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ABSTRACT
This paper presents a synthesis methodology for a Stephen-

son II six-bar function generator that provides eight accuracy
points, that is it ensures the input and output angles of the linkage
match at eight pairs of specified values. A complex number for-
mulation of the two loop equations of the linkage and a normal-
ization condition are used to form the synthesis equations, result-
ing in 22 equations in 22 unknowns. These equations are solved
using the numerical homotopy continuation solver, Bertini. The
approach is illustrated with an example.

INTRODUCTION
This paper presents the synthesis equations for the design

of a Stephenson II function generator, which are solved using the
numerical homotopy continuation solver, Bertini. The task of the
function generator is defined by a list of eight input and output
angle values, (φ j,ψ j), j = 1, . . . ,8. Three constraint equations
are obtained for each input-output pair, or accuracy point, yield-
ing 24 equations. Two of these equations are used to eliminate
two unknowns resulting in 22 equations in 22 unknowns. Bertini
computed the degree for this polynomial system to be 4,194,304,
and 88 hours of calculation running in parallel on a Mac Pro with
two 2.93GHz 6-Core processors lead to 38 useful designs.

The loop equations of the Stephenson II are formulated us-
ing complex numbers to identify the coordinates of pivots and the

∗Address all correspondence to this author.

dimensions of links following Myszka et al. [1]. This formula-
tion is described by Wampler [2,3] as ”isotropic coordinates” be-
cause the equations are formulated using complex numbers and
their conjugates rather than separating the complex numbers into
real and imaginary parts. The result is a convenient set of bi-
linear synthesis equations. Our initial results indicate that this
procedure may be used to design six-bar function generators of
other topologies, as well.

LITERATURE REVIEW
Mechanical computers are linkage systems used to calculate

an output for a given input, also known as function generators.
Svoboda [4] designed function generators by fitting the input-
output functions of a given set of linkages to the desired function.
In 1954, Freudenstein [5] [6] took a different approach using the
loop equations of the four-bar linkage, which he solved directly
for a given set of accuracy points to obtain the linkage.

Recently, Hwang and Chen [7] formulated the design of six-
bar function generators following Freudenstein and solved the
equations using optimization to obtain useful linkages. Sancib-
rian [8] takes a similar approach using the Generalized Reduced
Gradient to find the linkage parameters that minimize the dif-
ference between the input-output function of the linkage and the
desired function.

Our approach to the design of the Stephenson II six-bar
function generator follows Freudenstein, in that we seek a di-
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rect solution for the linkage that achieves a specific set of accu-
racy points–see Watanabe and Katoh [9] for a description of the
properties of the Stephenson II linkage. This synthesis procedure
requires the solution of a large polynomial system using numer-
ical homotopy continuation methods described by Sommese and
Wampler [10].

The design of function generators can be achieved by in-
verting the linkage and using the input-output accuracy points to
define task positions. This allows the techniques of Burmester
theory [11] to be used to design the linkage. Plecnik and Mc-
Carthy [12] used this approach to design crank-slider function
generators. Kinzel et al. [13] show how this can be done using
constraint programming. While Soh and McCarthy [14] have
applied Burmester theory to the synthesis of six-bar linkages, it
is not clear how their techniques can be reformulated design of
six-bar function generators.

COMPLEX VECTORS AND ISOTROPIC COORDINATES
Erdman et al. [15] formulate planar kinematics using com-

plex numbers to represent the coordinates of points in the plane.
In this formulation, the coordinates P = (Px,Py) of a point are
formulated as the complex number,

P = Px + iPy. (1)

The component-wise sum of a complex number is the same
as for coordinate vectors, and the product of complex numbers
performs rotation and scaling operations. In particular, the ex-
ponential exp(iθ) is a rotation operator on complex vectors that
yields the same result as a 2x2 rotation matrix operating on vec-
tors, that is,

P =exp(iθ)p,

Px + iPy =(cosθ + isinθ)(px + ipy),

Px + iPy =(cosθ px− sinθ py)+ i(sinθ px + icosθ py). (2)

Wampler [2] shows that it is convenient to consider the com-
plex number P and its conjugate P̄ as components of ”isotropic
coordinates”, (P, P̄), because the original components are ob-
tained from the linear transformations,

Px =
1
2
(P+ P̄), Py =

1
2i
(P− P̄). (3)

For our purposes, the reference to isotropic coordinates means
that both the complex and complex conjugate loop equations are
used in the formulation of the design equations for the Stephen-
son II function generator.

ψ

ϕ
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FIGURE 1. A FOUR-BAR LINKAGE FUNCTION GENERATOR.

TABLE 1. ACCURACY POINTS FOUR-BAR FUNCTION GEN-
ERATOR.

j φ j ψ j

1 2.763367◦ 4.339005◦

2 21.988925◦ 33.698463◦

3 48.226892◦ 67.120988◦

4 71.414168◦ 85.306253◦

5 87.549520◦ 89.917699◦

FOUR-BAR FUNCTION GENERATOR
In order to illustrate the isotropic coordinate formulation of

the synthesis equations, we reproduce the synthesis of function
generators presented by Hartenberg and Denavit [6]. The four-
bar shown in Fig. 1 has fixed pivots located at A and B and mov-
ing pivots located at C and D.

Let the complex numbers that define the coordinates of each
of the pivots in the ground frame be A = Ax + iAy, B = Bx + iBy,
C =Cx + iCy, and D = Dx + iDy.

Notice that the input link frame is positioned so its x-axis de-
fines the input function value relative to the ground frame, while
the segment AC that forms the input link is defined by the com-
plex vector c. Similarly, notice that the output link frame is posi-
tioned so that its x-axis provides the output function value rela-
tive to the ground frame, while the segment BD is defined by the
complex vector d. Hartenberg and Denavit show that the intro-
duction of these crank and follower angles allow the synthesis of
a four-bar function generator for five accuracy points.

The task of the four-bar function generator is defined by a
list of five pairs of angles (φ j,ψ j), j = 1, . . . ,5. These angles
define the sets of complex numbers that represent rotations about

2 Copyright © 2013 by ASME
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the pivots A and B,

(Q j, Q̄ j) =(exp(iφ j),exp(−iφ j)),

(S j, S̄ j) =(exp(iψ j),exp(−iψ j)), j = 1, . . . ,5. (4)

The segment CD that defines the coupler of the four-bar link-
age can be written in terms of the complex vectors around the
loop to yield,

C−D = A+ cQ j−B−dS j j = 1, . . . ,5. (5)

These are the loop equations of the four-bar in each of the accu-
racy points of the function generator.

Let the magnitude of CD be m, then multiply the closure
equation by its complex conjugate to obtain,

(A+ cQ j−B−dS j)(Ā+ c̄Q̄ j− B̄− d̄S̄ j) = m2. (6)
j = 1, . . . ,5

This equation defines the constraint that the linkage must move
so the distance between the pivots C and D remains constant. We
use this constraint in each of the accuracy points as the synthesis
equations for the four-bar linkage function generator.

The five synthesis equations are used to compute the five
dimensional parameters, (c, c̄,d, d̄,m). Notice that computing
(c, c̄) is equivalent to computing the components c = cx + icy.
In this formulation, the position of the ground pivots A and B are
free to be specified by the designer.

The synthesis equations can be simplified by eliminating m
by subtracting the first equation from the remaining equations to
obtain,

K1 jcd̄ + K̄1 j c̄d +K2 jc+ K̄2 j c̄+K3 jd + K̄3 jd̄ = 0, j = 2, . . .5,
(7)

where

K1 j =−Q jS̄ j +Q1S̄1,

K2 j = (Ā− B̄)(Q j−Q1),

K3 j =−(Ā− B̄)(S j−S1). (8)

The bilinear structure of the synthesis equations (7) becomes ap-
parent when written in the form.

c
d
1

T  0 K1 j K2 j
K̄1 j 0 K3 j
K̄2 j K̄3 j 0

c̄
d̄
1

= 0, j = 2, . . . ,5. (9)

TABLE 2. SOLUTIONS TO THE FOUR-BAR SYNTHESIS EQUA-
TIONS.

Solution 1
c= 0 d= 0

c̄= 0 d̄= 0

Solution 2
c= 0.7745−1.6628i d=−0.2228−0.6569

c̄= 0.7745+1.6628i d̄=−0.2228+0.6569

Solution 3
c=−1.5672+0.4924i d=−1.0873−0.8579

c̄=−3.3387−0.2869i d̄=−1.9719+0.1892

Solution 4
c=−3.3387+0.2869i d=−1.9719−0.1892

c̄=−1.5672−0.4924i d̄=−1.0873+0.8579

- 2 - 1 1 2

- 2

- 1

1

2

AB

C

D

FIGURE 2. FOUR-BAR FUNCTION GENERATOR, THE INPUT
ANGLE IS φ AND OUTPUT ANGLE IS ψ .

In order to verify our synthesis equations, we compare our
results to Hartenberg and Denavit [6]. Hartenberg and Denavit
design a four-bar linkage to generate the function

ψ(φ) = 90sinφ , (10)

using the accuracy points shown in Tab. 1. These accuracy points
define the four self-adjoint matrices of Eqn. 7 that form the syn-
thesis equations.

We solve the synthesis equations using the numerical solver
in Mathematica. The results are shown in Tab. 2. It is useful to
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TABLE 3. COMPARISON TO HARTENBERG AND DENAVIT

Link Isotropic Formulation Hartenberg and Denavit

AC 1.8343529 1.8343688

CD 2.2385372 2.2385439

BD 0.6936395 −0.6936456

AB 1.0 1.0
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FIGURE 3. THE STEPHENSON II FUNCTION GENERATOR,
THE INPUT ANGLE IS φ AND OUTPUT ANGLE IS ψ .

note that the trivial solution of a linkage with zero link lengths
always exist for these synthesis equations. Solutions 3 and 4
do not relate to physically realizable linkage dimensions because
(c, c̄) and (d, d̄) are not complex conjugate pairs as required by
our isotropic coordinate formulation.

The link lengths computed using our isotropic formulation
can be compared to the link lengths reported by Hartenberg and
Denavit in [6] (Table 10-3, pg. 314). A comparison of the results
in Tab. 3 show that our isotropic formulation matches the results
of Freudenstein’s equations. The resulting linkage is shown in
Fig. 2.

A STEPHENSON II FUNCTION GENERATOR
A Stephenson II six-bar linkage, Fig. 3, can be viewed as a

four-bar loop stacked on top of a five-bar loop. Our formulation
of the loop equations follows Myszka et al. [1].

Let the task specification for the function generator be eight
pairs of angles (φ j,ψ j), j = 1, . . . ,8 that are to be the accuracy
points, and introduce three sets of complex numbers to represent
rotations about the fixed pivots A and B, and the orientation of

the segment CG measured relative to the ground frame,

(Q j, Q̄ j) = (exp(iφ j),exp(−iφ j)),

(R j, R̄ j) = (exp(iρ j),exp(−iρ j)),

(S j, S̄ j) = (exp(iψ j),exp(−iψ j)), j = 1, . . . ,8. (11)

The complex vectors (Q j, Q̄ j) and (S j, S̄ j) are known from the
task specification, while (R j, R̄ j) are to be determined in the syn-
thesis process.

The loop equations of the Stephenson II can be formulated
to define the two floating links GD and HF , as

L1 : G−D = A+ cQ j +gR j−B−dS j,

L2 : H−F = A+ cQ j +hR j−B− f S j, j = 1, . . . ,8. (12)

The constraints that the the lengths m = |GD| and n = |HF | be
constant for the movement of the six-bar linkage yield the equa-
tions,

C1 : (A+ cQ j +gR j−B−dS j)(Ā+ c̄Q̄ j +gR̄ j− B̄− d̄S̄ j) = m2,

C2 : (A+ cQ j +hR j−B− f S j)(Ā+ c̄Q̄ j + h̄R̄ j− B̄− f̄ S̄ j) = n2,

j = 1, . . . ,8. (13)

The 16 constraint equations (13) together with the eight
equations defining (R j, R̄ j) as a unit vector,

R jR̄ j = 1, j = 1, . . . ,8, (14)

yield 24 synthesis equations. The unknowns that we determine
from these equations are the 16 values of (R j, R̄ j) and the eight
unknowns, (c, c̄,d, d̄, f , f̄ ,m,n). The designer is free to specify
the fixed pivots A and B and the dimensions g and (h, h̄) of the
link CGH.

ELIMINATION OF m AND n
The unknowns m and n in the synthesis equations can be

eliminated by subtracting the first equations of C1 and C2 from
the rest of the equations in their respective sets. Once this is
done, we can define the seven sets of vectors of unknowns,

v j = (c,d,R j,R1,1), j = 2, . . . ,8,
w j = (c, f ,R j,R1,1), j = 2, . . . ,8. (15)

4 Copyright © 2013 by ASME
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Then, the synthesis equations can be written in the form,

vT
j [M j]v̄ j =

c
d
R j
R1
1


T 

0 M1 j M2 j M3 M6 j
M̄1 j 0 M4 j M5 M7 j
M̄2 j M̄4 j 0 0 M8
M̄3 M̄5 0 0 −M8
M̄6 j M̄7 j M̄8 −M̄8 0




c̄
d̄
R̄ j
R̄1
1

= 0, j = 2, . . . ,8,

(16)

where

M1 j =−Q jS̄ j +Q1S̄1, M2 j = gQ j, M3 =−gQ1,

M4 j =−gS j, M5 = gS1, M6 j = (Ā− B̄)(Q j−Q1),

M7 j =−(Ā− B̄)(S j−S1), M8 = g(Ā− B̄), (17)

and

wT
j [N j]w̄ j =
c
f

R j
R1
1


T 

0 N1 j N2 j N3 N6 j
N̄1 j 0 N4 j N5 N7 j
N̄2 j N̄4 j 0 0 N8
N̄3 N̄5 0 0 −N8
N̄6 j N̄7 j N̄8 −N̄8 0




c
f

R j
R1
1

= 0, j = 2, . . . ,8.

(18)

where

N1 j =−Q jS̄ j +Q1S̄1, N2 j = h̄Q j, N3 =−h̄Q1,

N4 j =−h̄S j, N5 = h̄S1, N6 j = (Ā− B̄)(Q j−Q1),

N7 j =−(Ā− B̄)(S j−S1), N8 = h(Ā− B̄). (19)

The result is 22 synthesis equations for the Stephenson II
function generator,

vT
j [M j]v̄ j = 0, j = 2, . . . ,8,

wT
j [N j]w̄ j = 0, j = 2, . . . ,8,

R jR̄ j−1 = 0, j = 1, . . . ,8. (20)

where the first two sets of seven equations are obtained from the
constraint equations for Stephenson II, and the last set of eight
require that the complex vectors R j have unit magnitude. These

TABLE 4. ACCURACY POINTS STEPHENSON II SIX-BAR

j φ j ψ j

1 145◦ 0◦

2 150◦ −23.44◦

3 155◦ −43.75◦

4 160◦ −60.94◦

5 165◦ −75.00◦

6 170◦ −85.94◦

7 175◦ −93.75◦

8 180◦ −98.44◦

equations have the bilinear monomial structure

〈
c,d,R j,R1,1

〉〈
c̄, d̄, R̄ j, R̄1,1

〉
, j = 2, . . . ,8,〈

c, f ,R j,R1,1
〉〈

c̄, f̄ , R̄ j, R̄1,1
〉
, j = 2, . . . ,8,〈

R j,1
〉〈

R̄ j,1
〉
, j = 1, . . . ,8. (21)

The Bezout degree of this system is 222 = 4,194,304, and
we solve these equations using the numerical homotopy solver
Bertini (http://www3.nd.edu/∼sommese/bertini/).

EXAMPLE SYNTHESIS OF A STEPHENSON II SIX-BAR
FUNCTION GENERATOR

In order to demonstrate the synthesis process, we use the
eight accuracy points shown in Tab. 4, which are selected to
approximate the function,

ψ(φ) =
(φ −185)2

16
−100. (22)

The coordinates of the fixed pivots are specified to be A = (8,0)
and B=(0,6.5), and the dimensions of the link CGH are selected
as g = 2 and h = (1,

√
3) in the link frame. Thus, the specified

linkage parameters are

A = 8, Ā = 8, B = i6.5, B̄ =−i6.5,

g = 2, h = 1+ i
√

3, h̄ = 1− i
√

3. (23)

The synthesis equations were solved using Bertini on a Mac
Pro running two 2.93GHz 6-Core Intel Xeon processors with 24

5 Copyright © 2013 by ASME
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TABLE 5. STEPHENSON II SIX-BAR BERTINI RESULTS.

Dimension Real Imaginary

c 8.51864488652 −0.75552523181i

d −0.11852946778 +2.63898905823i

f 2.55351461627 −1.17851717131i

R1 0.99699789277 +0.07742868856i

R2 0.96656438960 −0.25642402530i

R3 0.93153985897 −0.36363923215i

R4 −0.87383680374 +0.48621933367i

R5 −0.72187867603 +0.69201963635i

R6 0.98726796553 −0.15906591160i

R7 0.99915998624 +0.04097953015i

R8 0.94537737951 +0.32597792916i

GB of RAM. Bertini generated 222 = 4,194,304 paths and ran
for 88 hours to determine 64,858 solutions to the synthesis equa-
tions of which 63,755 were nonsingular. Of these solutions there
were 3,195 which corresponded to physically realizable dimen-
sions. Physically realizable dimensions are those that satisfy the
relations shown in Eqn. 3.

Each of the 3,195 physically realizable solutions were ana-
lyzed to determine if they correspond to a Stephenson II function
generator that moves smoothly through the specified accuracy
points. Mechanisms that accomplish this are called useful. The
analysis procedure is outlined in the next section. This procedure
identified 38 useful linkages. A useful solution appears in Tab.
5. The corresponding Stephenson II function generator appears
in Fig. 4.

ANALYSIS OF A STEPHENSON II SIX-BAR LINKAGE
The objective of this analysis is to determine whether a

Stephenson II linkage is capable of producing a smooth trajec-
tory that moves the input and output links through all required
accuracy points. Our notion of a smooth trajectory is defined
as a continuous set of configurations that does not pass through
a singular point, what others have referred to as a mechanism
branch [16] [17]. In this section, we first determine all the
smooth trajectories a linkage is capable of producing, we then
examine each trajectory to determine whether or not it produces
the desired accuracy points. Smooth trajectories are pieced to-
gether by solving for all assembly configurations for a series of
input angles that represents a full revolution of the input link AC.

- 2 2 4 6 10

- 2

2

4

8

10

A

B D

F H

C
G

FIGURE 4. ONE EXAMPLE OF THE 38 USEFUL SOLUTIONS
TO THE STEPHENSON II SYNTHESIS EQUATIONS.

Each configuration is sorted into a trajectory according to a sort-
ing algorithm.

Forward Kinematics
In order to find all assembly configurations for a given input

value φ , we formulate and solve the forward kinematics equa-
tions. The constraint equations (13) that were used for the syn-
thesis of the Stephenson II also form the base of its forward kine-
matics equations,

C1(Q, Q̄,R, R̄,S, S̄) =

(A+ cQ+gR−B−dS)(Ā+ c̄Q̄+gR̄− B̄− d̄S̄ j)−m2 = 0,
C2(Q, Q̄,R, R̄,S, S̄) =

(A+ cQ+hR−B− f S)(Ā+ c̄Q̄+ h̄R̄− B̄− f̄ S̄)−n2 = 0,
(24)

together with the normalizing conditions

N1(R, R̄) = RR̄−1 = 0, N2(S, S̄) = SS̄−1 = 0, . (25)

Note that the input angle φ is represented by (Q, Q̄) and the con-
figuration angles ρ and ψ are represented by (R, R̄) and (S, S̄), re-
spectively. All other parameters are known linkage dimensions.

6 Copyright © 2013 by ASME
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Eqns. 24 and 25 form four bilinear equations in the un-
knowns {R, R̄,S, S̄}. McCarthy [11] uses an algebraic elimina-
tion procedure to solve equations of this form for the synthesis
of a spherical RR chain. His procedure results in a degree six
polynomial resultant, the roots of which result in the dimensions
of six RR chains. For the case of Eqns. 24 and 25, these roots
represent six assembly configurations of a Stephenson II six-bar
actuated from link AC.

Sorting Assembly Configurations
In order to determine the movement of a Stephenson II six-

bar, we solve the forward kinematics equations for an array of
input angles φk to obtain ρk,l and ψk,l , where l = 1, . . . ,6 identi-
fies the configurations for that input angle. As φk is incremented,
the solutions to these equations do not appear in any order. It is
the goal of this section to sort each configuration (φk,ρk,l ,ψk,l)
into a smooth trajectory curve.

Let us define the input of our mechanism at position k as a
vector xk and the output as a vector yk,l , such that

xk =

(
Qk
Q̄k

)
and yk,l =


Rk,l
Sk,l
R̄k,l
S̄k,l

 , l = 1, . . . ,6. (26)

As well the kinematics equations (24) and (25) form a vector
F such that

F(x,y) =


C1(x,y)
C2(x,y)
N1(y)
N2(y)

=


0
0
0
0

 . (27)

The Jacobian of this function is

[JF] =

[
∂F
∂R

,
∂F
∂S

,
∂F
∂ R̄

,
∂F
∂ S̄

]
(28)

The objective of this algorithm at an input step k is to connect
each configuration from set A to a configuration in set B where

A= {(xk,yk,l) | l = 1, . . . ,6} (29)

and

B= {(xk+1,yk+1,p) | p = 1, . . . ,6}. (30)

Note that in general a connecting pair will have l 6= p. In order
to connect each pair, we use a Taylor series expansion of the
kinematics equations at position k+1 given by

F(xk+1,yk+1,l)≈ F(xk+1,yk,l)+ [JF]k(yk+1,l−yk,l). (31)

We want to estimate the value of yk+1,l that yields F = 0, there-
fore we compute the approximate values,

ỹk+1,l = yk,l− [JF]
−1
k F(xk+1,yk,l) (32)

l = 1, . . . ,6

These values form the set B̃ of approximations where

B̃= {(xk+1, ỹk+1,l) | l = 1, . . . ,6}. (33)

If the lth element of B̃ is sufficiently close to the pth element of
B, then the pth element of B is taken as the neighbor of the lth

element of A on a smooth trajectory. Once each element of A is
connected to a element of B, the algorithm increments to the next
step. Cases in which one to one correspondence do not occur are
described in the following section.

Singularities
The technique described above for sorting the roots of the

kinematics equations among assembly configurations can fail at
singular and near-singular configurations. That is where

det[JF(xk,yk,l)]≈ 0. (34)

Near singular configurations can be present even if there is no
singularity. The near singular cases are troublesome because the
tracking algorithm can jump from one smooth trajectory to an-
other.

Unlike other methods that explicitly solve for all singular
points beforehand [1], our algorithm attempts to sort through the
singular points with no prior knowledge to their location. Be-
cause singularities mark the input limits of a mechanism, our
algorithm sorts configurations whether or not they are entirely
physically realizable.

In particular, the tracked curves consist of the elements
(R,S, R̄, S̄) parameterized by φ . The behavior of curves in this
space is related to the behavior of curves in a similar space shown
in Fig. 5. This figure plots the real and imaginary components
of the output S against the independent input parameter φ . Con-
figurations are physically realizable at locations where |S| = 1,
that is where the curves lie on the cylinder. Computed singular
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locations are marked with purple dots. Note that the curves in
Fig. 5 can cross at nonsingular locations because this graph does
not include information about R.

It is near singularities that our algorithm can fail to find a
one to one correspondence between sets A and B described in
Eqns. 29 and 30. However, this is addressed by the following
logic.

The set A contains the last elements of the trajectories arriv-
ing at position k, and B contains the first elements of the trajec-
tories departing from position k+ 1. At each position we apply
the following logic:

1. If each element of A connects to each element of B, the
algorithm moves on to the next position;

2. If an element of B is not connected to an element of A, that
element of B begins a new trajectory;

3. If an element of A connects to multiple elements of B, the
trajectory associated with that element of A is duplicated
and each duplicate connects to a matching element of B;

4. If an element of A does not connect to an element of B, the
trajectory associated with that element of A is concluded.

Physically realizable sections are separated out upon conclu-
sion of the path tracking algorithm. These sections are then split
at points where the sign of the Jacobian determinant changes in
order to find cases where the algorithm may jump between tra-
jectories. It is possible for such a jump between trajectories to
occur without change in sign of the Jacobian [16]. Our algorithm
cannot detect these jumps.

Determining Useful Designs
Once a Stephenson II six-bar function generator has been

designed and the trajectories have been generated, we then deter-
mine if the eight accuracy points lie on a single trajectory. This
ensures that the function generator can move through all eight
accuracy points, and that the linkage is useful.

In order to determine that an accuracy point is on a trajec-
tory, we must decide if the accuracy point is within a specified
distance of the list of points that define a trajectory. To do this
we determine whether an accuracy point is contained in a box
defined by two neighboring trajectory points in the φ -ψ plane
as shown in Fig. 6. Six-bar linkages with non-zero error at the
accuracy points can satisfy this criterion.

Fig. 7 plots the trajectories of Six-bar 1 and Six-bar 18 of
the 38 useful designs with their error curves sampled over 98
points. Each error point is computed as the difference between
the output link angle ψ as depicted in Fig. 3 and the desired value
of ψ as computed from the from Eqn. 22. For visual clarity, the
error curves of Fig. 7 are multiplied by 100. Note that a stricter
criterion would be to require that an error curve cross the φ -axis
at every accuracy point.
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FIGURE 5. EXAMPLE OF TRAJECTORY SORTING AND THE
PRESENCE OF SINGULARITIES.

Included in
trajectory

Not included 
in trajectory

ϕ

ψ

Trajectory Point
Accuracy Point

FIGURE 6. CRITERION USED FOR DETERMINING WHETHER
A TRAJECTORY CONTAINS AN ACCURACY POINT.

Figure 8 shows the input-output functions of eight of
the 38 useful designs, including Six-bars 1 and 18. An
animation of the useful Stephenson II six-bar function gen-
erator shown in Fig. 4 can be viewed at the web page:
http://mechanicaldesign101.com.
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(a) Six-bar 1 of the 38 useful function generators that has a non-zero error
at two accuracy points. The error is scaled by 100.
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(b) Six-bar 18 of the 38 useful function generators that has zero error at
each accuracy point. The error is scaled by 100.

Error from Specified Function × 100

Trajectory Point
Accuracy Point

FIGURE 7. TWO EXAMPLES OF SIX-BAR FUNCTION GENER-
ATORS TOGETHER WITH PLOTS OF THE STRUCTURAL ERROR
SCALED BY 100.

CONCLUSIONS
This paper presents a design methodology for the synthesis

of six-bar function generators based on the Stephenson II topol-
ogy. A complex vector formulation is used to develop the con-
straint equations of the linkage. These equations are then formu-
lated in terms of complex numbers and their conjugates, known
as isotropic coordinates, rather than in terms of real and imagi-
nary components. This approach provides a convenient formu-
lation for both the synthesis equations and the analysis of the
resulting designs to verify their usefulness.

An example of a six-bar function generator for eight ac-
curacy points that approximates a parabolic function yielded
64,858 roots. Among those roots were the solutions for 38 use-
ful linkages. The computation required 88 hours on a Mac Pro
and traced over 4 million paths using Bertini. This approach can
be applied to the synthesis of Watt II and Stephenson III six-bar
function generators as well. However, there is room to increase
the efficiency of this approach.
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−100
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FIGURE 8. THE INPUT-OUTPUT FUNCTIONS OF EIGHT OF
THE USEFUL LINKAGES. THE BLUE LINE IS FOR SIX-BAR 1
AND THE RED LINE IS FOR SIX-BAR 18.
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