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Abstract

Load Driven Branch Predictor (LDBP)

by

Akash Sridhar

A larger instruction window on Out-of-Order (OoO) cores facilitates better exploitation

of inherent Instruction Level Parallelism (ILP). Branch miss-speculation penalty restricts scaling

to larger instruction window in OoO cores. Branch instructions dependent on hard-to-predict

load data are the leading misprediction contributors. Computer architects continuously strive

to optimize branch prediction algorithms and increase predictor size to mitigate mispredictions.

Current state-of-the-art history-based branch predictors have low prediction accuracy for these

branches. Prior research backs this observation by showing that increasing the size of a 256-

KBit history-based branch predictor to its 1-MBit variant has just a 10% reduction in branch

mispredictions.

In this dissertation, I present the novel Load Driven Branch Predictor (LDBP), specifi-

cally targeting hard-to-predict branches dependent on a load instruction. Though random load

data determines these branches’ outcomes, most of these data’s load address have a predictable

pattern. This is an observable template in data structures like arrays and maps. The LDBP

predictor model exploits this behavior to trigger future loads associated with branches ahead of

time and use its data to predict its outcome. The predictable loads are tracked, and the branch

instruction’s precomputed outcomes are buffered for making predictions. The experimental

results show that on a modern Zen2-like OoO core, compared to a standalone 256-Kbit IMLI

vii



predictor, when LDBP is augmented to it, the average branch mispredictions reduce by 12% and

the average IPC improves 7.14% for benchmarks from SPEC CINT2006 and GAP benchmark

suite.
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Chapter 1

Introduction

Imagination is more important than

knowledge. For knowledge is limited,

whereas imagination embraces the entire

world, stimulating progress, giving birth

to evolution.

Albert Einstein

1.1 Introduction

The clock cycle time, instruction count, and the average cycles required to execute

an instruction(CPI) directly influence the performance of a processor [48]. Over the past few

decades, architects focused on increasing the processor clock frequency and scaling resource size

to improve the overall performance. To support faster cycle time, pipelines became deeper to

bridge the gap between the clock speed and the delay of different micro-architectural components.
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Deeper pipelines contribute to increased clock skew and performance degradation due to longer

stalls and hazards. The leakage power also inflates with smaller transistors and faster clock speed.

The insignificant clock speed gains restricts the scaling of hardware resources in a core.

To maximize the processor’s performance potential and counter the effect of increasing

thermal limitations and the restrictions on single-core scalability, architects increased the core

count [12, 36]. Multi-cores intends to keep up the performance scaling proportional to the

increase in transistor density. Many researchers are focusing on designing chips with several

hundred cores. Parallel workloads exploit the benefits of multi-cores to the fullest. Multi-cores

were able to achieve a considerable increase in performance compared to their single-core

counterparts by exploiting the Thread-Level Parallelism (TLP) of applications and through the

support of additional architectural resources. However, most general-purpose applications have

an insignificant amount of TLP [6]. Thus, increasing the core count does not yield a solution to

address the performance limitations of low TLP applications.

An alternate approach would be to cash in on the inherent Instruction Level Parallelism

(ILP) within each thread. Speeding up each thread improves the overall performance. Increas-

ing ILP comes at a cost - the microarchitecture must have wider instruction window, better

prefetching, near-perfect branch prediction, higher number of physical register, more functional

units and so on. However, exploiting higher ILP by issuing more instructions per cycle involves

increased hardware complexity, which in turn has implications on the cycle time and energy

dissipation. For example, with higher issue width, more functional units will be added to support

the higher inflow of instructions. A minimal increase in issue width involves the accrue of much

additional hardware which contributes to increased complexity and power consumption. This
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also swells the number of interconnections wires between these components, contributing to

increased wire delay. The wire delay adds to a rise in the overall delay, thereby curbing the

increase of clock frequency [27]. If the complexity of an architectural component on the critical

path of the processor increases, it might add additional clock cycles to the critical path delay.

Branch mispredictions is a significant factor limiting single-thread performance in

modern microprocessors [24]. The miss penalty incurred due to incorrect branch prediction is

very high [46]. Along with data cache misses, incorrect branch prediction causes significant

performance degradation. Optimizing branch predictors does not involve too much overhead

on the pipeline’s critical path. Minor improvements to branch prediction accuracy can yield

significant performance gains. Improving the branch prediction accuracy has several benefits.

First, it improves IPC by reducing the number of flushed instructions. Second, it reduces the

power dissipation incurred through the execution of instructions taking the wrong path of the

branch. Third, it increases the Memory Level Parallelism (MLP), which facilitates a deeper

instruction window in the pipeline and supports multiple outstanding memory operations.

1.1.1 What is the problem with existing branch predictor models?

Current branch prediction championships use either perceptron-based predictors [18,

19, 20, 21] or TAGE-based predictors [39, 41]. These predictors may use global and local

history, and a statistical corrector to further improve performance. The TAGE-SC-L [44], which

is a derivative of its previous implementation from Championship Branch Prediction (CBP-

4) [42], combined several of these techniques and was the winner of the last branch prediction

championship (CBP-5). Numbers from CBP-5 [43, 44] shows that scaling from a 64-Kbit TAGE
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predictor to unlimited size, only yields branch Mispredictions per Kilo Instructions (MPKI)

reduction from 3.986 to 2.596.

Most of the current processors like AMD Zen 2/3, ARM A72-A77 and Intel Skylake

use some TAGE variation branch predictor. TAGE-like predictors are excellent, but there are still

many difficult-to-predict branches. Seznec [42, 44] studied the prediction accuracy of a 256-Kbit

TAGE predictor and a no storage limit TAGE. The 256-Kbit TAGE had only about 10% more

mispredictions than its infinite size counterpart. The numbers mentioned above would reflect

the prediction accuracy of the latest Zen 2 CPU [51] using a 256-Kbit TAGE-based predictor.

For this work, the 256-Kbit TAGE-GSC + IMLI [47] is used, which combines the global history

components of the TAGE-SC-L with a loop predictor and local history as the baseline system.

Recent work [26] shows that even though the current state-of-the-art branch predictors

have almost perfect prediction accuracy, there is scope for gaining significant performance by

fixing the remaining mispredictions. The core architecture could be tuned to be wider if it had

the support of better branch prediction, which could potentially offer more IPC gains. Prior

works [9,11] have tried to address different types of hard-to-predict branches. A vital observation

of these works is that most branches that state-of-the-art predictors fail to capture are branches

that depend on a recent load. If the data loaded is challenging to predict, TAGE-like predictors

have a low prediction accuracy as these patterns are arbitrary and too large to be captured.

To showcase the extent of speedup exploitable with optimal branch prediction, the

IPC gains of an AMD Zen 2 core having oracle (prefect) branch prediction is compared to a

same core having a 256-Kbit IMLI predictor. Table 1.1 shows that perfect branch prediction

can achieve an average IPC gain of 50.85% across the different benchmarks tested. The oracle
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configuration yielded this IPC improvement without any architectural optimizations to the Zen 2

architecture. This architecture could be tuned to be wider if it had the support of better branch

prediction, which could potentially offer more IPC gains. These numbers clearly show that

even though current state-of-the-art branch predictors offer very high prediction accuracy (in

the range of 95% to 99%), there is still tremendous scope to improve IPC gains by fixing the

remaining mispredictions. As discussed earlier in this chapter, doing so will also result in a more

energy-efficient core.

Benchmark % IPC Increase
spec06 xalan 5.07
spec06 sjeng 14.61
spec06 perlbench 3.52
spec06 omnetpp 4.03
spec06 mcf 80.99
spec06 libquantum 0.86
spec06 hmmer 81.82
spec06 h264ref 3.99
spec06 gobmk 33.55
spec06 gcc 3.256
spec06 bzip2 14.91
spec06 astar 91.21

gap tc 103.74
gap sssp 66.29
gap pr 6.67
gap cc 170.59
gap bfs 173.85
gap bc 56.41

Table 1.1: Percentage increase in IPC running Oracle branch predictor against baseline 256-Kbit
IMLI. Fixing hard-to-predict branches yield tremendous IPC gains.
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1.1.2 Contribution of the Dissertation

The critical observation/contribution of this thesis is that although the load data feeding

a load-dependent branch may be random, the load address may be predictable. If the branch

operand(s) are dependent on arbitrary load data, the branch is going to be difficult to predict. If

the load address is predictable, it is possible to ”prefetch” the load ahead of time, and use the

actual data value in the branch predictor.

Based on the previous observation, I propose to combine the stride address predic-

tor [10] with a new type of the branch predictor to trigger future loads ahead of time and feed the

load data to the branch predictor. The trigger load data is used to pre-compute the associated

dependent branch. Then, when the corresponding branch gets fetched, the proposed predictor will

have a very high accuracy even with random data. The predictor is only active for branches that

have low confidence with the default predictor and depends on loads with predictable addresses.

Otherwise, the default IMLI predictor performs the prediction. The proposed predictor is called

Load Driven Branch Predictor (LDBP).

LDBP is an implementation of a new class of branch predictors that combine load(s)

and branches to perform prediction. This new class of load-assisted branch predictors allows

having near-perfect branch prediction accuracy over random data as long as the load address is

predictable. It is still a prediction because there are possibilities of coherence or other forwarding

issues that can make it difficult to guarantee the results.

LDBP does not require software changes or modifications to the ISA. It tracks the

backward code slice starting from the branch and terminating at a set of one or more loads. If

6



1 addi a5 ,a5 ,4 // increments array index
2 .
3 .
4 .
5 .
6 lw a4 ,0( a5)// loads data from array
7 bnez a4 ,1043e <main +0x44 >

Figure 1.1: Vector traversal code snippet example, bnez in line 5 is the most mispredicting branch
in this kernel

all the loads have a predictable address, and the slice is small enough to be computed, LDBP

keeps track of the slice. When the same branch retires again, it will start to trigger future loads

ahead of time. The future fetches of this branch uses their corresponding trigger load(s) data to

pre-compute the slice result and determine the branch outcome. Through the rest of this theis,

the load (with predictable address) that has a dependency with a branch will be referred as a

trigger load and its dependent branch will be referred as a load-dependent branch.

I will explain a simple code example that massively benefits from LDBP. Let us

consider a simple kernel that iterates over a vector having random 0s and 1s to find values greater

than zero. The branch with most mispredictions in this kernel has the assembly sequence shown

in Figure 1.1. As traversal is done over a vector, the load addresses here are predictable, even

though the data is completely random. TAGE fails to build these branch history patterns due to

the dependence of the branch outcome on irregular data patterns. LDBP has near-perfect branch

prediction because the trigger load (line 4) has a predictable address. LDBP triggers loads ahead

of time, computes the branch-load backward slice, and stores the results. The branch uses the

precomputed outcome at fetch. When LDBP is augmented to a Zen 2 like core with a 256-Kbit

IMLI predictor, the IPC improves by 4.1x times.
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In general, a load-dependent branch immediately follows a trigger load in program

order. Due to the narrow interval between these two instructions, the load data will not be

available when the branch is fetched. The key challenge is to send trigger loads in a timely

manner before its corresponding load-dependent branch is fetched. LDBP leverages a stride

prefetcher to trigger loads ahead of time. When a branch retires, a read request for a trigger

load is generated. Owing to the high predictability of their address, trigger load requests future

addresses in advance. These requests have sufficient prefetch distance to cover the in-flight

instructions and variable memory latency. As Chapter 3 shows, this can be achieved with very

small structures incurring little hardware overhead.

To evaluate the results, the GAP benchmark suite [4] and the SPEC 2006 integer

benchmarks [17] are used. GAP is a collection of graph algorithm benchmarks. This is one of

the highest performance benchmarks available, and graphs are known to be severely limited

by branch prediction accuracy. For this thesis, an 81-Kbit LDBP is integrated to the baseline

256-Kbit IMLI predictor. Results show that LDBP fixes the top-most mispredicting branches

for benchmarks with very high MPKI in this study. Compared to the baseline predictor, LDBP

with IMLI decreases the branch MPKI by 12% on average across all benchmarks. Similarly, the

combined predictor has an average IPC improvement of 7.14%. LDBP also eases the burden on

the hardware budget of the primary predictor. When combined with a 150-Kbit IMLI predictor,

the branch mispredictions come down by 5.25%, and the performance gain scales by 6.63%

compared to the 256-Kbit IMLI, for 9.7% lesser hardware allocation.

The rest of the thesis is organized as follows: Chapter 2 presents a background of

branch prediction and prior works on branch prediction that are related to this thesis. Chapter 3

8



describes the different types of load-branch chains, LDBP mechanism and architecture. Chap-

ter 4 reports the evaluation setup methodology used for this dissertation. Benchmark analysis,

architecture analysis, and results are highlighted in Chapter 5. Chapter 6 concludes the thesis

and explains potential future opportunities.
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Chapter 2

Background

The more you know, the more you realize

you know nothing.

Socrates

2.1 Overview

This chapter presents a brief overview of why branch prediction accuracy is essential

to speedup processor performance and minimize energy dissipation. This chapter also analyzes

recent works related to this thesis. This related work analysis also compares different types of

branch predictors and their tradeoffs.
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2.2 Related Work

Pipeline stalls (or hazards) leads to a pronounced degradation in performance. Pipeline

hazards can be classified into three major types: data hazards, structural hazards, and control

hazards. Data hazards arise due to the dependence of operand(s) from a current instruction on

other in-flight instruction(s) in the pipeline. Structural hazards are caused due to conflict in

hardware resources. For example, the pipeline may have one adder ALU unit, but two ADD

instructions may compete for the same resource leading to the stall of the younger instruction.

Branch mispredictions or any other unexpected change in Program Counter (PC) results in

control hazards.

There is widespread consensus in the computer architecture research community that

branch misprediction and memory bottleneck are the most significant barriers to current OoO

processors’ performance. Branch instructions make up a significant proportion of the instruction

stream in the current general-purpose/application-specific workloads. Branch predictors aid

in CPU speedup by minimizing the number of instructions executed down the wrong branch

path. A highly accurate branch prediction model is essential because all the speculative actions

performed after the prediction will be flushed if it is incorrect. This degrades performance as

well as incurs additional energy overhead.

Branch predictors are classified into two broad categories: static and dynamic branch

predictors [35]. Static branch predictors [8, 29] make prediction decisions based on meta-data

like branch types/profile and/or program structure, gathered before program execution. This

profile-based prediction runs multiple iterations of the program with test input sets to get a fixed
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branch outcome sequence. On the other end of the spectrum, dynamic branch predictor uses

run-time behavior of the workload to make predictions [20, 39, 50, 54].

2.2.1 Early branch prediction mechanisms

Loop unrolling is a trivial approach used to reduce branch mispredictions [16]. Loop

unrolling involves replicating the code fragment inside the loop’s body for n number of times.

Here, n denotes the number of iterations in the loop. Loop unrolling eliminates the branch

instruction that checks the loop termination condition. Several factors limit the effectiveness of

loop unrolling:

• Loop unrolling is favorable only when the compiler can determine the size of the loop.

• Due to code replication, loop unrolling contributes to more Instruction Cache misses.

• Registers are renamed across different iterations of the unrolled loop. Such an approach

leads to saturation of registers and indirectly resulting in more structural hazards.

The number of mispredictions fixed using the loop unrolling approach is minimal, and

it is insignificant compared to the performance loss incurred due to incorrect branching. The

most elementary branch prediction mechanisms are the ”always taken” [8] and the ”always not

taken” [29] predictors. In these predictors, all the branches are either predicted to be taken or not

taken. These static predictors use branch profiling information to determine the most frequently

taken direction.

The prediction accuracy of static predictors are skewed based on the behavior of the

workload. For a workload with equally distributed branch outcomes, the prediction accuracy

12



will be only 50%. To mitigate the penalties caused by control flow instructions in the pipelined

microprocessor design and to overcome the limitations of static predictors, early attempts used

a simple one-dimensional table of 2-bit counters that are indexed with the address of a branch

instruction. The value of the counter is used to perform the prediction [50].

The ensuing works on branch prediction gradually raised the bar for the prediction

accuracy. Yeh and Patt came up with the two-level branch predictors [54] [55]. The two-level

branch predictor consists of two primary structures: the branch history register table (HR) and the

branch history pattern table (PT). The HR holds the history pattern bits for the most recent branch

outcomes. The branch indexes the HR (first level) at the fetch stage, and the branch history values

are used to index the PT (second level) to make the actual prediction. The two-level predictor

works on the following principle: the outcome of the last n branches decides the current branch’s

prediction. Aliasing is a very common bottleneck in such correlation-based predictors.

McFarling [28] proposed optimizations over their work. To minimize the effect of

aliasing, the branch address and global-history bits are hashed. This randomizes the index used by

different branches. These works leverage the high correlation between the outcome of the current

branch and the history of previous branch outcomes. The skewed branch predictor [31] also aims

to resolve the aliasing problem. This work uses the analogy that branch aliasing is similar to

cache misses and classifies them into three types: conflict, capacity, and compulsory. Due to

additional storage overhead, the skewed branch predictor does not use tags to mitigate aliasing -

instead, it uses multiple branch predictor banks. These banks are indexed using different hashing

functions, generated using the same metadata (branch address and global history). The banks are

accessed in parallel, and the final prediction is chosen based on a majority vote scheme.
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The bi-mode predictor [25] was designed to eliminate destructive aliasing in global

branch history-based indexing schemes. This approach splits a traditional counter-based branch

predictor into two separate direction predictors: a taken part and a not-taken part. The choice

predictor picks the final prediction from one of the direction predictors. The branch history

pattern is used to index the direction predictors, and the actual branch address indexes the choice

predictor.

2.2.2 Neural-based branch prediction

Neural-based (perceptron) predictors have superior prediction accuracy than FSM-

based predictors like bimodal predictor or gshare [28] due to their ability to capture more branch

correlation data optimally. The cost of tracking correlation data scales linearly for a perceptron-

based predictor, whereas it scales exponentially for FSM-based prediction mechanisms.

Jimenez proposed the perceptron-based branch predictor [20]. The predictor uses a

simple neural network-based single-layer perceptron to represent every branch. The branch

history is fed as input to the perceptrons, and the perceptrons store a vector of weights. The

dot-product of the weights and input provide the output prediction. The weights are incremented

or decremented by correlating the predicted outcome with the actual branch outcome. Perceptron-

based predictor has low prediction accuracy for linearly inseparable functions. High prediction

latency is another major drawback of this predictor.
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2.2.3 History-based branch prediction

PPM-like [30] and TAGE [39] achieve higher prediction accuracy by tracking longer

histories. TAGE predictor consists of a simple base predictor and a set of partially tagged

predictors. Each partially tagged predictor element has a table each indexed with the global

history register value of a geometrically increasing length. The tag comparison happens in all

tables simultaneously. As a result, several components can yield a matching entry. The priority is

given to the table that is indexed with the longest history. In case of a mismatch in all tables, the

prediction calculated by the base predictor is used. Entries on the TAGE tables have a saturation

counter to make the prediction and an useful counter (u). The useful counter is increased or

decreased based on the correctness of the prediction. This counter also acts as an age counter,

and it is periodically reset.

TAGE-based predictors are the state-of-the-art predictors, and they offer very high

prediction accuracy. TAGE-based predictors fail to capture the outcome correlation of branches

having an irregular periodicity or when a branch outcome history is too long or too random to

capture.

2.2.4 Techniques to resolve hard-to-predict branches

Statistical correlator [40] and IMLI [47] components are augmented to TAGE to

mitigate some of the mispredictions. Several studies and extensive workload analysis have

identified different types of hard-to-predict branches and ways to resolve them. Sherwood

et al. [49] and Morris et al. [32] proposed prediction mechanisms to tackle loop-termination

branches.
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The Loop Termination Buffer (LTB) [49] recognized local history-based predictors

could not predict loop termination branch outcomes if the number of iterations in the loop is

greater than history size. These branches can be predicted if there is a unique branch history

pattern before loop exit or if the global history size is more than the loop size. The LTB has the

following counters: (1) the trip counter to track the number of consecutive times the loop-branch

was taken before encountering a not-taken outcome; (2) a speculative and a non-speculative

iteration (iter) counter to track the number of successive occurrences of the taken outcome. If

iter equals trip and if the LTB is confident, then loop termination is predicted. The LTB can

achieve near-perfect prediction after an initial learning period. This prediction mechanism is not

effective against branches with periodically changing loop counts. The Wormhole predictor [1]

improved on earlier loop-based predictors to handle branches enclosed within nested loop and

branches exhibiting correlation across different iterations of the outer loop.

The Branch Misprediction Predictor (BMP) [38] is a complementary predictor. It

aims only to resolve branches that are hard-to-predict by the default branch predictor. All the

branches do not access the BMP, contributing to BMP’s high area and energy efficiency. For a

hard-to-predict branch, the BMP keeps track of the distance (number of committed branches)

between two successive mispredictions. The distance correlates to the instance of the next

misprediction. The BMP fixes mispredictions due to early loop termination and loop branches

with variable loop size.

Several branching scenarios are better predicted when correlated with information

other than traditional branch outcome history. Branches dependent on random data from load

instructions contribute to a high percentage of mispredictions with TAGE-bases predictors. It is
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impossible to capture the history of such branches competently, even with an unusually large

predictor.

Prior works [7, 15] show that using data values as an input to the branch predictor

improves the misprediction rate. The Rare Event Predictor (REP) [15] makes predictions by

correlating the branch outcome against histories generated from data values. Each entry on the

REP has a replacement counter (confidence counter), a prediction saturation counter, and tag

fields. The replacement counter performs multiple functions. First, it acts as a confidence counter

- it is incremented or decremented depending on the correctness of REP prediction. Second, it

provides an effective replacement mechanism - the entry with the lowest confidence is replaced.

This approach is limited by history size and if the data is highly random, it is impossible to

capture branch history.

Farooq et al. [9] note that some hard-to-predict data-dependent branches manifest a

specific pattern of a store-load-branch chain. They leverage this observation to mark the stores

that are in the chain at compile-time and compute branch conditions based on the values of

marked stores at run-time in hardware. LDBP tackles a similar problem, but the work in this

theis is based on the observation that a considerable proportion of hard-to-predict data-dependent

branches are dependent on the loads whose address is very predictable. Moreover, LDBP does

not require any modifications to the ISA.

Gao et al. [11] proposed a closely related work. They propose the Address Branch

Correlation (ABC) Predictor. They noticed that history-based predictors have low prediction

accuracy for branches dependent on long-latency cache misses if the loaded data are random.

The ABC predictor correlates the branch outcome to the load address and provides a prediction
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based on the confidence of the correlation. Nevertheless, LDBP’s approach differs in that the

branch outcomes are precalculated by triggering loads that are part of the branch’s dependence

chain and have a highly predictable address.

3D-overrider [13] is a concurrent work that aims to resolve data-dependent hard-

to-predict branches. This work only resolves load-branch chains which have one load and

one simple ALU operation. They use a complex EVES [45] based load address predictor to

prefetch feeder load values. The 3D-overrider uses Memory Dependence Prediction and Load

Prioritization to further enhance its effectiveness. LDBP uses a simple stride-based load address

predictor and resolves load-branch chains having at most 5 loads and 5 ALU operations.
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Chapter 3

Load Driven Branch Predictor (LDBP)

We should be taught not to wait for

inspiration to start a thing. Action always

generates inspiration. Inspiration seldom

generates action.

Frank Tibolt

3.1 Overview

This chapter details the load-branch chain and its types. The LDBP architecture and

the tables/modules associated with it are discussed at length. I also describe the LDBP flow -

how LDBP detects load-branch chains, what happens at the ’fetch’ stage and ’retirement’ stage

of the pipeline, how loads are triggered, and many more intricate details. This chapter concludes

by explaining how LDBP architecture mitigates the ill-effects of Spectre.
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3.2 Load-Branch Chains

The core principle of LDBP involves exploiting the dependency between load(s) and

a branch in a load-branch chain. In this sub-section, the dissertation will explain load-branch

chains in detail. LDBP needs to capture the backward slice [33] of operation sequence starting

from the branch. This slice’s exit point must be a load with a predictable address or a trivially

computable operation like a load immediate operation. There can be more than one exit point for

the slice, i.e., a branch in a load-branch chain can depend on more than one parent load.

LD LD

outcome

op1
op2

op x

br

op y

Complex Chain
LD

(donor)
unpredictable LD

(recipient)

outcome

br

Load-Load Chain

LD

outcome

br

LD

Trivial Chain

Figure 3.1: Generic load-branch chain starts with predictable loads and terminates with a branch.

As shown in Figure 3.1, the load-branch chains are classified into three different

types: trivial, complex, and load-load chain. In a trivial chain, the branch has a single source

operand (like a bnez instruction) or two source operands, and it has a direct dependency with

the predictable load(s). No intermediate instructions modify the load data in this chain. For

such a chain, the load-dependent branch instruction immediately follows the load(s) in program
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execution order.

In a complex chain, all the branch inputs terminate with a predictable load or a load

immediate. A complex chain includes at least one predictable load, one or more simple arithmetic

operations, and it concludes with the branch. The LDBP framework does not track complex

ALU/floating-point operations, and any chain with such an operation is invalidated. Chapter 5

describes the methodology used to determine the ideal number of loads and simple ALUs

permissible in a load-branch chain. If the number of loads/ALUs exceeds this threshold, LDBP

does not track that chain.

The third type of chain is a load-load chain. At first glance, it might look like the

branch instruction’s source operands are dependent on two loads. On deeper introspection,

we notice that the data of the donor load determine the load address of the recipient load. If

the address of the donor load instruction is predictable by the stride predictor, its data can be

used to precompute the recipient load’s address and prefetch it. Similar to the backward slice

computation of the load-branch chain, a backward chain needs to be built, starting from the

recipient load and ending with the donor. If the load-load chain is predictable, then LDBP can

build the load-branch slice and generate predictions. Load-load chains are very uncommon in

the benchmarks analyzed for this study. This implementation is a part of immediate future work.

A load-branch chain has two main constraints: (1) the maximum number of operations

between the load and the branch, (2) the maximum number of input loads. For example, a chain

can have five simple ALU operations before the branch. It means that a Finite State Machine

(FSM) of the chain needs six cycles to compute the branch result. The number of loads triggered

is directly proportional to the number of loads in a chain. Tracking a chain with a large number of
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loads will saturate memory bandwidth (high trigger load demand eats up the bandwidth needed

by demand requests). The thesis’s benchmark analysis showed that a considerable proportion of

hard-to-predict branches are part of a trivial load-branch chain.

3.3 LDBP Architecture

In this sub-section, the dissertation explains the LDBP architecture. As LDBP works

in conjunction with the primary branch predictor, its architecture aims at being simple, timely,

spectre-safe, and having low power overhead. The LDBP architecture is dissected into two

sub-blocks: one block attached to the core’s retirement stage and another block at the fetch

stage. From an abstract level, the retirement block detects potential load-branch chains, creates

backward slices from the branch to its dependent load(s), and generates trigger loads. On the

other hand, the fetch block uses the backward slices to build FSMs of the program sequence and

computes the outcome of load-dependent branches using the executed trigger load data.

tracking

Stride Predictor (SP)

LD PC

confidence
delta

PC tag

last addr

Rename Tracking Table (RTT)

reg stride ptr1

n ops

stride ptrn

Code Snippet Builder (CSB)

reg op1

opn

Pending Load Queue (PLQ)

tracking

stride ptr

Branch Trigger Table (BTT)

BR PC

stride ptr1

PC tag

stride ptrn

accuracy

Figure 3.2: LDBP Retirement Block - Fields in each index of the tables are marked in the figure.
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3.3.1 LDBP Retirement Block

A naive LDBP retirement block could consume significant power detecting and build-

ing backward slices all the time. To avoid this substantial power overhead, the thesis leverages

the stride address predictor that exists in many modern microarchitectures to detect predictable

loads. In addition to that, LDBP attempts to identify a load-branch chain only when these 2

conditions are true: (1) the retiring branch has low confidence with the default predictor(in this

thesis, it is IMLI); (2) the load associated with the branch is predictable. Figure 3.2 shows the

tables/structures associated with the retirement block.

3.3.1.1 Stride Predictor (SP)

The retiring load PC index the Stride Predictor table. This table has five fields. They

are the PC tag (sp.pctag), the address of the last retired load (sp.lastaddr) 1, the load address

delta (sp.delta), a delta confidence counter (sp.confidence) and a tracking bit to indicate if a given

load PC is tracked as a part of a load-branch chain (sp.tracking).

The updating policy of the confidence counter varies across different stride predictors.

Standard practice involves increasing the counter each time the delta repeats and decreasing

it each time the delta changes. This approach may skew the confidence either way. Ideally,

increasing the counter by one and reducing it by a higher value minimizes the bias. A tracked

load (with the sp.tracking set) can trigger only when its confidence counter is saturated.

1Stride predictor can store partial load addresses to save space
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3.3.1.2 Rename Tracking Table (RTT)

The Rename Tracking Table detects and builds dependencies in the load-branch chains.

The retiring instruction’s logical register indexes the RTT. Each table entry has a saturating

counter to track the number of operations (rtt.nops) in a load-branch chain and a pointer list to

track Stride Predictor entries (rtt.strideptr). The number of entries in the pointer list depends

on the number of loads supported by LDBP. If a chain consists of 2 loads and 4 arithmetic

operations before the branch, 3 bits are needed to track these six operations and two entries on

the pointer list.

3.3.1.3 Branch Trigger Table (BTT)

The Branch Trigger Table links a branch with its associated loads and intermediate

operations. The retiring branch PC indexes the BTT. Each entry has the following fields: the

branch PC tag (btt.pctag), the list of associated loads (copied from the Stride Predictor pointer

list from the RTT table (btt.strideptr)), and a 3-bit accuracy counter to track LDBP’s accuracy for

this branch (btt.accuracy). If the accuracy counter reaches zero, the BTT entry gets cleared, and

sp.tracking bits of the loads in btt.strideptr are reset. A BTT entry is allocated only when a load-

branch chain satisfies the following three conditions: (1) all loads in the chain are predictable; (2)

the retiring branch has low confidence with IMLI; (3) number of loads and number of operations

in the chain is within the permissible threshold.
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3.3.1.4 Code Snippet Builder (CSB)

The CSB tracks the operation sequence of a load-branch chain for each logical register.

Each entry on this table is a list of operations (csb.ops). The CSB entry is updated only when

a new BTT entry gets allocated. This prerequisite ensures that the CSB is not polluted and

minimizes power overhead. There are several works in the academic literature about building

backward slices [33]. A table indexed by the retiring logical register (similar in behavior to an

RTT) is used. It copies the chain of operations starting from the load and terminating with the

branch. Initially, the possibility of combining the CSB with the RTT was considered but the idea

was dropped considering the additional power dissipation this would incur. The CSB entries are

only needed when a new BTT entry is populated (when a load-branch chain is established), and

it would not make sense to integrate it with the RTT.

3.3.1.5 Pending Load Queue (PLQ)

The tables/structures mentioned above is sufficient to detect and build load branch

chains. The PLQ acts as a buffer and stores the Stride Predictor pointer list (plq.strideptr)

associated with a load-branch chain. It tracks whether the last retired load had a change in

delta (plq.tracking). If there is a change, it notifies the retire block to stop triggering potentially

incorrect loads. Generally, loads generate prefetches when it retires. But, in the setup used

for this dissertation, the trigger load generation is delayed until the branch retires to ensure

correctness in trigger load generation. The PLQ ensures that the BTT gets notified about any

change in the retiring load’s delta before it triggers any loads. As shown in Figure 3.4, PLQ

allocates entries during BTT allocation.
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Figure 3.3: LDBP Fetch Block - Fields in each index of the tables are marked in the figure.

3.3.2 LDBP Fetch Block

The LDBP fetch block is responsible for accumulating trigger load results and com-

puting the branch outcomes. Figure 3.3 shows the tables used by the fetch block, the registers

associated with tracking loads, and the ALU used to compute the branch outcome for load-branch

chains.

3.3.2.1 Load Outcome Table (LOT) and Load Outcome Registers (LOR)

The combination of LOR and LOT stores trigger load data, which could be consumed

by future branches. The LOR Delta (lor.delta) field tracks the load address delta of each load

tracked by LOR stride pointer list (lor.strideptr). The lor.lot pos field marks the data to be used

by the current branch, and it helps to queue incoming data in an appropriate LOT index. The LOT

valid bit (lot.valid) gets set when the trigger load associated with that entry finishes execution.

The LOR keeps track of a range of load addresses whose data could be potentially

useful for the current and future branches. The LOR Load Start Address (lor.ldstart) is the
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starting load address of the range. The LOT caches the data associated with the addresses tracked

by LOR. Each LOR entry has an associated LOT entry. Each LOT entry has an n-entry load

data queue (lot.ld data) and valid bit queue (lot.valid). The ending address tracked by LOR is

lor.ldstart +n∗ lor.delta. Any trigger load address outside the address range is deemed useless,

and the LOT does not cache its data.

3.3.2.2 Branch Outcome Table (BOT)

The branch PC indexes the BOT at fetch (bot.pctag). As shown in Figure 3.4, the BOT

has two main tasks. One, use the pre-computed branch outcome to predict at the fetch stage.

Two, initiate the Code Snippet Table to compute the outcome for future branches.

Each entry on the BOT has a queue of 1-bit entries holding the branch outcome

(bot.outcome queue). The length of this queue is equivalent to the number of entries in the LOT’s

load data queue (lot.ld data). The bot.outcome ptr points to the current BOT outcome queue

entry to be used by the incoming branch instruction. BOT uses the outcome if the corresponding

valid bit (bot.valid) is set. The BOT stride pointer list (bot.strideptr) has the list of loads

associated with the branch. The Code Snippet FSM uses this field to pick appropriate load(s)

from the LOR/LOT and the CST pointer (bot.cstptr) to compute the branch outcome.

3.3.2.3 Code Snippet Table (CST)

The Code Snippet Table (CST) is responsible for executing the branch backward slice

to compute the branch outcome. A CST entry is allocated during BOT allocation. The CST feeds

the FSMs with the operation sequence of the load-branch chain. When all the trigger load data
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associated with the trigger branch are available, the FSM executes the code snippet to completion

at the rate of one ALU operation per cycle. When large backward slices are supported, more

FSMs are needed to reduce contention. The contention happens when all the FSM are busy. In

this case, the branch outcome gets delayed until an FSM is free. As the BOT only tracks a small

number of load-dependent branches, a similar-sized CST is sufficient.
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Figure 3.4: LDBP Flow - Interaction between Fetch and Retire Block.

3.4 LDBP Flow

Figure 3.4 shows the interaction between different LDBP components at instruction

fetch and retirement stage. Through the rest of this section, I will explain in detail about how

LDBP works.

3.4.1 Load Retirement

When a load retires, it updates the Stride Predictor. The sp.confidence field is updated

depending upon the load address behavior. The sp.tracking for a load gets set at BTT allocation.
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A BTT entry allocation implies that a valid load-branch chain is present, and it is necessary to

track the loads in this chain to ensure LDBP triggers load(s) associated with the most active

chain.

If the sp.tracking is set, the corresponding Stride Predictor index is appended to the

Pending Load Queue table (plq.strideptr). The plq.tracking bit remains set until there is a change

in delta for the load it tracks.

The retiring load also resets the RTT entry indexed by its destination register. If the

sp.confidence is high, the rtt.nops is initialized to zero, and the load’s pointer from the Stride

Predictor is appended to the rtt.strideptr. In case the sp.confidence is low, the rtt.nops is saturated,

and the RTT stride pointer list is cleared.

3.4.2 ALU Retirement

A retiring simple ALU operation (like addition) updates the RTT entries pointed by

its destination register. The RTT retrieves rtt.nops and rtt.strideptr values pointed by its source

registers 2 and accumulates it into the fields indexed by the destination register. The cumulative

rtt.nops is represented by Equation 3.1. It is realistically infeasible to track an infinitely large

load-branch chain. So, there is a threshold on the number of operations and the number of

loads supported by LDBP. If rtt[dst].nops exceeds the limit, the corresponding RTT entry gets

invalidated. For simplicity, the number of operands per source are added, ignoring any potential

redundancy in operations.

2At most two sources in RISC-V
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rtt[dst].nops = rtt[src1].nops+ rtt[src2].nops+1 (3.1)

LDBP does not support complex operations like multiplication or floating-point opera-

tions. As a result, when one of these instructions retire, the RTT entry indexed by it is invalidated

to ensure a load-branch chain does not get polluted by complex operations.

3.4.3 Branch Retirement

At cold start, when a branch retires, it indexes the RTT only when it has low confidence

with the default IMLI predictor 3. BTT entry gets allocated only when all the loads in this chain

are predictable and rtt[dst].nops is below permissible threshold.

3.4.3.1 BTT Allocation

On BTT allocation, the contents of the rtt.strideptr are copied to the btt.strideptr.

The btt.accuracy counter is initialized to half of its saturation value. The sp.tracking bit for

the associated loads are set, and the CSB starts building the code snippet for this load-branch

chain. As shown in Figure 3.4, the BTT allocation creates a chain reaction by initiating the PLQ

allocation, LOR/LOT allocation, and BOT allocation.

Each load associated with the branch has a unique entry during LOR/LOT allocation.

Load-associated metadata from the Stride Predictor populates the LOR fields. The lor.lot pos is

cleared. Similarly, BOT entry gets reset on allocation, and btt.strideptr updates the stride pointer

list on the BOT. The branch’s PC tag is assigned to bot.pctag.

3IMLI is confident when the longest table hit counter is saturated.
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3.4.3.2 BTT Hit

On BTT hit, the btt.accuracy counter gets incremented if LDBP made a correct

prediction, and the default IMLI predictor mispredicts and vice versa. If this counter reaches

zero, the BTT deallocates the entry and the sp.tracking associated with btt.strideptr are cleared.

The CSB starts to build the code snippet for the load-branch chain on BOT allocation.

After CSB completes the snippet, on a BTT hit, the code snippet is copied to the CST. The CSB

is disabled after this process.

When the retiring branch hits on the BTT, it reads the corresponding PLQ entries to

ensure if the tracking bit is high for the loads in the btt.strideptr. The BTT can trigger load(s) if

the PLQ and LOR track all the associated loads. Equation 3.2 represents the address of the load

triggered. The lor.ldstart is incremented by load address delta to ensure better coverage after

every trigger load generation. The lor.lot pos is incremented when a new load is triggered. The

trigger load distance (tl dist) and the number of triggers generated for each load can be tuned to

facilitate better load timeliness.

tl addr = lor.ldstart + lor.delta∗ tl dist (3.2)

3.4.3.3 Recovery on load delta change or change in chain path

There can be scenarios where the load-branch chain might change. It could happen

when a different operation sequence is taken to reach the branch. There are situations where the

delta associated with any of the branch’s dependent loads might change, potentially resulting

in triggering incorrect loads. During such occurrences, LDBP flushes the branch entries on the
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BTT, BOT (and its associated CST entry), and its corresponding load entries on the LOR/LOT.

The tracking bit on the Stride Predictor and PLQ are reset for these loads. Such an aggressive

recovery scheme guarantees higher LDBP accuracy and reduced memory congestion due to

unwanted trigger loads.

3.4.3.4 Trigger Load Completion

When a trigger load completes execution, it checks for matching entries on the LOR.

There could be zero or more entries on the LOR, which could have the address range of this

completed request. The address is a match on the LOR entry if it is within the LOR entry’s

address range and is a factor of the lor.delta. On a hit, the corresponding LOT entry stores the

trigger load data in the lot.ld data queue, and its valid bit is set. The LOT data queue index is

computed using Equation 3.3a and 3.3b.

lot id =
(tl.addr− lor.ldstart)

lor.delta
(3.3a)

lot index = (lor.lot pos+ lot id)%lot.ld data.size() (3.3b)

3.4.4 Branch at Fetch

When a branch hits on the BOT at instruction fetch, the bot.outcome ptr is increased by

one. This is the only value speculatively updated in the LDBP fetch block. When there is a table

flush due to misprediction, load-branch chain change or load delta variation, the bot.outcome ptr

gets flushed to zero. The BOT outcome queue entry pointed by the bot.outcome ptr yields the
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branch’s prediction.

The bot.cst ptr proactively instigates the computation of future branch outcomes at

fetch. The CST FSMs use the load data values from valid entries on the LOT. Once the outcome

is computed, the corresponding bot.outcome queue entry gets updated.

3.5 Spectre-safe LDBP

Timing side channel leaks are a powerful tool for hackers. In the late 90s [23], it

became known that many encryption algorithms were susceptible to time side channel attacks.

Specifically, it was observed that different data had different branch prediction performance,

and this information leak could be observed by other applications or code sections, which

compromised the algorithms. More recently, the Spectre [22] class of attacks leverage time

changes in the cache caused by speculatively executed instruction. In all these attacks, the

information is leaked because the attacker has a clock or performance counter from the processor,

and is able to measure the time impact resulting from executing some code. All these leaks could

be avoided if the attacker did not have the capacity to gather any performance information on the

code under attack.

LDBP architecture is carefully designed to ensure that there is no information leakage

through the branch predictor. The LDBP has been designed to avoid speculative updates. The

reason is not to create another source of Spectre-like [22] attacks. The LDBP retirement block

is only updated when the instructions are not speculative. This means that it never has any

speculative information and potential speculative side-channel leak.
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The LDBP fetch block is populated only with information from the retirement block.

Even the trigger loads are sent when a safe target branch retires. The only speculatively updated

field is the LOR table, but this table is flushed after each miss prediction or load delta change,

and the state is rebuilt from the LDBP retirement block.

In a way, the LDBP is not a new source of speculative leaks because it is only updated

with safe information, and the fields updated speculatively are always flushed on any pipeline

flush. The flush is necessary for performance, not only for Spectre. The reason is that when

the ”number of in-flight” trigger loads change due to flushes, the LOR must be updated. LDBP

structures are not source of speculative leaks, but the loads in the speculative path can still leak

unless speculative loads are protected like in [37]. The result is that LDBP is not a new source of

speculative leaks like most branch predictors that gets speculatively updated and not fixed on

pipeline flushes.

3.6 Multiple Paths Per Branch

The LDBP load-branch slices are generated at run-time, and they can cross branches.

As a result, the same branch can have multiple chains or backward slices. These cases are

sporadic in benchmarks from GAP as they have a large and somewhat regular pattern. Multi-path

branches are slightly more common in the SPEC CINT2006 benchmarks.

The analysis performed as a part of this work shows that branches with multiple slices

are not frequent, and when they happen, they tend to depend on unpredictable loads. Therefore,

it is not a significant cause of concern for LDBP in these cases. Nevertheless, it can be an issue in

34



other workloads. The dissertation leaves it as a part of future work and possibly find benchmarks

that exhibit such behavior more predominantly.
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Chapter 4

Setup

A complex system that works is invariably

found to have evolved from a simple

system that works.

John Gaule

4.1 Overview

In this chapter, the thesis briefly talks about the infrastructure used to run simulations

to evaluate the effectiveness of LDBP. This chapter also provides details about the benchmarks

used, baseline processor configuration, and models against which LDBP was compared.
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Parameter Size
L1 Instruction Cache 32 KB, 8-way
L1 Data Cache 32 KB, 8-way
L2 Cache 512 KB, 8-way
Laod Queue 44 entries
Store Queue 40 entries
Reorder Buffer (ROB) 224 entries
Physical Register File 180 entries
Integer Execute Unit 4
Integer Execute Unit Scheduler 16 entries
Address Generation Unit 3
Address Generation Unit Scheduler 28 entries
Floating-point Execute Unit 4
Issue Width 6
Retire Width 8

Table 4.1: Some architectural parameters for AMD Zen-2 core.

4.2 Simulation Setup

In this thesis, ESESC [2] is used as the timing simulator. ESESC is a cycle-accurate

multi-core simulator that can model in-order as well as out-of-order cores. It is an execution-

driven simulation model. ESESC supports RISC-V and MIPS Instruction Set Architecture.

ESESC models bandwidth and contention for core and memory hierarchy. Industry (MIPS) has

correlated ESESC with RTL with less than 10% error for SPEC-like benchmarks. The processor

configuration is set to closely model an AMD Zen 2-like core [51]. Some of the parameters of

the Zen 2 core are given in Table 4.1.

Table 4.2 shows the Instructions Per Cycle (IPC) and MPKI for the benchmarks

investigated when running the baseline 256-Kbit IMLI predictor. To match the Zen 2 architecture,

the baseline branch prediction unit has a fast (1 cycle) branch predictor and a slower but more

accurate (2 cycle) IMLI branch predictor. The baseline configuration is evaluated against 1-Mbit
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Benchmark Branch MPKI IPC
spec06 xalan 1.0 1.97
spec06 sjeng 5.8 1.78
spec06 perlbench 1.8 1.42
spec06 omnetpp 1.5 2.73
spec06 mcf 6.2 1.21
spec06 libquantum 0.0 1.17
spec06 hmmer 12.9 2.42
spec06 h264ref 0.9 3.01
spec06 gobmk 12.2 1.55
spec06 gcc 0.3 2.15
spec06 bzip2 2.9 2.75
spec06 astar 14.9 0.91

gap tc 44.4 1.07
gap sssp 6.2 0.89
gap pr 4.6 1.65
gap cc 32.7 0.51
gap bfs 23.7 0.65
gap bc 22.0 1.17

Table 4.2: Benchmarks used and their MPKI and IPC running baseline 256-Kbit IMLI.

IMLI, and different IMLI configurations (150-Kbit, 256-Kbit, and 1-Mbit) are augmented with

an 81-Kbit LDBP.

4.3 Application Setup

In this dissertation, LDBP was evaluated using SPEC 2006 integer benchmarks and

the GAP Benchmark Suite (GAPBS). All the benchmarks are compiled with gcc 9.2 with -Ofast

-flto optimization for a RISC-V RV64 ISA [52]. For SPEC CINT2006, all the benchmarks

were run, skipping 8 billion and modeling for 2 billion instructions. All the GAP applications

were run with “-g 19 -n 30” command line input set and instrument the benchmarks to skip the

initialization, as suggested by GAP developers. The command line argument for GAPBS can be
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interpreted as follows: run the benchmark on a graph with 219 vertices (-g 19) for 30 iterations

(-n 30).

As shown in Table 4.2, benchmarks in SPEC CINT 2006 have branch misprediction

rates spanning across different ranges. Benchmarks like astar have a high misprediction rate,

whereas libquantum has near-perfect branch prediction accuracy with the baseline Zen-2 core

with IMLI predictor. The SPEC 2006 floating-point benchmarks have pretty solid branch

prediction accuracy. So, I felt including it for evaluation will not be a true reflection of this

dissertation’s purpose.

In contrast, the GAP benchmarks have very high MPKI - one of the main reasons

for picking this benchmark suite. The GAP benchmark suite is a pack of high-performance

implementations written with C++11. The input datasets of GAPBS includes a combination of

real graphs and synthetic graphs [3].
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Chapter 5

Results and Analysis

One can measure the importance of a

scientific work by the number of earlier

publications rendered superfluous by it.

David Hilbert

5.1 Overview

In this chapter, the results of the thesis are highlighted. This chapter presents the

performance metrics (IPC and branch misprediction), benchmark analysis, sensitivity study for

different LDBP components, energy implications of using LDBP, and the importance of trigger

load timeliness.
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Figure 5.1: LDBP minimizes the mispredictions by more than 12% when combined with the
baseline 256-Kbit IMLI.

5.2 IPC and Branch Misprediction Rate

In this section, the thesis compares the performance, and misprediction rate variations

between the baseline IMLI predictor and the proposed LDBP predictor augmented to IMLI.

Mispredictions Per Kilo Instruction (MPKI) is the metric used to compare the misprediction rate

in this section.

Figure 5.1 shows the normalized MPKI values compared to the baseline IMLI for

different branch predictor configurations. LDBP has a considerable impact on more than half

of the benchmarks. On average, the IMLI 256-Kbit + LDBP predictor reduces the MPKI of
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GAP and SPEC CINT2006 benchmarks by 12%. As shown in Table 4.2, SPEC CINT2006’s

astar has poor branch prediction accuracy. The most mispredicting branch in astar constitutes

22% of the benchmark’s mispredictions. This branch has a direct dependency with a load, but

LDBP cannot fix this branch as the address of the load feeding this branch has a fluctuating

delta. LDBP manages to minimize astar’s total branch misses by 16.6% without fixing the

most mispredicting branch. These numbers attest to the fact that a considerable proportion of

hard-to-predict branches on most benchmarks depend on data from loads with a predictable

address. Another observation to note is that quadrupling the size of IMLI fixes only 12.9%

branch misses across all benchmarks, compared to the baseline. This inference substantiates

the fact that a huge TAGE-like predictor cannot efficiently capture the history of hard-to-predict

data-dependent branches.

Figure 5.2 compares IPC changes over baseline 256-Kbit IMLI for different branch

predictor configurations. LDBP was able to achieve an average IPC improvement of 7.14%

when paired with the baseline predictor. An interesting observation is that the GAP benchmarks

have a speedup of 13.6% with this configuration. In contrast, they have a slightly better IPC

gain of 13.9% over the baseline when running on 150-Kbit IMLI + LDBP. The reason for this

trend is that a smaller IMLI can fix lesser branches, and LDBP fixes branches that have low

confidence with IMLI. Therefore, lower the MPKI of the primary predictor, more the work

for LDBP. For some benchmarks like bfs, the smaller predictor even outperformed its larger

counterpart. Moreover, the 150-Kbit IMLI + 81-Kbit LDBP offers 6.6% higher performance

gain and 5.3% lesser branch misses than the baseline 256-Kbit IMLI for a 9.7% lower hardware

budget.
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Figure 5.2: LDBP (when combined with 150-Kbit IMLI or 256-Kbit IMLI) outperforms the
large 1-Mbit IMLI comprehensively.

The MPKI and performance improvements yielded by LDBP clearly shows that

hard-to-predict load-dependent branches are major contributors to overall mispredictions in

benchmarks across different application suites. LDBP does not affect some benchmarks like mcf,

sssp and bc. This behavior can be attributed that mispredicting branches in these benchmarks

do not have a load-branch dependency that can be captured by LDBP. An anomaly to note on

Figure 5.1 and 5.2 is the behavior of gobmk running with 150-Kbit IMLI + LDBP. It can noticed

that the IPC decreases by 2%, and the MPKI worsens by 10%. It is because the 150-Kbit IMLI

has a worse MPKI and IPC compared to the baseline IMLI. Added to that, LDBP does not yield
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1 for( NodeID u=0; u < g. num_nodes (); u++){
2 if( parent [u] < 0){
3 ..
4 ..
5 ..
6 }
7 }

Figure 5.3: GAP’s BFS source code snippet.

any improvement for gobmk.

5.3 Benchmark Study

In this section, the thesis analyzes examples from different benchmarks where LDBP

works and cases where LDBP doesn’t work.

5.3.1 Case 1: BFS (GAP Benchmark Suite)

For the first case study, the Breadth-First Search (BFS) algorithm is explored. It is

one of the most popular graph traversal algorithms used across several domains. Figure 5.4 and

Figure 5.3 shows a snippet of RISC-V assembly and its corresponding pseudo code from GAP’s

BFS benchmark. Here, the loop traverses over all the nodes in the graph to assign a parent to

each node. The arbitrary nature of the graph makes it hard to predict if a node has a valid parent

as each node can have multiple possible edges, but the node traversal is in order. It is hard to

predict parent[u], but u is easily predictable (Line 2 in Figure 5.3). The branch in Line 9 in

Figure 5.4 is the most mispredicted branch in this benchmark. It contributes to about 29% of all

mispredictions when simulated on the baseline architecture with 256-Kbit IMLI. When LDBP is

augmented into this setup, it resolves 96% of the mispredictions for this branch and reduces the
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1 L2: addi a7 ,a7 ,1
2 ld a5 ,8( t5)
3 bge a7 ,a5 ,L1 // outer ’for ’ loop
4 sext.w t6 ,a7
5 slli t1 ,a7 ,0x2
6 ld a5 ,0( a1)
7 add t1 ,t1 ,a5
8 lw a5 ,0( t1)
9 bgez a5 ,L2 //’if’ condition check

Figure 5.4: GAP’s BFS RISC-V Assembly code for Figure 5.3.

overall MPKI of BFS by 59.9%. It is also instrumental in gaining 40% speedup.

5.3.2 Case 2: HMMER (SPEC CINT 2006)

Figure 5.5 shows the RISC-V assembly code section of the branch (line 8) contributing

to most misprediction in SPEC CINT2006 hmmer. It accounts for 39% of all mispredicted

branches. The branch outcome is dependent on values from different matrices. The randomness

of the data involved makes this a very hard-to-predict branch. Each branch source operand is

dependent on two loads. As the benchmark traverse over matrices, the loads involved in this case

has a traceable address pattern. LDBP has to track four different loads and some intermediate

ALU operations to make the prediction. LDBP fixes 67.4% of the mispredictions yielded by bge.

Appending LDBP to the baseline IMLI improves the IPC of hmmer by 29% and reduces the

overall MPKI of this benchmark by 56%.

5.3.3 Case 3: PR (GAP Benchmark Suite)

Figure 5.6 represents the code snippet containing the two most mispredicting branches

in the PR benchmark (lines 5 and 9). beq1 and beq2 contribute to about 37.2% and 62.6% of all
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1 lw s11 , 0(a3)
2 lw a3 , 4(a7)
3 addw a3 , s11 , a3
4 sw a3 , 0(t3)
5 lw s10 , 0( s10)
6 lw s11 , 4(t1)
7 addw s11 , s10 , s11
8 bge a3 , s11 , LABEL

Figure 5.5: SPEC CINT 2006 hmmer RISC-V assembly code.

1 ld a3 , 8(a2)
2 ld a4 , 0(a2)
3 ..
4 ..
5 beq a3 , a4 , L1 /* beq1 */
6 ..
7 ..
8 addi a4 , a4 , 4 /* target L2 */
9 ..

10 ..
11 beq a3 , a4 , L2 /* beq2 */

Figure 5.6: GAP PR (PageRank) RISC-V assembly code.

misprediction in PR, respectively. LDBP reduces the MPKI of PR by 32%. The load addresses

are predictable, but the stride does not remain constant for a prolonged period. LDBP fixes 84%

of all beq1 mispredictions. No improvements were made for beq2. For beq2, when the branch is

taken, the value of a4 is modified by addi. This ALU is part of a different path than the original

load-branch chain for beq2. Though the loads are predictable, due to the multi-path nature of

beq2, it is not effective with LDBP. As a part of future work, I plan to add architectural support

in LDBP to track dual-path chains.
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1 START: lw a2 ,0( a3)
2 addi a3 ,a3 ,4
3 bge a1 ,a2 ,SKIP
4 mv s6 ,a4
5 mv a1 ,a2
6 SKIP : addiw a4 ,a4 ,1
7 bne s10 ,a4 ,START

Figure 5.7: SPEC CINT2006 sjeng RISC-V assembly code.

5.3.4 Case 4: SJENG (SPEC CINT 2006)

There exist some load-branch chains that cannot be detected by LDBP at the moment.

Let us consider an example from SPEC CINT2006 sjeng. Figure 5.7 shows a fragment of RISC-V

assembly from sjeng, which has the most mispredicted branch (line 3). The code performs a

sort operation. The loop iterates to find a value greater than or equal to a1. If it finds such an

instance, that value is assigned to a1 through the mv (move) instruction at line 5. LDBP cannot

detect this pattern as one of the branch sources(a1) is generated by the mv instruction, and it is

independent of a load. Even if the load instruction (line 1) is predictable, LDBP cannot fix this

branch. Adding support in LDBP to track these sort-based load-branch chains is part of future

work.

5.4 Trigger Load Timeliness

In this section, the thesis will focus on trigger load prefetch distance and its importance

in achieving optimum LDBP timeliness. I will use Figure 1.1 to highlight the criticality of timely

trigger loads. This example is the vector traversal problem discussed in Section 1.1. In this

example, let us assume a scenario where it takes six cycles to load data from the vector, and there
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are ten in-flight load-branch iterations. As the load address has a delta of 8, to achieve an IPC of

1, the new trigger load needs to be sent at least 16 cycles ahead. If the current load address is x,

LDBP triggers a load address with a distance of 16 (x+8∗16). In reality, it would be ideal to

use even a larger distance to compensate for variable memory latencies.
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Figure 5.8: Sensitivity of LDBP when adding extra delays to FSM-ALUs.

To understand how timely the trigger load requests are in LDBP, artificial extra delays

are injected. Figure 5.8 shows the variation of MPKI compared to baseline IMLI, when random

extra delay cycles are added. The green dotted lines denote the MPKI of baseline IMLI+81-KBit

LDBP normalized to the baseline. This clearly show that early triggering of loads acts as buffer

for unexpected pipeline delays/variable memory latency. This ensure that the FSM-ALUs have

sufficient time to pre-compute the branch outcome. Even for an extra delay of 32 cycles, the

MPKI variation is less than 1%.

48



At a first look, Figure 5.8 seems counter intuitive. It says that even adding 32 cycles

delay has a small impact on the overall MPKI. The reason is that LDBP is aggressively sending

trigger loads. Also, any misprediction flushed the pipeline but not the triggered load. Since

LDBP targets code sections with frequent mispredictions, it has extra time to cover memory

latency overhead. The result is that most LDBP predictions are timely.
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5.5 Load-Branch Classification

To understand what happens with the IMLI mispredicted branches, a limit study is

performed. Each IMLI mispredicted branch is characterized based on the LDBP backward slice.

If the backward slice terminates in non-predictable load addresses, the slice is referred to as

”No LDBP”. The backward chains can be broadly categorized into three different type: Trivial,

Complex, and Excess. Trivial chain does not have any ALU operation in the backward slice.

Complex chain has atmost 5 ALU operations, and Excess has more than 5 ALU operations.

Figure 5.9 shows that IMLI does a good job, and less than 5% of the branches are

marked as ”IMLI Not-Conf” for SPEC CINT2006. From those branches, for both SPEC

CINT2006 and GAP, over 50% of the branches are LDBP trivial or complex. Figure 5.1 shows

that LDBP reduced MPKI by 12%. Section 5.4 has shown that the problem is not due to

timeliness. The reason is that the ”LDBP” classification considers a load predictable if a stride

prefetcher can predict a significant part of the loads. The issue is that the stride prefetcher is

limited due to outliers or changes of deltas. If the stride prefetcher was correct more frequently

a significant part of branches could be fixed. This is an area that shows potential additional

opportunities for LDBP.

5.6 LDBP Sizing

This section explains the methodology used to size the tables in LDBP. The variation

in MPKI for a different number of entries in each structure in the predictor is analyzed. To have

a fair LDBP table sizing, a baseline LDBP is defined When the MPKI sensitivity for a table’s
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size is analyzed, all other tables in LDBP have infinite entries. Such an approach ensures a fair

estimation of the table’s impact on LDBP accuracy. A 5% MPKI increase from infinite LDBP is

the cut-off used to determine the ideal table size. For this study, all the benchmarks from SPEC

CINT2006 and GAP having MPKI reduction greater than 1% with the infinite LDBP are used. I

did not include all benchmarks for sizing because some benchmarks had no effect on MPKI even

for an infinite size LDBP. Adding them to this sizing study will not be a true reflection of the

impact of LDBP.

Structure Name No. of Entries Total Size (Kbit)
Stride Predictor 32 1.59

Rename Tracking Table (RTT) 32 3.09
Pending Load Queue (PLQ) 32 0.22
Branch Trigger Table (BTT) 8 0.88
Code Snippet Builder (CSB) 32 5

Load Outcome Register (LOR) 16 1.44
Load Outcome Table (LOT) 16 65

Branch Outcome Table (BOT) 8 1.93
Code Snippet Table (CST) 8 2.5

Total LDBP Size 81.65

Table 5.1: Overall LDBP Size is 81-Kbit.

Table 5.1 shows overall size of LDBP and the breakdown of individual table sizes. The

overall size for the LDBP is 81-Kbit. As a reference, the IMLI predictor used is 256-Kbit. The

fetch block in a processor like a Zen 2 also includes a 32-KByte instruction cache and two-level

BTBs with 512 and 7K entries. The largest LDBP table is the LOT that can use area-efficient

single port SRAMs.
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Figure 5.10: 32 entries are sufficient in the Stride Predictor and PLQ to achieve prediction
accuracy varying by less than 5% from the infinite LDBP.

5.6.1 Stride Predictor and PLQ Sizing

Figure 5.10 shows the impact of the number of entries on the Stride Predictor and the

PLQ on MPKI. It can observed that the MPKI drop is just under 5% when the number of entries

is around 32. With reduced stride predictor and PLQ entries, a load tracked as a part of the

hard-to-predict load-dependent branch’s chain can be evicted to make way for a new incoming

load. LDBP cannot determine if a load is trigger-worthy if it is not in the stride predictor table.

Entries larger than 64 have a negligible effect on the MPKI. The stride predictor and PLQ have

32 entries each as it offers the perfect equilibrium between MPKI and hardware size. As shown

in Table 5.1, the stride predictor has a storage budget of 1.59-Kbits, and the PLQ occupies

0.22-Kbits.
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Figure 5.11: Tracking 16 loads on the LOR and LOT is adequate to maintain high LDBP
accuracy.

5.6.2 LOR and LOT Sizing

Figure 5.11 plots the effect of varying LOR size on MPKI. There is a sharp increase in

MPKI when the number of trigger loads tracked is less than 16. At the 5% cut-off point, LOR

and LOT has around 12 entries. To minimize the impact of the sharp drop in MPKI, 16 entries

are allocated to both the LOR and LOT. The necessity to store the complete load data contributes

to the large size of the LOT. The number of entries on the LOT data queue is determined by how

proactively LDBP wants to predict branches and trigger its associated loads. The number of

entries on the BOT’s outcome queue matches the LOT data queue entries. The sizing of the BOT

outcome queue is discussed in Section 5.6.3.

Some load-dependent branches may consume two or more trigger loads. A bottleneck

on the number of trigger loads tracked has a direct implication on the effectiveness of LDBP.
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Figure 5.12: The LOT Data Queue and Outcome Queue requires 64 entries each.

In most cases, the load-dependent branch tends to be the entry-point to a huge loop. In such

cases, it sufficient for LDBP to track just one branch and its associated trigger loads. Therefore,

a reasonably small to medium number of entries on the LOR and LOT is adequate to maintain

LDBP accuracy.

5.6.3 Outcome Queue/LOT Data Queue Sizing

The outcome queue is part of the BOT. The criticality of the outcome queue in the

overall scheme of LDBP warranted optimal sizing. The number of entries in this queue correlates

to the number of future outcomes trackable for a given branch PC. The outcome queue entries

directly impact the number of entries on the LOT data queue. It is sufficient for the LOT data

queue to have as many entries as the branches tracked by the outcome queue. From Figure 5.12,

the ideal number of outcome queue entries at the cut-off point is 64. As the outcome queue
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Figure 5.13: The effectiveness of LDBP remains steady for different number of entries on the
BOT and BTT tables. It is sufficient to track at most 8 branches on these tables.

size decreases, the MPKI increase gets steeper. A smaller outcome queue inhibits the ability of

LDBP to trigger loads with higher prefetch distance. On the flip side, the outcome queue size

larger than 64 almost hits an MPKI plateau.

5.6.4 BOT and BTT Sizing

Figure 5.13 shows the variation of MPKI for different sizes of BOT and BTT. Just like

the LOR and LOT, a small to a medium number of entries on the BOT and BTT is sufficient to

track almost every load-dependent branch in an application. These branches are usually part

of large loops. These huge loops give LDBP adequate time to capture the new branch-load

chain even if they replace an already existing entry from the tables. The correlation between the

number of entries and MPKI has very minimal variations. Therefore, it is sufficient to have just
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Figure 5.14: LDBP must track at least 5 loads to maintain healthy prediction accuracy.

8 entries on the BOT and BTT.

5.6.5 CSB and CST Sizing

The CSB builds the load-branch slice. It is critical to size this table optimally to

keep LDBP’s hardware budget under check. Figure 5.14 and 5.15 shows the change of MPKI

for different load and ALU operations threshold in an LDBP chain. Five loads and four ALU

operations are needed to ensure maximum LDBP efficiency. These figures reflect the cumulative

number of operations tracked by both the source operands of a branch instruction. Each source

operand of the branch might need to track only fewer operations.

Figure 5.16 shows the number of sub-entries needed by each CSB index. This figure

clearly shows that it is sufficient for each branch source register to track five operations to support

an LDBP chain with a maximum of nine operations. There are 32 entries on the CSB, and each
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Figure 5.15: Most LDBP chains have 4 ALU operations between the branch and load(s).

entry track five operations. The total size of the CSB is 5-Kbit. The CST caches the backward

slice of each branch. As there are 8 entries on the BOT, the CST must have 8 entries with 10

sub-entries (5 sub-entry for each branch source operand).

5.7 LDBP Sensitivity for FSM-ALUs

Figure 5.17 shows the sensitivity of 81-Kbit LDBP for different number of FSM-ALUs.

The simulator infrastructure models a wakeup-select-like scheduling logic to choose FSM-ALUs

when branch slices are ready to be pre-executed. The baseline for this study is the infinite LDBP.

The MPKI drops by only 2% even if there is 1 FSM-ALU. A single FSM-ALU means that a

LDBP branch branch with n ALU operations in the backward slice needs n cycles to complete.

It also means that no other branch outcome can be processed in parallel. 1-2 FSM-ALUs are
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Figure 5.16: Each CSB index must have 5 sub-entries to capture LDBP backward slices.

sufficient to cater LDBP because of the timeliness of trigger loads (as discussed in Section 5.4.

Also, a backward slice has just a few instructions between iterations. This means that it barely

becomes the critical resource.

5.8 LDBP Gating and Energy Implications

The LDBP has significant performance gains, but some benchmarks (libquantum, sssp,

bc) do not benefit. In this section, I will evaluate the effectiveness of gating the LDBP when

infrequently used, to minimize energy dissipation.

Every component of LDBP is gated (low-power mode), apart from the Stride Predictor

and RTT when there is a duration of 100,000 or more clock cycles where LDBP did not predict

any branch. This phase is referred to as the LDBP low-power mode. As shown in Table 5.2,
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Figure 5.17: LDBP does not need many FSM-ALUs due to timely nature of trigger loads.

for bc and sssp, LDBP remains in low-power mode for 99.6% and 98.3% of the benchmark’s

execution time, respectively. Gating offers a considerable reduction in energy dissipated by

LDBP as the predictor remains in low-power mode for 63.3% of the average execution time

across all benchmarks, and LDBP gating does not have any negative effect on the prediction

accuracy of LDBP.

Haj-Yihia et al. [14] present a detailed breakdown of core power consumption for

high-performance modern CPUs running SPEC CINT2006 benchmarks. The thesis uses the data

presented in their work to estimate the core energy dissipation. For this study’s baseline energy

model, the core power breakdown given in [14] is replicated for SPEC CINT2006 benchmarks.

For the GAP benchmarks, the average power breakdown of SPEC CINT2006 benchmarks given

in [14] is used. The broad-spectrum power model based on SPEC CINT2006 benchmarks is
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Benchmark % time in low-power mode
spec06 gcc 98.6
spec06 hmmer 0.0
spec06 astar 55.7
spec06 gobmk 33.8
spec06 omnetpp 95.2
spec06 mcf 73.4
spec06 sjeng 93.7
spec06 h264ref 96.8
spec06 bzip2 80.3
spec06 libquantum 99.9
spec06 perlbench 85.5
spec06 xalan 90.1

gap bfs 3.4
gap pr 2.7
gap tc 0.1
gap cc 32.4
gap bc 99.5
gap sssp 98.3

Table 5.2: Proportion of execution time in LDBP low-power mode.

good enough to capture the energy dissipation behavior of GAP benchmarks with a good level of

accuracy.

Energy Per Access (EPA) for IMLI and LDBP were calculated using CACTI 6.0 [34].

For IMLI, an ideal structure with a single port is modelled. LDBP has 55% lesser EPA than

IMLI even if it is assumed that all the tables are accessed when not in low power mode, which

is not the case in reality. There is a 7% average increase in DL1 access for LDBP, which will

result in an equivalent escalation in energy on the memory sub-system. The 12% decrease in

MPKI when using LDBP will compensate for this increase in energy dissipation. Lesser MPKI

implies lesser energy spent on executing the wrong branch path. The thesis does not account for

the energy saved due to reduced wrong path execution in the LDBP energy estimation numbers.
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Figure 5.18: LDBP maintains a favorable energy-performance tradeoff.

Added to that, this study also does not account for the energy reduction incurred due to 7.14%

lesser execution time when using LDBP. Reducing execution time results in reduced energy, and

LDBP’s pessimistic energy estimation model does not consider this.

Figure 5.18 shows the energy-performance tradeoff for IMLI + LDBP compared to

the baseline 256-Kbit IMLI. The IPC boost outweighs the increase in energy dissipation for the

majority of the benchmarks that benefit from LDBP. Benchmarks like bc and sssp only have about

2% energy overhead as the RTT and Stride Predictor continue to be active even under low-power

mode. Interestingly, LDBP only predicts a negligible proportion of branches in gobmk, but it

contributes to 8% more energy use. This is because LDBP resolves multiple low-frequency
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branches that spread across different execution phases. Thus, gobmk does not offer a consistent

low-power mode phase for LDBP. A more aggressive clock gating with retention state or smarter

phase learning could further improve the gobmk case, but we leave it as future work.
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Figure 5.19: Triggering loads does not offer any unfair gains to LDBP.

5.9 Impact of Triggering Loads on LDBP Performance Gains

Figure 5.19 shows the normalized speedup of LDBP over 256-Kbit IMLI with three

different Zen 2 core configurations. One, the default Zen-2 core used for evaluation in other parts

of this dissertation. Two, the default core with a standard stride prefetcher and third, the default
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core with perfect DL1 cache. It can be noticed that the IPC numbers are almost similar across

all three configurations for most benchmarks. This clearly shows that prefetching trigger loads

in LDBP do not provide an unfair advantage to it over the standalone IMLI predictor. Maybe

even more important, Figure 5.19 shows that the LDBP benefits are consistent independent of

memory sub-system improvements.
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Chapter 6

Conclusion and Future Opportunities

The important work of moving the world

forward does not wait to be done by

perfect men.

George Eliot

6.1 Conclusions

As shown by the benchmarks evaluated as a part of this dissertation, branch outcomes

dependent on arbitrary load data are hard-to-predict and contributes to a considerable proportion

of mispredictions. They have poor prediction accuracy with current state-of-the-art branch

predictors. These branch patterns are common in data structures like vector, maps, and graphs.

In this thesis, I propose the Load Driven Branch Predictor (LDBP) to eliminates the

misses contributed by this class of branch. LDBP exploits the predictable nature of the address

of the loads on which these hard-to-predict branches depend on and triggers these dependent
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loads ahead of time. The triggered load data are used to precompute the branch outcome. With

LDBP, programmers can traverse over large vectors/maps, do data-dependent branches, and still

have near-perfect branch prediction.

LDBP contributes to minimal hardware and power overhead and does not require any

changes to the ISA. The experimental results in this thesis show that compared to the standalone

256-Kbit IMLI predictor, the combination of 256-Kbit IMLI and LDBP predictor shrinks the

branch MPKI by 12% and improves the IPC by 7.14%. The efficiency of LDBP also allows

having a smaller primary predictor. A 150-Kbit IMLI + LDBP predictor yields performance

improvement of 6.63% and 5.25% lesser mispredictions compared to the baseline 256-Kbit

IMLI.

Another opportunity that this work provides is to extend the use of graphs further. As

the GAP benchmark suite results show, LDBP can improve performance from graph traversals

significantly. There is an extensive set of works exploring graphs for neural networks [53], for

which LDBP could help to boost the performance.

6.2 Future Works

LDBP opens up the potential for exploring multiple opportunities on top of what is

presented in this thesis. Below are some of the avenues which will be explored as a part of future

work.
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1 LOOP: addi a6 , a6 , 16
2 lw a5 ,4( a6) // donor load
3 .
4 .
5 .
6 lw a4 ,0( a5)// recipient load
7 bnez a4 ,LOOP

Figure 6.1: Sample code to explain a load-load chain. The source operand of bnez has a direct
dependence with the recipient load and an indirect dependence with the donor load.

6.2.1 Load-Load Chains

As explained in Section 3.2, in load-load chains, the donor load may have a predictable

address, but the recipient load does not have a predictable address. In the current LDBP or TAGE-

like systems, the branch depending on the recipient load has a high misprediction. Figure 6.1

shows that the recipient load’s address can be easily derived from the highly predictable donor’s

address.

The current LDBP architecture cannot handle this type of chain because neither the

address nor the data of lw (line 6) are predictable. In the current LDBP setup, this kills the

backward slice creation. Nevertheless, lw (line 2) has a predictable address. On checking the

RTT entry for the recipient load’s source register, LDBP knows that the load address comes from

a predictable donor load data. To achieve this, the donor load must be added to the backward

slice created. The main complication is that the donor loads must be triggered in a timely manner

so that there is enough buffer to calculate the recipient’s load address using the donor’s data.

66



6.2.2 Multi-path chains

As explained in Section 3.6 and Section 5.3.3, load-branch chains having multiple

paths or backward slices are present in the benchmarks evaluated. The current LDBP architecture

cannot capture multi-path chains because the hardware and the timing overhead to track multiple

slices per branch is enormous. Moreover, LDBP must also predict which slice will be used by

successive instances of that branch. These branches are very rare, but still, as a part of future

work, the focus will be on exploring other benchmark suites and figuring out the impact of such

branches on the overall mispredictions.

6.2.3 Using a better load address predictor

The LDBP branch predictor architecture presented in this dissertation uses a simple

stride-based load address predictor [10]. In LDBP, the stride predictor is used to predict trigger

load addresses and prefetch trigger loads ahead of time. The stride predictor works based on

a simple principle - the address of successive occurrences of a load differs by a constant. The

address of future loads can be predicted using the below equation:

An+1 = An +(An −An−1) (6.1a)

An+x = An +(An −An−1)∗ x (6.1b)

The hardware budget required for stride predictor implementation is trivial. In addition

to that, the stride predictor does not add any overhead to the pipeline’s critical path. However, it
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cannot register load address histories where the delta is not consistent. For instance, a simple

recurring load address delta pattern like 4,4,2,4,4,2... cannot be captured.

As a part of future work, the plan is to replace the stride-based predictor with much

more complex load address predictors like the correlated load-address predictor [5] or a TAGE-

based address predictor like the EVES [45]. Doing so will resolve more hard-to-predict branches

that are dependent on loads having short but repetitive address history. The tradeoff associated

with switching to a more complex address predictor is the higher hardware budget and increased

timing overhead.
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Själander. Efficient invisible speculative execution through selective delay and value

prediction. In Proceedings of the 46th International Symposium on Computer Architecture,

pages 723–735, 2019.

[38] Resit Sendag, J Yi Joshua, Peng-fei Chuang, and David J Lilja. Low power/area branch

prediction using complementary branch predictors. In 2008 IEEE International Symposium

on Parallel and Distributed Processing, pages 1–12. IEEE, 2008.
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