor contours 

were exported to VelocityAI™ (Varian, Palo Alto, CA). Whole-brain contours were then 
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created, excluding the skull and skin. The organized dataset, including original MR images, 

the tumor, and whole-brain contours, were then exported to a LINUX computational server, 

equipped with 4× RTX 2080 Ti 11GB GPU and Devbox (X299, I9–7900x, 16GB × 4, 1× 

240GB OS SSD, 1× 10TB DATA HDD, Ubuntu 16.04) for model training and testing.

2.3. Asymmetric 3D UNet architecture

As shown in figure 3, a 3D asym-UNet architecture was built with two down-sampling arms 

and one up-sampling arm to capture the spatial information. For the down-sampling arms, 3 

× 3 × 3 (k1) and 1 × 1 × 3 (k2) were used to capture image features with different encoding 

paths, which avoids fusing from the early stage. We selected k1 and k2 based on the image 

resolution (1.016 × 1.016 × 2 mm) and typical BM diameters (>50% of BM are smaller 

than 7 mm) in our datasets. BM and neighboring brain tissue were noted to have distinct 

features. When a BM was small and surrounded by a large amount of normal brain tissue, 

a smaller kernel may be more attentive to local BM texture and not be overly distracted 

by the neighborhood. For this reason, k2 dominated the learning process. k1 was necessary 

as a supplement to learn features from neighboring tissue because more image features 

were incorporated in the 3 × 3 × 3 kernel. Inside each encoding path, the corresponding 

kernel convolution was applied twice with a rectified linear unit, a dropout layer between the 

convolutions with a dropout rate of 0.3 and a 2 × 2 × 2 max-pooling operation in each layer 

(Srivastava et al 2014). The number of feature channels was doubled after the max-pooling 

operation. In the up-sampling path, each layer consists of an up-convolution of 2 × 2 × 2, 

followed by two 3 × 3 × 3 convolution operations to reduce the feature channels by half. 

We then concatenated the channels from the corresponding layers. In the final step, a 1 

× 1 × 1 convolution and softmax were used to map the feature vector to binary classes. 

Glorot (Xavier) normal initializer was used for this asym-UNet, which drew samples from a 

truncated normal distribution centered on zero with stdev = sqrt (2/(fanin + fanout)) (Glorot 

and Bengio 2010). fanin and fanout are the numbers of input and output units, respectively, in 

the weight tensor. The energy function was computed using the cross-entropy loss function 

with a pixel-wise softmax at the final step, which was defined as:

pk(x) = exp fk(x)
∑k′ = 1

C exp fk′(x)

(1)

where fk(x) was the activation in feature channel k at the pixel position x. C was the number 

of classes and pk(x) was the approximated maximum function. pk(x)≈1 for channel k had the 

maximum activation fk(x), otherwise pk(x)≈0. Here, the cross-entropy at each position was 

defined as:

E = − ∑
x

yk(x) log pk(x) + 1 − yk(x) log 1 − pk(x)

(2)

where yk was the true label at the position, which was 0 or 1 for this binary case. Adam 

optimizer was applied to train this model (Kingma and Ba 2014). The learning rates ranging 
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from 1 × 10−4 to 1 × 10−6 were investigated in this project. The model did not converge 

with the learning rate of 1 × 10−6 and up to 1200 epochs. For the learning rate 1 × 10−4, the 

network converged quickly at epochs around 200. However, it converged to an undesirable 

local minimum, and all BM less than 4 mm were missed, and DSCv was lower. With the 

learning rate 6 × 10−5, the results, including the detection sensitivity and voxel parameters, 

were stable when the number of epochs was set between 500 and 800. For our final model, 

the learning rate 6 × 10−5 with 500 epochs was chosen to balance learning speed and 

network stability. Encoder depth size from 3 to 6 was studied. We observed that the deeper 

of the network, the harder it was to capture the features from small kernels. Therefore, we 

chose an encoder depth size of 4 and a batch size of 8 to balance among the size of the 

image data, GPU memory, and the training speed.

For comparison, vanilla UNet with different kernels were trained with the same batch size, 

learning rate, and epochs as those used in the asym-UNet (Çiçek et al 2016). In addition to 

the k1 and k2 used in the asym-UNet training, k3 (2 × 2 × 2) and k4 (3 × 3 × 1) were also 

tested.

2.4. Model performance assessment

To evaluate the performance of the asym-UNet model, we defined the following quantitative 

measures. The overall performance of the segmentation was given by the voxel-based DSCv, 

defined in equation (3),

DSCV = 2 × TPV
2 × TPV + FPV + FNV

(3)

where TPV was the number of overlapping voxels, FNV was the number of undetected 

voxels manual contoured, and FPV was the number of automatically segmented voxels 

outside the manual contours. DSCV of 1 indicated FPV and FNV are both zero.

Voxel-based sensitivity (SV) and precision (PV) were the similarity measure often used in the 

medical image processing to evaluate the performance of the segmentation algorithm that 

had predefined ground truth (Fenster and Chiu 2006). SV and PV were defined in equations 

(4) and (5), respectively.

SV = TPV
TPV + FNV

(4)

PV = TPV
TPV + FPV

(5)
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Individual BM-based sensitivity (SBM) and false detection rate (FBM) were used to evaluate 

the detection capability, and they were defined as:

SBM = TTBM
TTBM + TNBM

(6)

FBM = FDBM
TTBM + TNBM

(7)

where TTBM was the number of metastases correctly detected (CD), TNBM was the number 

of undetected (UD) metastases, and FDBM was the number of metastases falsely detected. 

In the study, undetected metastasis is defined as the metastasis that was missed by the 

algorithm but was deemed by the experts as true metastasis; falsely detected metastasis was 

the automated solitary contour that was not at the location confirmed by experts and had 

zero overlaps with the manual expert contour.

3. Results

Figure 4(a) shows the distribution of BM binned by the diameters in the test dataset. Figure 

4(b) shows the receiver operating characteristic (ROC) curves for the six trained models. The 

asym-UNet classifier clearly shows the best diagnostic ability among all six models. The 

area under the curve values are 0.86, 0.76, 0.75, 0.67, 0.65, 0.62 for asym-UNet, sym-UNet, 

UNet with k1, UNet with k2, UNet with k3, and UNet with k4, respectively.

Table 1 shows the detailed model validation results. For the vanilla UNet model trained 

using k1 alone, the numbers of CD and UD BMs are 46 (64%), 26 (36%), respectively, 

for the group S that contained smaller (1–10 mm) lesions. The number of falsely detected 

tumors are 17. As a comparison, the UNet model trained using k2 or k3 alone improved 

the CD to 64 (89%) and 50 (69%) and reduced the number of UD to 8 (11%), 22 (31%) 

for the S group. However, the UNet model trained using k2 or k3 alone has a large number 

of false detected tumors of 50, 40 for the S group, respectively. For group L consisting of 

larger (11–26 mm) BMs, the UNet models trained with either k1 alone, k2 alone, or k3 alone 

detected all 17 (100%) BMs correctly, and yet the UNet with k2 alone falsely detected five 

lesions, with k3 alone detected two. A similar observation can be made for DSC that under a 

single kernel UNet setting, a smaller kernel performed better in detection sensitivity but tend 

to report higher false positivity while the larger kernels are more specific but less sensitive. 

Table 1 also shows that the performance could not be substantially improved using a single 

differently sized kernel. In comparison, our asym-UNet model trained with combined k1 

and k2 kernels improved the balance of CD/UD/FD BMs, achieving the highest DSCV of 

0.65 for the S group among all models tested. For the L group, asym-UNet was able to 

maintain the DSCV = 0.84 and high sensitivity (≥0.9). For the S group, the asym-UNet 

balanced between high sensitivity while keeping the false detection ratio reasonably low 

(FBM = 0.24).
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Figure 5 shows examples from two typical patients comparing ground truth, the prediction 

from vanilla UNet, and our new asym-UNet. Patient 1 is a 45 year old female with 

metastatic colorectal adenocarcinoma. There are multiple heterogeneously enhancing lesions 

noted on the axial T1 + C MRI scan image, including a right paramedian occipital lobe 

metastasis measuring 2.0 × 1.7 × 1.8 cm and lateral right occipital lobe metastasis measuring 

1.6 × 1.3 × 1.3 cm. A 3 mm rim-enhancing lesion is also seen along the inferior mid-right 

temporal lobe. Patient 2 is a 52 year old female with metastatic breast cancer. Multiple 

BM were detected, including an 8 mm focus in the left frontal lobe, 1 mm focus in the 

left periventricular frontal white matter, and 3 mm focus in the right parietal lobe. The first 

column of the image shows the axial slice of the T1 contrast-enhanced MR image, and the 

second column shows the ground truth contours from treating neurosurgeon and radiation 

oncologist. The third column shows the prediction result from the vanilla single-kernel UNet 

(k1 = 3 × 3 × 3). The fourth one is the result of our asym-UNet architecture. It is shown that 

the 3D asym-UNet can detect the metastases closer to the scalp boundary and with smaller 

sizes that have been missed in vanilla single UNet architecture. Neither vanilla UNet nor 

asym-UNet was able to detect lesions of 1 mm or less on a single slice contour.

4. Discussion

In this study, we adapted the 3D UNet deep learning classification method for the detection 

of multiple BMs on standard T1-weighted post-contrast axial MRI used for SRS planning 

purposes. Compared with the vanilla UNet using a single kernel, our asym-UNet used two 

different sized kernels to capture the image features of small tumors as well as the boundary 

information of larger metastases. Compared with vanilla UNet with only a single 3 × 3 × 

3 kernel, the proposed asym-UNet achieved improved performance for both the voxel DSC 

and the detection sensitivity. The improvement is particularly remarkable for small BMs less 

than 4 mm in diameter, where the detection sensitivity was improved by 25%. For BMs 

greater than 6 mm in diameter, where the detection sensitivity was 100% only with a 1.1 

false positive ratio (FP) per patient.

Due to the demonstrated advantages of using deep learning for segmentation for BMs 

and other tasks, the discussion focuses on the comparison with deep learning-based BM 

segmentation studies. Table 2 lists a few published BM detection papers using deep learning 

and comparison to our results. Without size stratification, our BM cohort is similar to 

Charron’s (Charron et al 2018). Charron et al tested 18 patients with 38 lesions. They 

reported a sensitivity of 0.93 and 7.8 FP per patient without excluding tumors smaller than 4 

mm. Our test dataset has 15 patients with 89 lesions, which have more metastases per patient 

than Charron’s. With a comparable detection sensitivity of 0.90, our FP rate is only 1.1 per 

patient, more than sevenfold lower than Charron et al. The DSC from Charron and our group 

are 0.79 and 0.80, respectively. With size stratification, our S (1–10 mm) group is equivalent 

to 0.5–500 mm3 and is smaller than Hu’s small metastases group, however our detection 

sensitivity is still 20% higher than Hu’s small group (Hu et al 2019). Our small group result 

comparison to Hu’s small group result showed improved voxel-based DSC as well. Our L 

(11–26 mm) group is equivalent to 696–9203 mm3. Our L group improved sensitivity to 1 

as compared to 0.98 reported in Hu’s large group result. Grovik reported a 50% sensitivity 

to detect BM less than 7 mm (Grøvik et al 2020). Although the sensitivity for small group 
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was not directly reported, we estimated it based on the figure from the published manuscript 

as 73% for S (1–10 mm), which is lower than 81% achieved using our asym-UNet method. 

Note that for the DSC calculation, our results and Hu’s results are the averages of all BMs, 

while other studies averaged all patients, which are insensitive to the detection error of small 

BMs for patients with multiple metastases.

Pairs of kernels were studied in this project. First, we observed that smaller kernels 

performed better in detection sensitivity but worse in false positivity. The first thought was 

that vanilla UNet with a larger kernel (3 × 3 × 3) dominated the learning processing and 

then added more features which can be learned by smaller kernels, such as 1 × 1 × 3 or 1 

× 1 × 1. Therefore, combinations of a larger kernel and a smaller kernel were investigated. 

Unfortunately, the performances were very similar with the vanilla UNet when the learning 

processing was dominated by a larger kernel. However, the performances can keep higher 

voxel DSC and the detection sensitivity, but lower false detection when the proportion of 

kernel pair was 15k1:1k2, where k1 was 1 × 1 × 3 and k2 was 3 × 3 × 3, The optimal 

combination ratio is problem-dependent, and we speculate that when the overall targets of 

detection are relatively large (e.g. the scale of 6 mm of diameter) a combination in the range 

of 1 to 1 would work reasonably well, and when the major targets of detection are small, 

then the range of 10 to 1 is suggested.

5. Conclusion

A novel 3D asym-UNet model was successfully constructed for automated detection and 

segmentation of brain metastases. The model compared favorably in detection sensitivity, 

false positivity, and dice similarity index with previous studies using deep learning. The 

improvement is particularly significant for small BM with a diameter <10 mm.
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Figure 1. 
Distribution of brain metastases in a common brain mask. Red indicates a greater and blue 

indicates a smaller number of BM distribution in the area.
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Figure 2. 
Histogram of BM diameters in the training dataset (a) validation dataset (b).

Cao et al. Page 11

Phys Med Biol. Author manuscript; available in PMC 2024 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Asym-UNet architecture. The diagram is composed of two down-sampling arms and one 

up-sampling arm. In the left and right of down sampling paths, the convolutional kernels 

are 3 × 3 × 3, 1 × 1 × 3, respectively. Each blue cuboid corresponds to feature maps. The 

number of channels is denoted on the top of cuboid.
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Figure 4. 
(a) Histogram of BM diameters from expert manual contours (blue) and asym-UNet 

automatic contours (orange) in the test dataset. (b) ROC curves from the six kernel setups.
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Figure 5. 
Examples from two typical patients comparing ground truth, the prediction from vanilla 

UNet, and our asym-UNet.
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Table 1.

Summary of detection and segmentation performance comparing vanilla UNet and asym-UNet.

Diameter # of BM CD/UD/FDb DSCV S V P V S BM F BM

UNet S (1–10 mm) 72 46/26/17 0.58 0.61 0.81 0.64 0.24

16k1a L (11–26 mm) 17 17/0/0 0.84 0.79 0.91 1 0

UNet S (1–10 mm) 72 64/8/50 0.43 0.80 0.20 0.89 0.69

16k2a L (11–26 mm) 17 17/0/5 0.52 0.95 0.43 1 0.29

UNet S (1–10 mm) 72 50/22/40 0.20 0.60 0.30 0.69 0.55

16k3a L (11–26 mm) 17 17/0/2 0.41 0.75 0.45 1 0.12

UNet S (1–10 mm) 72 40/32/36 0.55 0.61 0.78 0.55 0.50

16k4a L (11–26 mm) 17 17/0/7 0.81 080 0.89 1 0.41

sym-UNet S (1–10 mm) 72 48/24/18 0.60 0.65 0.80 0.67 0.25

8k1:8k2 L (11–26 mm) 17 17/0/1 0.82 0.80 0.89 1 0.06

asym-UNet S (1–10 mm) 72 58/14/17 0.65 0.76 0.72 0.81 0.24

1k1:15k2 L (11–26 mm) 17 17/0/0 0.84 0.94 0.82 1 0

a
k1, k2, k3 and k4 stand for kernel 3 × 3 × 3, kernel 1 × 1 × 3, kernel 2 × 2 × 2 and kernel 3 × 3 × 1, respectively.

b
CD = number of BM correctly detected; UD = number of undetected BM; FD = number of BM falsely detected.
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Table 2.

Comparing our asym-UNet model to those published in the literature for BM.

# Training/Testing BM size Sensitivity DSC

Liu et al (2017) 440/50 NA NA 0.67c

Losch et al (2015) 490/265(glioma) NA 0.82a 0.66c

Charron et al (2018) 164/18 Diameter (1.6–27 mm) 0.93a 0.77c

Grøvik et al (2020) 105/51 NA 0.83a 0.79c

Hu et al (2019) 305/36 Volume (<1500 mm3) 0.61b 0.47d

Hu et al (2019) 305/36 Volume (>1500 mm3) 0.98b 0.82d

Our study (asym-UNet) 180/15 Diameter (1–10 mm) 0.81b 0.65d

Our study (asym-UNet) 180/15 Diameter (11–26 mm) 1.00b 0.84d

a
The BM detection sensitivity is calculated per patient. The average sensitivity from all patients is then reported.

b
The detection sensitivity is calculated from all BM in the testing dataset regardless of which patient it came from.

c
The DSC is calculated per patient. The average DSC from all patients is then reported.

d
The DSC is calculated per BM. The average DSC from all BM in the testing dataset is then reported.
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