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Thoughts on Eggert’s Conjecture

George M. Bergman

To T. Y. Lam, on his 70th birthday

Abstract. Eggert’s Conjecture says that if R is a finite-dimensional nilpotent

commutative algebra over a perfect field F of characteristic p, and R(p) is

the image of the p-th power map on R, then dimF R ≥ p dimF R(p). Whether
this very elementary statement is true is not known.

We examine heuristic evidence for this conjecture, versions of the conjecture

that are not limited to positive characteristic and/or to commutative R,
consequences the conjecture would have for semigroups, and examples that

give equality in the conjectured inequality.

We pose several related questions, and briefly survey the literature on the
subject.

1. Introduction

If F is a field of characteristic p, and R is a commutative F -algebra, then the
set R(p) of p-th powers of elements of R is not only closed under multiplication,
but also under addition, by the well-known identity

(1) (x+ y)p = xp + yp (x, y ∈ R).

Hence R(p) is a subring of R. If, moreover, F is a perfect field (meaning that
every element of F is a p-th power – as is true, in particular, if F is finite, or, at
the other extreme, algebraically closed), then the subring R(p) is also closed under
multiplication by elements of F :

(2) a xp = (a1/px)p ∈ R(p) (a ∈ F, x ∈ R).
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2 GEORGE M. BERGMAN

In this situation we can ask “how big” the subalgebra R(p) is compared with the
algebra R, say in terms of dimension over F.

If we take for R a polynomial algebra F [x] over a perfect field F, we see that
R(p) = F [xp], so intuitively, R(p) has a basis consisting of one out of every p of
the basis elements of R. Of course, these bases are infinite, so we can’t divide the
cardinality of one by that of the other. But if we form finite-dimensional truncations
of this algebra, letting R = F [x]/(xN+1) for large integers N, then we see that
the dimension of R(p) is indeed about 1/p times the dimension of R. If we do
similar constructions starting with polynomials in d variables, we get R(p) having
dimension about 1/pd times that of R.

Is the ratio dimR(p)/ dimR always small? No; a trivial counterexample is
R = F ; a wider class of examples is given by the group algebras R = F G of
finite abelian groups G of orders relatively prime to p. In G, every element is
a p-th power, hence R(p) contains all elements of G, hence, being closed un-
der addition and under multiplication by members of F, it is all of R; so again
dim R(p)/ dim R = 1.

In the above examples, the p-th power map eventually “carried things back to
themselves”. A way to keep this from happening is to assume the algebra R is
nilpotent, i.e., that for some positive integer n, Rn = 0, where Rn denotes the
space of all sums of n-fold products of members of R. This leads us to

Conjecture 1 (Eggert’s Conjecture [9]). If R is a finite-dimensional nilpo-
tent commutative algebra over a perfect field F of characteristic p > 0, then

(3) dimF R ≥ p dimF R(p).

Of course, a nonzero nilpotent algebra does not have a unit. Readers who like
their algebras unital may think of the R occurring above and throughout this note
as the maximal ideal of a finite-dimensional local unital F -algebra.

Let us set down some conventions.

Conventions 2. Throughout this note, F will be a field. The symbol “ dim”
will always stand for “ dimF ”, i.e., dimension as an F -vector-space.

Except where the contrary is stated (in a few brief remarks and two examples),
F -algebras will be assumed associative, but not, in general, unital. (Most of the
time, we will be considering commutative algebras, but we will make commutativity
explicit. When we simply write “associative algebra”, this will signal “not necessar-
ily commutative”.) An ideal of an F -algebra will mean a ring-theoretic ideal which
is also an F -subspace.

If R is an F -algebra, V an F -subspace of R, and n a positive integer, then
V n will denote the F -subspace of R spanned by all n-fold products of elements of
V, while V (n) will denote the set of n-th powers of elements of V.

Thus, if V is a subspace of a commutative algebra R over a perfect field F of
characteristic p, then V (p) will also be a subspace of R, but for a general base-field
F, or for noncommutative R, this is not so. The map x 7→ xp on a commutative
algebra R over a field of characteristic p is called the Frobenius map.

We remark that the unital rings R = F [x]/(xN+1) that we discussed before
we introduced the nilpotence condition generally fail to satisfy (3). Most obvious is
the case N = 0, where R = F. More generally, writing N = pk + r (0 ≤ r < p),
so that the lowest and highest powers of x in the natural basis of R are x0 and
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xpk+r, we find that dim R(p)/ dim R = (k+1)/(pk+r+1), which is > 1/p unless
r = p− 1.

The corresponding nilpotent algebras are constructed from the “nonunital poly-
nomial algebra”, i.e., the algebra of polynomials with zero constant term, which we
shall write

(4) [F ][x] = {
∑
i>0

aix
i } ⊆ F [x].

When we divide this by the ideal generated by xN+1, again with N = pk + r
(0 ≤ r < p), we find that dim R(p)/ dim R = k/(pk + r), which is always ≤ 1/p,
with equality only when r = 0, i.e., when p |n.

As before, examples like R = [F ][x, y]/(xM , yN ) give ratios dim R(p)/ dim R
strictly lower than 1/p. This suggests that generation by more than one element
tends to lower that ratio, and that perhaps that ratio can equal 1/p only for cyclic
algebras. This is not the case, however. Indeed, it is easy to verify that that ratio
is multiplicative with respect to tensor products,

(5) dim (R⊗ S)(p)/ dim (R⊗ S) = (dim R(p)/dim R) (dim S(p)/ dim S).

Hence if we tensor a nilpotent algebra R of the form [F ][x]/(xpk+1), for which we
have seen that the ratio is 1/p, with a non-nilpotent algebra for which the ratio
is 1 (for instance, a group algebra F G with p 6 | |G|), we get further nilpotent
examples for which the ratio is 1/p. Also, dim R and dim R(p) are both additive
with respect to direct products; so any direct product of two nilpotent algebras for
each of which the ratio is 1/p is another such algebra. In §5 we will discover further
examples in which the ratio comes out exactly 1/p, for reasons that are less clear.

2. A first try at proving Eggert’s Conjecture

We have seen that for R a commutative algebra over a perfect field F of
characteristic p > 0, the p-th power map on R over F is “almost” linear. In
particular, its image is a vector subspace (in fact, a subalgebra).

Pleasantly, we can even find a vector subspace V ⊆ R which that map sends
bijectively to R(p). Namely, take any F -basis B for R(p), let B′ be a set consisting
of exactly one p-th root of each element of B, and let V be the F -subspace of R
spanned by B′. Since the p-th power map sends

∑
x∈B′ axx to

∑
x∈B′ a

p
xx

p, it

hits each element of R(p) exactly once.
This suggests the following approach to Eggert’s Conjecture. Suppose we take

such a subspace V, and look at the subspaces V, V 2, . . . , V p (defined as in the
last paragraph of Convention 2). Can we deduce that each of them has dimension
at least that of V (p) = R(p) (as the first and last certainly do), and conclude that
their sum within R has dimension at least p times that of R(p) ?

The answer is that yes, we can show that each has dimension at least that of
R(p), but no, except under special additional hypotheses, we cannot say that the
dimension of their sum is the sum of their dimensions.

The first of these claims can be proved in a context that does not require
positive characteristic, or commutativity, or nilpotence. We will have to assume
F algebraically closed; but we will subsequently see that for commutative algebras
over a perfect field of positive characteristic, the general case reduces to that case.
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Lemma 3. Let F be an algebraically closed field, R an associative F -algebra,
V a finite-dimensional subspace of R, and n a positive integer such that every
nonzero element of V has nonzero n-th power. Then for all positive integers i ≤ n
we have

(6) dim V i ≥ dim V.

Proof. Let d = dim V, and let x1, . . . , xd be a basis for V over F. Suppose,
by way of contradiction, that for some i ≤ n we had dim V i = e < d. Then we
claim that some nonzero v ∈ V must satisfy vi = 0.

Indeed, writing the general element of V as v = a1x1+· · ·+adxd (a1, . . . , ad ∈
F ), we see that the condition vi = 0, expressed in terms of an e-element basis of
V i, consists of e < d equations, each homogeneous of positive degree (in fact, all
of the same degree, i), in d unknowns a1, . . . , ad. But a system of homogeneous
polynomial equations of positive degrees with fewer equations than unknowns over
an algebraically closed field always has a nontrivial solution [15, p.65, Corollary 3*];
so, as claimed, there is a nonzero v ∈ V with vi = 0.

Multiplying by vn−i if i < n, or leaving the equation unchanged if i = n, we
see that vn = 0, contradicting the hypothesis on V, and completing the proof. �

(We could even have generalized the above proof to nonassociative algebras, if
we defined xi inductively as, say, the right-bracketed product x(x(. . . x)), and V i

similarly as V (V (. . . V )).)
Now if F is any perfect field of characteristic p, and n = p (or more generally,

a power of p), and R is commutative, then the n-th power map is, up to adjustment
of scalars, a linear map of F -vector-spaces, so the statement that it sends no nonzero
element of V to 0 says it has trivial kernel; and this property is preserved under
extension of scalars to the algebraic closure of F, as are the dimensions of the
various spaces V i. Hence, as stated earlier, in this situation Lemma 3 implies the
corresponding result with “algebraically closed” weakened to “perfect”.

But unfortunately, we cannot say that dim R ≥
∑

i≤p dim V i unless we know

that the sum of the V i is direct. Here is a special case in which the latter condition
clearly holds.

Corollary 4. Let R be a finite-dimensional commutative algebra over a per-
fect field F of characteristic p > 0, and assume that R is graded by the positive
integers, is generated by its homogeneous component R1 of degree 1, and satisfies
(R2)(p) = 0.

Then dim R1, . . . , dim Rp are all ≥ dim R(p), so dim R ≥ p dim R(p).

Proof. Since R is the direct sum of its subspaces Ri, its subalgebra R(p)

will be the direct sum of its subspaces (Ri)
(p) ⊆ Rip. Since R is generated by

R1, we have Ri+1 = RiR1 for all i; hence (Ri+1)(p) = (Ri)
(p) (R1)(p); hence as

(R2)(p) is zero, so are (R3)(p), (R4)(p), · · · . Hence R(p) = (R1)(p).
Now let d = dim R(p) ⊆ Rp, and take a d-dimensional subspace V ⊆ R1

such that the p-th power map carries V bijectively to R(p). By Lemma 3 and the
discussion following it, we have dim V i ≥ d for i = 1, . . . , p, hence

�(7) dim R =

∞∑
i=1

dim Ri ≥
p∑

i=1

dim V i ≥ p d = p dim R(p).
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One might hope to get a similar result for ungraded nilpotent R, by taking the
filtration R ⊇ R2 ⊇ R3 ⊇ . . . , and studying the associated graded algebra, S =⊕

i Si with Si = Ri/Ri+1. This will indeed be generated by S1; but unfortunately,

R(p) will not in general be embedded in Sp, since an element that can be written
as a p-th power of one element may be expressible in another way as a product
of more than p factors (or a sum of such products), in which case it will have
zero image in Sp = Rp/Rp+1. (What one can easily deduce by this approach is

that dimR ≥ p dim(R(p)/(R(p) ∩ Rp+1)). But that is much weaker than Eggert’s
conjecture.)

Putting aside the question of whether we can reduce the ungraded case to
the graded, let us ask whether, assuming R graded and generated by R1, we
can weaken the hypothesis (R2)(p) = 0 of Lemma 3. Suppose we instead assume
(R3)(p) = 0. Thus, R(p) = (R1)(p) ⊕ (R2)(p) ⊆ Rp ⊕R2p.

In addition to our subspace V ⊆ R1 which is mapped bijectively to (R1)(p)

by the p-th power map, we can now choose a subspace W ⊆ R2 that is mapped
bijectively to (R2)(p). Letting d1 = dim (R1)(p) = dim V and d2 = dim (R2)(p) =
dim W, we can deduce from Lemma 3 that dim R1, dim R2, . . . , dim Rp are
all ≥ d1 and that dim R2, dim R4, . . . , dim R2p are all ≥ d2. The trouble is,
these two lists overlap in {R2, R4, . . . , R2bp/2c}, while we know nothing about
the sizes of the Ri for odd i between p + 1 and 2p. If we could prove that
they, like the Ri for even i in that range, all had dimensions at least d2, we
would be in good shape: With Ri at least d1-dimensional for i = 1, . . . , p and at
least d2-dimensional for i = p+ 1, . . . , 2p, we would have total dimension at least
p dim(R1)(p) + p dim(R2)(p) = p dim R(p).

One might imagine that since dim Ri is at least dim R
(p)
2 for all even i ≤

2p, those dimensions could not perversely come out smaller for i odd. However,
the following example, though involving a noncommutative ring, challenges this
intuition.

Example 5. For any positive integer d and any field F, there exists an as-
sociative graded F -algebra R, generated by R1, such that the dimension of the
component Rn is 2d for every odd n > 2, but is d2 + 1 for every even n > 2.

Construction. Let R be presented by d+ 1 generators x, y, z1, . . . , zd−1
of degree 1, subject to the relations saying that xx = yy = 0, and that every 3-
letter word in the generators that does not contain the substring xy is likewise 0.
It is easy to verify that the nonzero words of length > 2 are precisely those strings
consisting of a “core” (xy)m for some m ≥ 1, possibly preceded by an arbitrary
letter other than x, and/or followed by an arbitrary letter other than y. One can
deduce that for m ≥ 1, the nonzero words of odd length 2m+ 1 are of two forms,
(xy)m a and a (xy)m for some letter a, and that for each of these forms there are
d choices for a, giving 2d words altogether; while for words of even length 2m+ 2
there are also two forms, a (xy)m b and (xy)m+1, leading to d2 + 1 words. �

Even for commutative R, we can get a certain amount of irregular behavior:

Example 6. For any field F there exists a commutative graded F -algebra R,
generated by R1, such that the dimensions of R1, R2, R3, R4 are respectively
4, 3, 4, 3.
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Construction. First, let S be the commutative algebra presented by gen-
erators x, y, z1, z2 in degree 1, and relations saying that z1 and z2 have zero
product with all four generators. We see that for all n > 1 we have dimSn = n+1,
as in the polynomial ring [F ][x, y], so S1, . . . , S4 have dimensions 4, 3, 4, 5. If
we now impose an arbitrary pair of independent relations homogeneous of degree
4, we get a graded algebra R whose dimension in that degree is 3 rather than 5,
without changing the dimensions in lower degrees. �

As we shall note in §6, much of the work towards proving Eggert’s Conjecture
in the literature has involved showing that such misbehavior in the sequence of
dimensions is, in fact, restricted.

(Incidentally, if we take F in Example 6 to be perfect of characteristic 3, and
divide out by R4, we do not get a counterexample to Eggert’s Conjecture; rather,
(R1)(3) turns out to be a proper subspace of R3.)

3. Relations with semigroups

The examples we began with in §1 were “essentially” semigroup algebras of
abelian semigroups.

To make this precise, recall that a zero element in a semigroup S means an
element z (necessarily unique) such that sz = zs = z for all s ∈ S. If S is a
semigroup with zero, and F a field, then the contracted semigroup algebra of S,
denoted F0 S, is the F -algebra with basis S−{z}, and multiplication which agrees
on this basis with the multiplication of S whenever the latter gives nonzero values,
while when the product of two elements of S − {z} is z in S, it is taken to be 0
in this algebra [7, §5.2, p.160]. So, for example, the algebra [F ][x]/(xN+1) of §1 is
the contracted semigroup algebra of the semigroup-with-zero presented as such by
one generator x, and the one relation xN+1 = z. (Calling this a presentation as a
semigroup-with-zero means that we also assume the relations making the products
of all elements with z equal to z.)

Above (following [7]) I have written z rather than 0 in S, so as to be able to
talk clearly about the relationship between the zero element of S and that of F0 S.
But since these are identified in the construction of the latter algebra, we shall, for
the remainder of this section, write 0 for both, as noted in

Conventions 7. In this section, semigroups with zero will be written multi-
plicatively, and their zero elements written 0.

If X is a subset of a semigroup S (with or without zero) and n a positive
integer, then Xn will denote the set of all n-fold products of elements of X, while
X(n) will denote the set of all n-th powers of elements of X. A semigroup S with
zero will be called nilpotent if Sn = {0} for some positive integer n.

Clearly, F0 S is nilpotent as an algebra if and only if S is nilpotent as a
semigroup.

If we could prove Eggert’s Conjecture, I claim that we could deduce

Conjecture 8 (semigroup version of Eggert’s Conjecture). If S is a finite
nilpotent commutative semigroup with zero, then for every positive integer n,

(8) card(S−{0}) ≥ n card(S(n)−{0}).

Let us prove the asserted implication:
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Lemma 9. If Conjecture 1 is true, then so is Conjecture 8.

Proof. Observe that for any two positive integers n1 and n2, and any semi-
group S, we have (S(n1))(n2) = S(n1 n2). Hence, given n1 and n2, if (8) holds for
all semigroups S whenever n is taken to be n1 or n2, then it is also true for all
S whenever n is taken to be n1n2. Indeed, in that situation we have

(9) card(S−{0}) ≥ n1 card(S(n1)−{0}) ≥ n1n2 card(S(n1 n2)−{0}).
Since (8) is trivial for n = 1, it will therefore suffice to establish (8) when n

is a prime p. In that case, let F be any perfect field of characteristic p. From (1)
and (2) we see that (F0 S)(p) = F0(S(p)), and by construction, dimF F0 S =
card(S − {0}). Applying Conjecture 1 to F0 S, we thus get (8) for n = p, as
required. �

A strange proof, since to obtain the result for an n with k distinct prime
factors, we must work successively with semigroup algebras over k different fields!

So much for what we could prove if we knew Eggert’s Conjecture. What can
we conclude about semigroups using what we have proved? By the same trick of
passing to contracted semigroup algebras, Lemma 3 yields

Corollary 10 (to Lemma 3). Let S be a commutative semigroup with zero,
let p be a prime, and let X be a finite subset of S such that the p-th power map
is one-to-one on X, and takes no nonzero element of X to 0. Then

(10) card(Xi−{0}) ≥ card(X−{0}) for 1 ≤ i ≤ p. �

Note that even though Lemma 3 was proved for not necessarily commutative R
and for exponentiation by an arbitrary integer n, we have to assume in Corollary 10
that S is commutative and p a prime, in order to call on (1) and conclude that
(F0X)(p) = F0 (X(p)),

(Incidentally, the same proof gives us the corresponding result for semigroups
S without zero, with (10) simplified by removal of the two “−{0} ”s. However, this
result is an immediate consequence of the present form of Corollary 10, since given
any semigroup S and subset X ⊆ S, we can apply that corollary to X within the
semigroup with zero S ∪ {0}; and in that case, the symbols “−{0} ” in (10) have
no effect, and may be dropped. Inversely, a proof of Corollary 10 from the version
for semigroups without zero is possible, though not as straightforward.)

I see no way of proving the analog of Corollary 10 with a general integer n
replacing the prime p. (One can get it for prime-power values, by noting that (1)
and hence Lemma 3 work for exponentiation by pk. I have not so stated those
results only for simplicity of presentation.) We make this

Question 11. Let S be a commutative semigroup with zero, let n be a positive
integer, and let X be a finite subset of S such that the n-th power map is one-
to-one on X, and takes no nonzero element of X to 0. Must card(Xi−{0}) ≥
card(X−{0}) for 1 ≤ i ≤ n ?

4. Some plausible and some impossible generalizations

The hypothesis of Corollary 10 concerns card(X(p)−{0}), while the conclusion
is about card(Xi − {0}). It is natural to ask whether we can make the hypothesis
and the conclusion more parallel, either by replacing Xi by X(i) in the latter
(in which case the inequality in the analog of (10) would become equality, since
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X(i) − {0} can’t be larger than X − {0}), or by replacing X(p) by Xp in the
former.

But both of these generalizations are false, as shown by the next two examples.

Example 12. For any prime p > 2, and any i with 1 < i < p, there exists
a commutative semigroup S with zero, and a subset X such that the p-th power
map is one-to-one on X and does not take any nonzero element of X to 0, but
such that card(X(i)−{0}) < card(X−{0}).

Construction. Given p and i, form the direct product of the nilpotent
semigroup {x, x2, . . . , xp, 0} and the cyclic group {1, y, . . . , yi−1} of order i, and
let X be the subset {x} × {1, y, . . . , yi−1}. Then the p-th power map from X to
X(p) (which is also Xp) is bijective, the common cardinality of these sets being i;
but X(i) = {xi} × {1} has cardinality 1. To make this construction a semigroup
with zero, we may identify the ideal {0}× {1, y, . . . , yi−1} to a single element. �

Example 13. For any prime p > 2 there exist a commutative semigroup S
with zero, and a subset X ⊆ S, such that card(X − {0}) = card(Xp − {0}), but
such that for all i with 1 < i < p, card(Xi − {0}) < card(X − {0}).

Construction. Let S be the abelian semigroup with zero presented by p+1
generators, x, y, z1, . . . , zp−1, and relations saying that each zi has zero product
with every generator (including itself). Thus, S consists of the elements of the free
abelian semigroup on x and y, together with the p elements 0, z1, . . . , zp−1.

Let X be our generating set {x, y, z1, . . . , zp−1}. Then we see that for every
i > 1, the set Xi − {0} has i + 1 elements, xi, xi−1y, . . . , yi. Hence card(Xp −
{0}) = p+ 1 = card(X − {0}); but for 1 < i < p, card(Xi − {0}) = i+ 1 < p+ 1.
(We can make this semigroup finite by setting every member of Xp+1 equal to
0.) �

In the above examples, the case p = 2 was excluded because in that case, there
are no i with 1 < i < p. However, one has the corresponding constructions with
any prime power pr > 2 in place of p, including powers of 2, as long as one adds
to the statement corresponding to Example 12 the condition that i be relatively
prime to p.

From the construction of Example 12, we can also obtain a counterexample to
a statement which, if it were true, would, with the help of Lemma 3, lead to an
easy affirmative answer to Question 11:

Example 14. There exists a commutative semigroup S with zero, a finite
subset X ⊆ S, and an integer n > 0, such that the n-th power map is one-to-one
on X and does not take any nonzero element of X to 0, but such that for some
field F, the n-th power map on the span FX of X in F0S does take some nonzero
element to 0.

Construction. Let us first note that though we assumed in Example 12 that
p was a prime to emphasize the relationship with Corollary 10, all we needed was
that p and i be relatively prime. For the present example, let us repeat that
construction with any integer n > 2 (possibly, but not necessarily, prime) in place
of the p of that construction, while using a prime p < n, not dividing n, in place
of our earlier i. Thus, the n-th power map is one-to-one on X, but the p-th power
map is not.
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Now let F be any algebraically closed field of characteristic p. Then on the
subspace FX ⊆ F0S, the p-th power map is (up to adjustment of scalars) an
F -linear map to the space FX(p) of smaller dimension; hence it has nontrivial
kernel. (For the particular construction used in Example 12, that kernel contains
x − xy.) But any element annihilated by the p-th power map necessarily also has
n-th power 0. �

The use of a field F of positive characteristic in the above construction suggests
the following question, an affirmative answer to which would indeed, with Lemma 3,
imply an affirmative answer to Question 11.

Question 15. Suppose X is a finite subset of a commutative semigroup S with
zero, n a positive integer such that the n-th power map is one-to-one on X and
does not take any nonzero element of X to 0, and F a field of characteristic 0.
Must every nonzero element of the span FX of X in F0S have nonzero n-th
power?

In a different direction, Lemma 3 leads us to wonder whether there may be
generalizations of Eggert’s Conjecture independent of the characteristic.

As a first try, we might consider a nilpotent commutative algebra R over any
field F, and for arbitrary n > 0, ask whether dim(span(R(n)))/ dim R ≤ 1/n,
where span(R(n)) denotes the F -subspace of R spanned by R(n). But this is
nowhere near true. Indeed, I claim that

(11) If the characteristic of F is either 0 or > n, then span(R(n)) = Rn.

For it is not hard to verify that for any x1, . . . , xn ∈ R,

(12)
∑

S⊆{1,...,n}

(−1)card(S) (
∑
i∈S

xi)
n = (−1)n n! x1 . . . xn.

(Every monomial of degree n in x1, . . . , xn other than x1 . . . xn fails to involve
some xm, hence the sets indexing summands of (12) in which that monomial ap-
pears can be paired off, S ↔ S ∪ {m}, one of even and one of odd cardinality.
Hence the coefficients of every such monomial cancel, leaving only the multiple of
the monomial x1 . . . xn coming from S = {1, . . . , n}.) Under the assumption on
the characteristic of F in (11), n! is invertible, so (12) shows that x1 . . . xn ∈
span(R(n)), proving (11). Now taking R = [F ][x]/(xN+1) for N ≥ n, we see that
span(R(n)) = Rn has basis {xn, xn+1, . . . , xN}; so dim(span(R(n)))/ dim R =
(N − n+ 1)/N, which for large N is close to 1, not to 1/n.

However, something nearer to the spirit of Lemma 3, with a chance of having
a positive answer, is

Question 16. Let R be a finite-dimensional nilpotent commutative algebra
over an algebraically closed field F, let V be a subspace of R, and let n be a
positive integer such that every nonzero element of V has nonzero n-th power.
Must dim R ≥ n dim V ?

Above, V is a subspace of R, but in the absence of (1), we can’t expect V (n)

to simultaneously be one. In the next question, we turn the tables, and make the
target of the n-th power map a subspace.

Question 17. Let R be a finite-dimensional nilpotent commutative algebra
over an algebraically closed field F, let W be a subspace of R, and let n be
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a positive integer such that every element of W is an n-th power in R. Must
dim R ≥ n dim W ?

Let us look at the above two questions for R = [F ][x]/(xN+1). Note that an
element r 6= 0 of this algebra has rn 6= 0 if and only if the lowest-degree term of r
has degree ≤ N/n, while a necessary condition for r to be an n-th power (which
is also sufficient if n is not divisible by the characteristic of F ) is that its lowest-
degree term have degree divisible by n. Now for each of these properties, there
are, in general, large-dimensional affine subspaces of [F ][x]/(xN+1) all of whose
elements have that property. E.g., if n ≤ N, the (N−1)-dimensional affine space
of elements of the form x+ (higher degree terms) consists of elements whose n-th
powers are nonzero, and for F of characteristic not divisible by n, the (N−n)-
dimensional affine space of elements of the form xn+(higher degree terms) consists
of n-th powers. In each of these cases, if we fix n and let N → ∞, the ratio of
the dimension of our affine subspace to that of our algebra approaches 1. But
these affine subspaces are not vector subspaces! If U is a vector subspace of
R = [F ][x]/(xN+1), and if for each xm which appears as the lowest degree term
of a member of U, we choose a wm ∈ U with that lowest degree term, it is not
hard to see that these elements form a basis of U. It is easily deduced from the
above discussion that if U consists of n-th powers, or consists of elements which, if
nonzero, have nonzero n-th power, then U has dimension ≤ N/n. So for this R,
Questions 16 and 17 both have affirmative answers.

Can those two questions be made the m = 1 and m = n cases of a question
statable for all 1 ≤ m ≤ n ? Yes. The formulation is less elegant than for those
two cases, but I include it for completeness.

Question 18. Let R be a finite-dimensional nilpotent commutative algebra
over an algebraically closed field F, let U be a subspace of R, and let 1 ≤ m ≤ n
be integers such that every nonzero element of U has an m-th root in R whose
n-th power is nonzero. Must dim R ≥ n dim U ?

(Again, we easily obtain an affirmative answer for R = [F ][x]/(xN+1), essen-
tially as in the cases m = 1 and m = n.)

Early on, in thinking about Eggert’s Conjecture, I convinced myself that the
noncommutative analog was false. But the analog I considered was based on replac-
ing R(p) by span(R(p)) so that one could talk about its dimension. However, the
generalizations considered in Questions 16-18 are also plausible for noncommutative
rings.

I also assumed in Questions 16-18 that F was algebraically closed, because
that hypothesis was essential to the proof of Lemma 3, and is the condition under
which solution-sets of algebraic equations behave nicely. However, I don’t have
examples showing that the results asked for are false without it. So let us be bold,
and ask

Question 19. Does the generalization of Conjecture 8, or an affirmative an-
swer to any of Questions 11, 15, 16, 17 or 18, hold if the commutativity hypothesis
is dropped, and/or, in the case of Question 16, if the assumption that F be alge-
braically closed is dropped (or perhaps weakened to “F is infinite”)?

(For Question 17 one can similarly drop the assumption that F be algebraically
closed; but then one would want to change the hypothesis that every element of W
have an n-th root to the condition, equivalent thereto in the algebraically closed
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case, that every 1-dimensional subspace of W contain a nonzero n-th power, since
the original hypothesis would be unreasonably strong over non-algebraically-closed
F. One can likewise make the analogous generalization of Question 18.)

If we go further, and drop not only the characteristic p assumption and the
algebraic closedness of F, but also the associativity of R, then there is an easy
counterexample to the analog of Eggert’s Conjecture.

Example 20. For every positive integer d, there exists a graded, nilpotent,
commutative, nonassociative algebra over the field R of real numbers, R = R1 ⊕
R2 ⊕ R3, generated by R1, in which the respective dimensions of the three homo-
geneous components are d, 1, d, and in which the “cubing” operation r 7→ r(rr)
gives a bijection from R1 to R3.

Hence, writing R(3) for {r(rr) | r ∈ R} = R3, we have dimR(3)/ dimR =
d/(2d+ 1), which is > 1/3 if d > 1.

Construction. Let W be a real inner product space of dimension d, let
A = W ⊕ R, made an R-algebra by letting elements of R ⊆ A act on A on either
side by scalar multiplication, and letting the product of two elements of W be their
inner product in R. Note that W, W 2, W 3 are respectively W, R, W, and that
on W, the operation w 7→ w(ww) takes every element to itself times the square of
its norm, hence is a bijection W →W.

For the above A, let us form A ⊗R [R][x]/(x4), which is clearly nilpotent; let
V be its subspace Wx; and let R be the subalgebra generated by V ; namely,
(Wx)⊕ (Rx2)⊕ (Wx3). Then the asserted properties are clear. �

The parenthetical comment following Lemma 3 shows, however, that over an
algebraically closed base field F, there is no example with the corresponding prop-
erties.

If in Example 20 we let B be an orthonormal basis of W, then on closing Bx ⊆
R under the multiplication of R (but not under addition or scalar multiplication),
we get a 2d + 2-element structure (a “nonassociative semigroup”, often called a
“magma”) which is a counterexample to the nonassociative analogs of Conjecture 8,
Corollary 10 and Question 11.

I will end this section by recording, for completeness, a positive-characteristic
version of Example 20 (though the characteristic will not be the exponent whose be-
havior the example involves). Before stating it, let us recall that a nonassociative
algebra is called power-associative if every 1-generator subalgebra is associative;
equivalently, if the closure of every singleton {x} under the multiplication (intu-
itively, the set of “powers” of x) is in fact a semigroup. Let us call a graded
nonassociative algebra homogeneous-power-associative if the subalgebra generated
by every homogeneous element is associative. Example 20 above is easily seen to be
homogeneous-power-associative. The same property in the next example will allow
us to avoid having to specify the bracketing of the power operation we refer to.

Example 21. For every prime p, there exists a graded, nilpotent, commutative,
nonassociative, but homogeneous-power-associative algebra R = R1 ⊕ · · · ⊕ Rp+1

over a non-perfect field F of characteristic p, such that R is generated by R1, the
p+1-st power operation gives a surjection R1 → Rp+1 taking no nonzero element
to zero, and dimRi = p for i < p and for i = p+ 1, but dimRp = 1.

Hence, dimR(p+1)/ dimR = p/(p2 + 1) > 1/(p+ 1).
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Sketch of construction. Given p, let F be any field of characteristic p
having a proper purely inseparable extension F ′ = F (u1/p), such that every ele-
ment of F ′ has a p+1-st root in F ′. (We can get such F and F ′ starting with any
algebraically closed field k of characteristic p, and any subgroup G of the additive
group Q of rational numbers which is p+1-divisible but not p-divisible. Note that
p−1G ⊆ Q will have the form G + p−1hZ for any h ∈ G − pG. Take a group

isomorphic to G but written multiplicatively, tG, and its overgroup tp
−1G, and

let F and F ′ be the Mal’cev-Neumann power series fields k((tG)) and k((tp
−1G))

[8, §2.4], [6]; and let u ∈ F be the element th. The asserted properties are easily
verified.)

Let us now form the (commutative, associative) truncated polynomial algebra
[F ′][x]/(xp+2), graded by degree in x, and let R be the F -subspace of this algebra
consisting of those elements for which the coefficient of xp lies in the subfield F of
F ′ (all other coefficients being unrestricted). We make R a graded nonassociative
F -algebra by using the multiplication of [F ′][x]/(xp+2) on all pairs of homogeneous
components except those having degrees summing to p, while defining the multi-
plication when the degrees sum to p by fixing an F -linear retraction ψ : F ′ → F,
and taking the product of a xi and b xp−i (0 < i < p, a, b ∈ F ′) to be ψ(ab)xp.

We claim that R is homogeneous-power-associative; in fact, that powers of
homogeneous elements of R, however bracketed, agree with the values of these same
powers in the associative algebra [F ′][x]/(xp+2). Note first that the evaluations of
powers of elements homogeneous of degrees other than 1 never pass through Rp,
so they certainly come out as in [F ′][x]/(xp+2). For an element a x of degree 1
(a ∈ F ′), the same reasoning holds for powers less than the p-th. In the case of
the p-th power, the last stage in the evaluation of any bracketing of (a x)p takes
the form (a x)i · (a x)p−i = ψ(ai ap−i)xp; but ai ap−i = ap ∈ F, which is fixed by
ψ, so the result again comes out as in [F ′][x]/(xp+2). Knowing this, it is easy to
verify likewise that all computations of the p+1-st power of a x ∈ R1 agree with
its value in [F ′][x]/(xp+2).

The other asserted properties are now straightforward. In particular the p+1-st
power map R1 → Rp+1 is surjective, and sends no nonzero element to 0, because
these statements are true in [F ′][x]/(xp+2) (surjectivity holding by our assumption
on p+1-st roots in F ′). �

5. Some attempts at counterexamples to Eggert’s Conjecture for
semigroups

Since Eggert’s Conjecture implies the semigroup-theoretic Conjecture 8, a coun-
terexample to the latter would disprove the former. We saw in §1 that for cer-
tain sorts of truncated polynomial algebras over a field F of characteristic p,
the ratio dim R(p)/ dim R was exactly 1/p; i.e., as high as Eggert’s Conjecture
allows. Those algebras are contracted semigroup algebras F0 S, where S is a
semigroup with zero presented by one generator x and one relation xpk+1 = 0;
so these semigroups have equality in Conjecture 8. It is natural to try to see
whether, by some modification of this semigroup construction, we can push the
ratio card(S(p)−{0})/card(S−{0}) just a little above 1/p.

In scratchwork on such examples, it is convenient to write the infinite cyclic
semigroup not as {x, x2, x3, . . . }, but additively, as {1, 2, 3, . . . }. Since in addi-
tive notation, 0 generally denotes an identity element, it is best to denote a “zero”
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element by ∞. So in this section we shall not adopt Convention 7, but follow this
additive notation. Thus, the sort of nilpotent cyclic semigroup with zero that gives
equality in the statement of Conjecture 8 is

(13) {1, 2, . . . , N, ∞}, where N is a multiple of n.

For S a finite nilpotent abelian semigroup with zero, the semigroup version of
Eggert’s conjecture can be written as saying that the integer

(14) n card(S(n)−{∞}) − card(S−{∞})

is always ≤ 0. (We continue to write S(n) for what in our additive notation is now
{nx | x ∈ S}.)

What kind of modifications can we apply to (13) in the search for variant
examples? We might impose a relation; but it turns out that this won’t give
anything new. E.g., if for i < j in {1, 2, . . . , N} we impose on (13) the relation
i = j, then this implies i + 1 = j + 1, and so forth; and this process eventually
identifies some h ≤ N with an integer > N, which, in (13), equals ∞. So h
and all integers ≥ h fall together with ∞; and if we follow up the consequences,
we eventually find that every integer ≥ i is identified with ∞. Thus, we get a
semigroup just like (13), but with i− 1 rather than N as the last finite value.

So let us instead pass to a subsemigroup of (13). The smallest change we can
make is to drop 1, getting the subsemigroup generated by 2 and 3, which we shall
now denote S. Then card(S−{∞}) has gone down by 1, pushing the value of (14)
up by 1; but the integer n has ceased to belong to S(n), decreasing (14) by n. So
in our attempt to find a counterexample, we have “lost ground”, decreasing (14)
from 0 to −n+ 1.

However, now that 1 /∈ S, we can regain some ground by imposing relations.
Suppose we impose the relation that identifies N−1 either (a) with N or (b) with
∞. If we add any member of S (loosely speaking, any integer ≥ 2) to both sides of
either relation, we get ∞ =∞, so no additional identifications are implied. Since
we are assuming N is divisible by n, the integer N − 1 is not; so we have again
decreased the right-hand term of (14), this time without decreasing the left-hand
term; and thus brought the total value to −n+ 2. In particular, if n = 2, we have
returned to the value 0; but not improved on it.

I have experimented with more complicated examples of the same sort, and
gotten very similar results: I have not found one that made the value of (14)
positive; but surprisingly often, it was possible to arrange things so that for n = 2,
that value was 0. Let me show a “typical” example.

We start with the additive subsemigroup of the natural numbers generated by
4 and 5. I will show it by listing an initial string of the positive integers, with the
members of our subsemigroup underlined:

(15) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . . .

Assume this to be truncated at some large integer N which is a multiple of
n, all larger integers being collapsed into ∞. If we combine the effects on the two
terms of (14) of having dropped the six integers 1, 2, 3, 6, 7, 11 from (13), we find
that, assuming N ≥ 11n, (14) is now 6(−n+ 1).

Now suppose we impose the relation i = i + 1 for some i such that i and
i + 1 both lie in (15). Adding 4 and 5 to both sides of this equation, we get
i+ 4 = i+ 5 = i+ 6; adding 4 and 5 again we get i+ 8 = i+ 9 = i+ 10 = i+ 11.
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At the next two rounds, we get strings of equalities that overlap one another; and
all subsequent strings likewise overlap. So everything from i+ 12 on falls together
with N + 1 and hence with ∞; so we may as well assume

(16) N + 1 = i+ 12.

What effect has imposing the relation i = i + 1 had on (14)? The amalga-
mations of the three strings of integers described decrease card(S−{∞}) by 1, 2
and 3 respectively, so in that way, we have gained ground, bringing (14) up from
6(−n+ 1) to possibly 6(−n+ 2). But have we decreased card(S(n)−{∞}), and so
lost ground, in the process?

If n > 2, then even if there has been no such loss, the value 6(−n + 2) is
negative; so let us assume n = 2. If we are to avoid bringing (14) below 0, we
must make sure that none of the sets that were fused into single elements,

(17) {i, i+ 1}, {i+ 4, i+ 5, i+ 6}, {i+ 8, i+ 9, i+ 10, i+ 11},

contained more than one member of S(2). For the first of these sets, that is no
problem; and for the second, the desired conclusion can be achieved by taking i
odd, so that of the three elements of that set, only i + 5 is even. For the last it
is more difficult – the set will contain two even values, and if i is large, these will
both belong to S(2).

However, suppose we take i not so large; say we choose it so that the smaller
of the two even values in that set is the largest even integer that does not belong
to S(2). That is 22, since 11 is the largest integer not in (15). Then the above
considerations show that we do get a semigroup for which (14) is zero.

The above choice of i makes i+ 9 (the smallest even value in the last subset
in (17)) equal to 22 (the largest even integer not in S(2)), so i = 13, so by (16),
N + 1 = 25.

Let us write down formally the contracted semigroup algebras of the two easier
examples described earlier, and of the above example.

Example 22. Let F be a perfect field of characteristic 2. Then the following
nilpotent algebras have equality in the inequality of Eggert’s Conjecture.

(18) R = [F ][x2, x3] / (xN−1 − xN , xN+1, xN+2) for every even N > 2,

(19) R = [F ][x2, x3] / (xN−1, xN+1, xN+2) for every even N > 2,

(20) R = [F ][x4, x5] / (x13 − x14, x25, . . . , x28).

More precisely, in both (18) and (19) dim R = N − 2, and dim R(2) = (N −
2)/2, while in (20), dim R = 18, and dim R(2) = 9. �

Many examples behave like these. A couple more are

(21) [F ][x2, x5]/(x11 − x12, x≥15), [F ][x3, x7]/(x13 − x14, x≥25)

(where “x≥n ” means “xn and all higher powers”; though in each case, only finitely
many are needed).

Perhaps Eggert’s Conjecture is true, and these examples “run up against the
wall” that it asserts. Or – who knows – perhaps if one pushed this sort of exploration
further, to homomorphic images of semigroups generated by families of three or
more integers, and starting farther from 0, one would get counterexamples.
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For values of n greater than 2, I don’t know any examples of this flavor that
even bring (14) as high as zero. (But a class of examples of a different sort, which
does, was noted in the last paragraph of §1.)

Incidentally, observe that in the semigroup-theoretic context that led to (18)
and (19), we had the choice of imposing either the relation N−1 = N or the relation
N − 1 = ∞. However, in the development that gave (20), setting a semigroup
element equal to ∞ would not have done the same job as setting two such elements
equal. If we set i =∞, then, for example, i+ 4 and i+ 5 would each become ∞,
so looking at the latter two elements, we would lose one from S(2) as well as one
not in S(2). Above, we instead set i = i + 1, and the resulting pair of equalities
i + 4 = i + 5 = i + 6 turned a family consisting of two elements not in S(2) and
one in S(2) into a single element of S(2).

Turning back to Eggert’s ring-theoretic conjecture, it might be worthwhile to
experiment with imposing on subalgebras of [F ][x] relations “close to” those of
the sort used above, but not expressible in purely semigroup-theoretic terms; for
instance, xi + xi+1 + xi+2 = 0, or xi − 2xi+1 + xi+2 = 0.

6. Sketch of the literature

The main positive results in the literature on Eggert’s Conjecture concern two
kinds of cases: where dim(R(p)) (or some related invariant) is quite small, and
where R is graded.

N. H. Eggert [9], after making the conjecture, in connection with the study of
groups that can appear as the group of units of a finite unital ring A (the nonunital
ring R to which the conjecture would be applied being the Jacobson radical of A),
proved it for dim(R(p)) ≤ 2. That result was extended to dim(R(p)) ≤ 3 by
R. Bautista [5], both results were re-proved more simply by C. Stack [16], [17],
and most recently pushed up to dim(R(p)) ≤ 4 by B. Amberg and L. Kazarin [2].
Amberg and Kazarin also prove in [1] some similar results over an arbitrary field,
in the spirit of our Questions 16 and 17, and they show in [3] that, at least when
the values dim(Ri/Ri+1) are small, these give a nonincreasing function of i. In [3]
they give an extensive survey of results on this subject and related group-theoretic
questions.

K. R. McLean [13], [14] has obtained strong positive results in the case where
R is graded and generated by its homogeneous component of degree 1. In partic-
ular, in [13] he proves Eggert’s Conjecture in that case if (R3)(p) = 0 (recall that
in Corollary 4 we could not get beyond the case (R2)(p) = 0), or if R(p) is gener-
ated by two elements. Moreover, without either assumption (but still assuming R
graded and generated in degree 1), he proves that dim R(p)/ dim R ≤ 1/(p−1).
His technique involves taking a subspace V ⊆ R1 as at the start of §2 above,
and constructing recursively a family of direct-sum decompositions of V, each new
summand arising as a vector-space complement of the kernel of multiplication by
an element obtained using the previous steps of the construction. He also shows
in [13] that Eggert’s Conjecture holds for the radicals of group algebras of finite
abelian groups over perfect fields F of nonzero characteristic.

S. Kim and J. Park [11] prove Eggert’s Conjecture when R is a commutative
nilpotent monomial algebra, i.e., an algebra with a presentation in which all relators
are monomials in the given generators.
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M. Korbelář [12] has recently shown that Eggert’s Conjecture holds whenever
R(p) can be generated as an F -algebra by two elements. (So a counterexample
in the spirit of the preceding section would require at least 3 generators.) [12]
ends with a generalization of Eggert’s conjecture, which is equivalent to the case
of Question 16 above in which F is a field of positive characteristic p and n = p,
but F is not assumed perfect.

In [10], a full proof of Eggert’s Conjecture was claimed, but the argument was
flawed. (The claim in the erratum to that paper, that the proof is at least valid for
the graded case, is also incorrect.)

There is considerable variation in notation and language in these papers. E.g.,
what I have written R(p) is denoted R(1) in Amberg and Kazarin’s papers, R(p)

in Stack’s and Korbelář’s, and R[p] in McLean’s (modulo differences in the letter
used for the algebra R). McLean, nonstandardly, takes the statement that R is
graded to include the condition that it is generated by its degree 1 component.

Though I do not discuss this above, I have, also examined the behavior of
the sequence of dimensions of quotients Ri/Ri+1 for a commutative algebra R.
Most of my results seem to be subsumed by those of Amberg and Kazarin, but
I will record here a question which that line of thought suggested, which seems
of independent interest for its simplicity. Given two subspaces V and W of a
commutative algebra, let AnnV W denote the subspace {x ∈ V | xW = {0}} ⊆ V.

Question 23. If R is a commutative algebra over a field F, V a finite-
dimensional subspace of R, and n a positive integer, must

(22) dim(V/AnnV V
n) ≤ dim V n ?

I believe I have proved (22) for dim V n ≤ 4. The arguments become more
intricate with each succeeding value 1, 2, 3, 4.

I am indebted to Cora Stack for bringing Eggert’s Conjecture to my attention
and providing a packet of relevant literature, to Martin Olsson for pointing me to
the result in [15] used in the proof of Lemma 3, and to the referee for making me
justify an assertion that was not as straightforward as I had thought.
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