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Professor Dennis Hong, Chair

Creating machines that resemble a human morphology have always been an aspiring goal

for mankind even from the early days of engineering. Today, this effort continues to exist

especially because of how much adaptive and flexible humans can be, as we can carry out a

wide variety of tasks by collectively using our arms and legs. We can run, fall, get back up,

and even use our arms or tools to provide additional stability when carrying out different

locomotion or manipulation tasks. Imagine how much more helpful machines could be in

our lives if we could build human-like machines that could do even a fraction of what we

can. Traditionally however, humanoids have been big, bulky machines that moved around

very slowly and were susceptible to disturbances and falling down.

Recently, with the collective advancement of key technologies, we have seen a rapid

growth in the number of quadrupeds that can now dynamically walk and run in outdoor

environments. Quadrupeds are inherently a stable platform, which is opposite to a biped

that is inherently unstable. Yet, the underlying core principles in both hardware and software

could be selectively adopted in a humanoid context to enhance their agility and robustness.

Hence, this dissertation is an extension of such ideas on a humanoid to make our human-

like machines dynamically walk and run such that they can do more meaningful tasks in
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the future. This requires a development of a hardware platform that uses similar design

principles that were successful on quadrupeds, as well as a software and control stack that

uses state-of-the-art techniques to robustly control the robot. Therefore, this dissertation

introduces ARTEMIS, the first full-sized humanoid robot using proprioceptive actuators, its

key design features, along with a real-time optimization-based dynamic locomotion stack

that allows ARTEMIS to walk and run. Such hardware and software development allowed

ARTEMIS to be the fastest walking humanoid reaching up to 2.1 m/s walking speed, be

able to take aggressive pushes from all facets of its body, robustly walk without perception

on debris cluttered terrain, and also be the very first humanoid fully developed in academia

that can run. This opens up an exciting new chapter in the journey to developing humanoids

that not only look like us, but can also robustly move and accomplish meaningful tasks.
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CHAPTER 1

Introduction

1.1 Motivation

It is undeniable that robotics is becoming an integral part of our lives. Whether it is through

the time-tested robot vacuum cleaners that are cleaning our homes or through the mobile

robots that are increasingly becoming abundant in enclosed areas such as college campuses

to deliver food and other necessities, it is clear that robotics is now moving beyond just

factories and assembly lines, and is slowly moving out into the “wild” to play a key role in

our day-to-day routines. Robots excel at executing specialized repetitive tasks that require

accuracy and speed, and they will continue to find these tasks to assist parts of our daily

lives.

At the same time, humanoids, possibly the most versatile and general purpose robots, are

also well on their way. The most notable might be Boston Dynamics’ Atlas robot, which can

conduct tasks such as moving boxes from one location to another, but is also equally capable

of executing parkour moves or imitating dance motions of popular K-pop stars. There also is

Agility Robotics’ Digit which is showing manipulation as well as locomotion capabilities in

factory settings, while Tesla have recently started their development on humanoids as well.

The paradigm of robots as single taskers are being broken and humanoids are at the most

opposite end of that spectrum.

Humanoids’ potential in our world is intriguing, especially when compared to the more

traditional robot arms and wheeled mobile robots, because of their unique characteris-

tics that stem from their anthropomorphic morphology. Even beyond just robotic arms

and wheeled platforms, when compared with other legged robots such as quadrupeds and
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hexapods that share a common characteristic (legs) with humanoids, there are unique ad-

vantages humanoids still provide.

• The most distinct characteristic and advantage is that humanoids are a breed of legged

robots, which unlike robot manipulators that are often installed at a fixed base, can go

to places! To further separate its uniqueness compared to wheeled robots which can also

locomote, legged robots such as humanoids can even traverse non-continuous terrains

such as stairs. By strategically moving its feet or hands that are in contact from one

location to another, humanoids could traverse stepping stones to cross watercourses or

even climb ladders to get to a higher platform. This gives humanoids an incomparable

workspace that it can reach and conduct tasks compared to other breeds of robots,

making them possibly the ultimate mobile manipulation platform.

• The amount of real-estate humanoids occupy on the ground is also significantly smaller

than quadrupeds, regardless of whether they are in a cat-like shape or a sprawled shape,

and comparable to mobile platforms with omnidirectional wheels. This can allow

humanoids to effectively traverse extremely tight environments such as busy hallways

or narrow corridors as the ground space it occupies is approximately the same whether

it is turning in place, walking forwards, or walking sideways.

• Comparing specifically to other legged platforms, because humanoids predominantly lo-

comote in a bipedal form, their workspace is relatively bigger. They can reach for higher

places without the legs having to do specialized motion sequences (e.g. jump), and

this bigger reachability could also help them move through far more diverse terrains.

If needed, humanoids could also crouch down to conduct similar tasks a quadruped or

a hexapod might do.

• Because of the bipedal form, locomotion and manipulation (i.e. locomanipulation) is

also simultaneously possible. For a mobile robot, quadruped, or a hexapod, this would

require an extra pair of arms to be attached.

• From a sensing perspective, a greater view of the surrounding environment is inherently
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possible because there exists a higher point in the robot (i.e. head of a humanoid)

compared to other robotic platforms that the cameras could be naturally mounted to.

The flexibility in being able to adjust the position and orientation of the head from a

high point means better field of view and superior understanding of the environment

for potentially better planning algorithms to be deployed.

Beyond the unique advantages, the impact humanoids can have in our lives is diverse

and the reasons to push its advancement is abundant. Its benefits could affect multiple

disciplines both directly and indirectly. Just to highlight a few:

• Our human shape allows us to conduct a wide range of tasks and by mimicking this

morphology, it also allows humanoids to be useful as general purpose robots that could

be utilized for work as much as it could be utilized for entertainment.

• The most obvious work humanoids could directly help with is in handling the dull, dirty,

and dangerous (DDD) tasks. Rather than people underutilizing their creativity by

conducting “dull” jobs, or risking their health or even their lives performing dirty and

dangerous duties, it naturally makes sense for robots to take on such burdens. Single

tasker robots could be an option, but considering the plethora of different DDD tasks,

a general purpose solution such as a humanoid whose intelligence could be tailored for

a specific job seems like an attractive and effective alternative.

• With humanoids (as opposed to other robotic solutions), we do not need to recreate

or retrofit the environment for it to be effective. Our world is designed for human

morphology where, to name a few, doorknobs are located at a certain height, stairs

have a standard height, depth, and incline per step, and furniture have standard sizes

and shapes. Humanoids could immediately utilize many of the existing environment

to effectively execute tasks, because their morphology is already well-suited to utilize

the environment.

• Mimicking a human shape could also lower the hurdle robots have to overcome to col-

laborate with humans. Collaborative tools and procedures could be minimally adapted
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for a human and a humanoid to collaborate. Even the most specialized, custom envi-

ronments such as office spaces, hospitals, or homes could be reused.

• This suggests humanoids could also easily assist in interactive tasks where the majority

of the interaction between a human and a robot is through a robot assisting a human.

These tasks include pressing and unavoidable issues such as elderly care, child care, or

care of those that are disabled or are in need of any help.

• Through the development of humanoids, byproducts such as a better understanding of

the complexity with human motions can result in significant impacts in tangent fields.

These understandings could result in more effective rehabilitation procedures for the

injured or the development of better training programs for athletes, as well as the tools

for the advancement of both.

• Similarly in related robotics fields such as in prosthetics and exoskeletons, the knowl-

edge gained from humanoids could trickle down in making more effective devices for

the patients.

• Humanoids could just as easily be used to represent a remote person through teleop-

eration. This can have significant implications in areas where an expert is needed, but

may not be able to travel. Teachers could more effectively teach groups of students

that are located in areas that are difficult to commute to and doctors could be able to

immediately treat patients that they may not be able to get to immediately.

These dreams and promises of an automated, human-like machine helping us in our

everyday lives are what fueled and will continue to fuel the humanoid sector. However, only

a handful of adult-sized humanoids are now slowly making its way out of the lab, and a

myriad of them are still in development or serving as predecessors to future platforms that

could bring us closer to realizing the aforementioned benefits. So what is it with humanoids

that are distinctively different, hindering their progress and efficacy as of today, compared to

the robotic vacuum cleaner or the robotic manipulator arms? Are there other fundamental
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shortcomings that needs to be resolved? Once they are resolved, how can we progress forward

in the right way as quickly as possible?

It is true that humanoids do present technical challenges that are unique because of its

mobile nature and anthropomorphic shape.

• By being a type of a platform that can roam the world at will, humanoids do not have

a fixed contact with the world. This makes them what we call an “underactuated”

system, which makes controlling them relatively a greater challenge, as some “states”

can only be controlled indirectly.

• Speaking of states, not all the states of the robot are also readily available. This

requires some sort of sensor fusion techniques to estimate a state that could potentially

be important for control. Additionally, depending on the composition of the on-board

sensors, some states may still be unobservable, requiring controllers to robustly handle

situations despite the unobservable nature of the state.

• Humanoids and legged robots in general are also required to repeatedly interact with

the environment. Their main form of locomotion is through breaking and making

contact with the environment. As discrepancy in the shape of the actual environment

and what the robot thinks is unavoidable, some form of compliance when coming in

contact with the environment is necessary, whether it is through an inherent feature

in the hardware or through the controller.

Along with these technical challenges, practical and engineering difficulties co-exist, which

make actually deploying these systems in the real-world a significant challenge.

• From a practical sense, the accessibility to readily available and capable hardware

for testing design and control approaches is still a luxury for many research groups.

Not only are these hardware expensive, but they may also not exist in the first place,

which would then require years of trial and error to building something that might be

ready for use. This point is particularly important because as much as simulations are
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useful, they are still inaccurate. The shortcomings of a controller, due to for example

invalid assumptions or practical limitations of different sensors, could be less amplified

in simulation, giving a false sense of belief that an approach may work in reality.

Therefore, constant testing on hardware is imperative.

• Humanoids are also the ultimate integration of state-of-the-art hardware and software.

You need capable hardware to run state-of-the-art algorithms, and you need state-of-

the-art algorithms to verify the hardware’s performance. Simultaneously, everything

including batteries, actuators, sensors, filters, controllers, architectures, operating sys-

tems, and debugging tools to name a few, must collectively work to stabilize the system

and create an effective development ecosystem. This is not an easy engineering task

as seemingly everything is needed for even the most basic functionalities.

In this regard, this work is hopefully a contribution to taking another “step” (no pun

intended) in the development of the next generation of humanoids in the real-world that will

be able to do much more than just be a robot in a lab. And that first step, in my opinion, is

being able to walk robustly and be able to get to places. Once we can get there, we will then

think about the complexity of the task it needs to perform. Therefore, this work primarily

focuses on the development and control of a new type of a humanoid for dynamic walking

and running. My true hope is that both experienced engineers and junior graduate students

or beginning researchers will be able to take something out of this, whether it is a small

practical trick or a fast-paced bringup to the state of modern humanoids as of early 2023.

1.2 Background

1.2.1 A Historical Snapshot

1.2.2 Design of Humanoids and Legged Robots

Unsurprisingly, the development of humanoid robots have been very much a part of the

development of legged robots in general, as platforms such as quadrupeds still share many
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of the similar core technologies despite their silhouettes having distinct differences. This is

because they face similar challenges mentioned in Section 1.1, such as underactuation and

repeated impacts with the environment. Consequently, this background will encompass the

entire field of legged robot design and how we have arrived at where we are today.

Legged robot design is a precarious balancing act that involves carefully selecting the

best leg and feet configuration and type, actuators, materials, and sensors to yield a platform

that is capable of achieving the robot’s intended tasks. For example, in the case of legged

robots designed to travel over multifaceted, unstructured terrain with discrete and isolated

footholds, it is important that the robot be able to sense, coordinate, and place its end

effectors (feet) at desired locations, while also being able to handle unexpected disturbances

and variations in terrain. These qualities are just a few of the most rudimentary requirements

for a legged robot, and yet they already imply the use of several tightly coupled subsystems.

The design of legged robots started as early as the mid 1800s with Chebyshev’s “The

Plantigrade Machine” and Rygg’s mechanical horse [Ryg93], where well-designed linkage

mechanisms with coordinated limb movements successfully made machines walk. However,

these fixed gait mechanisms are incapable of traversing irregular terrain, so researchers moved

towards adding more degrees of freedom (DOF) to each leg, where 3 is the minimum DOF

required to move a feet to a desired position and 6 is the minimum to also define orientation,

as evidenced by the GE walking truck, which was like Rygg’s mechanical horse, except with

3 DOF per leg [LM68].

At a similar time, Ichiro Kato began his pioneering work on humanoids and bipedal

machines, with the artificial lower limb model WL-1 in 1967. In two years, this led to

WAP-1, a planar biped, which was followed by WAP-2 and WAP-3, which even walked in

3D. In 1973, he introduced the first full-scale humanoid, WABOT-1 [KOK74], followed by

a number of bipedal robots with quasi-dynamic gaits in the 80s. This work initiated the

field of humanoid robots, and led to the development of platforms such as Honda’s P2 in

1998 [HHH98], the HRP (Humanoid Robotics Project) humanoid series [IH00], and later,

the acclaimed ASIMO in 2002, Honda’s humanoid that can hop, run, kick a ball, and even
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dance [SWA02]. An interesting extension to the predominant humanoid research is the

evolution of the robots’ feet. While most have a single plate as a foot, platforms such as

WABIAN-2R and LOLA have toe actuation like a human [HTH10,LBU09].

Marc Raibert started work on hopping robots in 1981, where his focus on dynamic locomo-

tion systems led him to build a hydraulically actuated monoped that needed to continuously

hop to keep balance [Rai86]. He also developed a biped and a quadruped, which were simply

extensions of his hopping monoped into two and four legs. Raibert’s robots embodied the

idea of keeping most of the inertia at the body as opposed to the legs. Raibert went on to

establish Boston Dynamics (BDI), making iconic hydraulically actuated systems such as Big

Dog [RBN08], WildCat, Spot, and Atlas.

A very different legged robot design appeared in the 1990s when Tad McGeer developed

a mechanically clever biped that used its passive dynamics to walk [McG90]. McGeer’s

passive approach contrasts Raibert’s hydraulically actuated robots, but they shared the same

principle of using what is commonly referred to as template models. Template models are

simple models useful for studying stability during periodic motion and can capture the salient

dynamics of a particular system. These results showed the use of models and fundamental

dynamics’ importance during locomotion, motivating researchers to make robots more like

simple models which happen to be easier to analyze and control too. Section 1.2.3 will cover

more on these template models.

Therefore, the current trend on platforms that demonstrate robust locomotion is light-

weight legs with small feet. This effectively reduces the leg’s inertia, which provides two

main advantages. Firstly, this allows the legs to accelerate at high rates, while minimally

influencing the dynamics of the overall robot. Secondly, small feet prevent undesirable

complexities when coming in contact with the ground. The smaller the feet, the less likely

an unexpected collision with the environment will occur. This also brings the physical

hardware closer to the well-studied point mass template models.

To achieve this paradigm in practice, different approaches have been attempted. The

option to relocate the actuators closer to the robot’s body, as opposed to collocating it at
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the joint is the predominant choice for its ease and most energy efficient mass distribution.

To achieve this, either a belt/chain design or a pantograph mechanism is used. The former

provides a greater range of motion albeit the potential maintenance required and the non-

rigidity of the transmission which can potentially complicate the control, while the latter

offers the opposite pros and cons. Some researchers have also created underactuated legs

with passive joints to reduce the number of actuation required to begin with. All three

approaches have demonstrated their capability to achieve lightweight legs.

Beyond relocating actuators, easier access to different materials and advanced manu-

facturing techniques have contributed to the development of robust, lightweight legs. For

example, carbon fiber and different aluminum alloys are more widely used because of their

attractive high strength-to-weight ratio [YHG16]. Additive manufacturing techniques are

also actively used with modern optimization and analysis tools, previously considered too

computationally intensive, to create durable, low inertia legs [SGM15].

However, if a legged robot is designed to primarily operate in a static equilibrium as

opposed to a dynamic walking state, the aforementioned principles are modified, particu-

larly with the feet. Especially with bipedal robots such as humanoids, since the system is

inherently unstable unlike a quadruped, non-point feet with ankle actuation are necessary to

stand still and maintain balance at the price of expensive torque requirements. Therefore,

in the case with bipeds that are designed to be dynamically and statically stable (i.e. bal-

ancing without walking cycles), non-point feet are used. Subsequent control algorithms can

utilize the ankle actuation as a damped passive joint during dynamic behaviors such that

the robot behaves as if it has point feet, while the algorithms precisely control the ankle

joint during static equilibrium. Additional actuation in the feet (i.e. toes) have also been

investigated for their energetic and locomotion speed advantages, but are not yet a widely

adopted feature [LBU09].

In recent years, the idea of embedding the prominent locomotion dynamics such as com-

pliance into the mechanical design has continued to be the trend both in the academia and

the industry. Jonathan Hurst has tried to bridge the gap between the dynamic model and
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the physical robot in his bipeds ATRIAS and Cassie, which use the series elastic actuation

paradigm proposed by Gill Pratt [PW95], with both platforms showing impressive locomo-

tion capabilities [HGJ16]. Sangbae Kim has shown that a passive elastic element is not

always necessary through his use of proprioceptive actuation—an idea which he brought

from the field of haptics—which he proved through his quadruped MIT Cheetah [WWS17].

Raibert has emphasized that BDI focuses on the simple dynamics, while Spot and its initial

prototype show that robust locomotion can be achieved regardless of whether the actuation

is hydraulics or electric motors, although additional details are not readily available. These

systems show that there is not yet a standard approach to compliance, and the designer

needs to decide what is suitable for different scenarios.

Currently, the electric motor is the most common form of actuation in robotics. There

are three common types of electric motors used in robotics: brushed DC motors, stepper

motors, and BLDC motors. Both brushed DC and stepper motors are cheap and easy to

use, but are bulky and inefficient. BLDCs require a motor controller making them harder

to use, but they have high efficiency and high power density [Han06] making them better

suited for legged robotic applications.

Traditionally, legged robots have used BLDCs combined with large gear reductions to

provide high torque and low power consumption. However, such configuration is mainly

suited for position control, and it has been found that legged robots that utilize force control

strategies to control the GRFs are able to adapt better to their environments, producing

much more robust locomotion. Many researchers have had success by adding force-torque

(FT) sensors to BLDCs with high gear reductions to provide force feedback. However, FT

sensors are fragile making them not ideal for dynamic locomotion. For this reason, much of

the focus in recent years have been around series elastic actuators (SEA) and proprioceptive

actuators.

SEAs are typically made with highly geared BLDC motors in series with a spring element

whose displacement can be measured to calculate the output force [PW95]. This type of

actuator retains the advantages of high torque output and efficiency provided by the large
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gear reduction while also providing impact mitigation and force control. However, it suffers

from reduced speeds due to the gear reduction and limited bandwidth depending on the

stiffness of the elastic element.

Robots that utilize SEAs are typically designed for dynamic types of locomotion, but

these actuators also allow for more static types of locomotion due to their large continuous

torque outputs. Robots that utilize these actuators can be cleverly designed with reduced

leg inertia for increased dynamic capabilities by moving the actuators closer to the center of

mass (CoM), but this is typically not the case. The stiffness of the elastic element must go

into the design of the overall robot. A “soft” spring will result in poor bandwidth, whereas

a “stiff” spring will result in poor impact mitigation.

Proprioceptive actuators have been growing in usage in the legged robotic community over

the last decade. These actuators comprise simply of high torque BLDC motors with little to

no gear reduction, where the large motor compensates for the reduced torque amplification

from the gearbox. The advantage of these actuators is that they have highly “transparent”

transmission systems which allows for fairly accurate force control by monitoring the current

in the motor [SWO12, KDK16]. Though this method is not as accurate as using an FT

sensor, it has been shown to be sufficiently accurate for several legged robots. Furthermore,

the actuator’s stiffness can be changed at runtime by the motor controller without loss of

bandwidth. The main drawback of these actuators is their high heat production caused by

running the large BLDC motors at low speeds, meaning they are not well suited for tasks

requiring high continuous torque output.

Robots that utilize proprioceptive actuators use a force control architecture for high-

speed locomotion, meaning once again moving the actuators closer to the CoM to reduce

the leg inertia, as well as reducing the foot to a point or using an underactuated ankle.

Due to the poor continuous torque of the actuators, these robots are designed such that the

actuators do not have to apply much force when in a static pose (i.e. the legs can be almost

locked out when standing still).

Unlike the aforementioned electric motor based actuators, hydraulic actuators control
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force or position by regulating the pressure of the hydraulic fluid through a series of valves.

These types of actuators have a much larger torque density than electric actuators, but

require a pump to pressurize fluid for actuation. Traditionally, the only actuators capable

of sufficiently accurate force and position control were designed for the aerospace industry,

making them over-designed and prohibitively expensive for legged robotics. However, BDI

has made great strides to make these applicable for legged robots. Still, only a few groups

other than BDI have been successful in implementing hydraulics on legged robots.

The design of a robot with hydraulic actuators requires a centralized hydraulic system,

which consists of a hydraulic pump and a network of hydraulic lines and fittings. Typically,

due to the pump’s size and inertia, it is located near the robot’s CoM. This design’s advantage

is that electrical power and cooling can be centralized at the pump. However, a network

of hydraulic lines must run to each of the actuators and considerable care must go into the

design and routing of the hydraulic lines to reduce the chance of catastrophic failure if a line

is severed.

Along with compliant actuation, there have been other key results in recent years that

have allowed the community to design robust legged robots. Particularly, the advancement of

technology in different fields, especially in regards to fundamental components that comprise

a complete system, are allowing us to unlock designs that may have once been considered

impossible, now a reality.

Legged robotics is a complex field where design alone cannot solve the many challenges

it poses. It is indeed the co-optimization of the robot design, along with the integration

of different sensors, various control algorithms, and more that produces an effective end

result. However, a well-designed system is the most fundamental basis upon which further

development can be done.

1.2.3 Control of Humanoids and Legged Robots

Position control continues to be the predominant form of control in robotics. This is driven

by the tasks that many of the robots are engineered to conduct, which require high positional
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accuracy. For example, robot arms in an assembly line need to precisely move components

from one place to another. Additionally, position control schemes do have the benefit of

being easier to visualize how the robot will behave in an environment. We can also easily

verify while the robot is playing through its trajectories whether it is behaving as intended.

Position control does have its shortcomings in its lack of adaptability to the environmental

uncertainties. For example, if the robot is trying to reach a certain position but is denied

because an obstacle is in the way, the robot could end up applying a huge amount of force

to the environment. On the other hand, if an interaction with an object is desired but the

object is further away than originally expected, the robot could prematurely stop its motion

before it comes in contact with the object.

For humanoids, interaction with imprecise environment information is unavoidable so

having an adaptable control approach is beneficial. In that regard, torque control is an at-

tractive option and has increasingly become a popular approach for the humanoid community

as well as the legged robotics community in general. It allows the quick adaptability we de-

sire on our systems and also resembles the low impedance behavior seen in nature [Pra02].

If an unknown force is experienced by the system, the system should react to it rather than

be resistant to it.

Torque control is not a completely new concept, but the paradigm has increasingly been

used since the 2010’s. In the context of humanoids, tracking multiple objectives under the

inverse dynamics framework has been actively researched. Also known as whole-body control,

Khatib pioneered the field where the torques to be sent to the humanoid were found under

pre-defined desired motion tasks and dynamic constraints by using the null-space projection

techniques [KSP04,SK06]. Whole-body control has also been formulated to be contained in

convex optimization formulations. The decision variables are the torques to be applied to

the system with the cost function designed to minimize the different tracking errors for tasks

such as the center of mass position, joint position, end-effector pose, and momentum. These

approaches are general enough to be used for manipulation, locomotion, or any multi-task

during multi-contact problems such as locomanipulation (manipulation during locomotion).
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The exact details on these fundamental formulations are further described in Section 3.2.6.

The question then is where do these reference motions come from. Usually there exists

a higher-level motion planner with feedback from the current state of the platform. This

high-level planner for humanoids, and also generally for legged robots, computes when and

how to make contact with the environment, whether it is with the ground or some object

that it needs to interact with. For a planner to plan these contacts, a representation of the

robot model is required. This model can be the complete dynamic or full-order model of

the robot, which gives the planner the benefit of being able to leverage the minute dynamic

details present in the model. It can also be a reduced-order model that captures the salient

dynamics of the complete dynamic model. Many times the details from the full-order model

may not be required. Reduced-order models provide computational efficiency because of their

simplicity, but at the cost of inaccuracy. Reduced-order models can also make interpreting

and analyzing the results easier.

If we were to plan using the full-order model, the complete equations of motion for a

dynamical system is used as follows:

M(q)q̈+Cg(q, q̇) = S⊤τ + J⊤f . (1.1)

The generalized coordinates q, q̇ contain not only the actuated joints’ positions and velocities

that determine robot’s posture and its change over time, it also contains the robot’s base

(i.e. first) frame with respect to a global fixed origin. For the generalized positions q, this

would be the position and orientation of the frame with respect to the world in the world’s

frame, and for the generalized velocities q̇, this would be the linear and angular velocity of

the base frame.

To simplify Equation (1.1), the first assumption we can make is the sufficient torque

assumption which states that the robot has sufficient torque to actuate the joints. This

allows us to focus only on the floating base dynamics or the unactuated joints from the full

order model: m(p̈G − g)

L̇G

 =

 f

τG

 (1.2)
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where m is the mass of the robot, p̈G is the position of the center of mass with respect to the

world, g is the gravity vector, LG is the total angular momentum about the center of mass, f

is the total external force from contact, and τG is the moment from the contact forces about

the center of mass. This is equivalent to the Newton (linear) Euler (angular) equations and

is known as the centroidal dynamics model.

This can further be simplified with additional assumptions to obtain a linear model. The

nonlinearity is introduced through the angular momentum and the change in the height of

the center of mass as seen by its definition

L̇G = Σi(pi − pG)× fi + τi.

where i corresponds to the i-th contact. If we assume zero angular momentum about the

center of mass (i.e. L̇ = 0) as well as a constant height of the center of mass pG = H,

which are both reasonable assumptions [HP08], we can derive a linear model known as the

linear inverted pendulum model (LIPM). This model assumes the robot to be a point mass

at a constant height supported by a massless leg in contact with the ground. LIPM is often

referred to as the model for walking [Ale76,KKK01].

There have been many variations to this locomotion model to overcome the limitations

that the aforementioned assumptions enforce. For example, our center of mass height with

respect to the contact position on the ground is not strictly a constant value, and to overcome

this assumption, variable height models have been investigated [CEL19, PD07]. Efforts to

consider a non-zero angular momentum about the center of mass also exist, where the point

mass can be replaced with a flywheel [PCD06].

A similar simplified model that replaces the constant stance leg with a compliant model

is the Spring Loaded Inverted Pendulum (SLIP) model [Bli89,MC90]. Extensively explored

in both legged robotics and biomechanics, the SLIP model originates from studies in biol-

ogy where many animals demonstrated a center of mass trajectory resembling the SLIP’s

dynamics [FK99,DFF00]. This has led to not only designs that try to replicate the SLIP

model [HGJ16], but also controllers that try to adhere to it [RHJ15]. SLIP models are ver-

satile in that they can be used for walking as well as running, but its use can be limited
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because it lack an analytical representation because of its nonlinearity [YGD20]. There are

also variations to the SLIP model such as an Asymmetric Spring Loaded Inverted Pendulum

(ASLIP) which considers the orientation dynamics of the robot’s body (which a point mass

does not model) [PG09]. A flywheel has also been attached to the SLIP model (Flywheel-

SLIP) to realize motions such as somersault on a bipedal robot [XA20]. A dual SLIP model

that appends the point mass with two springs has also been used as the template model for

locomotion [LWO15,LWS16,AH20].

Efforts to include angular momentum or orientation suggests that a middle ground be-

tween full-order models and reduced-order models using only a point mass could be useful.

A recently popular approach in the quadruped community is the Single Rigid Body Model

(SRBM) and it assumes a point mass with a fixed moment of inertia about the center of

mass. These assumptions are valid if the legs have negligible inertia compared to the body,

as the legs’ motions will have minimal effect on the torso [BPK18,DWK18,HAY20,KDK19b,

DPL21]. Note how this is in parallel with the design efforts in Section 1.2.2 which tries to

minimize the distal mass and leg inertia. For practical reasons with a humanoid only having

two legs compared to a quadruped with four and the limited number of legs requiring more

degrees of freedom (i.e. more actuators) to properly position and orient its end-effector (i.e.

foot), the lightweight leg assumption is usually less accurate.

To plan a sequence of contacts using these different dynamic models, different strategies

can be deployed. In the context of locomotion, different stability measures exist and many of

the contact planning strategies revolve around incorporating these stability measures. The

most notable is the concept of the Zero Moment Point (ZMP) [VS72], which is a contact

point on a planar surface where there are no moments in the horizontal direction. This led to

one of the most popular stability criterions that states that if the ZMP is within the convex

hull (i.e. support polygon) of the foot, the robot will remain stable. Another important

stability measure is the Capture Point (CP) [PCD06] or capturability, which is an effective

measure when the planar contact surface assumption is no longer valid. This is a point on

the ground which if the robot places its foot, it will be able to come to a complete stop. If
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the CP is within the support polygon, the robot will be able to maintain its stability without

taking a step, whereas if it exists outside the support polygon, a step will be required to

recover from falling.

With these dynamic models and some approach to measure the “stability” of a robot,

there are seminal works such as the ZMP preview controller [KKK03], which plans foot-

steps and ZMP trajectories to smoothly generate a center of mass trajectory to follow.

More recently however, to be more robust and reactive to unexpected disturbances, many

control approaches are using model-based optimization and have enjoyed much success.

Simplifications to the aforementioned dynamic model to make the problem convex and

solve for torques to apply to the system are an extremely popular approach at this time

[DWK18,HAY20,DPL21,GGP19], while having a slower optimization loop to seed a faster

optimization is also a framework we are now starting to see [KDK19b]. Many of these

approaches use some sort of a Model Predictive Control (MPC) to provide the controller

with some horizon information, which has shown to allow the system to react more robustly

yet less aggressively. Most recently tho, researchers are investigating going beyond convex

problems and solving nonlinear problems that include the complete dynamics of the system

over a given horizon, which results in a nonlinear MPC. This is a difficult problem to solve

online because of the nonlinearity and high-dimensionality of the problem and therefore is

an active area of research [DVT14,FJS17,GFR19,RBF21].

1.3 Overview

The overview of this dissertation will be as follows. In Chapter 2, a humanoid robot developed

based on the findings in Section 1.2.2 are presented. Some of the development decisions

that will be beneficial later on to the control will be highlighted. Afterwards, Chapter 3

details the software stack on the robot as well as its current dynamic locomotion stack to

get a modern humanoid platform to robustly walk and even run. Chapter 4 then explains

the implementation details that allowed state-of-the-art optimization-based approaches to

be effectively run online on the system, as well as results to verify the robot’s locomotion

17



performance. Now that the robot is capable of robustly walking outdoors to get to places,

some ideas on direct improvements to the software stack as well as work in less pertinent

fields based off of this work is presented in Chapter 5. The dissertation is concluded with

Chapter 6.
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CHAPTER 2

ARTEMIS: A Robot for Dynamic Locomotion and

Hyper-Dynamic Motions

2.1 Introduction

Robots that resemble a human appearance have been around for a long time, but only in

the last century are we seeing humanoids that can do the following:

• Sense: Whether it is through exteroceptive sensors or proprioceptive sensors, the robots

will sense some form of signals to later process for planning.

• Plan: Based on the provided information from the sensors, the robot will digest the

information and plan an action to take.

• Act: From the plan, the robot will execute some physical action in the world.

For example, a walking humanoid robot equipped with force-torque sensors will first sense

whether its foot is in contact with the ground. Based on the contact information, it will plan

whether it should start shifting its body towards the foot that is in contact. After the plan,

the robot will act it out in reality.

Despite the near 100 year history of humanoids, only recently in the last decade are we

seeing humanoids moving out of its controlled laboratory environments and out into the wild.

As introduced in Section 1.2.2, a combination of start-of-the-art approaches in both design

and control are what is enabling this endeavor. Many of these “modern” humanoids adopt

these key design elements (actuation, leg design, sensors), which allows them to seamlessly
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Figure 2.1: ARTEMIS, a next-generation humanoid designed for dynamic and agile motions.

coalesce with state-of-the-art control approaches and step out into the outside world. This

section introduces ARTEMIS (Advanced Robotic Technology for Enhanced Mobility and

Improved Stability), a next-generation full-sized humanoid robot platform designed for hyper

dynamic motion, as well as how it differs from other recent humanoid platforms that share

similar design elements.

2.1.1 Existing Platforms

To highlight the distinct characteristics of ARTEMIS, I will first introduce other existing

humanoid platforms that share similar, yet different, principles that are helping them take
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steps to robustly performing their desired tasks. For example, even if the actuation type

is the same for two robots, their core designs may slightly differ because of the tasks they

desire to do.

Boston Dynamics’ Atlas is the most well-known humanoid platform that has gone through

many iterations to become what it is today. Based on observation of the available media, the

most recent version of Atlas has 6 DoF per leg and 7 DoF arm, with no actuated neck. It is

powered using hydraulic actuation, which gives it the best power density among the modern

humanoids. The leg design and manufacturing is seemingly based on additive manufacturing

where the hydraulic components are part of the structural components of the leg. Otherwise,

not much information about Atlas is readily available for the general public.

A relative veteran in this group, TORO is a torque-controlled humanoid robot that is

1.74 m tall and weighs 76.4 kg [EWO14]. It has 27 joints in total, with 25 of them being

torque controlled and the remaining 2 being position controlled. The legs and arms each

have 6 joints (totaling 24) and the remaining three joints are located at the waist and the

neck. The modular torque controlled joints consist of a torque sensor with a Harmonic

drive gear unit, which makes TORO unsuitable for running or jumping, but still capable of

investigating torque-based algorithms using it. The hardware demonstrated multi-contact

balancing, whole body locomanipulation tasks, as well as human robot interaction tasks.

LOLA is also a relatively older robot from this group as well and is 1.8m tall and weighs

68 kg [LBU09, SWS21]. It has 25 DoF with a redundant kinematic configuration at the

legs. The legs consist of 7 DoF each (rather than the more conventional 6 DoF) with the

additional DoF existing at the toe, while the remaining 11 DoF come from the arms (3 DoF

each), the pelvis (2 DoF), and the head (3 DoF). LOLA’s actuators also use Harmonic drive

gears and planetary roller screws. It has a force/torque sensor at its feet to measure the

wrenches at the feet. This enables platforms like LOLA to control the force it wants to apply

to its surrounding environment for tasks such as locomotion.

HRP-5P is a relatively modern humanoid built for practical use in industrial sites [KKS19].

Because of its use case, it has 37 DoF, which is considerably more than other platforms.
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Specifically the arm has 8 DoF with an additional 2 DoF in the hand, while the trunk has 3

DoF, which gives the robot greater freedom when handling objects such as plasterboards in

a construction site. It is also 1.83 m tall and weighs 101 kg [KMS19] such that it can directly

replace a human worker. HRP-5P also has force/torque sensors at its wrist and ankles to

control the force it should apply to the environment during locomotion and manipulation.

THOR is a 34 DoF humanoid designed for disaster response in place of or in collaboration

with humans [Lee14,HLL16]. Thus, it has a similar profile to a human, as it stands 1.78 m

tall and weighs 65 kg. THOR uses a combination of custom compliant linear series elastic

actuators in the lower body and stiff rotary actuators in the upper body to control the

contact forces during locomotion and manipulation. This enables the platform to adapt to

the uncertainties in the environment.

WALK-MAN is also a humanoid tailored for disaster response [TCN17]. The creators

focused on reducing the leg inertia, improving the power-to-weight ratio, as well as the

increasing the range of motion, to strive for human like dynamic motions. In total, the robot

has 29 DoF, with 12 DoF in the lowerbody and 17 in the upperbody. WALK-MAN uses a

combination of a Harmonic drive gearbox and a flexible element inside a custom actuation

unit, which enables the torque sensing at the joint level. It also has a 6 DoF force/torque

sensor integrated in the wrists and the ankles.

Digit from Agility Robotics might be the most drastically different humanoid compared

to the rest, while the most similar to ARTEMIS. It is 1.6 m tall, weighs 48 kg, and has 20

actuated joints. There are 4 passive joints in the lowerbody, originating from leafspring four

bar linkages, which gives Digit room for compliance when interacting with the environment.

Digit also follows the lightweight leg design ideology, where distal mass with respect to the

body are minimized.

Compared to the above platforms, ARTEMIS has many unique characteristics that dif-

ferentiate it from the rest. One of the key differences is the use of custom proprioceptive

actuators. The gear ratios for the different actuators for the different joints are shown in

Table 2.1. This design choice is partly driven by past experience in integrating them into
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Joint Name Gear Ratio

Hip Yaw / Roll 14.46154

Hip / Knee Pitch 5.93103

Ankle Pitch 50.28099

Arms 19.1916667

Neck 9

Table 2.1: Gear ratios of the custom proprioceptive actuators used on ARTEMIS.

quadrupeds [HAY20,Zha19] and non-anthropomorphic bipeds [YHG16,AH20,Yu20] as well

as from the immense success the quadruped community has recently been experiencing by

using them. They provide a good balance of advantages that are beneficial for legged robots

that must adapt to the uncertainties presented by the outside world. In fact, to the best of

our knowledge, it is the first full-sized (i.e. a standing size comparable to an adult) humanoid

to use proprioceptive actuators, which also has its disadvantages especially as the platform’s

size starts to scale up. Furthermore, careful mass distribution and additional exteroceptive

sensors are strategically planned and embedded to assist control.

In the subsequent sections of this chapter, we introduce the platform and its unique

features compared to other platforms in-depth. Afterwards, the mathematical modeling of

ARTEMIS is done. This includes how we define the frames, the platform’s kinematics, as

well as its dynamics.

2.2 Design Overview

ARTEMIS (Advanced Robotic Technology for Enhanced Mobility and Improved Stability)

as seen in Figure 2.1, is a next-generation full-sized humanoid robot platform designed for

dynamic locomotion and agile motions. It is also the first full-sized humanoid in the world

that makes use of proprioceptive actuators and is designed to dynamically interact with the

outside environment. It was originally crowdfunded in late 2018 as seen in Figure 2.2, and

was fully built in the summer of 2022.
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Figure 2.2: Crowdfunding through UCLA Spark to fund the development of ARTEMIS.
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2.2.1 Leg Design Ideology

ARTEMIS is equipped with a suite of custom actuators and sensors that make it suitable for

exciting new research in dynamic and agile locomotion, locomanipulation, robot dancing,

and motion retargeting to name just a few of the many research fields it is suitable for.

Overall, the robot is actuated using 20 custom BEAR (Back-drivable Electric Actuator for

Robotics) actuator modules [ZHH19, ZAH21]. The lowerbody has 10 actuators (5 per leg)

while the upperbody has the remaining 10 actuators (4 per arm, 2 for neck).

Recalling recent trends from Section 1.2.2, ARTEMIS follows a similar design ideology.

It is designed with the goal of reducing as much distal mass as possible. This effort can be

seen primarily in three different areas of the design.

The first is through the linkage design. A knee and an ankle are essential components

for a human, as well as for a humanoid robot. Especially a knee is needed for any form

of motion, whether it is running, jumping, stepping down a step, or stepping up a ladder.

The ability to retract our legs closer to our body gives us the flexibility to traverse various

terrains. Similarly, the ankle is also important in providing stability during any sort of

motion because without it (i.e. a point feet), we would have to continuously take steps

or significantly use our upperbody to stay balanced. Therefore, an actuator that controls

the knee and the ankle are a necessity. The most simple approach would be to have the

actuators exactly where the joint is located, but as mentioned in Section 1.2.2, there are

different viable approaches to actuating the joint using an actuator mounted elsewhere. In

the case with ARTEMIS, it uses a linkage mechanism to actuate the knee joint from an

actuator at the hip, and the ankle joint from an actuator at the knee. The knee joint being

actuated through a linkage is particularly important as it is often the joint that requires the

most amount of torque, which then requires the biggest (heaviest) actuator.

The second is by embedding the actuators into the structural design of the system.

There are benefits of using a modular, off-the-shelf actuation module because of its ease

of use and serviceability [MYY17, YHZ18, HAY20]. It does come at the cost of adding

unnecessary mass which is usually undesirable for mobile systems such as a legged robot. As
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Figure 2.3: Closeup of the tightly packaged hip configuration in ARTEMIS.

ARTEMIS was designed from scratch with modern design principles in mind, it embeds the

custom actuation modules into the robot’s structural design. This allows tighter packaging

of multiple actuators into the hip area of the robot as seen in Figure 2.3 which reduces

unnecessary mass that would have been added from the extra housing that modular actuation

units come with.

Lastly, ARTEMIS’ structural design uses modern optimization-based design techniques

[HAH20]. Given a set of loads and constraints on a simpler leg design, topology optimiza-

tion was done. This resulted in lighter structural components throughout the leg while

maintaining the strength required to withstand impacts during dynamic motions.

This makes ARTEMIS a one-of-a-kind platform in terms of design principles combined
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Parameters ARTEMIS Atlas TORO LOLA HRP-5P THOR Walkman Digit

Leg DoF 5 6 6 7 6 6 6 6

Arm DoF 4 7 6 3 8 8 7 4

Head DoF 2 0 2 3 2 2 2 0

Mass [kg] 36.8 85 76.4 68 101 65 102 48

Height [m] 1.42 1.5 1.74 1.83 1.83 1.78 1.85 1.6

Actuation Type P H M M M S S S

Table 2.2: Comparison of the different modern humanoids unveiled in the last decade. Leg

DoF and Arm DoF are per each leg and arm respectively. Height is based on the reported

heights from publications. In “Actuation Type,” P is for proprioceptive actuation, S is for

series elastic actuation or if any elastic component is a part of the design, H is hydraulic

actuation, and M is for harmonic drives.

with actuation technology. A summary of the degrees of freedom and actuation differences

compared to traditional and modern humanoids from Section 2.1 are shown in Section 2.2.1.

2.2.2 Sensors

Beyond the proprioceptive actuators, ARTEMIS is also equipped with inertial measurement

units (IMU), force sensors, and exteroceptive sensors to assist with understanding the state

of the robot, as seen in Figure 2.4. There is a tactical-grade IMU located at the pelvis

as well as lower cost alternatives (LSM6DSO32) integrated at each foot providing linear

acceleration and angular rate measurements with respect to each sensor’s coordinate frames.

The selection of the IMU is particularly important as it is used in the propagation step

of estimating the state of the robot. We evaluated using VectorNav VN-100, Microstrain

3DM-GX5-AHRS, and Microstrain 3DM-CV7-AHRS as the main IMU to be installed at the

robot’s pelvis. Except for the latter, the first two are frequently used in the legged robotics

community [BPK18,YHZ18,KDK19a,HAY20]. However, in our case, we eventually chose to

go with the latter because of its superior performance as will be further detailed in 4.1.
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Figure 2.4: Proprioceptive, exteroceptive, and IMU sensors located on ARTEMIS.
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Figure 2.5: Contact sensors located at the toe and heel of ARTEMIS foot which works by

using a linear encoder sensing deflection.

ARTEMIS also has 1-D force sensors located at the toe and heel to read force values that

are perpendicular to the bottom of the foot, as seen in Figure 2.5. It is currently primarily

used as a contact sensor where if the force reading goes beyond a pre-defined threshold, the

system decides that contact has been made. However it also serves as a useful visualization

tool for debugging to observe the center of pressure’s location and force distribution at the

feet during dynamic motions. For visualization purposes, the foot also has light-emitting

diodes installed, where the intensity of the light reflects the magnitude of the force values.

Lastly, ARTEMIS also has multiple exteroceptive sensors to assist with localization,

navigation, and state estimation. At the head is the ZED 2 stereo camera that can be used

for localizing the robot in a known environment such as an indoor building or a soccer field

which could later be used for path planning purposes. At the front and back of the pelvis
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are Intel RealSense D435i depth cameras angled 45° with the ground [ACN19]. The position

of the feet and the distance to the ground can be captured by the sensors, which will be

used to remove the state estimation drift later discussed in Section 4.1. It can also be used

for precise footstep planning to walk up stairs and foot collision avoidance in the future.

2.3 Modeling

2.3.1 Definition

Prior to conducting any kinematics and dynamics operations, it is necessary to define the

coordinate axes for the links and the joints. Humanoids like ARTEMIS are a multi-rigid

body system that can be represented with a rigid-body tree structure. As is standard with

humanoids, ARTEMIS has five rigid-body chains when starting from its body frame. These

are the two rigid-body chains for the legs, two for the arms, and one for the head. Their

names and offsets from their parent links are shown in Tables 2.3 to 2.6. The coordinate axes

are shown on a figure of ARTEMIS in Figure 2.6. For reference purposes, inertial parameters

based on these definitions can be found in Appendix B.

2.3.2 Kinematics

Kinematics is solely the study of motion (i.e. position, velocity, and acceleration) without

considering why something is moving in a certain way. Therefore, by knowing how the joints

in a robot are moving, we can only know how the rigid bodies that make up the robot are

moving. This section explains the fundamental kinematics operations done specifically for

ARTEMIS.

2.3.2.1 Forward Kinematics

Forward kinematics is the computation of the positions and orientations of the frames at-

tached to the rigid bodies of the robot using the joint positions of the kinematic chain. Often
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Figure 2.6: Definitions for the frames ARTEMIS uses in its kinematics, dynamics, and state

estimation. The Z axis for each joints are shown and the X and Y are hidden for clarity.

times this frame of interest is the frame representing the last joint in the kinematic chain or

any point that may interact with the environment. For example, in the case with ARTEMIS,

our primary frames of interest for the feet are the mid-point along the line foot (Left/Right

Sole from Table 2.3) and its two tips (Left/Right Toe and Heel from Table 2.3).

Using the standard forward kinematics by representing the joint offsets as DH parameters

[Cra06] or in exponential coordinates [LP17], we can find the position and orientation of each

of the frame with respect to the body. However, because ARTEMIS is a mobile robot, it

is not a fixed-base robot but a floating base robot. Therefore, an additional transformation

representing the robot body frame with respect to the world/inertial frame can be applied to
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Frame Name Parent Frame
Offset

Translational [m] Rotational [rad]

Hip Body [-0.1, ±0.0625, -0.025] [0, 0.7854, 0]

Adductor Hip [0.0135, 0, -0.054] [0, -1.5708, 0]

Femur Adductor [0, ±0.008, -0.1455] [1.5708, 0.7854, ∓3.1416]

Tibia Femur [0.375, 0, ±0.01735] [0, 0, 0]

Foot Tibia [0.375, 0, 0] [0, 0, 0]

Sole Foot [0.04, -0.03, 0] [1.5708, 0, -1.5708]

Toe Sole [0.07, 0, 0] [0, 0, 0]

Heel Sole [-0.07, 0, 0] [0, 0, 0]

Table 2.3: Frame names and offsets for the left and right leg. Any number with ± or ∓

corresponds to the left and right leg respectively.

the existing frames on the robot to represent all these frames with respect to the world. This

is particularly important and is later useful as all the planning and control is done in the

world frame. The transformation from the world frame to the robot body frame is provided

by an estimator that will be later discussed in Section 4.1.

2.3.2.2 Time Variation of Kinematics

Provided forward kinematics, it is also possible to compute the change in the position of

frames of interest given the joint positions q ∈ Rnu and the joint velocities q̇ ∈ Rnu . Recalling

the forward kinematics

x(t) = FK(q),
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Frame Name Parent Frame
Offset

Translational [m] Rotational [rad]

Clavicle Body [-0.092, 0.175, 0.245] [-1.5708, 0, 0]

Scapula Clavicle [0, 0, 0] [3.1416, -1.5708, 0]

Upper Arm Scapula [0, 0, 0] [-3.1416, -1.5708, 0]

Fore Arm Upper Arm [0, 0.02, 0.275] [3.1416, -1.5708, 0]

Hand Fore Arm [0.292, 0.02, 0] [0, -1.5708, -1.5708]

Table 2.4: Frame names and offsets for the left arm.

Frame Name Parent Frame
Offset

Translational [m] Rotational [rad]

Clavicle Body [-0.092, -0.175, 0.245] [-1.5708, 0, 0]

Scapula Clavicle [0, 0, 0] [3.1416, -1.5708, 0]

Upper Arm Scapula [0, 0, 0] [-3.1416, -1.5708, 0]

Fore Arm Upper Arm [0, 0.02, -0.275] [0, 1.5708, 0]

Hand Fore Arm [0.292, -0.02, 0] [0, -1.5708, 1.5708]

Table 2.5: Frame names and offsets for the right arm.

using the chain rule, we can find the time variation of FK() as follows.

ẋ =
∂FK(q)

∂q

dq

dt

=
∂FK(q)

∂q
q̇

= J(q)q̇.

From the above, we can see that J(q) ∈ R6×nu is the Jacobian, a function of joint positions

q, mapping the joint velocities q̇ to a frame of interest’s linear and angular velocities. nu is

the number of actuated joints. If we were to include the floating base information as well,

J(q) ∈ R6×nv where nv is the sum of the number of actuated joints and the dimension of

the linear and angular velocity (i.e. 6).
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Frame Name Parent Frame
Offset

Translational [m] Rotational [rad]

Neck Bottom Body [0.0127, 0. 0.368] [0, 0, 0]

Neck Top Neck Bottom [0, 0, 0] [-1.5708, 0, 0]

Head Neck Top [0, -0.06, 0] [0, 1.5708, 0]

Table 2.6: Frame names and offsets for the neck.

2.3.2.3 Inverse Kinematics

Inverse kinematics, as the nomenclature suggests, is the reverse of forward kinematics and is

the problem of finding the joint positions q given a desired frame of interest’s transformation

T(q) ∈ SE(3). This problem can sometimes be straightforward, as well as a challenge,

depending on the redundancy of the kinematic chain and the ordering of the joints, as there

may be infinitely many solutions and no analytical solution.

In the case with ARTEMIS, because the legs have 5 DoF and the arms have 4 DoF, it is

not straightforward to find the joint positions. So rather than using an analytical solution,

we use a numerical approach when trying to find the joint positions of the leg/arm given a

desired Td
BE, where B is the body frame and E is the end-effector (i.e. foot or arm) frame.

The numerical approach we use is a variation of the damped least squares (DLS) method.

The pseudocode is shown in Algorithm 1.

2.3.3 Dynamics

Dynamics gives us insight into why things are moving as they are, under the influence of

forces and torques. For a platform like ARTEMIS, controlling the robot using only its

kinematics is a challenge as even for walking, the lack of a single DoF in the legs makes

balancing a challenge. It cannot maintain balance purely using its ankles, but must use its

entire body to stay balanced about the foot’s roll axis.
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Pseudocode 1 artemis model::get single chain numerical ik()

Require: E, Td
BE, qinitial, W, niter, dt, ϵ, λ

1: q← qinitial

2: while i < niter do

3: TBE ← FK(q, E)

4: err← log6(TBE,T
d
BE)

5: if err < ϵ then

6: success stat← success

7: break

8: end if

9: if i > niter then

10: success stat← fail

11: break

12: end if

13: J← get jacobian(q, E)

14: JJT←WJJ⊤W⊤ + λ

15: q← q−WJ⊤JJT−1(Werr)dt

16: i++

17: end while

18: return q, success stat

We can define the well-known equations of motion or the manipulator equations as follows

M(q)q̈+Cg(q, q̇) = S⊤τ + Jc(q)
⊤f (2.1)

but special attention must be given to the size of the generalized position q ∈ Rnq , generalized

velocity q̇ ∈ Rnv , and generalized acceleration q̈ ∈ Rnv . This is because as a floating base

system, the multi-body dynamics must also include the pose and velocities of the robot’s

body frame with respect to the world frame, just like how it was included for the kinematics.

Then, Equation (2.1) consists of the following elements:
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M(q) ∈ Rnv×nv : Mass matrix.

Cg(q, q̇) ∈ Rnv : Nonlinear vector which is the sum of the centrifugal, Coriolis, and

gravitational terms.

τ ∈ Rnv : Torques applied at the joints.

Jc(q) ∈ R(dim f×nc)×nv : Contact (Geometric) Jacobian.

f ∈ Rdim f×nc : External forces due to contact with the environment.

S ∈ Rnu×nv : Selection matrix to select the actuated torques.

The generalized coordinates of a floating base system consist of actuated joints qa ∈ Rnu

and unactuated joints qu ∈ R6. In the case with ARTEMIS, q̇a ∈ R20, and the actuated

joints affect Equation (2.1) through the selection matrix which is of the form:

S :=

[
06×6 Inv−6

]
.

To have control authority over the floating base joint (i.e. base link) of the robot, which is

often the case with legged robots, reaction forces f are required. The dimension of this force

(dim f) depends on the chosen contact model. In the case of a rectangular foot, this could

be a 6 dimensional vector accounting for the reaction forces and moments at a single point

or it could be four 3 dimensional forces at the corners of the rectangle. In the case with

ARTEMIS which has a line foot and 5 DoF in the leg, the reaction force could be represented

using three forces and two moments at a single point on the foot or with two 3 dimensional

forces with one at the front (toe) and the other at the back (heel). The two contact models

applicable to ARTEMIS are shown in Figure 2.7.

Naturally, the chosen contact representation decides the contact Jacobian. In the case

the 6 dimensional force and moment representation is used, the complete Jacobian mapping

the joint velocities to the linear and angular velocities are used for contact i as shown in

Equation (2.2). Note that in literature, there are a lot of different ways to refer to the
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Figure 2.7: Potential contact models for ARTEMIS. Left: A three dimensional force applied

at the toe and the heel. Right: A three dimensional force applied at the middle of the foot

and a moment applied about the Y and the Z axis at the foot’s frame.

same Jacobian. To clarify, the contact Jacobian is identical to the Jacobian used earlier in

Section 2.3.2.2.

Jc,i =

Jv,i

Jω,i

 (2.2)

In most cases however, the Jacobian corresponding to the linear velocities in the world

frame are used. Also in this dissertation, we are using 3 dimensional forces at the toe and

the heel of the foot, which then, the contact Jacobian for the left foot and the right foot look

like the following:

Jc,LF =

 Jv,LF TOE

Jv,LF HEEL


= RWB

− ̂pB,LF TOE I Jv,B,LF TOE 0 0 0 0

− ̂pB,LF HEEL I Jv,B,LF HEEL 0 0 0 0
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Jc,RF =

 Jv,RF TOE

Jv,RF HEEL


= RWB

− ̂pB,RF TOE I 0 Jv,B,RF TOE 0 0 0

− ̂pB,RF HEEL I 0 Jv,B,RF HEEL 0 0 0


Additionally, the component of the Jacobian mapping the joint velocities to the angular

velocities are as follows, except in the foot frame instead of in the world frame:

Jω,LF = RLF,B

[
I 0 Jω,B,LF 0 0 0 0

]

Jω,RF = RRF,B

[
I 0 0 Jω,B,RF 0 0 0

]
Lastly, to verify the correctness of the dynamics, simple sanity checks on the resulting

equations of motion can be conducted. For floating base systems, one way to check for

the correctness of the dynamics is by checking the relationship between the position of

the system’s CoM and the mass matrix. Depending on the reference frame and order of

the linear and angular velocities, the exact elements in the inertia matrix to compare may

change. However, if following the convention in this dissertation where the linear velocity

comes before the angular velocity, and they are both in the body frame [Fea14], the center

of mass can be calculated from the inertia matrix as follows

pBRcm =

[
M(5, 3)

m

M(6, 1)

m

M(4, 2)

m

]
pWRcm = RWBpBRcm + pWB

where m is the mass of the robot. A quick, manual computation of the center of mass and

comparing it with the above with respect to the world frame is a good sanity check.
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CHAPTER 3

ARTEMIS Software and Control

As the ultimate integration challenge, humanoids require a strong combination of hardware

and software to realize the desired behaviors on the physical robot. This chapter explains

the software and locomotion control stack behind ARTEMIS. Because of the complexity of

a system like a humanoid, it is even more important for the software stack to be modular,

reusable, and have clear interfaces to be extendable. This allows components to be more

easily replaced with different approaches in the future, simplifies creating different combi-

nations of controllers, and allows incremental testing of the system from component level

to the entire stack. Then, we should be able to more easily generate different motions and

behaviors while being able to conveniently reuse many of the existing functionalities that

are integral to running a humanoid robot. An end-user integrating their specific function-

ality can focus on their contribution and extensively test it without concerns of a potential

issue in a component other than theirs. With that in mind, the ARTEMIS software stack is

architected such that different hardware and controllers can be easily swapped.

3.1 ARTEMIS Software Suite

The software stack follows a similar approach to those deployed in [YHZ18,AH20,HAY20]

where the same stack was used in both simulation and on the actual hardware. An overview

of it is shown in Figure 3.1. It is primarily divided up into a hardware/simulation inter-

face, the camera interface, the controller interface, and the safety interface. These different

components need to be run concurrently making multithreading an integral feature in the

software stack for algorithmic reasons as well as to ensure a distributed load across the com-
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Figure 3.1: An overview of the software architecture running on ARTEMIS.

puter’s central processing unit (CPU). Consequently, shared memory and semaphores are

largely used to manage the data across the different concurrently running processes. All

data are logged to an off-board computer for analysis.

3.1.1 Hardware Interface

3.1.1.1 Actuators

The hardware interface is composed of the different objects that expose communication with

the hardware and are essential to the operation of the robot. This includes the actuators,

the inertial measurement unit, and the contact sensors. A custom Software Development

Kit (SDK) for communicating with the actuators is used to send commands over two RS-

485 chains [Ahna]. One chain is used to communicate with the lower body actuators (10

actuators) and the contact sensor (one per foot), and another chain is used to communicate

with the upper body actuators (8 from the arms and 2 at the neck). These two chains

are concurrently run to achieve 1,000 Hz communication frequency which is important for

stable torque control. All commands to both communication chains consist of desired joint
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positions, velocities, and torques, except for the contact sensor which does not receive any

commands. The returned packet contains current joint position, velocity, and torque infor-

mation, as well as an error status flag that contains useful information about the actuators

(e.g. joint limit violation on the firmware side, overheating). The contact sensors’ readings

at the toe and the heel are mapped to the joint position and velocity registrars to enable

convenient reading of the same registrars across the entire RS-485 chain.

To summarize, the actuator hardware interface reads joint commands in the shared mem-

ory, which are updated by the controller interface. It then sends those commands to the

actuators through the custom SDK. The returned values (current joint state and contact

sensor readings) are written in the shared memory by the hardware interface and that infor-

mation is consumed by the controller interface, the safe interfaces, and the loggers.

3.1.1.2 Inertial Measurement Unit

The interface with the inertial measurement unit also works in a similar manner where a

separate thread calls on a custom IMU object built around Microstrain’s official SDK to

minimize overheads [Ahnb]. The 3DM-CV7-AHRS is capable of providing raw (sensed)

acceleration and angular rates from the accelerometer and the gyroscope at 1,000 Hz, but

we instead sample the filtered acceleration and angular rates from 3DM-CV7-AHRS’s built-

in estimation filter at 500 Hz. This is to allow the robot state estimator to not have to

explicitly estimate the acceleration and angular rate biases, which will be further explained

in Section 4.1. These acceleration and angular rate data get stored at its corresponding

shared memory segments to be consumed by the robot’s state estimator in the controller

interface as well as by the safety triggers in the safety interface.

3.1.2 Simulation Interface

The simulation interface tries to mimic the functionalities in the actuator interface and the

IMU interface. Desired position, velocity, and torque commands can be sent to the simulation

environment in an identical fashion to the physical hardware. The IMU’s noise parameters
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Figure 3.2: A convex decomposed collision and visual model overlayed on top of the detailed

robot model.

are based off of the physical IMU’s datasheet such that the same parameters for the floating

base state estimator can be used in both simulation and hardware. Currently, the supported

simulators are Gazebo [KH04], MuJoCo [TET12], and Pybullet [CB19], which the user can

pick based on their preference as well as to test across different environments prior to testing

on the hardware. The robot model uses the inertial parameters from Appendix B.

To reduce the complexity of the simulation, we refrain from using the detailed model

exported directly from CAD but also avoid primitive shapes such as cylinders, capsules, or

even convex hulls, because of ARTEMIS’ unique design generated by the topology optimiza-

tion. Instead, we use an approximate convex decomposition using V-HACD [MLP16] as seen

in Figure 3.2 (full model) and Figure 3.3 (femur) for both visualization and collision, which

is a nice middle ground between the detailed model and the convex hull. More explanation

on the decomposition’s role in collision detection is available in Section 3.1.4. Additionally,

unlike in reality, the user can step through the simulation and the controller at a desired

step time to assist with debugging.

42



Figure 3.3: Left: Original model from the CAD. Middle: A simplified model using Meshlab

[CCC08]. Right: A convex decomposed model using V-HACD. [MLP16]

3.1.3 Controller Interface

The controller interface is responsible for reading the current joint states and IMU readings

from shared memory and updating the contact detector and the state estimator which will

be consumed by controllers such as the locomotion controller. Estimating the floating base’s

pose and velocities are an essential part of legged robot control as explained in Section 2.3.

This requires the robot’s frames that are in contact (from the contact detector) and the

corresponding kinematics information (derived using the joint states). Once the estimator

predicts the floating base information, it is concatenated with the joint states to be passed to

the finite state machine’s current state. Custom user controllers reside in their own custom

state and if the state is the current state in the finite state machine, it can consume the

generalized position and velocities to compute the desired joint states to be sent back to the

hardware interface. The robot state estimator and the user controller runs on a separate

thread to the main controller interface which updates the finite state machine at 1000 Hz.

The pseudocode of the controller interface is shown in Algorithm 2.
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Pseudocode 2 artemis controller interface::update()

1: q, qdot← get joint states()

2: contacts← get contact status(q, qdot, tau)

3: update state estimator(q, qdot, contacts)

4: q desired, qdot desired, tau desired← update fsm(args)

5: send joint commands to hardware(q desired, qdot desired, tau desired)

3.1.4 Safety Interface

Lastly, while the hardware interface is communicating with the actuators, a safety interface

runs on a separate process to shutdown the robot in the case that any erroneous behaviors

are detected. A practical difficulty with adult-sized torque controlled humanoids using pro-

prioceptive actuators is that because their joint velocities can be very high, it is difficult for

a human to react fast enough and intervene before the robot does any damage to its sur-

roundings or itself. Therefore, a safety interface was designed to run at 1,000 Hz, checking

the following to see if any thresholds are triggered to stop the robot:

• Self-collision

Since the joint positions dictate the robot’s posture, by checking the joint positions at

every hardware communication, we can detect whether a self-collision has occurred.

This is achieved by using a simplified convex decomposition of the collision mesh of the

robot and the Gilbert-Johnson-Keerthi distance algorithm [GJK88]. As powerful as

modern computers are, checking every collision combination between one link against

another is computationally intensive and also unnecessary. For example, the left foot

will likely never come in contact with the right femur, although it may come in contact

with the right foot or the right tibia. In this case we remove the pair left foot, right

femur from collision checks. For the complete list of collision combinations that are

ignored, refer to Appendix A.

• Joint Velocity Limits

From the motion that the robot will execute, we know the joint velocities that the
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joints should be moving at. For example, the joint velocities during regular walking

is drastically different to when the robot is trying to do a jump with significant air

time. Based on the desired joint velocities, if a joint is moving faster than the desired

velocities by a pre-defined percentage, or if it exceeds a preset velocity threshold, the

robot is also assumed to be erroneously behaving and is halted for safety. Other joint

related limits include joint position limits and joint torque limits. They also can be

triggered when violated, but are set in the actuators’ firmware, thus they are not

explicitly a part of the safety interface. Their values can be seen in Appendix C.

• Acceleration and Angular Rates

A similar logic is applied to halt the robot in the case that acceleration or angular

rate values directly from the IMU experience erroneous values and reach a predefined

threshold. This is because there could be legitimate motions that require high acceler-

ation or angular rates, such as a turning jump. Otherwise, anytime the robot suddenly

jumps up, tugs on the gantry, or even jerks in place (usually a result of extremely

high torques being commanded), this portion of the safety interface should catch this

erroneous behavior and stop the robot (usually a result of extremely high torques being

commanded).

• Joint Oscillations An unstable input will often result in high frequency oscillations

of the system, which is undesirable for the hardware to repeatedly experience. The

vibrations can result in the general wear and tear of the hardware over time which can

further induce unexpected slips in the system. To prevent this, we repeatedly check

for high frequency oscillations in the joint states (position, velocity, torque) and halt

the robot in the case that any of the oscillations are above a pre-defined threshold.

• Error Code Checks

The actuators constantly append an error status at the end of the return packet. These

errors can signify NO ERROR, but they can also have a non-zero value which could signal

erros such as joint limits and overheating. If any of the actuators return an unexpected

packet, the entire robot is forced into a halt state.
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If any of the safety checks are triggered, the robot’s state machine is set to the HALT DAMPING

state which switches the actuators to a damping mode where every joint of the actuator

behaves as if it was extremely damped.

Using this software architecture, the next topic to be presented is the dynamic locomotion

stack that controls ARTEMIS. This controller resides in a single state machine within the

architecture’s finite state machine.

3.2 Dynamic Locomotion Stack

For dynamic locomotion in outdoor environments, which could have uneven and discontin-

uous terrains, it is important for the locomotion controller to be able to adapt its plans and

trajectories immediately (i.e. in real-time). To make these strategic decisions on-the-fly, the

robot must be able to:

1. Sense its contact status with the environment.

2. Estimate its base frame’s pose and velocities.

3. Plan when to move its end-effectors.

4. Plan where to move its end-effectors.

5. Plan how to move its end-effectors, center of mass, and body.

The overall scheme of the locomotion framework is shown in Figure 3.4. In this chapter,

the above topics are presented to explain the integrated stack that will test the dynamic

locomotion capabilities of ARTEMIS.

3.2.1 Contact Estimator

In a perfect environment where the exact dimensions of the world are known and the robot’s

relative position and control is also perfect, upcoming collisions with the environment as the

46



Figure 3.4: Overview of the locomotion framework. The locomotion controller takes in the

current generalized coordinates (q, q̇), torques (τ ) and contact statuses (c), and computes a

desired feedforward torque (τ ) and joint PD. Gait Scheduler plans when to move the end–

effectors. Contact (Footstep) Planner decides where to move the end-effectors. Trajectory

Planner, IK, and Whole Body Controller decides how to move the end-effectors, center of

mass, and body.
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robot moves can be accurately predicted. However this is an inappropriate assumption as

joint control can be imperfect, the state of the robot can be inaccurate, but more impor-

tantly the environment cannot be perfectly modeled beforehand. The environment a robot

encounters at this current instance may be altered even just seconds later.

As humans, we use a combination of different senses (e.g. touch and perception) to

navigate around uncertainties in the environment. In the case of walking on flat ground,

even without perception data, we expect roughly when contact will occur based on our

previous walking cadence and shift our body mass to the point of contact once contact has

been made. However, we all have experienced moments where we thought contact was going

to happen, but it doesn’t. If we shift our mass when support has not been established, we

fall or stumble.

In the case with ARTEMIS, the force sensor on the foot as seen in Figure 2.5 can act as

a contact sensor to indicate that contact has been made at the foot. While this is applicable

for the foot and can be used, we also use a contact estimator for the following reasons:

1. A foot sensor is a physical component that is one of the most susceptible points of

failure as it is closest to the part of the robot that comes in repeated impact. This can

result in the sensor returning erroneous values over time.

2. It is a practical challenge to embed force/contact sensors everywhere that a contact

could occur. If the robot wanted to detect contact at the knees in scenarios such as

during a standup sequence where the robot could support itself through contact at its

toes and the knees, it would be required to embed another sensor at the knees. This is

not just limited to locomotion, but even for manipulation to touch and detect collision

between the hands and an object or an environment, embedding sensors in multiple

points of contact can be a practical design challenge.

The overview of the contact estimator on ARTEMIS is as follows. On ARTEMIS, we

calculate the residual contact force by using the current torques and the expected torques.

Afterwards, a probabilistic function is used as a threshold to determine whether or not a con-
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tact has been made. Additionally, depending on the “phase” of the motion, the probabilistic

function is modified such that contact can be estimated as early as possible.

The current torque readings are readily available from the actuators, but the expected

torques are found using the inverse dynamics (i.e. Recursive Newton Euler Algorithm). In

the computation of the inverse dynamics, we consider the full floating base dynamics of the

robot rather than just the leg dynamics. The product of the error in the torques and the

contact Jacobian is used to compute the residual force

Fres = −(J⊤
c )

−1(τ − τ̂ ) (3.1)

where τ is the vector of current joint torques, τ̂ is the vector of estimated joint torques

from inverse dynamics, and Jc is the contact (geometric) Jacobian to the frames of interest

(e.g. toe/heel of the foot, knee, hands), as defined in Equation (2.2). Note the dimensions

of the vectors and the matrices. The torques τ ∈ Rn′
j where n′

j is the number of actuated

joints to the frame of interest, Jc ∈ R3×n′
j and Fres ∈ R3. For example, to detect contact on

the bottom of the left foot, the current and estimated torques are τ ∈ R5 and τ̂ ∈ R5, the

contact Jacobian is Jc ∈ R3×5, and Fres ∈ R3.

Afterwards, a residual force along the perpendicular direction to the contact surface is

computed

Fres,n̂ = Fres · n̂c (3.2)

where n̂c ∈ R3 is the unit vector perpendicular to the contact surface. If walking on flat

ground, n̂c = eWz, while for other surfaces, this information could come from perception data.

Finally, the estimated normal force is evaluated in an adaptive logistic function to deter-

mine whether contact has been made. The adaptive logistic function uses the general logistic

function p(x) : R→ (0, 1):

p(x) =
1

1 + e−(β0+β1x)
(3.3)

except the explanatory variables β0 and β1 are modulated based on a user-input. In the case

of locomotion, we modify the explanatory variables based on the phase of walking. When

the swing leg is lifting off the ground or is imminent of touchdown, we want the estimator
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to be relatively more sensitive to the residual normal contact force compared to when it is

midway through the swing phase, where a contact is less likely. To embed this behavior, we

use the following heuristic to modify the explanatory variables.

β0 = β0,nom + γ0(1 + sin(π(s+ 1))) (3.4)

β1 = β1,nom + γ1(1 + sin(π(s+ 1))) (3.5)

where β0,nom and β1,nom are identified nominal values, γ0 and γ1 are non-negative parameters

where the greater the values, the more sensitive the estimator will be near lift-off and touch-

down, and s : R→ [0, 1] is the phase variable where when s = 0, the foot is just starting its

swing sequence and when s = 1, the foot is just ending its swing sequence. If γ0 or γ1 is set

to 0, the adaptive behavior can be turned off. Finally, when p(x) goes beyond a pre-defined

threshold c, contact is assumed to be made. Figure 3.5 shows a comparison of the different

β0, β1 values depending on the phase s of the swing trajectory. The contact is triggered at

a lower threshold when closer to the start or end of the phase.

The approach is run concurrently for all frames that contact is expected to potentially

happen. Its steps are detailed in Algorithm 3.

Pseudocode 3 get estimated contact status()

Require: τ , τ̂ , Jc, n̂c, s, c

1: Fres,n̂ ← −(J⊤
c )

−1(τ − τ̂ ) · n̂c

2: p(x)← adaptive logistic regression(Fres)

3: if p(x) ≥ c then

4: return TRUE ▷ Contact.

5: else

6: return FALSE ▷ No contact.

7: end if
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Figure 3.5: A comparison of how the contact is assumed depending on the phase of the swing

trajectory.

3.2.2 Gait for Walking and Running

The first important component of the dynamic locomotion stack is choosing not only when

to move a foot, but also how to coordinate their movements. This can easily be done by

defining a “step” in a non-conventional way, assuming that there are more than a single foot

on the robot.

Often a “step” is defined as a consecutive sequence of a stance (contact) phase followed

by a swing (no contact) phase. A “phase” in this context is defined as a value from [0, 1]

and is indicative of how much percentage a stance or a swing sequence has elapsed. A stance
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time and a swing time defines the timings of a step. For example, if we desired a swing time

of 0.4 s and 0.2 s elapsed since the start of the swing time:

1. The swing phase would be 0.5 since
0.2

0.4
= 0.5.

2. The stance phase would be 1.0 since swing phase is greater than 0.0 and by definition

a swing sequence always follows a stance sequence.

This definition is universal and applies even if you have a monopod hopper.

If we assume at least two legs as in the case with a humanoid, we can define a “step timing”

in a non-conventional way to also naturally introduce flight phases which are required for

running. Rather than defining the step timings as a stance time and a swing time, we could

also define it with:

1. Swing Time: The amount of time the foot should be in the air for assuming ideal

conditions.

2. Lift-Off Percentage: The percentage of Leg B’s swing phase when Leg A should tran-

sition from stance to swing.

The above change in the definition when there are at least two legs can be better under-

stood through a few examples.

1. Swing Time 0.4, Lift-off Percentage 1.0: When the lift-off percentage is set to 1.0, it

implies that the leg that is in stance should only move to swing phase once the current

swing leg reaches the end of its swing phase. This results in a desired gait where there

only is a single support phase at all times and no double support phase or flight phase.

Figure 3.6 shows a figurative representation of the desired stance and swing timings of

the left and the right foot with this swing time and lift-off percentage. It is noticeable

that there are no times when it is desirable for both feet to be off the ground and in

swing phase.
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Figure 3.6: Desired stance and swing timings for the left and right foot when the lift-off

percentage is 100%. The horizontal axis is time and the vertical axis indicates which foot.

The lined intervals indicate stance and the empty intervals indicate swing.

2. Swing Time 0.4, Lift-off Percentage 0.7: When the lift-off percentage is set to 0.7,

it means that the current leg that is in stance will transition from stance to swing

when the current swing leg has been swinging for 0.7× 0.4 = 0.21 seconds. Figure 3.7

shows a diagram of the desired stance and swing timings of the left and the right foot.

Compared to Figure 3.6, we can notice that there are time intervals (highlighted in

green) when both feet are desired to be in swing phase, which would result in wanting

the robot to be in some sort of a flight phase. The desired flight duration is then given

by the following equation:

Tflight = Tswing(1.0− LOP ) (3.6)

where Tswing is the desired swing time and LOP is the lift-off percentage. So for our

example, the desired flight time would be 0.12 s. Therefore, this informs us that any

lift-off percentage below 1.0 will result in some desired non-zero flight time.

Provided this when contact should happen information, corresponding how information

on the center of mass trajectory along the Z direction will be generated. Therefore, by
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Figure 3.7: Desired stance and swing timings for the left and right foot when the lift-off

percentage is 70%. The horizontal axis is time and the vertical axis indicates which foot. The

lined intervals indicate stance, the empty intervals indicate swing, and the green highlighted

intervals indicate flight phases.

simply modifying the lift-off percentage from 1.0 to some positive value less than 1.0, we

can transition from desired contact timings that would correspond to walking to those for

running.

3.2.3 Footstep Planner

Recall that for an underactuated platform like ARTEMIS which has 5 DoF per leg, maintain-

ing balance on a single line foot is a non-trivial task. Previous position-controlled humanoids

using approaches such as ZMP-based preview control [KKK03] are able to demonstrate static

walking as the legs are fully actuated (i.e. 6 DoF) and their feet create a two-dimensional

support polygon for the robot to maintain its center of mass inside it as demonstrated in

Figure 3.8.

When a support polygon does not exist, the only way for a robot to not fall down is

strategically positioning its feet at locations that it can “catch” itself from falling down. In

this regard, the robot is dynamically staying balanced and if the actuators were to suddenly
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Figure 3.8: If the center of mass is inside the support polygon (highlighted in green) defined

as the convex hull of all feet in contact, the robot will not fall down.

stop moving (i.e. maintain its position), the robot would fall down as the center of mass is

outside its support polygon. Different approaches exist, but the more widely used approaches

are Capture Point [PCD06] based approaches and Raibert heuristics [RBC84,Rai86].

In the biped and humanoid community, footstep planning based on Capture Point and

Divergent Component of Motion have been actively researched and successfully used. The

idea has stood the test of time as since its initial introduction [PCD06], the concept is still

actively used, whether it is to come to an immediate step or to analyze a controller’s ability

to come to a stop in N -steps [KDR12,She22].

Raibert heuristics has especially been popular in the quadruped community to demon-

strate highly dynamic locomotion [KDK19b,BPK18,HAY20], but has not been as much in

the humanoid community [AH20]. It was originally developed as part of a controller for a

single legged hopping machine. This controller can be decomposed into three parts where

one of them was the footstep planner which controlled the forward velocity of the robot. By

strategically placing the foot with respect to the center of mass projected on to the contact

surface, the hopping machine could control its forward velocity. Recall how a robot, when
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its foot is in contact with the ground, behaves like an inverted pendulum. From everyday

experience, we know that we can keep the pendulum balanced by manipulating the position

of the base with respect to the center of mass. If the base position is directly below the

center of mass, the pendulum will stay balanced. If it strays away, it will start to accelerate.

Similarly, for a legged robot in contact with the ground, if its contact point is not located

directly below its center of mass, the robot will either accelerate or decelerate. Raibert

recognized that acceleration is a function of the displacement between the center of mass

and the contact point. Therefore, if the center of mass were to pass over the contact point

midway through the stance phase, the accelerations (i.e. the moments induced by the mass

away from the contact point) before the midpoint and after it would cancel each other out.

If the symmetry is perfect, no acceleration would be produced and the robot would travel at

a constant velocity. The body will accelerate if the center of mass spends more time in front

of the contact point and will decelerate when it is more behind the contact point. Therefore,

an error between the desired and current velocity was used to adjust the position away from

the foot position that would provide symmetry. This resulted in the following equation:

pdx =
ṗxTstance

2
+K(ṗx − ṗdx) (3.7)

where pdx is the desired position of the contact point, ṗx is the current linear velocity of the

center of mass, ṗdx is the desired linear velocity of the center of mass, and Tstance is the stance

time.

One thing to note of importance is both the popular approaches find the contact position

as a function of linear velocity of the CoM. However, more recently, works have started inves-

tigating incorporating angular momentum into the planning phase [PA16,GGP19,GGP21b,

GGP21a, GG22]. For a humanoid, this could be a better indicator for the robot’s state

and where to place its feet, as a humanoid tends to have leg mass, which its movements

can be captured through the angular momentum. In this regard, ARTEMIS is not only

capable of planning footsteps using both the Raibert heuristics with Capture Point gains

[AH20,HAY20], but also by footstep planning based on the desired one-step ahead angular

momentum [GG22]. Both approaches are extendable to be used for running as well.
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3.2.3.1 Angular Momentum-based Planning

In Section 1.2.3, we mentioned that an assumption with the most commonly used linear

inverted pendulum model is the constant height and zero angular momentum assumption.

The consequences of dropping LG (angular momentum about the center of mass) when the

2D inverted pendulum’s coordinates are the position and velocity of the center of mass

have been studied in comparison to the less known coordinate representation of the inverted

pendulum, where the states are the position of the center of mass and the angular momentum

about the contact point [GG22]. This model has been coined as ALIP (where A is angular

momentum), and we present a full derivation of the ALIP model in both the lateral and

longitudinal directions and use it for footstep planning. We demonstrate that not only is

this applicable with hybrid zero dynamics based approaches, but it is equally viable when

used with the whole body control framework and actuated ankles. We also adapt this

approach for planning footsteps with flight phases for running applications.

Let us first derive the ALIP model. To begin with, we know that we can transform the

angular momentum about the CoM LG to a different fixed point in the world as follows:

LW = LG +mpWR × ṗWR (3.8)

where we define LW as the angular momentum around the origin of the global coordinate

system. m is the robot’s mass, and pWR and ṗWR are the position and velocity of the robot’s

CoM with respect to the global coordinate system. If we were to separately derive the

footstep position along the eGx and eGy, Equation (3.8) can be decomposed into the following

two parts:

LW,y = LG,y +m

pWR,x
pWR,z

 ∧
ṗWR,x
ṗWR,z

 (3.9)

LW,x = LG,x +m

pWR,y
pWR,z

 ∧
ṗWR,y
ṗWR,z

 (3.10)

where ∧ operator is the cross product in 2D. Equation (3.9) and Equation (3.10) can be used
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along with:

L̇W,x = −mgpWR,y + τA,x (3.11)

L̇W,y = mgpWR,x + τA,y (3.12)

where g is gravity and τA,x, τA,y are the torques at the ankles about their x and y axis, to

represent the velocity of the center of mass as:

ṗWR,x =
ṗWR,z
pWR,z

pWR,x +
LW,y − LG,y

mpWR,z
(3.13)

ṗWR,y =
ṗWR,z
pWR,z

pWR,y −
LW,x − LG,x

mpWR,z
. (3.14)

Assuming a constant center of mass height (pWR,z = h, ṗWR,z = 0, p̈WR,z = 0), Equation (3.13)

and Equation (3.14) become:

ṗWR,x =
LW,y − LG,y

mpWR,z
(3.15)

ṗWR,y = −
LW,x − LG,x

mpWR,z
. (3.16)

Dropping LG,x and LG,y as in [PA16] results in:

ṗWR,x =
LW,y

mpWR,z
(3.17)

ṗWR,y = −
LW,x

mpWR,z
. (3.18)

This finally brings us to the ALIP model [GG22]. From Equation (3.11), Equation (3.12),

Equation (3.17), Equation (3.18), we can compactly represent the ALIP model along both

eWx and eWy: 
ṗWR,x

ṗWR,y

L̇W,x

L̇W,y


=


0 0 0 1

mh

0 0 − 1
mh

0

0 −mg 0 0

mg 0 0 0




pWR,x

pWR,y

LW,x

LW,y


+


0

0

τA,x

τA,y


. (3.19)

Using the ALIP model, a footstep planning strategy can be designed to indirectly track

a desired velocity by controlling the angular momentum about the contact point LW. For

now, we assume the following:
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Figure 3.9: A timeline showing the contact events (steps) and the times at which they

happen.

• A constant swing time of Tswing.

• A constant CoM height of pWR,z = h. The subsequent whole-body controller will control

the CoM height at a constant value so that the footstep planner can at least make this

assumption.

• A zero ankle torque. Along the sagittal plane (i.e. the pitch axis of the foot) ARTEMIS

does have ankle actuation, but along the lateral plane (i.e. the roll axis of the foot), it

does not have actuation.

• An instantaneous switch from one stance leg to the other. Bipedal walking is charac-

terized by a single stance (i.e. one leg is supporting the body) and a double stance

phase (i.e. both legs are supporting the body), but for now we assume that there are

only single stances.

Following previous approaches [GG21,GG22] we plan for the current swing foot’s footstep

position based on the desired angular momentum at the end of the following step. For

example, if our left foot is in stance and the right foot is in swing, we are solving for the

right foot’s footstep position at touchdown based on a desired angular momentum when

the left foot touches down afterwards. This is a result of assuming no ankle actuation,

which results in being unable to control LW during the current step, but only through step

transitions.

To derive the current desired footstep position, let us first define key events and their

times during the current step and the ensuing step. From Figure 3.9, we can define the
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following.

• We abbreviate Tswing as T for simplicity.

• Step i− 1: The current stance foot’s step.

• Ti−1: Time at which the current stance foot touched down.

• T−
i−1: The instance before the touchdown at Ti−1 and the end time of Step i− 2.

• T+
i−1: The instance after the touchdown at Ti−1 and the start time of Step i− 1.

• Step i: The step that the current swing foot will take.

• Ti: Time at which the current swing foot will touchdown.

• T−
i : The instance before the touchdown at Ti and the end time of Step i.

• T+
i : The instance after the touchdown at Ti and the start time of Step i+ 1.

• Step i+ 1: The step that the current stance foot will next take.

• Ti+1: Time at which the current stance foot will touchdown after taking the next step.

• T−
i+1: The instance before the touchdown at Ti+1 and the end time of Step i+ 1.

• T+
i+1: The instance after the touchdown at Ti+1 and the start time of Step i+ 2.

Based on the above, we can start to derive the controller that plans for foosteps based on

a desired angular momentum in the coming step. Equation (3.19) has a closed form solution

for time tf from time t0 as follows:
pWR,x(tf )

pWR,y(tf )

LW,x(tf )

LW,y(tf )


= A(∆t)


pWR,x(t0)

pWR,y(t0)

LW,x(t0)

LW,y(t0)


(3.20)
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where ∆t = tf − t0, ω =
√

g
h
, and A(∆t) is:

A(∆t) =


cosh(ω∆t) 0 0

sinh(ω∆t)
mhω

0 cosh(ω∆t) −sinh(ω∆t)
mhω

0

0 −mhωsinh(ω∆t) cosh(ω∆t) 0

mhωsinh(ω∆t) 0 0 cosh(ω∆t)


. (3.21)

Using Equation (3.20) we can observe how angular momentum could evolve up to the end

of Step i + 1. Then, we can set the desired angular momentum at the end of Step i + 1 to

be our desired angular momentum and calculate where we should place our feet at Step i to

achieve it.

1. t to T−
i :

The angular momentum evolves according to Equation (3.20) row 3 and 4 where ∆t =

T−
i − t is continuously updated.

LW,x(T
−
i ) = −mhωsinh(ω∆t)pWR,x(t) + cosh(ω∆t)LW,x(t) (3.22)

LW,y(T
−
i ) = mhωsinh(ω∆t)pWR,y(t) + cosh(ω∆t)LW,y(t). (3.23)

2. T−
i to T+

i :

When taking a step, assuming a constant height of h and a flat ground, momentum

is constant under impact. This is because angular momentum transfers between two

contact points as follows:

LB = LA + pBA ∧ ṗRcm. (3.24)

If the center of mass height is constant ṗRcm,z = 0, then pBA ∧ ṗRcm = 0 and LB =

LA. Therefore, from T−
i to T+

i , the angular momentum is the same assuming the

assumptions are valid, and the origin of the world frame is updated to the new contact
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point.

LW,x(T
+
i ) = LW,x(T

−
i ) (3.25)

LW,y(T
+
i ) = LW,y(T

−
i ) (3.26)

pWRcm,x(T
+
i ) = pSwingFootRcm,x(T

−
i ) (3.27)

pWRcm,y(T
+
i ) = pSwingFootRcm,y(T

−
i ) (3.28)

where pSwingFootRcm is the position from the swing foot to the center of mass the moment

before impact.

3. T+
i to T−

i+1:

After the current swing foot, we can predict the angular momentum to evolve as

according to Equation (3.20) until the next step. Since swing time is fixed at Tswing,

this results in:

LW,x(T
−
i+1) = −mhωsinh(ωTswing)pWRcm,x(T

+
i ) + cosh(ωTswing)LW,x(T

+
i ) (3.29)

LW,y(T
−
i+1) = mhωsinh(ωTswing)pWRcm,y(T

+
i ) + cosh(ωTswing)LW,y(T

+
i ). (3.30)

Recall from Equation (3.27) and Equation (3.28) that pSwingFootRcm,x(T
−
i ) and pSwingFootRcm,y(T

−
i )

is the current swing foot’s desired position at Step i. Using Equations (3.27) to (3.30), the

desired position of the current swing can be represented as:

pSwingFootRcm,x(T
−
i ) =

LW,x(T
−
i+1)− cosh(ωTswing)LW,x(T

+
i )

−mhωsinh(ωTswing)
(3.31)

pSwingFootRcm,y(T
−
i ) =

LW,y(T
−
i+1)− cosh(ωTswing)LW,y(T

+
i )

mhωsinh(ωTswing)
. (3.32)

Everything is known in Equations (3.31) and (3.32), since we know LW,x(T
+
i ) and LW,y(T

+
i )

from Equations (3.22), (3.23), (3.25) and (3.26), and LW,x(T
−
i+1), LW,y(T

−
i+1) can be our desired

angular momentum at the end of the next step. Following [GG22], the desired angular

momentum about the lateral axis can trivially be Ld
y = mhṗWRcm,x while about the sagittal

axis, we can assume an offset to the pendulum dynamics:

Ld
x = ∓0.5mhWstep

ωsinh(ωTswing)

1 + cosh(ωTswing)
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Figure 3.10: Desired ballistic trajectory of the center of mass when in flight phase.

where ∓ is negative if the current stance is left leg and positive if it is right leg, and Wstep

is the desired width between the two steps.

3.2.4 Center of Mass Trajectory Planner

Given the foot swing times and the lift-off percentage, we wish to actively generate a center

of mass position and velocity trajectory such that when the robot is in a ballistic state,

the center of mass should smoothly move up and down as seen in Figure 3.10. Whereas if

the robot is in contact with the ground, the center of mass trajectory should be symmetric

and convex as seen in Figure 3.11. The center of mass velocities should correspond to the

derivatives of the position, except that prior to lift off, there is a vertical velocity that must

be reached to satisfy a desired flight phase. Additionally when in flight phase, immediately

the velocity slope should be negative until touchdown.

To start with the ballistic trajectory, the desired velocity at the next timestep should be
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Figure 3.11: Desired convex trajectory of the center of mass when in a foot is in contact.

the current velocity subtracted by the product of gravity and the timestep:

vWRcm,t+1 = vWRcm,t − g · dt (3.33)

The desired position is a straightforward integration of the velocity:

pWRcm,t+1 = pWRcm,t + vWRcm,t · dt (3.34)

For the center of mass trajectory when the robot is in contact with the ground, in an

ideal situation, we desire a symmetric, convex arc to reach a desired lift off trajectory. To

begin with, using the nominal swing time tswing,nom and lift off percentage sLO, the nominal

air time tair,nom, ground time tground,nom, and lift off velocity vWRcm,z,nom can be found.

tair,nom = (1− sLO) (3.35)

tground,nom = sLOtswing,nom − tair,nom (3.36)

vWRcm,z,nom = g · tair,nom/2. (3.37)
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Figure 3.12: Desired center of mass trajectory when in flight with a swing time of 0.4 s and

lift-off percentage of 70%.

Afterwards, depending on the swing phase sswing of the foot that is not in contact, the

time until the next lift off tnextLO is computed along with the corresponding velocity and

position of the center of mass required at the time by:

snextLO = sLO − sswing (3.38)

tnextLO = tswing,nomsnextLO (3.39)

vWRcm = 2
vWRcm,z,nom
tground,nom

(
tground,nom

2
− tnextLO) (3.40)

pWRcm = pWRcm,nom +
vWRcm,z,nom
tground,nom

tnextLO(tnextLO − tground,nom). (3.41)

Using the earlier example with a swing time of 0.4 s and a lift-off percentage of 70%,

through Equation (3.33) and Equation (3.34), a ballistic trajectory as seen in Figure 3.12

can be generated. A center of mass trajectory using Equation (3.38) when in stance phase

can be seen in Figure 3.13.
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Figure 3.13: Desired center of mass trajectory when in stance with a swing time of 0.4 s and

lift-off percentage of 70%.

A desired center of mass trajectory over the course of 4 steps using the same swing time

and lift-off percentage can be seen in Figure 3.14. If we adjust the lift-off percentage to 90%,

the desired center of mass trajectory would automatically be modified, as seen in Figure 3.15.

If the lift-off percentage becomes 100%, the center of mass trajectory collapses to the case

of a constant center of mass height. This can be seen in Figure 3.16. These trajectories

will be become reference trajectories to be tracked later by the whole-body controller in

Section 3.2.6.

3.2.5 Foot Trajectory Planner

Next, given a desired footstep position, we must plan a potential trajectory from the current

foot position to the desired footstep position for the end-effector to follow. The simplest

approach could be a linearly discretized trajectory that moves the foot from one position in
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Figure 3.14: Desired center of mass trajectory over the course of 4 steps with a swing time

of 0.4 s and lift-off percentage of 70%.

the X and Y plane to another position, while moving the foot up and down in a sinusoidal

fashion in the Z direction. While simple to implement, this approach does have its short-

comings in that the timestep (i.e. discretization interval) needs to be known in advance and

it is also non-trivial to get the trajectory’s exact derivative (i.e. velocity). If we wanted to

know the exact position at any given time throughout the trajectory, this is not feasible with

such a discretized trajectory. Also, while we could assume the velocity to be the change in

position over the timestep, the resulting velocity will also not be continuous.

Another approach could be to use a parametric trajectory. If a trajectory is defined using

parametric equations, interpolation is no longer needed and we can query the trajectory’s

position at any given time. We can also obtain the derivative of the trajectory which also

could be continuous. Some examples of these trajectories include the cycloid trajectory, the

minimum jerk trajectory, a polynomial, a Bezier curve, or any spline [FH85].
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Figure 3.15: Desired center of mass trajectory over the course of 4 steps with a swing time

of 0.4 s and lift-off percentage of 90%.

Different to the center of mass trajectory, a footstep trajectory has its own additional

properties that we would like to have in the final desired trajectory.

• Desired footstep height: While there are dance moves where the foot slides on the

ground, usually when we take a step, it is required to clear the foot off from the

ground. There also may be obstacles or steps that that we want to step over and onto.

• Zero initial velocity and acceleration: A foot in contact with the ground has zero

velocity and acceleration. Therefore, the position trajectory as the foot starts to move

towards the final position should have a zero initial velocity and acceleration.

• Zero final velocity and acceleration: When a foot makes contact with the ground at

the end of a step, it also should reach zero velocity and acceleration. This is also a

desired behavior because sudden stops or expecting the foot to collide with the ground
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Figure 3.16: Desired center of mass trajectory with a desired lift-off percentage of 100%.

and come to a stop because of the collision with the environment is undesirable as it

will introduce undesirable impacts to the system.

Analytical approaches such as the minimum jerk do have properties such as a smooth initial

and final velocity and acceleration, but if we were to generate a foot trajectory using it,

we would have to stitch two such trajectories to create a single trajectory that moves up

to a desired footstep position and then comes down. However at the apex, the foot would

momentarily come to a stop and then come back down.

Therefore, parametric representations of trajectories that can, at minimum, satisfy the

aforementioned properties, are increasingly used [LLL17, PWK17, KHM20, AH20]. Often

times this is achieved by embedding them into an optimization framework to explicitly

constrain them through constraints or implicitly as a cost.

Because ARTEMIS walks dynamically and its desired footstep position is constantly

changing, we formulate an optimization to solve the trajectory generation problem. Given

a desired footstep position from the previous section, a desired swing time, and a desired

step height, the optimization solves for a trajectory that satisfies these properties as well as

the boundary conditions (i.e. zero initial and final velocity and acceleration). Two different
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optimizations are run to generate the complete trajectory in 3D space. They are both

continuous in acceleration as they will be used in the subsequent inverse dynamics control,

which benefits from continuous acceleration trajectories [SHV06].

The first optimization solves for the trajectory in the X and Y directions. In the case of

the trajectory along the XY plane, the only objective is to reach the final footstep position.

Therefore, it is sufficient for us to formulate an optimization problem that solves for the

coefficients of a quintic spline. A quintic spline is continuous in velocity and acceleration,

and has enough degrees of freedom to constrain its starting and ending position, velocity

and acceleration [ACH18]. The cost function simply tries to minimize the acceleration of the

trajectory. The optimization is as follows:

min
c

c⊤Qcc (3.42a)

s.t. Aeqc= beq. (3.42b)

We use the coefficients of the quintic spline as the decision variables:

c⊤ =

[
c1 c2 c3 c4 c5 c6

]
such that the resulting trajectory can be reconstructed as:

p(t) = c1t
5 + c2t

4 + c3t
3 + c4t

2 + c5t+ c6.

The cost function’s Hessian is

Qc =



400T 6 240T 5 120T 4 40T 3 0 0

240T 5 144T 4 72T 3 24T 2 0 0

120T 4 72T 3 36T 2 12T 0 0

40T 3 24T 2 12T 4 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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with T being the pre-defined swing time, and:

Aeq =



0 0 0 0 0 1

T 5 T 4 T 3 T 2 T 1

0 0 0 0 1 0

5T 4 4T 3 3T 2 2T 1 0

0 0 0 2 0 0

20T 3 12T 2 6T 2 0 0



b⊤
eq =

[
p(0) p(T ) ṗ(0) ṗ(T ) p̈(0) p̈(T )

]
is the equality constraint matrix with row 1 and 2 constraining the initial and final positions,

row 3 and 4 constraining the initial and final velocities, and row 5 and 6 constraining the

initial and final accelerations. Note that Equation (3.42) is for a single dimension (i.e.

either X or Y ), but identical cost function and the equality matrix can be block diagonally

constructed with the decision variables stacked to solve a single optimization problem that

solves for both X and Y directions.

The second optimization solves for the trajectory along the Z direction. Unlike the

trajectory along the XY plane, the trajectory along the Z direction must satisfy a step

height objective as well, where the foot should be lifted off the ground by a pre-defined

step height halfway through its trajectory. Stitching two quintic splines can be a possible

solution as unlike the minimum jerk trajectory, we could constrain the final position, velocity,

and acceleration of the first quintic spline that reaches the apex of the swing trajectory

to be equal to the start position, velocity, and acceleration of the second quintic spline.

However, in the case the swing time is modulated (which is a potential stepping strategy

in bipedal locomotion), this could result in undesirable jumps in the trajectory [KHM20].

Therefore, a single continuous trajectory is more favorable and in our case, we use a ninth-

order polynomial. In a similar fashion to Equation (3.42), we solve for the coefficients of a
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ninth-order polynomial with boundary constraints.

min
c

J(c, hstep) (3.43a)

s.t. Aeqc= beq (3.43b)

where c is the vector of coefficients of the ninth order trajectory:

c⊤ =

[
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

]
such that the resulting trajectory can be reconstructed as:

p(t) = c1t
9 + c2t

8 + c3t
7 + c4t

6 + c5t
5 + c6t

4 + c7t
3 + c8t

2 + c9t+ c10.

The cost function J(c, hd
step) minimizes both the acceleration of the entire trajectory as

well as the distance between the foot midway through the swing phase and the desired step

height hd
step:

J(c, hstep) = ||p̈||+ ||p(T/2)− hd
step||. (3.44)

This results in a cost function that can be put in the standard QP form where the quadratic

cost is:

H =



T 18

262144
T 17

131072
T 16

65536
T 15

32768
T 14

16384
T 13

8192
T 12

4096
T 11

2048
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1024
T 9

512
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65536
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16384
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8192
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1024
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512
T 8

256
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1024
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512
T 8

256
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1024
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T
2

T 9

512
T 8

256
T 7
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T 6
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T 5
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8
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2 1


and the linear cost is:

f = −hd
step

[
T 9

256
T 8

128
T 7

64
T 6

32
T 5

16
T 4

8
T 3

4
T 2

2 T 2

]
.
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The equality constraint matrix and vector are similar to that for the quintic spline except it

now considers the coefficients corresponding to the higher order terms:

Aeq =



T 9 T 8 T 7 T 6 T 5 T 4 T 3 T 2 T 1

0 0 0 0 0 0 0 0 0 1

9T 8 8T 7 7T 6 6T 5 5T 4 4T 3 3T 2 2T 1 0

0 0 0 0 0 0 0 0 1 0

72T 7 56T 6 42T 5 30T 4 20T 3 12T 2 6T 2 0 0

0 0 0 0 0 0 0 2 0 0


.

Now that we have the 3D trajectory for the position of the swing foot, we need to design

the rotational trajectory of the foot. Given the desired footstep orientation from the footstep

planner, we design a separate trajectory for the pitch and yaw position of the foot. To keep

things simple, the desired yaw trajectory of the foot is simply a linear interpolation from the

current yaw to the desired yaw position computed based on the desired yaw rate sent from

the joystick commands. For the pitch trajectory, the trajectory is a constant value that will

keep the foot in parallel with the ground.

3.2.6 Whole-Body Control

Given the desired swing trajectories that we would like the robot to follow, we would like to

use the full-order model to find the torques to send to the robot. This is because up until

this point, the planning has been done using reduced-order models. Some of the assumptions

made to use the reduced-order model may be inappropriate (e.g. the massless leg assump-

tions used in pendulum models). Fortunately, provided desired tasks or operational space

objectives (e.g. end-effector position, link orientation, center of mass position, momentum)

defined using its desired value and the Jacobian, the instantaneous joint accelerations q̈,

torques τ , and reaction forces F that are dynamically consistent can be found under the

whole-body control framework. There are primarily two ways of solving this problem. Given

the multiple different tasks/objectives, one approach (weighted) tries to find the solution

while finding a balance between all of them. The other approach (prioritized) constructs a
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hierarchy or a priority between the different tasks and solves for the solution while adhering

to the order.

To solve the problem using the weighted approach, a QP of the following form needs to

be solved:

min
q̈, f

Nt∑
i=1

||Jiq̈+ J̇iqi − ad
i ||Wi

+

Nj∑
j=1

||f ||Wj
+ ||q̈||Wq̈

(3.45a)

s.t. Mq̈+Cg =
Nc∑
j=1

J⊤
c,jfj, (3.45b)

fj ∈ Cj j = 1, · · ·Nc (3.45c)

where Nt is the number of tasks, Nc is the number of contacts, and Cj is the friction cone

constraint for contact j. To keep things linear, the friction cone constraint can be approxi-

mated as a friction pyramid constraint. Additionally, while this formulation only constrains

the floating base acceleration, the entire dynamics can also be constrained while constraining

the torque limits by replacing the constraints in Equation (3.45) with:

Mq̈+Cg = τ + Jc
⊤f

τ ≤ τ ≤ τ̄

f ∈ Ci

The cost function consists of all information from a task, which is defined by its desired

value and its Jacobians. Ji and J̇i are the task Jacobian and its derivative corresponding to

task i, and ad
i is the desired task space acceleration defined as:

ad = Kp∆p+Kd∆v + aref (3.46)

where ∆p ∈ R3 and ∆v ∈ R3 are the position and velocity errors, Kp ∈ R3×3 and Kd ∈

R3×3 are proportional and derivative gains, and aref ∈ R3 is the reference acceleration.

This feedback (PD) and feedforward (reference aref) can be used either for a translational

term such as the center of mass position or a rotational term such as the body orientation.

Wi ∈ R3×3 is the weight for task i, which can be used to introduce implicit hierarchy between
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the different tasks. f and q̈ are regularization costs to ensure the the optimization’s cost

function is positive definite, while Wj and Wq̈ are their respective weights which are kept

small.

The advantage of this formulation is the simplicity in that only a single optimization

problem needs to be solved. However, in reality, finding the right balance in weights between

the different tasks can be a challenge. Furthermore, significant differences in the magnitudes

of the different tasks to enforce an implicit hierarchy between the different tasks can cause

their own numerical issues.

Instead, a strict hierarchy could be enforced to the different tasks to guarantee a task

with a higher priority will be guaranteed before a task of lower priority is allowed. For

example, a task with priority 1 is more important than a task with priority 2 (note that a

priority of lower numerical value is of higher importance), so 2 will only be satisfied while 1

is satisfied. This can be achieved through a series of optimization problems.

If the series or cascade of optimization problems are unconstrained least squares problems

or an equality constrained least squares problems, they can be solved efficiently. Given a

simple least squares problem of the following form:

x∗ = argmin
x
||Ax− b||

it can be solved by a simple pseudoinverse, resulting in x∗ = A†b. If the problem includes an

equality constraint Cx = d, the solution can be found using the nullspace N (C) = NC =

I−C⊤C, which results in x∗ = C†d−NC(ANC)
⊤(b−AC†d).

However, if inequality constraints are required (e.g. to enforce torque limits or friction

constraints), we need to revert back to an optimization problem to include them. To also con-

sider priorities/hierarchicies, a series of optimizations must be solved in descending priorities

while retaining the optimal solution of the previous optimizations.

In the case with ARTEMIS, to ensure a solution is always available online, the weighted

approach was taken to reduce the number of quadratic programs that need to be solved

at 500 Hz. This meant significant investment had to be made into tuning the feedback
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gains for the desired accelerations as well as the weights in the cost function. Details of the

implementation are further described in Section 4.2.
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CHAPTER 4

Implementation and Results

Ideally the implementation of the approaches are identical both in simulation and on hard-

ware. However, because of the many practical differences such as the imperfect model of the

physical platform, the noise in the state information, or the computational burdens of run-

ning different algorithms simultaneously to name just a few, the implementation to realize

the controllers on hardware can be non-trivial. In that regard, this chapter details the steps

taken to implement the approach described in Chapter 3 on hardware. Additionally, results

to assess the performance of the approach are also presented.

4.1 Robot State Estimation

As noted in Section 3.2, the planning of the task space trajectories are with respect to

the world frame. However, prior to planning, the pose and the velocities of the floating

base (i.e. the base frame of the robot) are required. This requires an estimation of the

floating base pose and velocities. Different approaches exist in literature, ranging from using

complementary filters to estimate these values [DPL21, She22], to variants of the Kalman

Filter [CED08, PHH09, BHH13,WLC13, RBR14], and more recently, deep learning-based

approaches as well [JMK22]. For ARTEMIS, we implemented a variant of the Extended

Kalman Filter known as the Invariant Extended Kalman Filter (InEKF) [BMS09] to estimate

the global pose and velocities of the robot [HGE20]. The motivation behind this choice among

others was the strong convergence properties that are present in a nonlinear observer.

The estimator takes in angular velocities and linear accelerations from the IMU, joint

angles from the legs (i.e. leg kinematics), and contact information. Information from the
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Measurement Noise

Gyroscope 0.002

Accelerometer 0.004

Contact 0.001

Kinematics 0.001

Table 4.1: Noise parameters for the robot’s global pose and velocities state estimator.

IMU is used to propagate the dynamics forward, and then kinematics measurement is used for

correction. While both the left and the right invariant EKF exists, the estimator was tuned

using the right invariant EKF. Additionally, it is often the case that the gyroscope biases

and accelerometer biases are also estimated along with the global pose and the velocities

of the robot when an IMU is used for state estimation. However, because this conflicts

with the standard invariant EKF theory, resulting in an imprecise invariant EKF, the bias

estimations were not done using the invariant EKF. Instead, because the IMU has its own

EKF, which computes a filter-compensated angular velocity and linear acceleration using its

own bias estimation, these values were used to run the invariant EKF with no additional

bias estimation [mic]. Afterwards, tuning of the hyperparameters of the invariant EKF is

required to get the filter to quickly converge. These parameters are shown in Table 4.1.

Additionally, as noted in [RBR14,HGE20], the complete pose of the robot is not fully

observable at all times. The absolute position of the robot as well as its rotation about the

gravity vector (yaw) is unobservable. This can be seen in Figure 4.1, which shows a bird’s

eye view of the robot’s SE(2) pose as it walks around the 3rd floor of UCLA’s Engineering

IV building. As expected, the robot started at X = 0 m, Y = 0 m with its heading angle

aligned with the positive X axis (i.e. 0° yaw). At the end of the walk, ARTEMIS ended

up at X = 13.45 m, Y = 4.10 m with a heading angle of 20.13°. In reality however, the

robot started and ended at the same place, but significant drift in its pose had occurred over

the course of 554 seconds of walking. Note however, this information is not required for the

robot to achieve dynamically stable locomotion. Rather, the roll and pitch of the floating
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Figure 4.1: Absolute position and yaw output of the state estimator after walking around

the 3rd floor of UCLA’s Engineering IV building seen in birds eye view.

base and its velocities are important for stability as the footstep planner decides where to

place the foot based on these values and the whole body controller will correct the body

orientation from the estimates.

Ideally, the accuracy of the estimate would be verified by comparing to the outputs of a

motion capture system, but in the case with ARTEMIS, the estimator was tuned empirically.

This was achievable by initially keeping the robot standing in position control but with the

state estimator enabled. By pushing and rotating the robot manually without breaking con-

tact, the general trend of the estimator’s velocity and orientation outputs could be observed.

Afterwards, the balance controller was tuned in tandem with the state estimator. Once the

balance controller could withstand external disturbances, the locomotion controller and the

estimator was simultaneously tuned. The same iterative approach was taken during walking
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and running (and jumping) tests, except different outputs from the state estimator were

observed during these two different behaviors.

For walking, a ground truth that we can approximate by observation is the distance

the robot travels over a period of time. ARTEMIS initially taking a step and approximately

measuring the base frame’s displacement over time was compared with the estimator’s output

to initially tune the estimator. If walking was measuring the displacement along the X and

Y directions, for running, the initial step was to assess the estimator’s behavior when in

ballistic motion (i.e. along the Z direction). An offline jumping trajectory was generated

and tracked using the techniques from Section 3.2.6. From first principles, symmetry in the

estimator’s trajectory during ballistic motion was expected. However, that was not the case

until the IMU currently on the robot was integrated into the system, as the robot always

seemingly landed earlier (i.e. the estimator thought the robot had jumped onto a higher

platform).

Note that while one may think that the estimator could be tuned offline, this is only pos-

sible assuming ground truth data is available. Another thought could be that the estimator

could be tuned in simulation assuming a good simulated representation of the IMU’s noise

parameters from the real world. While this seemed initially promising, because of multiple

additional uncertainties in reality (e.g. sensor noise in the joint encoders, slight slips in the

contact), re-tuning was required in reality.

During the integration and tuning process of the state estimator, the IMU on ARTEMIS

was replaced twice, initially from Vectornav VN-100 to Microstrain 3DM-GX5-25 AHRS,

and then to the current IMU, Microstrain 3DM-CV7-AHRS. The initial replacement was

to improve the frequency of the IMU’s output, as the VN-100 required additional steps to

obtain a raw 1,000 Hz reading of the angular velocity and linear acceleration readings as

opposed to the GX5-25. However, when using the GX5-25, the state estimator had difficulty

estimating a symmetric ballistic trajectory along the Z direction. In the air, the estimation

should have primarily been driven by the IMU dynamics, which should have created the

symmetry we wanted to see. Instead, the estimation thought the robot was landing at a
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Figure 4.2: Left: If the contact frame for the state estimator is set to only be at the middle

of the foot, anytime the foot is not parallel with the ground and comes in contact with the

ground, the estimator will think the robot took a step up from the ground to the dotted line.

Right: If the contact frame for the state estimator is set to be at the edges of the foot (toe

and heel), the offset between the contact point and the contact frame will be minimized,

leading to less drift along the Z direction.

higher Z location than where it jumped off of, suggesting a possible delay in the estimator.

This was validated when the GX5-25 was replaced with the CV7. The same raw angular

velocity and linear acceleration values were streamed at 1,000 Hz from both the GX5-25

and the CV7. Surprisingly, the GX5-25 had a 10 ms delay compared to the CV7, resulting

in the asymmetric ballistic behavior. With the relatively reduced delay when the IMU was

replaced with the CV7, the estimator’s output showed a near symmetric ballistic trajectory.

Another small, yet important detail during the implementation of the state estimator

was defining the contact positions. As can be seen in the frame definitions in Figure 2.5, we

defined three frames on the foot. Although the toe and the heel frames are used to put a high

cost on their positions during contact, these frames are also used during state estimation. At

the simplest, it is possible to only use the sole frame (or any single frame), but for a humanoid

that has a line foot (or any non-point foot), any contact when the foot is not parallel with
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the ground (which is actually any time that the ground is not completely flat) will result in

small offsets between the contact frame and the actual point of contact. Even if the ground

was completely flat, the foot’s pitch control will have small errors. This behavior can be

seen in Figure 4.2. Although the offset may seem small, because the estimator is updated

at 500 Hz, the differences can accumulate quickly. While it is difficult to deterministically

compare the performance between a single point contact and a two point contact by nature,

empirically, we have seen significantly less “drift” in position when the two point contact

approach was used.

4.2 Whole Body Control

Tuning the whole body controller can be a significant challenge because of the sheer number

of gains and weights that need to simultaneously be tuned. Additionally, optimization solvers

need to be deployed with the appropriate settings to achieve a robust, consistent solution.

In hopes that future researchers can start from some reference rather than from scratch, the

weights and gains used in the whole body controller are shown in Table 4.2 and Table 4.3.

To solve the quadratic problem presented in Equation (3.45) using the weights and gains

from above, an optimization solver is required to find the solution. It must also find the

solution fast enough as the controller is required to be run in a 500 Hz loop. With Equa-

tion (3.45), the optimization’s structure does not change, hence a custom solver tailored for

this problem could be the ideal approach to obtaining the solution as quickly as possible. In-

stead however, for simplicity, an off-the-shelf solver was used and its parameters were tuned

to satisfy our timing constraints. On ARTEMIS, off-the-shelf solvers OSQP [SBG20] and

ProxQP [BET22] were used, with the former being primarily used during walking and the

latter for running. For OSQP, the settings used are shown in Table 4.4.

Custom settings are motivated by the need to satisfy solve time constraints and smooth-

ness of the solutions. For example, because the structure of the problem is fixed during

locomotion (a single support leg is always assumed during walking), it is beneficial to always
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Tasks
Weights

Balancing Walking Running

Center of Mass Position [10, 10, 100] [1, 1, 100] [1, 1, 100]

Body Orientation [80, 80, 80] [20, 20, 40] [20, 20, 40]

Angular Momentum [10, 10, 0.1] [10, 10, 10] [10, 10, 10]

Stance Leg Position [1000, 1000, 1000] [1000, 1000, 1000] [1000, 1000, 1000]

Swing Leg Position [10, 10, 10] [40, 40, 40] [40, 40, 40]

Swing Leg Orientation [1, 1, 1] [1, 1, 1] [1, 1, 10]

Arm Posture [1, 1, 1, 1] [10, 10, 10, 10] [10, 10, 10, 10]

Head Posture [1, 1] [10, 10] [10, 10]

Force Regularization 0.001 0.001 0.005

q̈ Regularization 0.0001 0.0001 0.0001

Table 4.2: Weights of the whole-body controller for balancing, walking, and running behav-

iors.

utilize the solution from the previous solution as a starting point to solving the problem.

Therefore, warm starting is enabled for walking such that the parameters and the solutions

can continuously be used in the next optimization, which effectively reduces the number of

iterations required until the tolerance for the solution is reached again. Quite often, the

number of iterations required are a magnitude smaller than solving from scratch. Therefore,

requiring a termination check at every iteration of the solver is beneficial since the solver will

then return the solution immediately, as opposed to the default value of 25 requiring addi-

tional iterations for marginal improvement. This did allow being able to demand a tighter

error tolerance before terminating the solver by two orders of magnitude.

For running, the number of contacts can differ (as there can also be no contacts during

flight phases). Different number of contacts means the relative importance of the tasks

in the cost function can change. This can translate to the QP’s cost function drastically

changing from the previous time the QP was solved. Therefore, while warm starting could
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Tasks
P/D Gains

Balancing Walking Running

Center of Mass Position
[50, 50, 50]

[10, 10, 15]

[0, 0, 100]

[2.5, 2.5, 5]

[0, 0, 300]

[2.5, 2.5, 60]

Body Orientation
[500, 500, 200]

[25, 25, 20]

[250, 250, 100]

[40, 40, 10]

[500, 500, 200]

[40, 40, 40]

Angular Momentum
[-, -, -]

[10, 10, 1]

[-, -, -]

[10, 10, 10]

[-, -, -]

[10, 10, 10]

Stance Leg Position
[1000, 1000, 1000]

[100, 100, 100]

[50, 50, 50]

[5, 5, 5]

[50, 50, 50]

[5, 5, 5]

Swing Leg Position
[100, 100, 100]

[10, 10, 10]

[1500, 1500, 1000]

[5, 5, 20]

[250, 250, 1500]

[2.5, 2.5, 20]

Swing Leg Orientation
[0, 50, 300]

[0, 10, 50]

[0, 25, 150]

[0, 5, 25]

[0, 25, 150]

[0, 5, 25]

Arm Posture
[100, 100, 100, 100]

[20, 20, 20, 20]

[100, 100, 100, 100]

[20, 20, 20, 20]

[100, 100, 100, 100]

[20, 20, 20, 20]

Head Posture
[100, 100]

[20, 20]

[100, 100]

[20, 20]

[100, 100]

[20, 20]

Table 4.3: PD gains for the whole-body controller for balancing, walking, and running

behaviors.
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Setting Value

Warm Start True

Adaptive Rho Interval 50

Scaling 100

Scaled Termination True

Time Limit 1e-3

Relative Tolerance 1e-5

Absolute Tolerance 1e-5

Max Iteration 1000

Check Termination 1

Table 4.4: OSQP settings for Whole-Body Control.

be beneficial in most cases, it may instead be a pitfall in other cases as the solution may

infact, not be similar. For example, when the robot is in flight and both feet are off the

ground, the weights and the gains for the Stance Leg Position task in Table 4.2 are reduced to

0.001 resulting in two Swing Leg Position tasks being dominant in the cost function. When

one of the feet come in contact with the ground, that leg’s Swing Leg Position task and

Swing Leg Orientation task will drop to 0.001 and the Stance Leg Position task’s weights

and gains are restored. In this case, if we naively deployed a warm start strategy, which

not only uses the solution from the previous solution, but also the solver’s parameters that

were being updated throughout the iterations, it was frequently noticeable that the solver

could not making meaningful steps towards finding a solution and instead would get stuck

in excessively long iterations until it timed out. To address this issue, a “cold start” of

the solver had to be done. This was achieved by manually reformulating the optimization

model from scratch, setting the previous solution as the initial solution, and then using the

starting parameters of the solver as opposed to the solver’s parameters at the termination

of the last optimization. Through this simple “reset”, the transition from flight to contact

and vice-versa could just as easily be solved without getting stuck in long iterations (albeit
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slower on average than when warm starting because additional iterations in the solver were

required).

As an additional implementation reference, although there is an explicit time limit setting

of 1e− 3 to ensure the optimization does not delay the control loop, the entire optimization

was multi-threaded to fully utilize the on-board computer, which currently is an off-the-shelf

mini PC with an Intel Core i7-12700T CPU with 12 cores and 32 GB of RAM. This might

seem overly powerful and more than sufficient to run the entire stack in a single thread,

but the majority of the development and testing was done on a computer with an Intel

i7-7700HQ CPU with frequency scaling disabled and the priorities of the controller set at

the highest.

4.3 Locomotion Controller

Overall, while the locomotion framework may look simple as explained in Section 3.2 and

shown in Figure 3.4, many times the implementation details make a significant difference

the success of the control framework, yet are hidden in these high-level block diagrams. The

pseudocode of the locomotion controller can be seen in Algorithm 4, but a more in-depth

explanation of each of the steps are explained below.

1. Given the current generalized coordinates (q, q̇) which includes the floating base in-

formation, the kinematics and dynamics information of the robot is updated. This

can be done manually by implementing existing algorithms [Fea14], but there are also

existing kinematics and dynamics libraries [Smi,Fel17,LP17,LXH18,CSB19] that are

capable of computing these quantities as well. Most recent solvers implement the same

algorithms, but the noticeable difference between the different libraries or manual im-

plementations is the reference frame and order the linear and angular velocities are

with respect to. This minor difference, however, can result in significant increase in

efficiency [Fea14]. Therefore, for ARTEMIS, a customized version of pinocchio [CSB19]

with a wrapper around it is used for its computational efficiency, ability to run in a
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Pseudocode 4 update locomotion controller()

Require: robot model, desired robot state, current robot state

1: update end effector position velocity() ▷ Update what the current foot’s

position and velocity are.

2: update input commands() ▷ Update the desired commands based on the user joystick

commands.

3: generate contacts for locomotion() ▷ Generates the desired contact state for the

next control tick.

4: update gait timings() ▷ Updates the stance and swing leg bookkeeping module.

5: update swing foot position velocity acceleration() ▷

Solves for the desired final footstep position and desired footstep position, velocity, and

acceleration at the next control tick.

6: update com position velocity() ▷ Generates the desired CoM position and velocity

along the Z direction.

7: solve wbc() ▷ Solves the whole body control QP problem from Section 3.2.6 and

Section 4.2.

real-time environment (no dynamic memory allocation), and support for potentially

useful features down the road (e.g. analytical derivatives, auto-differentiation). One of

the key additions that are included is the inclusion of reflected inertia in the dynamics,

which its impact will be further discussed in Section 4.3.1.2.

2. The locomotion controller also consumes a command whose type consists of the desired

linear velocity in the X and Y direction, yaw rate, center of mass height, and body

orientation. This can come either from an operator sending commands through a

joystick or a high-level path-planner. The desired values are then passed as desired

references for the whole body controller. Note that as seen in Figure 3.1, the commands

come in at 10 Hz, which is still sufficiently fast to introduce undesirable noise or

jerky commands. Such commands can make the robot aggressively change its desired

footstep positions multiple times through a single swing leg trajectory, which can create
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additional undesirable disturbances. To overcome this, low-pass filters on the desired

yaw rate and orientation are applied at 10 Hz. For the linear velocities, a slew rate

limiter is implemented to constrain a maximum acceleration and deceleration of the

robot. A slew rate was particularly important in ramping up/down the velocity of the

robot because in practice, the robot could more stably track a gradually increasing

desired linear velocity as opposed to a step input. A low-pass filter was inappropriate

mostly because a smooth acceleration would result in an undesirable slow deceleration,

and a quick deceleration would result in an undesirable high acceleration.

3. Given

(a) Locomotion mode

(b) Lift-off percentage

(c) Locomotion parameters (desired velocities and gait timings)

(d) Current foot contact statues

a desired contact state ∈ R2 for the next control tick/step is generated. Note that

although the “terminology” used is desired contact state, this is the contact state that

is sent to the whole body controller when determining which end-effectors should be in

contact. So the output of the optimization will generate ground reaction forces for the

end-effectors whose desired contact state is True. For example, in the case the robot is

balancing, the desired contact state is equal to [True, True], which informs the

whole body controller that both feet should always be in contact. The logic becomes

more complex when contact states for walking and running need to be generated.

4. Depending on which foot (if any) is on the ground, we update the amount of time

that has elapsed since a foot came in contact with the ground or since a foot started

swinging in the air. This bookkeeping is useful throughout the locomotion stack and is

done separately for each foot. After this step, the complete information about a foot’s

stance or swing state is available at all times through a struct that provides for each

foot:
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(a) Step Phase: Percentage that a foot is through a complete step which is defined

as a collection of a stance followed by a swing.

(b) Stance Phase: Percentage of the total stance time that the leg has gone through.

Only primarily used to enforce a minimum stance time.

(c) Swing Phase: Percentage of the total swing time that the leg has gone through.

(d) Remaining Stance Time: Time remaining until the stance phase is completed.

(e) Remaining Swing Time: Time remaining until the swing phase is completed.

(f) Imminent Lift-Off: Boolean indicating that in an ideal situation, a lift-off is next.

(g) Imminent Touchdown: Boolean indicating that in an ideal situation, a touchdown

is next.

5. Now that a desired contact status and the feet timings have been updated, next is to

calculate the desired footstep position of the swing foot based on Section 3.2.3.1. A

desired footstep position is computed by a dedicated module that continuously updates

the position, allowing the robot to react as quickly as possible to external disturbances.

Simultaneously, a swing trajectory based on Equation (3.42) for the X and Y footstep

positions and Equation (3.43) for the Z direction are continuously solved using the last

desired footstep position. These three optimizations can then return the swing foot’s

desired position, velocity, and acceleration for the next control cycle, which is sent to

the whole-body controller to be tracked.

6. A trajectory also needs to be generated for the center of mass. Depending on the

lift-off percentage, a desired center of mass position and velocity trajectory only along

the Z direction is generated based on Section 3.2.4.

7. Given the desired end-effector positions, velocities, and accelerations, the center of

mass position and velocity along the Z direction, and the body’s orientation, the

whole-body control optimization problem is formulated and solved for. This returns

desired ground reaction forces which can be used to compute the desired joint torques

as in Section 3.2.6 and Section 4.2.
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4.3.1 Walking

ARTEMIS is able to achieve robust walking behaviors when the locomotion stack described

in Section 3.2 is implemented as above in Section 4.3. This section presents results corre-

sponding to dynamic walking, which includes:

1. The linear velocity that the robot’s center of mass can achieve in an unmodeled world.

2. The tracking performance of the swing leg trajectory, which is critical for dynamic

stability.

3. The angular momentum of the robot during walking.

4. The robustness of the walking controller.

5. The passivity of locomotion.

6. The cost of transport and Froude number for our locomotion.

4.3.1.1 Walking Velocity

Using the presented approach, ARTEMIS is capable of ramping up its center of mass linear

velocity from rest up to 2.1 m/s, making it the fastest walking humanoid as far as we

are aware at this time. Considering that an average human walking speed is anywhere

from 0.95 m/s to 1.33 m/s [ACR20] for the age group greater than 65 and less than 30

respectively, ARTEMIS is capable of walking up to 221% faster than an average elderly

person. A video of the walking over a different range of linear velocities can be seen in

https://youtu.be/1Hy3T12YUzo.

Using the current approach, there were two ways to achieve fast walking. ARTEMIS had

to either step out further or step faster such that its legs can carry the robot forward as

quickly as possible. However, this simple modification did not immediately result in a stable,

fast walk. In reality, the slew rate limiter, which limits the acceleration of the commanded

linear velocity was critical in ramping up the robot’s velocity. When the robot was at rest and
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Figure 4.3: Last 100 seconds of walking around the third floor of UCLA Engineering IV

building.

an instantaneous forward velocity was commanded, ARTEMIS often hit joint limits in the

knee as the legs tried to reach extremely far back to tip its center of mass forward, resulting

in triggering the robot’s safety mechanisms explained in Section 3.1.4. Additionally, if the

operator was unable to input smooth velocity commands, the robot also had a tendency

to get unstable. This was because the swing foot continuously modifies its final footstep

position based on the desired velocity, which introduces undesirable oscillatory behavior at

the foot while it is swinging, because its destination is constantly changing.

With an acceleration rate limited command, the change in the commanded velocities are

smooth such that the robot is capable of walking stably and also quickly. Figure 4.3 shows

the center of mass velocity of the robot along the forward X direction during the last 100

seconds of the walk around the third floor of UCLA’s Engineering IV building (also shown

91



Joint Name Reflected Inertia [kgm2]

Hip Yaw / Roll 0.0490

Knee / Hip Pitch 0.0882

Ankle Pitch 0.0195

Arms 0.0084

Neck 0.0012

Table 4.5: Reflected inertia values used in the dynamics. The values are identical for the

left and the right leg and arms.

in Figure 4.1). This is a straight path that the robot ramps up from 0 m/s to roughly 0.9

m/s, sustaining the top speed during this sequence for roughly 20 seconds. The swing times

were set at 0.45 seconds, which is slightly faster than the average human walking frequency

of 2 Hz.

4.3.1.2 Swing Trajectory Tracking

To achieve dynamic walking, it is imperative that ARTEMIS is able to track the tasks

specified in the WBC. One of the most important tasks besides holding the contact foot

position, is tracking the swing foot position. If ARTEMIS can track the swing foot position,

it will be able to move its legs to its desired position to catch itself from falling. This includes

not only moving the foot to some desired X and Y position as computed in Section 3.2.3.1,

but also includes being able to clear the foot off the ground along the Z direction.

The desired trajectories that are generated through the optimization explained in Equa-

tion (3.42) and Equation (3.43) are found using OSQP [SBG20]. Unlike in WBC, OSQP is

used with default settings except that at the start of a new swing phase, the optimization

problem is re-created and warm start is applied through the duration of the remaining swing

trajectory.

Figure 4.4 shows the current and desired feet positions for the left (LF) and right (RF)

foot. Overall, the tracking performance is extremely good, even during this interval from
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Figure 4.4: 5 seconds of the left and right foot’s current and desired positions.

505 seconds to 510 seconds, which is when, according to Figure 4.3, ARTEMIS is traveling

at near 1 m/s in the forward direction. This tracking performance was achievable because

of a collective effort from feedforward torques, joint PD feedback, as well as considering the

reflected inertia of the actuators as previously discussed in Section 4.3. Especially includ-

ing the reflected inertias across the mass matrix for each joint allowed primarily using the

feedforward torques as the input to the actuators, with less than 5% of the final torque

contribution coming from the joint PD feedback. The reflected inertia values used in the

dynamics can be seen in Table 4.5.

Furthermore, a keen reader will notice that the Z foot position is in the negatives and may
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wonder why that is the case when the robot stayed at the third floor. This is the absolute

position drift from the state estimator as discussed in Section 4.1. Although this behavior

exists in X and Y , it is less noticeable because the robot is actively moving along those axes.

Additionally, the desired foot position is a constant when it is not in a swing phase, which is

the most noticeable along the Z axis. This is because when a foot comes in contact with the

ground, the no-slip condition is assumed, hence the desired foot position when in contact is

set to be a constant. However, the current position does dip into the ground which again, is

an artifact of the absolute position of the robot being an unobservable state.

4.3.1.3 Angular Momentum

During locomotion, another task that is of interest but an explicit trajectory was not designed

for it is the angular momentum of the robot. Angular momentum task is a part of the

optimization and it is listed in Table 4.2. Recall that when people walk, angular momentum

oscillates around zero. Motivated by this observation, the desired angular momentum for the

robot is also [0, 0, 0]. Then, the expected behavior is that the arms will make adjustments to

regulate the robot’s momentum to be zero, while still trying to reach its desired positions.

Figure 4.5 shows the angular momentum of the robot for 5 seconds while it is walking

out in the hallway. If we observe the angular momentum of the robot as seen in Figure 4.5,

we can notice that the momentum around all the axes are oscillating about zero. When the

signals are averaged over a 5 second window, we can see that they indeed are close to zero.

4.3.1.4 Robustness

To make the robot be able to walk around outdoors on uneven terrain without any support,

the walking performance must be extremely robust. Good experiments to conduct to assess

the robustness of the locomotion framework could be making the robot stay balanced while

walking across terrains with debris on the ground or aggressively pushing the robot from

side to side. If the robot can recover from these uneven and harsh treatments, it has a good

chance of being able to stay balanced and walk around outdoors as well.
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Figure 4.5: Angular momentum of the robot at its center of mass with respect to the inertial

frame. Blue is the raw signal computed from the floating base state estimation and dynamics,

while the red is an average over 5 seconds.

To evaluate the robustness of the locomotion controller, ARTEMIS was put under the

aforementioned two tests. ARTEMIS was pushed and pulled around from the front, the back,

and from the sides, as seen in Figure 4.6 and in Figure 4.7. Figure 4.8 shows ARTEMIS,

without using any perception data, able to walk on terrain with unknown, randomly posi-

tioned debris simply by detecting contact, taking the right footstep, and trying to maintain

the center of mass height and body orientation. While difficult to quantify or consistently

apply a force in reality, significant pushes were applied to the robot, as can be seen in

https://youtu.be/ZqUGCLM29Vc.

While a formal analysis on the nonlinear dynamical model is not done in this dissertation,

we can still observe important phase plots of the robot to see if the robot is robust to these

external disturbances. When the robot is not disturbed and is dynamically stable, we should
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Figure 4.6: ARTEMIS is pushed from the front, causing the robot to adaptively change its

footstep position and take a step back to maintain stability.

be able to observe a limit cycle. When a disturbance is applied, the state could diverge from

the limit cycle. However, if the robot is robust and able to recover, the state should return

back to its original limit cycle.

Figure 4.9 shows an instance where the robot is pushed backwards twice at times 113

seconds and 115 seconds. We can see that the linear velocity along the X becomes negative

(i.e. the robot is moving backwards) and the velocity along the Z also slightly becomes

positive. Especially the second push nears 1 m/s, which is a significant push considering the

robot’s inertias.

For dynamic stability and balancing, it is useful to observe the phase plots of the center of

mass height and the roll and pitch of the body. If these are stable, the robot should not have

fallen over. The phase plots for these three quantities are shown in Figure 4.10, Figure 4.11,

and Figure 4.12. The colors on these four plots signify a temporal synchronization across

the different plots. The red interval in the curves on the phase plots correspond to the red
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Figure 4.7: ARTEMIS is pushed from the back, causing the robot to adaptive change its

footstep position and take a step forward to maintain stability.

section in Figure 4.9, which happened at roughly 111 seconds into the experiment.

When disturbances were applied at 113 s (yellow to light green curve) and 115 s (green

to cyan curve), we can observe in the phase plots that the curves diverge from the original

limit cycle. However, after 116 s (starting from the blue curve onwards), the curves return

back to the original limit cycle. This confirms the robustness of the locomotion controller

on ARTEMIS.

4.3.1.5 Passivity

Recalling our assumption on the footstep planning model assuming a passive ankle, it is of

interest to see how much the ankle is actually contributing to the locomotion. Even beyond

the model we assumed for footstep planning, ankle contribution within the entire system is

a metric we can use to observe how “natural” or “human-like” our locomotion is [MK13].

As humans, we pivot about our stance foot. This allows us to take advantage of gravity and

inertia during walking [TP19]. In that sense, observing the passivity of a locomotion can

expose the efficiency of the locomotion as well as its dynamic stability, because you cannot

stay balanced without taking steps when you have passive ankles.
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Figure 4.8: ARTEMIS walking on unknown, randomly placed debris.

A measure known as the Passive Gait Measure (PGM) allows us to quantify how passive

a walk is [MK13]. PGM is defined as:

PGM = 1− RMS(τankle)

RMS(τall)
. (4.1)

In essence, it is the ratio between the root mean square of the ankle torques compared to the

root mean square of the torques at all the joints. If PGM is 1, it means that RMS(τankle) = 0

and there are no ankle torque contributions in the locomotion, hence a passive ankle. If PGM

is 0, it means that the ankle torques are the only torques in the current motion. The closer

the PGM is to 1, the closer our locomotion is to the model and the more “efficient” it is in

terms of utilizing the gravity and inertia (or momentum) for walking.

Figure 4.13 is a histogram of the passivity gait measure at each timestep during the walk

on the 3rd floor of Engineering IV. We can see that the majority of the bar is towards the

right (closer to 1), making the average PGM of the entire run 0.88. Speaking of “efficiency,”

there clearly is momentum in the middle of steps (although it averages out to 0 as discussed

in Section 4.3.1.3) and with such little contribution from the ankles, gravity is playing a

role as well in propelling the robot forward. Speaking of dynamic locomotion, this value

confirms minimal use of an actuated ankle during locomotion. As an interesting comparison,

humans [MK13] have a PGM of roughly 0.6 during single support.
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Figure 4.9: The center of mass linear velocity signals when the robot was kicked twice from

the front.

4.3.1.6 Cost of Transport

Although dynamic locomotion was the objective of this work, it is difficult to evaluate

the performance of the robot compared to existing platforms because humanoids come in

all shapes and sizes. A huge robot such as THOR has significantly longer legs than, for

example DARwIn-OP, making it easier for a taller robot to walk faster because of its greater

stride length. Therefore, it is difficult to compare performance across different platforms,

yet there is a continued effort to find common benchmarks that could be applied across

them [CGS18,TP19].

However, we can still compare the platforms on the more traditional performance indi-

cators, with Cost of Transport (CoT) being one of the more widely used. It is defined as

the ratio between the total power consumption and the product of the weight and velocity.
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Figure 4.10: The phase plot of the Z position and velocity of the robot.

Effectively, it measures the efficiency of legged locomotion [BCR12]

COT =
P

mgv
(4.2)

where P =
∑

τ × ω is the mechanical power, m is the mass of the system, g = 9.81 and v

is the linear velocity of the system.

There exist works that document the CoT of animals [Tuc75] and recently, this has been

extended to include robots as well [SWC14]. As evident from Equation (4.2), the lower this

value, the more efficient the system is. To compute the total power consumption P , we

currently only sum the mechanical power of all the joints.

Figure 4.14 shows a plot of ARTEMIS’s CoT for five seconds during the walk around the

third floor of Engineering IV. The value oscillates from 0.1 to even 1.2 momentarily. However,

when averaged over a window of 5 seconds, the CoT oscillates between 0.3 to 0.4. When

only comparing the mechanical power, this is in a similar range as biological counterparts

with similar mass as ARTEMIS [Tuc75]. Compared to platforms such as ASIMO (CoT 1.6)
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Figure 4.11: The phase plot of the roll and the roll rate of the robot.

[SWA02,SPP11], which is one of the few running humanoids, ARTEMIS’ CoT is significantly

lower. Infact, it is on par or slightly higher than platforms that were designed with energy

efficiency in mind [Wes03,GHM09]. For reference purposes, the torques applied to the robot

during those 5 seconds are shown in Figure 4.15 and Figure 4.16.

4.3.1.7 Froude Number

Another interesting metric to inspect for legged platforms is the Froude number. Defined as

Fr =
v2

gh
(4.3)

where v is the velocity of the system, g is gravity, and h is the hip height with respect to

the contact point, the Froude number is a dimensionless quantity that allows comparisons

between different species (and now robots) while considering their different sizes. Observing

Equation (4.3) closely shows that it is also infact a ratio between centripetal forces (
mv2

h
)

to gravitational forces (mg).
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Figure 4.12: The phase plot of the pitch and the pitch rate of the robot.

For record keeping purposes, when ARTEMIS was walking on the third floor of Engineer-

ing IV, the Froude number was the highest towards the end when the velocity measurement

was nearly 1 m/s. This resulted in an average Froude number of 0.135 as can be see in

Figure 4.17. At maximum walking speeds (> 2m/s) during speed walk tests, the Froude

number averaged at 0.61.

What stands out about this value is that humans have shown to transition from walking

to running at a Froude number of roughly 0.5 [Hre95] as there is a tendency to not want to

walk at a frequency higher than 2 to 3 Hz [Ush05]. Under these circumstances, the maximum

walking speed at such frequencies becomes 2.3 to 2.6 m/s [Ush05]. Assuming the Froude

number is a valid metric to compare across different legged systems, the data from humans

suggest a possible explanation behind why ARTEMIS is currently only able to walk up to

2.1 m/s.

Currently ARTEMIS can only reliably track swing trajectories when the swing time is
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Figure 4.13: A histogram of the passivity values over the course of the Engineering IV walk.

The average passivity across the run is 0.884519.

greater than 0.3 m/s. Less than that, the swing duration is too short for the foot to be

track well. Given these constraints due to tracking performance, the fastest it can walk at is

roughly 3.3 Hz. Recalling human data of being able to walk up to 2.6 m/s at 3 Hz, and that

humans, in reality, prefer to transition from walking to running as our Froude number gets

close to 0.5, ARTEMIS might be nearing its walking speed limit with the current tracking

capabilities. Instead, to achieve faster locomotion, the next step could be to transition from

walking to running when it reaches roughly a Froude number of 0.5.

4.3.2 Running

Through modulating the lift-off percentage, ARTEMIS was also able to achieve a gradual

modification of locomotion behavior from walking to running. Videos of this behavior as

well as when the swing time is modified can be seen in https://youtu.be/VRHXjum-wO4
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Figure 4.14: Cost of Transport during the run from 505 seconds to 510 seconds.

and https://youtu.be/0kCqJM4XBuA. While the analysis from walking can also be applied

to running, this section instead specifically highlights data that can only be observed and

are used in defining running. These include:

1. The center of mass position and velocity tracking along the Z direction. The center of

mass should have a smooth ballistic trajectory in the air followed by a smooth convex

shape when a leg is in contact.

2. The contact states of both feet. There should be intervals where both feet are off the

ground and not in contact with anything.

4.3.2.1 Center of Mass Position and Velocity

As previously mentioned, depending on the lift off percentage, the center of mass position

and velocity along the Z direction are automatically generated to follow a convex shape when
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Figure 4.15: Applied torques for the leg joints during walking. Notice that during walking,

significant torque is required at the hip pitch and knee pitch. Y axis for all the graphs are

torques [Nm] and X axis for all the graphs are time [s].

a foot is in contact, and a ballistic trajectory when the robot is in a flight phase. Velocities

corresponding to those position trajectories are also generated for the whole body controller

to track.

Figure 4.18 shows experimental data where the center of mass position and velocity were

generated for a step with a swing time of 0.4 s and a lift-off percentage of 70%. Hence, the

desired duration of the flight phase is 0.12 s. While the flight phase could be difficult to

easily identify by only looking at the position plot, we can quickly identify the flight phases

in the velocity graph from first principles. When the robot is falling, we should immediately

see a negative slope in the velocity graph. Inspecting its duration, we can see that in most

situations, the flight phase is just short of 0.12 s and a flat velocity line is generated. This

is indicative of an early touchdown (i.e. the robot did not have as long of a flight phase),
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Figure 4.16: Applied torques for the arm joints and the neck joint during walking. It is

noticeable that nearly no torque is applied at the arms and the neck right now during

walking. Y axis for all the graphs are torques [Nm] and X axis for all the graphs are time

[s].

which can also be seen in the flat artifacts on the position plot as well. Because the current

approach assumes a symmetric, convex position trajectory when in stance and constant

velocities outside the symmetric region, such artifacts are visible.

It is interesting however that despite the robot lifting off from the ground at a vertical

velocity greater than what is planned to achieve a desired flight phase, the robot still comes

in early touchdown. This could be due to various reasons, but one noticeable issue was the

ankle pitch tracking performance as the feet were swinging up and down while the robot was

also in flight phase. We assume the pitch of the foot to be parallel with the ground it lifted

off of, but if the tracking performance is poor, the feet came in contact with the ground

earlier than planned. Another possible issue could again be the state estimator, as earlier
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Figure 4.17: Froude number during the run from 505 seconds to 510 seconds.

explained in Section 4.1.

4.3.2.2 Contact States for Running

The second part of running is having intervals in time where all the feet are off the ground

and not in contact with anything else. This can be seen in Figure 4.19. When a foot is in

contact with the ground, the signal is 1 while when it is not in contact, it is 0. These are

raw values from the contact module that determine whether we are in contact or not purely

based on the sensor signals or from the estimation.

It is clear that there are times when both the left foot and the right foot’s contact status

is set to 0, which corresponds with the times when the velocity graph in Figure 4.18 has a

negative slope. This confirms that the robot does indeed have a flight phase and is running.

A noticeable anomaly in Figure 4.19 however is the momentary loss in contact after the

initial early touchdown. This is a consequence of the foot coming in contact with the ground
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Figure 4.18: Center of mass position and velocity along the Z direction during running.

from a flight phase and then momentarily bouncing off it just enough to make the contact

module determine that it lost contact before it determines it is in contact once again. This

was left as is because this module is to serve as simply an interface to either the raw sensor

values or the contact estimator. To deal with this, a debouncer exists to remove “contact

noise” prior to sending the contact status to the locomotion framework.

This resulted in the first humanoid that can run and was developed completely in

academia to the best of my knowledge. The first running in place can be see in Figure 4.20

which shows a sequence of single support on the left leg (frame 1), flight phase (frame 2),

single support on the right leg, flight phase (frame 5), and back to single support on the

left leg. Notice how when in contact (frame 3-4 and frame 6-7), the body (i.e. the center of

mass) drops down. This is exactly the trajectory that was desired, which the robot follows

until pushing off to get back into flight. A video of ARTEMIS running on a gantry can also

be seen in https://youtu.be/NImT1uGdHCU.
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Figure 4.19: Contact status of the left and the right foot. When the foot is in contact, the

signal is 1 and when the foot is not in contact, the signal is 0. Each foot come in early

contact with the ground, momentarily losing contact as the foot bounces. However, this is

filtered out by the debouncer.

Lastly, as an interesting comparison against walking, we can compare the torques applied

at the robot. One clear difference between walking and running is that during running, the

robot is colliding with the ground at a higher velocity than when walking. To dampen this

behavior, we designed a symmetric convex center of mass trajectory. During this sequence

however, the knee pitch actuators exhibit close to 150 Nm of torque during stance as seen in

Figure 4.21 (compared to ranging from 50 to 100 Nm in Figure 4.15) to successfully decelerate

the body and change its velocity direction. Additionally during running, the body would also

noticeably rotate about its body’s Z axis, as little can be done to correct its yaw orientation

while in flight. Therefore, the majority of the correction had to be done while a foot was in

stance and this can be seen in the hip yaw actuators’ torques, which are significantly higher

than those in Figure 4.15.
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Figure 4.20: Snapshots of ARTEMIS running in place. Frames 2 and 5 correspond to the

robot being in flight phase. Frames 3 and 4 show how the body drops when in contact. The

same can be see in Frames 6 and 7. Note that ARTEMIS is also capable of wearing ordinary

shoes where here, ARTEMIS is wearing the Nike Zoom Mercurial Superfly 9 Elite CR7 FG

soccer shoes.
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Figure 4.21: Torques applied at the legs while running. Y axis for all the graphs are torques

[Nm] and X axis for all the graphs are time [s].
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CHAPTER 5

What’s Next

5.1 For ARTEMIS

5.1.1 Highly Dynamic Behaviors

The initial motivation behind ARTEMIS was a platform that can do hyper dynamic motions.

This dissertation focused on the first “step” of this effort, which is the ability to robustly

walk and run, which in the case with ARTEMIS, is a controlled repetition of falling and

catching itself. Now, to fulfill the desire to achieve hyper dynamic motions, the task of

actually generating these behaviors still remain.

My initial efforts were to solve a nonlinear trajectory optimization problem to include

the complete dynamics of the model. These efforts, unsurprisingly, had varying degrees of

success because of multiple factors:

1. The problem is nonlinear, which often makes finding a feasible solution a challenge to

begin with.

2. Finding a solution can also take anywhere from tens of seconds for simpler problems

to tens of minutes for more complex behaviors, making the iteration time consuming.

3. It requires expert knowledge of the platform’s limitations and understanding of the

desired motion to make it work on the platform.

Using the above approach, solutions for simple jumping and turning 180° sequences or

front/backflips are currently achievable. However, since the ARTEMIS project was originally
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planned to realize hyper dynamic motions on hardware, the goal is to still achieve non-

conventional jumps and twists in the air on hardware.

In that regard, two future areas of investigation to achieve highly dynamic behaviors

include:

1. Generalizing the motion generation pipeline such that it does not require expert knowl-

edge and experience with the platform, which also opens up possibilities for generalizing

to different platforms.

2. Developing robust controllers that can track potentially complex and rapidly changing

trajectories.

5.1.2 Path Planning

ARTEMIS is capable of robustly walking and running to places given an operator’s com-

mands. This work has shown that even without perception data and in presence of significant

obstacles on the ground, ARTEMIS is capable of staying balanced and catching itself from

falling when it steps on an unexpected debris. This is because of the reactive nature of

ARTEMIS’ locomotion stack.

The next step forward then, is to remove the operator from the loop. Currently, ARTEMIS

can robustly move from point A to point B, but which path to take still remains an unfin-

ished task. As simple as it may seem where a naive thought might be to just command

SE(2) commands assuming ARTEMIS is a wheeled mobile platform, in that case, it would

be implementing a solved path planning problem to the robot.

However, to stay better aligned with the goal of making ARTEMIS a hyper dynamic

platform, path planners that also take into account of ARTEMIS’ hardware capabilities could

be a challenging, yet intriguing problem to tackle. Rather than running down a narrow alley

and turning 90° in place at a right-angled path while maintaining the body’s roll and pitch

angles, why not roll about the body and walk along the walls to re-direct the momentum

as opposed to lose it by stopping and turning? For platforms that are not capable of such
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hyper dynamic motions, it would be difficult to imagine planning such a path in the first

place. With ARTEMIS, its locomotion performance on contact surfaces whose normal vector

is similar to the gravity vector suggests that robust locomotion could also be possible when

the terrain’s normal vector is significantly different to gravity. This is not only limited to

ARTEMIS, but also opens up an exciting next step in the field of path planning for hybrid

systems.

5.1.3 Perception-based Locomotion

The current work is limited in that ARTEMIS is unable to walk and run across terrains that

require precise footstep placements. This includes stairs, or in a more general sense, terrains

consisting of stepping stones, defined as the only regions that the robot can place its feet.

To accomplish this task, the first requirement is perception data to inform the robot of safe

regions that the feet can be positioned, which can be obtained from either the stereo camera

on the head or the two located at its body as seen in Figure 5.1 and Figure 5.2.

After the perception data becomes available, the next challenge is to find the right balance

between placing the feet in safe regions (which are non-negotiable to prevent the robot from

falling), and still making the robot follow a path. This could be a challenge because due

to the lack of a degree of freedom in ARTEMIS’ leg, it is limited on where it can place its

swing foot while still staying balanced on a single foot and not going unstable with the next

touchdown.

To overcome this limitation, a longer horizon footstep planning can be helpful, where

similar to the one-step ahead footstep planning, an N -step ahead planning can be done in

tandem with the available perception data. This would allow the robot to prepare in advance

before coming to a situation where the foot must land in a safe region.

An additional area that perception data could be beneficial is in state estimation. Cur-

rently, the position states of the robot’s floating base are unobservable, causing significant

drift in the world frame. If perception data is fused with the state estimation in the context

of localization, all the states become observable. However when localization is not needed,
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Figure 5.1: Stereo vision from the ZED 2 camera on ARTEMIS’ head can be used for

perception-based planning.

we could instead use perception data only along select axes to prevent drift from happening

along those axes. An example of this fusion that could be done immediately is the floating-

base Z position when just walking on flat ground. When the robot is walking along the

hallway, its Z position in the world frame continues to move up and down due to a combi-

nation of drift, as well as early touchdowns / late touchdowns, which makes the estimator

think it is stepping up / stepping down, as seen in Figure 5.3. By using the distance from

the body to the contact surface —which should minimally be changing when walking mostly

on flat ground —as another measurement information in the estimation, a greater subset of

the floating base’s pose and velocities can be better estimated.
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Figure 5.2: Stereo vision from the ZED 2 on the head and the two Intel RealSense D435i

stitched together to generate a point cloud of the surrounding environment.

5.2 Beyond ARTEMIS

The learnings obtained from the development of ARTEMIS, a humanoid that can walk, run,

and also achieve hyper dynamic motions in the future, go beyond just humanoids. Below

are some potential areas of work that are less directly related to ARTEMIS, but are areas of

potential future collaboration and work that researchers from other fields could not partake

in.

5.2.1 Modeling Contacts

Personally, one of the biggest lessons learned throughout this work was experiencing first-

hand the difficulty with realizing ideas on a physical hardware, making hardware implemen-

tation a significant part of this work as well. During this process tho, it was also evident

that testing in a simulated environment is difficult to gauge the success of a locomotion

controller, mostly because many times it took significant work to get it also working on
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Figure 5.3: Center of mass height during the walk on the third floor of Engineering IV.

Although the robot’s CoM position relative to the ground was consistently at roughly 0.73

m, because the absolute position of the robot’s base frame drifts, we can observe that the

center of mass Z position in the world frame also drifts downwards during the middle of the

run and climbs back up.

hardware. However, interestingly, the difficulty of stabilizing the system between different

simulators also existed.

Simulators will be wrong, but they are supposed to be helpful. Yet, many times, that

was not the case based on the amount of effort required to transfer a working controller from

simulation to reality. Hence, it may be worthwhile to evaluate why this may be the case, be-

cause the gap between simulation and reality is often discussed in the learning communities,

but is considerably less highlighted in robotics.

More specifically, one of the most notable differences between the two worlds is how

contacts behave in the real-world, compared to how they are modeled in simulation. Even

116



across the different simulators, the way they model contact differs [KSJ08,Tod14,HLH18].

For applications that experience repeated contacts, such as with legged robots or humanoids,

the inevitable inaccuracies in the modeling could be exacerbated in the resulting behavior

of the robots. This was observed when additional tuning was required just when switching

between different simulators for ARTEMIS.

In fact, this issue could be a recurring issue in other fields of robotics where collision

checking is important, such as the field of dexterous manipulation and grasping. Although

repeated engaging and disengaing of contact points will be less than for a walking robot, the

sheer number of simultaneous contacts occurring to grasp onto an object will be more. An

inaccurate simulation could inadvertently signal contact or enforce contact constraints when

in reality, that might not be the case, resulting in the object being dropped.

In that regard, based on my experiences throughout this work, a continued effort into the

development of simulation environments and contact modeling, where particularly contact

between one or more bodies with high acceleration are considered, could be beneficial to the

robotics community in the future. It may be true that a single solution does not exist as

the contact problem is a trade-off between computational efficiency and solution accuracy.

In that case, even a burgeoning benchmark or community that investigates the applicability

of the different approaches to different applications could significantly help guide future

researchers in choosing a more realistic environment to simulate and iterate their control

approaches before deploying on hardware.

5.2.2 Learning and Control Intersection

On a similar note, it is difficult to perfectly model everything and testing on hardware all

the time is a luxury most researchers cannot afford. However, successful state-of-the-art

approaches in robotics still heavily rely on model-based control which, as its nomenclature

suggests, requires some form of a model at the end of the day. Through ARTEMIS, what

I learned about model-based control was how sensitive the control actually is to the model.

Changes in the center of mass position of a single rigid body just by centimeters in the rigid
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body chain prior to calculating inverse dynamics had drastically different behaviors in the

robot even just for balancing tasks.

While there exists works that consider robustness [KSM20] or stochasticity [LDT16],

another approach could be adopting learning-based approaches within the pipeline [ACT22].

While recognizing that the model will never be perfect, one area of future work that would

be beneficial in any robotics field that relies on a model would be a continual learning of

the model. We may think that learning of a model can be more effective in systems whose

model could indeed be rapidly changing [CAN21]. However, while it may not be as rapid,

even systems such as ARTEMIS, which is supposed to be a rigid body system, did face

gradual changes on the hardware over time. Compared to when it was first assembled, the

joints in the system gradually became “smoother” (resulting in a change in the joint friction)

and the backlash on the actuators also worsened. These changes overtime are captured in

the logs that were continuously recorded and could have been used for better modeling of

the robot.

Additionally, nonlinearities in the models often prohibit their usage in online planning

and control because of the computational burden associated with them. Although efforts

to speed up nonlinear optimization and control for usage in an online fashion exist, one

approach could be to adapt the linear models which are constructed using data-driven or

learned methods to continue to enjoy the plethora of existing methodologies in linear control

theory. This could be a more incremental step towards end-to-end learning-based control

approaches as the intermediate steps can be more modular and interpretable when based on

measuring the amount of complexity between the input and the output of the system.

5.2.3 Human-Robot Interaction (HRI)

With the stability in balancing and locomotion that ARTEMIS provides, along with its

adult-sized anthropomorphic body, ARTEMIS could also be an intriguing platform to utilize

to reach out into topics beyond hyper dynamic motions, with one of them being human-robot

interaction. The first component of that could be the reception of such dynamically moving
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humanoids in close proximity to us. As robots become more ubiquitous in our society, how it

will interact with humans such that its presence is amicable rather alarming is an inevitable

task to be solved. Robots will come in all shapes and sizes and understanding what can

work in the vicinity of humans (beyond just functionality) will be critical in their adoption.

Based on my experiences through 8 years of live robot demonstrations of nearly 20 differ-

ent robotic platforms, the designs and interaction methods that people were attracted to were

mostly universal. The robots that were adored 8 years ago are still adored the most today

(e.g. DARwIn-OP, LARA), while platforms that at least I expected to have less attention

(e.g. BALLU) received just as much interest from the general public through close-up inter-

actions (including physical contacts). With ARTEMIS, when it was first demonstrated to

the general public through the ANA Avatar XPRIZE competition in 2022 and more recently

across the campus in the UCLA, it received mixed responses from people.

What is particularly interesting, especially between DARwIn-OP, LARA, and BALLU,

are that clearly looks are not everything. As DARwIn-OP and LARA takes an anthropomor-

phic shape with a cartoon-ish face, its looks could be a dominant factor in their welcomed

reception. However, BALLU does not have noticeable features. Possibly, the words that

people generally associate with “balloons”, such as soft or fun, could be the ingredients for

its popularity among people. With ARTEMIS, personally I feel that it commands attention

(regardless of whether it is a positive or a negative reception) when its foot swing times are

relatively faster than a human (under 0.5 seconds), whereas when it is closer to that of a

human, it is easy to forget that it is there (which again could be good or bad depending

on the situation). In that regard, evaluating the correlation between the speed that robots

move and people’s perceptions on different feelings such as safety or intrusiveness could be

an interesting future research direction. Potentially interested researchers could easily use

a turnkey platform like ARTEMIS to conduct tests and gather data to get further insights

on how these robotic platforms could seamlessly be a part of our lives. What type of costs

that consider interaction or emotion, which are completely different to locomotion trajectory

costs, when generating motions to seamlessly blend in with people could be another inter-

119



esting research direction. Additionally, as the current platform lacks components purely for

aesthetics, this too could be an area where researchers in HRI that are more focused on

industrial design could delve into. At what point do some of the aesthetics start to get close

to the “uncanny valley,” whether that uncomfortable-ness purely stems from aesthetics, and

how these appearances could generalize to beyond humanoids while not looking like your

everyday home electronics (e.g. looking like Baymax as opposed to a walking computer) are

some of the numerous questions that a platform like ARTEMIS could be utilized to help get

closer to a better understanding on interactions between a robot and a human.

5.2.4 Synthesizing Motions

One of my learnings from ARTEMIS is that as the work was on humanoids, a significant

amount of time was spent on understanding what humans do, whether it is how we walk, run,

swing our arms, or even just simply clap. It is incorrect to assume that what we do should

all transfer over to a robot. However, what could be claimed is that we can try to better

understand what humans do and that certainly can inspire the design of controllers, gait

patterns, arm motions, and even regulating angular momentum to zero. These experiences

make me think that better understanding the motions we generate can be beneficial even

beyond ARTEMIS.

Better understanding behaviors or intents from motions could be beneficial in multiple

fields. It could be used to understand what is coming next for trajectory optimization

problems to utilize them in the field of model predictive control. Equally they could be used

in an HRI context to properly respond to how people are behaving. To generate stylistic

trajectories that give a sense of elegance in the motions, which could make the difference

between a mime or a dance, being able to decompose the core properties that govern the

motion rather than just simply space and time, could be useful.

For example, the scale at which motions happen and at what speed, can imply what the

ensuing motion will be. Additionally, the differences in the spatial and temporal aspects of

a motion can also signal emotions and intents. The legs crouched down and then pushing
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off the ground with the arms also reaching upwards can be a sequence of motions to take

before a big jump to reach high into the air. Slight differences in this trajectory’s spatiotem-

poral properties could make the motion signify someone jumping because of joy or someone

being surprised. Identifying the features that distinguish a jump of joy as opposed to a

surprised motion could instill more life into humanodis and other robots used for HRI and

animatronics.

We could experience the upside of such research in our daily lives as well. If image

data could be solely used to understand these motions, surveillance cameras in our homes

could take preemptive action by detecting suspicious activity and alarming the right people

before an incident happens rather than simply logging or reacting to a situation after it has

occurred. In situations where the information can only be primarily passed through motions,

such research could be useful as well. For example, rather than people manually conducting

traffic control when there are incidents on our streets, manipulator arms could do it with

the right spatiotemporally modified trajectories to properly inform passing drivers.

Therefore, such research would be exciting to pursue in the future from both a continued

motion generation research for HRI or humanoid platforms like ARTEMIS, as well as for the

deployment of such technologies into our everyday lives.
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CHAPTER 6

Conclusion

With many other labs in academia, research institutions, and now even companies developing

their own humanoids, my instinct is that these platforms could be in a similar situation

that quadrupeds were in late-2017, where hardware and software for humanoids could be

converging to a similar style. This could lead to a proliferation of this technology not too

distant in the future, just as we are witnessing a growing number of quadrupeds being

productionized by multiple companies. With humanoids, their existence in our everyday

lives could be an inevitable future because they could provide unparalleled flexibility in

terms of the work they do. While I do not think the timeline will be anything close to what

we are seeing with quadrupeds, I do believe that this could be the dawn of a new era for

humanoids. Given such a situation, my hope is that this dissertation contributes to the

beginning of a proliferation of these new platforms.

To achieve such goals, we also need more passionate and interested engineers and re-

searchers to join in on this journey. In hopes of making that process easier, this dissertation

tried to be informative to beginners by starting out in Chapter 1 with a brief history of

the field of legged robots and humanoids. This discussion includes relatively recent history

as well, as it also covers the direction that modern platforms are headed towards in terms

of both design and control. Afterwards, we directly dive into our platform in Chapter 2

to explain its features that embody these new design ideas, that will also enable modern

control approaches to be applied. Then in Chapter 3, one of the earlier motivations behind

this work is further explained in detail, where the dynamic locomotion stack built to be run

on a modern platform is presented. Based on my experience, often times, implementation

details and unrevealed know-how’s are required for an algorithm to successfully perform. In
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Chapter 4, the necessary details for future researchers to start from as well as the results

based on our experiments are shared. Lastly, because I believe this is just the beginning

for the field of modern humanoid robots, some future works directly pertinent to ARTEMIS

as well as some that are less so are discussed in Chapter 5 in hopes of continued progress

with this platform, humanoids in general, as well as collaboration with other fields such

biomechanics, sociology, or even media and art!

To be honest, I find it a bit sad naming this section as a “Conclusion,” because I do

strongly believe this is just the beginning and a word like “Commencement” might be more

appropriate! ARTEMIS, at the time of this dissertation, is frequently taking walks around

the UCLA campus without a support gantry as seen in Figure 6.1, is becoming a surprise

guest in many schoolwide events, and has definitely now stepped out of its comfort zone

inside the lab. These moments, along with other humanoids’ performances in general, make

me believe even more that this is truly a beginning of an exciting new chapter for humanoids!

To those that have allowed me to start this work from where it could start from, as well

as those that will now start from where I personally conclude, thank you for helping push

this technology forward! I took my “step” with this work in this field and to now let you

have a go at pushing this forward, I will conclude my dissertation. Thank you. :)

ARTEMIS Official Launch Video: https://youtu.be/gTkupawAG6w
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Figure 6.1: ARTEMIS taking a stroll just outside of Royce Hall.
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APPENDIX A

Ignored Collision Combinations

The following collision combinations are ignored because either they never happen or because

they are adjacent links. By removing the majority of the collision combinations, we are able

to check for self-collisions at 1,000 Hz.

Link 1 Link 2 Reason

Body Left/Right Hip Roll Adjacent

Body Left/Right Hip Pitch Never

Body Left/Right Femur Never

Body Left/Right Tibia Never

Body Left/Right Foot Never

Link 1 Link 2 Reason

Left Hip Roll Left Hip Pitch Adjacent

Right Hip Roll Right Hip Pitch Adjacent

Left/Right Hip Roll Left/Right Femur Never

Left/Right Hip Roll Left/Right Foot Never
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Link 1 Link 2 Reason

Left Hip Pitch Left Femur Adjacent

Right Hip Pitch Right Femur Adjacent

Left Hip Pitch Right Femur Never

Right Hip Pitch Left Femur Never

Left Hip Pitch Left/Right Foot Never

Right Hip Pitch Left/Right Foot Never

Link 1 Link 2 Reason

Left Femur Left Tibia Adjacent

Right Femur Right Tibia Adjacent

Left Femur Right Femur Never

Right Femur Left Femur Never

Left Femur Left/Right Foot Never

Right Femur Left/Right Foot Never

Link 1 Link 2 Reason

Left Tibia Left Foot Adjacent

Right Tibia Right Foot Adjacent
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APPENDIX B

Inertial Parameters

The inertial parameters follow the Universal Robot Description Format (URDF) convention.

The right leg and the right arm are not shown for brevity.

Link Mass [kg] CoM [m] ixx ixy ixz iyy iyz izz

Body 11.8028

x = −0.0679

y = 0.0018

z = 0.1450

0.3679 0.0 -0.0147 0.3861 0.0 0.2171

Link Mass [kg] CoM [m] ixx ixy ixz iyy iyz izz

Neck Bottom 0.3

x = 0.0

y = 0.0014

z = −0.0012

0.0001 0.0 0.0 0.0002 0.0 0.0001

Neck Top 0.1818

x = −0.0010

y = −0.0557

z = 0.0

0.0004 0.0 0.0 0.0004 0.0 0.0005
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APPENDIX C

Joint Position and Torque Limits

The hard limits are the limits based on the hardware and the soft limits are those set in the

software. Note that only the limits for the left leg and arm are shown as it is symmetric on

the right.

Joint Name Hard Position Limits [rad] Soft Position Limits [rad]

Hip Yaw [-0.5, 2.0] [-0.4, 0.9]

Hip Roll [-1.0, 2.0] [-0.6, 0.6]

Hip Pitch [-2.6, 1.0] [-2.0, 0.7]

Knee Pitch [0.375, 2.82] [0.28, 2.3]

Ankle Pitch [-1.25, 0.64] [-1.3, 0.7]

Shoulder Pitch - [-3.2, 3.2]

Shoulder Roll - [-1.6, 1.4]

Shoulder Yaw - [-3.2, 1.6]

Elbow Pitch - [-3.0, 0.1]

Neck Pan - [-1.6, 1.6]

Neck Tilt - [-0.7, 1.7]

Table C.1: Joint position limits.
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Joint Name Peak Torque [Nm] Soft Torque Limit [Nm]

Hip Yaw 90.0 59.004

Hip Roll 90.0 59.004

Hip Pitch 250.0 167.0

Knee Pitch 250.0 167.0

Ankle Pitch 28.0 16.929

Shoulder Pitch 30.0 30.0

Shoulder Roll 30.0 30.0

Shoulder Yaw 30.0 30.0

Elbow Pitch 30.0 30.0

Neck Pan 11.0 11.0

Neck Tilt 11.0 11.0

Table C.2: Joint torque limits.
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