
UCLA
UCLA Previously Published Works

Title
Towards understanding speaker discrimination abilities in humans and machines for text-
independent short utterances of different speech styles.

Permalink
https://escholarship.org/uc/item/1nh5v8j1

Journal
The Journal of the Acoustical Society of America, 144(1)

ISSN
0001-4966

Authors
Park, Soo Jin
Yeung, Gary
Vesselinova, Neda
et al.

Publication Date
2018-07-01

DOI
10.1121/1.5045323
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1nh5v8j1
https://escholarship.org/uc/item/1nh5v8j1#author
https://escholarship.org
http://www.cdlib.org/


Towards understanding speaker discrimination abilities
in humans and machines for text-independent short utterances
of different speech styles

Soo Jin Park,1,a) Gary Yeung,1 Neda Vesselinova,2,b) Jody Kreiman,2,b) Patricia A. Keating,3

and Abeer Alwan1

1Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles,
California 90095, USA
2Department of Head and Neck Surgery, School of Medicine, University of California, Los Angeles,
Los Angeles, California 90095, USA
3Department of Linguistics, University of California, Los Angeles, Los Angeles, California 90095, USA

(Received 8 January 2018; revised 21 May 2018; accepted 17 June 2018; published online 26 July
2018)

Little is known about human and machine speaker discrimination ability when utterances are very

short and the speaking style is variable. This study compares text-independent speaker discrimination

ability of humans and machines based on utterances shorter than 2 s in two different speaking styles

(read sentences and speech directed towards pets, characterized by exaggerated prosody). Recordings

of 50 female speakers drawn from the UCLA Speaker Variability Database were used as stimuli.

Performance of 65 human listeners was compared to i-vector-based automatic speaker verification sys-

tems using mel-frequency cepstral coefficients, voice quality features, which were inspired by a psy-

choacoustic model of voice perception, or their combination by score-level fusion. Humans always

outperformed machines, except in the case of style-mismatched pairs from perceptually-marked speak-

ers. Speaker representations by humans and machines were compared using multi-dimensional scaling

(MDS). Canonical correlation analysis showed a weak correlation between machine and human MDS

spaces. Multiple regression showed that means of voice quality features could represent the most

important human MDS dimension well, but not the dimensions from machines. These results suggest

that speaker representations by humans and machines are different, and machine performance might

be improved by better understanding how different acoustic features relate to perceived speaker

identity. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5045323

[MIM] Pages: 375–386

I. INTRODUCTION

The human voice acts as a biometric that distinguishes

individuals from one another, but it is a behavioral biomet-

ric, which makes it prone to variability. For example, various

factors such as the speaker’s mood, health condition, and

speaking style influence the acoustic characteristics of

speech sounds. This can lead to confusions for both humans

and machines when distinguishing one individual from

another (Hansen and Hasan, 2015; Kreiman and Sidtis,

2011; Schweinberger et al., 2014). Thus, it is important to

analyze human and machine performance in distinguishing

speakers under such conditions of variability. This study

investigates one of the most basic tasks in distinguishing

speakers: deciding whether two speech samples came from a

single speaker or from two different speakers. This task is

referred to as speaker discrimination in human perception

studies and as speaker verification in automatic speech pro-

cessing studies. In particular, we focus on comparative

effects of within-speaker variability in phonetic content and

speaking style when utterances are very short (<2 s), and on

the differences between perceptual and computational strate-

gies that might account for performance differences.

A. Human speaker discrimination

For humans, discriminating unfamiliar voices is a sepa-

rate decision-making process from recognizing familiar voi-

ces (Van Lancker and Kreiman, 1987). While familiar

speaker recognition can be thought of as a gestalt-matching

task, unfamiliar speaker discrimination additionally involves

acoustic feature comparisons. This study uses unfamiliar

speaker discrimination in order to analyze the acoustic features

related to speaker identity. Several studies have shown that the

perception of an unfamiliar voice requires both a generic speaker

pattern that acts as a mental reference and a speaker-specific pat-

tern that deviates from that reference (Kreiman and Sidtis, 2011,

Chap. 5.3.4). Such a standard pattern, acquired over a lifetime,

includes both how human voices generally sound and what

aspects of speech are related to the speaker’s identity.

Even though results vary widely depending on the

experimental protocol used, humans are reasonably accurate

at distinguishing unfamiliar speakers even with short utteran-

ces. For example, Kreiman and Papcun (1991) found that

humans were 82.36% accurate in a speaker discrimination

task with single-sentence (�2 s) pairs. Human performance
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generally improves as the utterance length increases until

it plateaus with utterances longer than 60 s (Bricker and

Pruzansky, 1966; Legge et al., 1984). Authors disagree on

why longer stimuli produce better results. Roebuck and

Wilding (1993) found evidence supporting the hypothesis

that the advantage of longer stimuli is in broader coverage of

phonetic content. However, Cook and Wilding (1997)

argued that the critical factor was not the number of different

sounds heard, but rather the duration of the utterances due to

speaker-specific prosody, speaking rate, and other non-

phonemic aspects of the speech signal that are present in lon-

ger utterances (Kreiman and Sidtis, 2011, Chap. 7.3.1).

The effect of speaking style variability on human speaker

discrimination has not been studied extensively. Studies in

forensic speaker identification note that a speaking style mis-

match between a criminal’s voice heard at a crime scene and

speech samples collected in a voice lineup (e.g., shouting ver-

sus reading) might confuse earwitnesses (see Jessen, 2008). In

a speaker discrimination context, we expect such speaking

style variability to cause a significant performance degradation

based on results from a few studies dealing with emotion vari-

ability (e.g., Saslove and Yarmey, 1980). In that study, when a

target voice changed tone (related to emotion or affect), mean

“hit-miss” and “false alarm-correct rejection” scores decreased

significantly.

B. Machine speaker verification and how it compares
to human speaker discrimination

State-of-the-art automatic speaker verification (ASV)

systems are typically pre-trained with large amounts of data

from a large number of speakers. Hundreds of hours of

recordings are used to train a statistical model for human

speech, called a universal background model (UBM,

Reynolds et al., 2000). A widely-used feature set for the sta-

tistical modeling is based on mel-frequency cepstral coeffi-

cients (MFCCs), which approximate the spectral envelope of

the speech signal. A new utterance can be thought of as a

deviation from the UBM. The nature and extent of the devia-

tion, however, will be influenced by both speaker-specific

and utterance-specific information. Thus, these systems need

to minimize within-speaker variability while maximizing

between-speaker variability. Hundreds of additional hours of

recordings are used to train a subspace onto which the devia-

tion is projected. The projected low-dimensional vector,

referred to as an i-vector (Dehak et al., 2011), is thought to

represent speaker identity. When the system receives a pair

of speech samples as inputs, an i-vector is found for each

utterance. Then, the likelihood that the i-vectors represent

the same speaker is calculated based on the pre-trained

model and subspaces. Probabilistic linear discriminant anal-

ysis (PLDA, Kenny et al., 2013) is often used to calculate

this likelihood. The system then applies a threshold to the

likelihood to make a same versus different speaker decision.

Automatic speaker discrimination can be viewed as

analogous to perceptual speaker discrimination, although the

latter is much more complicated than statistical pattern rec-

ognition based on frame-level features. That is, the pre-

trained UBM and subspaces are analogous to a human’s pre-

existing idea of the average speaker model and the manner in

which a new voice differs from it. Such a model represents

the life-long experience of the listener with voices, with inter-

nal structuring that is not yet understood. Despite this anal-

ogy, however, differences presumably exist between the

speaker-distinguishing strategies used by humans and

machines as evidenced by poor machine performance for dif-

ficult tasks. Challenging conditions include very short utteran-

ces (<2 s), text-independent tasks, and speech spoken in

different styles.

Although machines outperform humans on long utteran-

ces in certain conditions (e.g., Hautam€aki et al., 2010; Kahn

et al., 2011), their performance on short utterances is seem-

ingly worse than that of humans. For example, a state-of-

the-art text-independent ASV system using MFCCs was

97.60% accurate at discriminating speakers with 2.5-min-

long pairs, but it was only 89.48% accurate with 5-s-long

pairs, and performance worsened to 77.69% accuracy with

2-s-long pairs on the National Institute of Standards and

Technology (NIST) speaker recognition evaluation (SRE)

2003 database (Das and Prasanna, 2016), compared to

82.36% for humans hearing short utterances, as noted earlier.

Similar performance degradation was observed in our previ-

ous study on the SRE 2010 database, which showed 97.11%,

83.10%, and 71.53% accuracy for 2.5-min, 5-s, and 2-s-long

pairs, respectively (Park et al., 2017). As mentioned above

concerning human performance, one reason for the degrada-

tion with shorter utterances could be that there is insufficient

phonetic coverage for the machines to infer appropriate sta-

tistics. Text dependency also affects machine performance.

For example, when utterances are short (<10 s), matching

phonetic content by using same-text pairs yields error rates

that are approximately half those of the text-independent

pairs (Das et al., 2016; Park et al., 2017). One exception

occurs when short digit sequences (<2 s) are used. In that

limited-vocabulary case, performance can reach 95% accu-

racy or higher (Larcher et al., 2014).

Although the effect of speaking style mismatch has not

yet been studied extensively in ASV communities, some stud-

ies on emotion variability are available. For example,

Parthasarathy et al. (2017) reported that an emotion mismatch

between utterances degraded ASV system performance,

which worsened as the utterance length decreased from 11 to

2.75 s for naturalistic (not acted) expressive voices. However,

because that study did not compare matched emotion condi-

tions, the amount of degradation that can be attributed to

emotion variability is not clear. In Nakasone and Beck (2001),

it was noted that the performance of a speaker identification

system degrades when trained with spontaneous speech and

tested on reading, compared to when spontaneous speech was

used for both training and testing, even though the utterances

were long (29 s). The system was a closed-set speaker identifi-

cation task, which is not directly comparable to speaker verifi-

cation tasks, but it is expected that ASV performance might

also decrease due to speaking style differences.

Considering that performance degrades in text-

independent ASV mainly due to the sensitivity of MFCCs to

phonetic content, various features that are thought to be less

sensitive to such variability might improve system performance
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(Das and Prasanna, 2017). For example, Das and Prasanna

(2016) used features derived from the linear prediction residual

signal to represent voice source characteristics. These features

improved the system performance by providing additional or

complementary information to conventional cepstral features

on text-independent tasks when the speakers were modeled

with 2.5-min-long utterances and tested with short utterances

(2–10 s). Other studies have shown that the phase components

of a speech signal are important for speaker identity (Vijayan

et al., 2016), and such information could be used for text-

independent long-utterance ASV. Approaches to capturing

speaker-specific prosody have also been proposed (Dehak

et al., 2007; Reynolds et al., 2003; Shriberg et al., 2005). The

effectiveness of phase and prosodic features evaluated on long-

utterance (>1 min) text-independent ASV in these studies sug-

gests that they might provide additional speaker information

for short-utterance tasks as well.

In our recent work (Park et al., 2016; Park et al., 2017),

we used voice quality features that were inspired by a psycho-

acoustic model of voice perception that accounts for per-

ceived voice quality (Kreiman et al., 2014). This set of

features was applied to short-utterance (<2 s) text-

independent ASV, and it successfully improved system per-

formance by providing complementary information to con-

ventional cepstral features.

If humans are more accurate than machines in distin-

guishing speakers from short utterances that include large

phonetic variability, understanding speaker perception strat-

egies might help improve machine performance. The above-

mentioned studies provide general ideas about how well

humans and machines perform under various conditions.

However, to our knowledge, a direct and detailed compari-

son between human and machine speaker discrimination

under conditions of within-speaker text- and speaking-style

variability and using very short utterances has not yet been

made, in part because we lack proper databases to undertake

such studies. Recently, a database was developed at the

University of California, Los Angeles (UCLA) to represent

both within- and between-speaker variability and recording ses-

sion variability (see Keating et al., 2018; Kreiman et al., 2015).

The UCLA Speaker Variability Database includes a large num-

ber of speakers (currently 103 female and 105 male students at

UCLA, aged 18–37; mean age 20), with multiple recording ses-

sions and varying phonetic content, speaking style, and affect

conditions per speaker, reflecting normal, daily-life variations

in voice quality. For the present study, very short speech sam-

ples (<2 s) with high cross-task variability were selected to

probe the limits of both humans and machines when confronted

with high within-speaker variability.

This study addresses the following questions: (1) how

much do human and machine performance degrade when

utterances are very short (<2 s), phonetic content varies and

style variability is large? (2) What is the performance gap

between humans and machines in such conditions? (3) What

is the difference in the features and strategies used by

humans and by machines? The main focus is on exploring

the effect of including psychoacoustically-valid acoustic

indices of voice quality in ASV, given that these features

specify voice quality for human listeners.

The rest of the paper is organized as follows. In Sec. II,

we describe the databases used in this study. In Sec. III, we

present human speaker discrimination results, while in Sec.

IV we describe analyses of the performance of ASV systems

on the same stimuli given to human listeners. In Sec. V,

human and machine performances are compared, and the dif-

ferences between human speaker discrimination and machine

speaker verification are analyzed. The paper concludes with a

summary and conclusion in Sec. VI.

II. DATABASES

A. Voice samples from the UCLA speaker variability
database

Voice samples were drawn from the UCLA Speaker

Variability Database (see Keating et al., 2018; Kreiman et al.,
2015, for more information). Speakers were recorded in a

sound-attenuated booth on three different days. All speech

was elicited via on-screen displays and recorded using a 1/2

in. Br€uel & Kjær microphone with a sampling rate of 22 kHz

and a fixed mouth-to-microphone distance. The speech sam-

ples used in this study were later resampled to an 8 kHz sam-

pling rate so that speech bandwidth would equal that of the

SRE databases used for training the ASV systems.

The present study used speech from two of the tasks

included in the database: read sentences and pet-directed

speech. These two speaking styles are the most distinct in the

database. Read sentences are text-constrained clear speech,

while pet-directed speech is spontaneous and includes

exaggerated prosody. Speakers produced two repetitions of

five Harvard sentences (IEEE Subcommittee on Subjective

Measurements, 1969) in all three recording sessions, for a total

of six repetitions of each sentence and 30 sentences overall.

The sentences were “The boy was there when the sun rose,”

“Kick the ball straight and follow through,” “Help the woman

get back to her feet,” “A pot of tea helps to pass the evening,”

and “The soft cushion broke the man’s fall.” For pet-directed

speech, speakers were instructed to talk to pets displayed in a

video. They could choose between a kitten video (2 min 36 s)

and a puppy video (1 min 51 s). Resulting utterances were often

(but not always) characterized by exaggerated prosody, similar

to infant-directed speech (Burnham et al., 2002).

Fifty female self-reported native speakers of English

were randomly selected from the database for use in the

experiments reported in this study. Female speakers were

chosen because they used more prosodic exaggeration when

talking to pets than did male speakers, leading to larger dif-

ferences between the read sentences and the pet-directed

speech. Post hoc listening by two of the authors indicated

that utterances from nine speakers were perceptually

“marked” by a non-American dialect, overly-precise articu-

lation and/or unusual disfluencies in reading. The remaining

41 speakers lacked such personal idiosyncrasies and will be

referred as “unmarked.”

B. NIST SRE database

While the UCLA Speaker Variability Database provided

all the evaluation utterances for the present study, separate

J. Acoust. Soc. Am. 144 (1), July 2018 Park et al. 377



speech databases were used to pre-train the ASV systems

tested here. The SRE databases developed by NIST are often

used to train a UBM and speaker variability subspaces. We

used the NIST SRE04, 05, 06, and 08 databases (Martin and

Greenberg, 2009; Przybocki and Martin, 2004; Przybocki

et al., 2006) for this purpose. These databases provide more

than 3000 h of speech samples from 2692 female and 1115

male speakers, and have a variety of channels including tele-

phone speech, microphone, and “interview” speech.

Because the evaluation utterances were all from female

speakers, only the recordings from female speakers were

used to train the UBM and subspaces. In addition, evaluation

recordings were downsampled to an 8 kHz sampling rate to

match the bandwidth of the SRE databases.

III. HUMAN PERCEPTION EXPERIMENTS

We first tested human listeners’ ability to discriminate

among the speakers across the two speaking styles (read sen-

tences and pet-directed speech). Recall that we employed

this high cross-task variability to probe the limits of perfor-

mance for humans and machines.

A. Method

For each speaker, three read sentences were selected

from each of the three recording sessions. Each speech sam-

ple lasted less than 2 s. Two excerpts were taken from the

pet-directed speech, matched in length to the average dura-

tion of the sentences. These stimuli, downsampled as

described above, were assembled into 100 pairs of voices in

which both voice samples came from the same person (50

pairs of read sentences and 50 pairs where a read sentence

was paired with pet-directed speech), and 2450 pairs where

the two speakers were different (half including two read sen-

tences and half including one read sentence and one pet-

directed speech sample), for a total of 2550 pairs of stimuli.

Stimuli were always drawn from different recording ses-

sions, and each pair included two different read sentences.

Thus, this task was always text- and recording session-

independent.

To minimize listener fatigue, stimuli were divided at

random into 12 subsets of 200 pairs of voices and 1 subset

of 150 pairs. Thirteen groups of five normal-hearing UCLA

students and staff members (aged 18–28; mean age 19.91;

standard deviation 2.28; 65 listeners total) were recruited,

of whom 30 considered themselves L1 English speakers.

The participants listened to the pairs of stimuli over

Etymotic insert earphones (model ER-1) at a comfortable

constant listening level. Each pair could be played only

once in each presentation order (AB/BA). The listeners

were asked whether the two speech samples were produced

by the same speaker or by two different speakers. They also

reported their confidence in their responses on a 1–5 scale

(1¼ positive, 5¼wild guess). They were not told how

many speakers were represented in the trials. The experi-

ment was self-paced, and listeners were encouraged to take

breaks as needed. Total testing time was less than one hour

per listener.

B. Results

Hit rates (HRs) and false alarm (FA) rates were calcu-

lated by defining a hit as a correct “same speaker” response

and a false alarm as an incorrect “same speaker” response.

Additionally, listeners’ same versus different responses were

combined with their confidence ratings to create a scale rang-

ing from “positive, same speaker” (¼ 1) to “positive, different

speakers” (¼ 10). These scalar responses were used to derive

receiver operating characteristic (ROC) curves using SYSTAT

software (Systat Software Inc., 2018). d0 (d-prime, e.g.,

Macmillan and Creelman, 2005) and the area under the

receiver operating characteristic curve (AUC) were calculated

for each ROC curve. Note that d0 values calculated from

ROC curves can differ from values directly calculated from

hit and false alarm rates. The equal error rate (EER) was com-

puted from the ROC curve derived from listeners’ confidence

ratings, because humans do not have full control of their deci-

sion threshold and their EERs cannot be calculated directly.

Hit rates, false alarm rates, d0 (from the ROC curve),

AUC, and EER are shown in Table I. Because listener per-

formance could be affected by the speakers’ perceptual

markedness, results when the stimuli were pairs from the 41

unmarked speakers, pairs from the nine marked speakers,

pairs consisting of one marked and one unmarked speaker,

and pairs from all 50 speakers are shown separately in the

TABLE I. Composite human speaker discrimination performance for the 41 perceptually-unmarked speakers, nine perceptually-marked speakers, pairs con-

sisting of one marked and one unmarked speaker, and all 50 speakers in terms of HR (%), FA (%), d0, the AUC, and the EER (%). Read-read and read-pet indi-

cate that the token pair presented to the listener was composed of two different read sentences or one read sentence and one pet-directed speech segment,

respectively. Note that there were no “same speaker” pairs when listeners compared one marked speaker to one unmarked speaker, so that the hit rate could

not be calculated.

No. same speaker pairs No. different speaker pairs HR FA d0 AUC EER

Read-read, unmarked speaker pairs 41 820 87.3 25.8 1.81 0.885 19.02

Read-pet, unmarked speaker pairs 41 820 54.1 35.2 0.50 0.644 39.23

Read-read, marked speaker pairs 9 36 68.9 21.7 1.48 0.844 24.86

Read-pet, marked speaker pairs 9 36 37.8 34.4 0.16 0.538 46.23

Read-read, marked/unmarked pairs N/A 369 N/A 20.7 N/A N/A N/A

Read-pet, marked/unmarked pairs N/A 369 N/A 32.1 N/A N/A N/A

Read-read, all speaker pairs 50 1225 84.0 24.2 1.73 0.876 20.19

Read-pet, all speaker pairs 50 1225 51.2 34.2 0.46 0.628 40.34

All pairs 100 2450 67.6 29.2 1.11 0.766 30.58
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table. The pairs of read sentences are denoted as “read-read”

and the pairs of one read sentence and one pet-directed

speech excerpt are denoted as “read-pet.”

Human listeners were reasonably accurate in distinguish-

ing unmarked speakers when stimuli were pairs of read sen-

tences (d0 ¼ 1:81). As expected, accuracy decreased when

listeners heard read speech paired with pet-directed speech

(d0 ¼ 0:50). Changes in hit and false alarm rates were similar

in magnitude (38.03% and 36.43%, respectively), suggesting

that results reflect a difference in discriminability without an

accompanying change in response biases. Because there were

many more unmarked speakers than marked speakers, the

“all speaker pairs” results are very similar to those for the

unmarked speakers for the read-read pairs.

Although the marked speakers had idiosyncrasies in

their speech, they were in fact harder to discriminate. d0

equaled 1.48 for read-read pairs (compared to 1.81 for the

unmarked speakers), and 0.16 for read-pet pairs (compared

to 0.50). The performance degradation reflected a large

decrease in the hit rate and a smaller decrease in the false

alarm rate, suggesting a stricter response criterion. For trials

including one marked speaker and one unmarked speaker,

only false alarm rates could be calculated because stimuli

always came from different speakers. Those marked/

unmarked pairs had the lowest observed false alarm rates:

20.7% for read-read pairs and 32.1% for read-pet pairs.

C. Discussion

Humans were reasonably accurate in distinguishing

speakers from read-read pairs, consistent with results from

other studies (e.g., Kreiman and Papcun, 1991). In contrast,

human speaker discrimination accuracy decreased consider-

ably for read-pet pairs, with d0 less than 1.0 for all such com-

parisons. One issue for these pairs might have been the

limited phonetic content of the pet-directed speech excerpts.

While the read sentences were phonetically rich, pet-

directed speech was largely limited to phrases such as

“Awww, cute,” with stereotyped intonation contours that

lacked the idiosyncrasies of the read-read pairs.

Moreover, there is a significant difference in F0 between

the read sentences and pet-directed speech. The mean F0 for

the read sentences was 221.23 Hz, while that of pet-directed

speech was 313.02 Hz [F(1, 548)¼ 575.2, p< 0.01]. The

extraordinarily high F0 of the pet-directed speech might have

confused listeners, who typically rely heavily on F0 when

assessing speaker identity (Baumann and Belin, 2010; Nolan

et al., 2011). Additionally, exaggerated prosody makes other

cues, such as pauses between words and speaking rate, sound

different from read sentences.

Differences in perception when listening to marked ver-

sus unmarked speakers emphasize the importance listeners

place on specific cues, such as an unfamiliar accent or disflu-

ency, even when stimuli are short (<2 s). Note that speakers’

word choice was not a cue in this experiment, because the

sentences were given and the pet-directed speech did not

include much lexical variety. In this context, decreases in

performance when speakers were perceptually marked is

consistent with previous findings that accented speakers are

more difficult to identify than unaccented speakers, espe-

cially when the utterances are short (<1 s) (Goldstein et al.,
1981), and that listeners are better at discriminating among

speakers when they are familiar with the phonetic inventory

used by particular speakers (Kreiman and Sidtis, 2011,

Chap. 7.2.3). Responses to the speech of the marked speak-

ers were not only less accurate, but may also have been

biased to “different speaker” decisions, possibly because lis-

teners had difficulty distinguishing features specific to the

speaker from features that characterized differences in pho-

netic content or speaking style between utterances.

IV. ASV EXPERIMENTS

This section describes application of an i-vector/PLDA

ASV system to the stimuli just described. The same tasks

presented to the human listeners were given to the ASV sys-

tem, permitting a fair comparison between humans and

machines.

A. Feature extraction

Performance of ASV systems depends, in part, on the

use of appropriate features to distinguish speakers. The fea-

ture sets used in the ASV experiments are discussed in this

subsection. All features were automatically extracted, and no

manual refinements were made.

1. MFCCs

MFCCs of dimension 20 were calculated every 10 ms

using a 25-ms-long window. The coefficients and their first

derivatives were used as a feature set. Second derivatives

were not used because they did not provide notable perfor-

mance gain in our preliminary work.

2. VQual2: Voice quality features

In this section, we describe a novel set of features

inspired by a psychoacoustic model of voice quality

(Garellek et al., 2016). This feature set comprised F0, F1,

F2, F3, cepstral peak prominence (CPP, Hillenbrand et al.,
1994), and three measures of source spectral slope. The

slope features were generated by estimating the amplitudes

of the first, second, and fourth harmonics and of the har-

monic nearest to 2 kHz (denoted H1, H2, H4, and H2k), and

then calculating the differences between them. Amplitude

difference features were denoted as H1*-H2*, H2*-H4* and

H4*-H2k*, where the asterisks (*) indicate that harmonic

amplitudes were corrected for the effects of formant frequen-

cies on amplitude (Hanson, 1997; Iseli et al., 2007).1 The fea-

tures were extracted pitch-synchronously every 10 ms. The

effectiveness of this initial feature set, referred to as VQual1,

on ASV was tested in our previous study (Park et al., 2016).

The feature set was later modified to better represent speaker

identity for ASV (Park et al., 2017). The modification was

based on the f-ratio criterion (Lu and Dang, 2008; Nicholson

et al., 1997), which measures how well an individual feature

separates classes of stimuli. This criterion is widely used to

identify features which have large between-class variance and

small within-class variance:
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f ¼ between class variance

within class variance
¼

1

M

XM

i¼1

li � lð Þ2

1

M

XM

i¼1

r2
i

; (1)

where M is the number of classes, li is the within-class

mean, l is the global mean, and r2
i is the within-class vari-

ance of a single feature.

In Park et al. (2017), read sentences and pet-directed

speech samples from 100 female and 100 male speakers in

the UCLA database were analyzed using the f-ratio with a

large number of features. Although the f-ratio results were

different between the two speaking styles, feature ranks

were similar. Thus, a modified feature set denoted as

VQual2 was constructed, including F0, F1, F2, F3, H1–H2,

H2–H4, H4–H2k (without formant correction2), formant

amplitudes A1, A2, A3, and CPP. Note that the original

VQual1 feature set was generated from a psychoacoustic

model of voice quality, but the modified VQual2 set was

chosen to maximize ASV performance. The variation in the

feature sets might be partly due to the difficulties in auto-

matic measurement and/or large within-speaker variance. It

might also be due to the fact that VQual1 was evaluated on

sustained vowel sounds while the new feature set was evalu-

ated on continuous speech signals.

B. Method

An i-vector/PLDA ASV system was used to analyze

machine performance. The i-vector size was 600 and it was

reduced to 200 after the PLDA. The UBM (modeled with

2048 Gaussians) and subspaces were trained with female

voices using the NIST SRE databases. The two feature sets

described above, MFCCs and VQual2, were used in the

experiments.3

After obtaining the PLDA scores from each system,

score fusion was performed to test for further improvements

(Ramachandran et al., 2002). Fusion is analogous to averag-

ing human listeners’ dissimilarity scores and making a new

decision based on the average score. The fusion system out-

puts were linearly combined using the following equation:

s ¼ asv þ ð1� aÞsm; (2)

where sm is the PLDA score using MFCCs, sv is the PLDA

score using VQual2 features, and a, the coefficient of sv,

ranges from 0 to 1. PLDA scores using both MFCCs and

VQual2 features were scaled to have zero-mean and unit-

variance before the linear combination was performed. The

coefficient a was set to 0.452 so that it yields the lowest EER

for the condition composed of all possible pairs.

C. Results and discussion

The AUC and the EER were calculated to measure sys-

tem performance. AUC values were estimated using SYSTAT

software to facilitate comparisons with human performance.

Machine and human results are shown in Table II. In gen-

eral, score fusion improved machine performance. For

read-read pairs using all speakers, for example, the AUC for

the MFCC feature set, VQual2 feature set, and for the fusion

of the two were 0.776, 0.683, and 0.791, respectively. Thus,

while performance of VQual2 alone does not exceed the per-

formance of MFCCs, fusing the two systems seemingly pro-

vided complementary information that improved performance.

Other studies have also shown that fusing complementary fea-

tures improves ASV performance for 10-s utterances (Das and

Prasanna, 2017). This pattern was observed in most of the

other comparisons. The exceptions where the fusion resulted

in a slight performance degradation were for read-read pairs

from marked speaker pairs (from 0.687 to 0.683), and when all

pairs were combined (from 0.716 to 0.714).

The decrease in performance of the VQual2 features due

to style mismatches was smaller than that observed for

MFCCs, although overall performance was generally worse

for VQual2 features. For unmarked speakers, the EER for

VQual2 increased from 36.08% for read-read pairs to 44.09%

for read-pet pairs (22.20% relative decrease in performance),

where the EER for MFCCs increased from 30.31% to

44.17% (45.73% relative decrease in performance). For

marked speakers, the VQual2 EER increased from 41.58% to

44.91% (8.01% relative decrease in performance), while the

MFCC EER increased from 32.03% to 39.31% (22.73% rela-

tive decrease in performance).

The robustness to style variability suggests that voice

quality features might be effective for conditions that are

challenging to conventional cepstral features. Note, how-

ever, that our previous study (Park et al., 2017) found that

TABLE II. ASV performance evaluated using the same stimuli as in the human perception experiments. The AUC was measured, and the EER (%) was calcu-

lated from the ROC curve. Human perception results in terms of AUC and EER are repeated from Table I in the last column for comparison. The best perfor-

mance for each condition is boldfaced.

MFCC VQual2 fusion human

AUC EER AUC EER AUC EER AUC EER

Read-read, unmarked speaker pairs 0.765 30.31 0.679 36.08 0.780 29.21 0.885 19.02

Read-pet, unmarked speaker pairs 0.587 44.17 0.581 44.09 0.601 47.54 0.644 39.23

Read-read, marked speaker pairs 0.687 32.03 0.657 41.58 0.683 31.78 0.844 24.86

Read-pet, marked speaker pairs 0.593 39.31 0.531 44.91 0.601 37.35 0.538 46.23

Read-read, all speaker pairs 0.776 29.17 0.683 36.18 0.791 28.71 0.876 20.19

Read-pet, all speaker pairs 0.594 43.44 0.587 43.55 0.615 42.79 0.628 40.34

All pairs 0.716 35.97 0.627 43.18 0.714 36.52 0.766 30.58
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the performance degradation of the VQual2 features due to

style mismatches was similar to or worse than that of

MFCCs. Unfortunately, a direct comparison with that study

is not appropriate because the speech samples used in that

study were 5-s long while the speech samples in this study

were less than 2-s long. Since longer utterances benefit both

MFCC and VQual2 feature sets, especially if the phonetic

content is richer, it might be the case that the advantage of

having more phonetic content in read sentences outweighed

the within-speaker variability in speaking style. Thus, the

compounded effect of utterance length, phonetic content and

style variability requires further analysis for machines. In

addition, Park et al. (2017) did not consider speaker marked-

ness, which might also have been a factor impacting system

performance.

Unexpectedly, MFCC performance for read-pet, marked

speaker pairs (EER¼ 39.31%) was better than that for

unmarked speakers (EER¼ 44.17%). For VQual2, the per-

formance degraded, but the difference was small (from

44.09% to 44.91%). The effect of markedness on machine

performance will be analyzed with a larger number of speak-

ers in a follow-up study.

Note that the AUC and EER measures are not always

correlated because the two measures reflect different proper-

ties of the curve. The AUC is calculated from the entire

ROC curve, and it reflects overall accuracy regardless of a

specific decision threshold. On the other hand, the EER only

focuses on the point where the false rejection rate and the

false acceptance rate are equal, and it summarizes the system

performance in terms of the error rate. These measures can

differ, especially when the ROC curves are skewed. Skewed

ROC curves can result when the variance of the distribution

in the decision space of same-speaker pairs is different from

that of the different-speaker pairs (Macmillan and Creelman,

2005). While the EER is a widely used metric for machines,

for humans this metric might be misleading because humans

cannot consciously adjust their decision threshold. Thus, in

the rest of the paper, the AUC is used to compare human and

machine performance, and the EER is used only to compare

machine performance in different conditions.

V. COMPARING HUMAN AND MACHINE SPEAKER
DISCRIMINATION

This section compares the human and machine speaker

discrimination results in the face of within-speaker variability

as presented in Secs. III B and IV C. The purpose of the com-

parison is to investigate performance differences between

humans and machines when large within-speaker variability

makes the task difficult for both, and to analyze the factors

that affect performance. Recall that all tasks are text- and

recording-session-independent.

A. Overall performance comparison

Human and machine performances are compared in

Table II. Humans performed better than machines in most

conditions. For instance, with unmarked speakers, the AUC

for ASV score fusion was 0.780 for read-read pairs, com-

pared to AUC¼ 0.885 for humans.

Performance differences between humans and machines

could be due to many factors. First, humans can utilize mul-

tiple levels of information from the audio signal, but

machines rely on frame-level features. For example, humans

routinely attend to individual speakers’ unique prosody, idio-

syncrasies in voice onset time, and so on, but ASV systems

consider the distribution of features extracted from 25-ms

frames and at most their time derivatives. Second, it is likely

that even when humans and machines use similar acoustic

information, they process the information in different ways

to make their same versus different speaker decisions.

For read-read pairs, machines were less robust to mark-

edness than humans were. Fusion performance on read-read

pairs from unmarked speakers resulted in an AUC of 0.780,

while the AUC for marked speakers equaled 0.683 (12.44%

relative decrease in performance). Human performance

resulted in AUCs of 0.885 and 0.844 (1.24% relative

decrease in performance) for the unmarked and marked

speakers, respectively. Because the UBM represents the

overall smoothed distribution of the acoustic features from a

large number of speakers, idiosyncrasies due to speaker

markedness might not be well-represented with this model.

In addition, if similar idiosyncrasies are not well-represented

in the pre-training data, the machine will fail to model the

between-speaker variability from these idiosyncratic differ-

ences, leading in turn to performance degradation.

On the other hand, machines were more robust to mark-

edness for read-pet pairs than were humans. Fusion AUCs

for read-pet pairs from unmarked speakers and from marked

speakers were both 0.601. However, the AUC for human lis-

teners decreased from 0.644 (unmarked speakers) to 0.538

(marked speakers), a 16.46% relative decrease in perfor-

mance. Even though it might be difficult to generalize

because there were only nine marked speakers, these results

imply that machines are less sensitive to speaker markedness

than humans are when the acoustic characteristics of the

speech change due to prosody exaggeration. The compound

effect of speaker markedness and speaking style on human

and machine performance can be explored in the future by

including recordings from L2 English speakers.

It was consistently observed that the performance gap

between humans and machines was smaller for mismatched

speaking styles. For instance, with read-pet, unmarked pairs,

the AUC for fusion was 0.601 and the AUC for humans was

0.644, while the AUCs for the read-read, unmarked pairs was

0.780 for fusion and 0.885 for humans. The interesting small

performance gap between humans and machines for the read-

pet condition will be analyzed in detail in future studies.

B. Performance analysis for subsets of a smaller
number of speakers

Previous studies (Kreiman and Gerratt, 1996) have

shown that listener performance in discrimination tasks is

characterized by flexible, idiosyncratic perceptual strategies,

such that a feature may be important for distinguishing some

pairs of speakers but not others. Given this situation, combin-

ing too many speakers in a single analysis obscures the strate-

gies used by listeners because relations in the “perceptual
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speaker space” become too complicated to summarize even

with a large number of parameters. For this reason, we con-

ducted further analyses using small (n¼ 15) subsets of the

original set of 41 unmarked speakers. The analyses were

restricted to read-read sentence pairs, because the main pur-

pose is to investigate the difference in decision strategies

between humans and machines, and performance between

humans and machines differed most for these pairs. With 15

speakers, each subset had 15 same-speaker pairs and 105

different-speaker pairs. Ten sets of 15 speakers were ran-

domly selected from the 41 unmarked speakers. Three of the

ten subsets (RAND1, RAND2, and RAND3) were chosen for

multi-dimensional scaling (MDS) analysis so that each

unmarked speaker was included in at least one of the subsets.

Discrimination data for the read sentence pairs used in the

perception experiment were extracted, and the performances

of humans and machines were calculated for each subset.

As shown in Table III, the AUC for human listeners var-

ied between 0.851 and 0.909, and the EER varied between

16.10% and 21.53%. MFCC performance was worse than

humans’ and more variable across subsets: its AUC varied

between 0.679 and 0.772, and the EER varied between

26.61% and 40.57%. The AUC for score fusion varied

between 0.713 and 0.792, and the EER varied between

24.18% and 34.02%. VQual2 performance was most consis-

tent (although not best) among the three ASV systems; its

AUC ranged from 0.678 to 0.684, and its EER ranged from

34.44% to 36.75%.

The three subsets showed different rankings of the three

ASV systems. In RAND1, the MFCC system had a much

better EER (26.61%) than VQual2 (36.75%), and fusion

showed the best performance (24.18%). In RAND2, MFCC

performance (30.50%) was better than that of VQual2

(34.44%) and was similar to fusion (30.31%). In RAND3,

VQual2 performance (36.35%) exceeded MFCC (40.57%)

and was improved by fusion (34.02%).

C. MDS analysis

Nonmetric MDS (Kruskal and Wish, 1978) was applied

to provide insight into the differences in the information uti-

lized by humans and machines underlying these results.

MDS is often used in forensic studies to objectively measure

perceived speaker similarity to construct fair voice lineups

(McDougall, 2013). The MDS space can be thought of as a

“(perceptual) speaker space” where the stimuli are close if

they are perceived as similar. The MDS axes can be inter-

preted by examining correlations between the coordinates of

the stimuli and acoustic or other measures of those stimuli: a

high correlation suggests the measure might be an important

cue for distinguishing speakers.

1. MDS space determination

For each 15-speaker subset, confidence ratings from

human listening data were combined with same versus dif-

ferent judgements, such that a value of 1 (positive, same

speaker) was assumed to mean the voices were very similar,

and a value of 10 (positive, different speakers) meant they

were maximally dissimilar. These scores were averaged

across listeners and assembled into lower-half dissimilarity

matrices. For the three ASV systems (MFCC, VQual2, and

fusion), the dissimilarity between a pair was calculated as

the negated PLDA score. Nonmetric MDS was then per-

formed on the human data and on the ASV systems for each

speaker subset. MDS solutions were calculated in 2–5

dimensions for each subset of the data, and solutions were

chosen by reference to plots of the number of dimensions

extracted versus R2 and stress (Kruskal and Wish, 1978, pp.

48–60). R2 measures the variance in dissimilarities explained

by the MDS solution, and stress measures the overall fit of

the scaling model to the data. Solutions were chosen based

on elbows in plots of stress and R2 versus the number of

dimensions (Fig. 1). A four-dimensional solution best fits the

human data for RAND1, while the solutions are three-

dimensional for RAND2 and RAND3.

2. Relationship between human and machine decision
spaces

Canonical correlation analysis (CCA, e.g., Tabachnick

and Fidell, 2013) was used to evaluate the extent to which

human and machine speaker spaces were related. Here, one

set of the variables is the MDS coordinates from each of the

three ASV systems (MFCC, VQual2, and fusion) for a

speaker subset, and the other is the MDS coordinates from

human responses for the same subset.

The resulting R2 scores using three-component CCA are

shown in Table IV. Dimensions of the machine MDS spaces

were insufficiently interpretable in terms of the dimensions of

the human perceptual space, suggesting that machines and

humans used different strategies to discriminate speakers. For

RAND1, at most 56.3% of the variance in the ASV speaker

space was explainable using the dimensions from the speaker

space derived from perceptual data. For RAND2/VQual2, the

negative R2 value indicates that the estimated model was worse

than the constant model. The overall low R2 values suggested

that there was little relationship between human and machine

speaker spaces, at least when a linear model was used.

If we compare the CCA results in Table IV with the

EER performance in Table III, we notice that the relation-

ship between the model fit and system performance was

TABLE III. Human and machine performance in terms of EER (%) and the

AUC. The performance is measured within the 10 subsets of 15 randomly

selected speakers reading sentences. The mean and standard deviation across

the ten subsets are shown in the first two rows. Performance on three of the

ten subsets (RAND1, RAND2, and RAND3) used for MDS analysis is

shown in the rest of rows. There were 15 same-speaker pairs and 105

different-speaker pairs in each subset. Fusion indicates that a linear score

fusion is used between the MFCC and VQual2 systems.

MFCC VQual2 fusion human

AUC EER AUC EER AUC EER AUC EER

Mean 0.726 32.99 0.680 35.87 0.744 29.82 0.890 18.49

Standard deviation 0.056 6.21 0.040 2.65 0.039 3.80 0.021 2.42

RAND1 0.772 26.61 0.680 36.75 0.792 24.18 0.851 21.53

RAND2 0.703 30.50 0.678 34.44 0.722 30.31 0.898 17.61

RAND3 0.679 40.57 0.684 36.35 0.713 34.02 0.909 16.10
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weak. For example, the best performing ASV system in

Table III was fusion for all subsets. Fusion showed the high-

est R2 value for RAND1 and RAND2, but not for RAND3.

In addition, even though the R2 value of RAND3 MFCC was

the second highest (R2¼ 0.503), its performance was the

worst (EER¼ 40.57%) among all three subsets.

3. Acoustic correlates of MDS axes

The weak relationship between human and machine

speaker spaces suggests that acoustic information is used

rather differently in human versus machine decision making.

To examine this hypothesis, we analyzed how the 11

VQual2 acoustic measures were correlated with the MDS

spaces for both sets of similarity data. The mean of each of

the 11 acoustic measures was calculated for each utterance

from all 50 speakers, and a factor analysis of dimension 5

was undertaken to reduce the number of predictor variables.

A similar procedure was applied to the standard deviations

of the acoustic measures. The absolute factor loadings,

which reflect the correlations between the acoustic measures

and factors, are shown in Fig. 2. For the acoustic means, fac-

tor 1 was mostly related to the formant amplitudes, and fac-

tor 4 showed a strong relationship with F0. For the standard

deviations, factor 1 was highly correlated with formant

amplitudes, and factor 2 was related to fundamental fre-

quency, and to the first and the second formant frequencies.

Next, factor scores calculated at the utterance level were

averaged within each speaker, after which we constructed five-

dimensional acoustic speaker spaces for each subset. Finally,

the relationship between the acoustic space and the MDS

spaces was analyzed using multiple regression. Results are

shown in Table V. Interestingly, factors estimated from the

means of the acoustic measures were related to the most

important dimension (D1) of the perceptual speaker spaces for

all subsets, and the factors from the standard deviations, which

can be related to the within-utterance variability, were related

D1 of the MFCC speaker spaces for all subsets. For humans,

factors 4 and 5, derived from mean acoustic measures, were

statistically significant (p< 0.05) for the multiple regression

model in RAND1 and RAND2, and RAND1 and RAND3,

respectively. Recalling that factor 4 was highly related to F0

and factor 5 was related to F3, these results are consistent with

previous studies that reported F0 and F3 being the most impor-

tant acoustic predictors of human judgements (e.g., Baumann

and Belin, 2010; Nolan et al., 2011). In RAND2, factor 2 from

the mean data, which was related to F2, F3, and A3, was sig-

nificantly related to human D1, and in RAND3, factor 1 from

the standard deviation data, which was related to formant

amplitudes, was significantly related to human D1. These

results suggest that formant amplitudes might also provide

important information for human decision-making.

For MFCCs, factor 5 from the standard deviation data was

significantly related to D1 for subsets RAND1 and RAND3.

For VQual2, which was derived from a psychoacoustic model

FIG. 1. (Color online) Calculated R2 values (solid line) and stress (dashed line) for the MDS solutions in the (a) RAND1, (b) RAND2, and (c) RAND3 subsets

for human data and for the ASV systems using MFCC, VQual2 features, and their score fusion. Arrows point to the elbow in each curve.

TABLE IV. R2 scores of the canonical correlation analysis between the

MDS space from the three ASV systems (MFCC, VQual2, and fusion) and

human MDS space in each speaker subsets (RAND1, RAND2, and

RAND3).

MFCC VQual2 fusion

RAND1 0.295 0.300 0.563

RAND2 0.151 �0.099 0.220

RAND3 0.503 0.125 0.284

(a)

(b)

FIG. 2. (Color online) Absolute values of the factor loadings for acoustic

measures. A five-dimensional factor analysis was performed using (a) the

means and (b) standard deviations of the acoustic measures for each utter-

ance for dimensionality reduction.
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of voice quality, none of the MDS dimensions was significantly

associated with any factor(s), even though the factors were esti-

mated using voice quality features. R2 values in linear regres-

sion only reflect the linear part of the decision-making process,

but there are other parts that are not linear. Thus, even though

the VQual2 system makes decisions based on the VQual2 fea-

ture set, its decision space might not be fully interpretable as a

linear combination of features.

4. Discussion

Across all three subsets of the read-read, unmarked stim-

uli, humans were more accurate and consistent at speaker dis-

crimination than were machines. However, subsets differed in

how difficult they were for humans versus for machines, and

human and machine speaker spaces were not strongly related

in terms of the features that explained stimulus confusability.

Differences between humans and machines could have

occurred because humans utilized information that was not

explicitly given to machines, such as spectro-temporal infor-

mation and linguistic knowledge, and/or they used similar

acoustic features but processed them differently.

The present results do not allow us to evaluate these

possibilities. To evaluate the first possibility, an automatic

system that can process supra-segmental information is

needed. The widely used, frame-level feature based ASV

system used in the current study is not explicitly given such

information. Other systems that utilize prosodic information

to model speakers (e.g., Dehak et al., 2007) need to be devel-

oped. Evaluating the second possibility would require a

more complex model of how features are processed and used

in decision-making. For example, even though the VQual2

system made decisions based on voice quality features, the

decisions did not appear to depend on the linear combination

of the means and standard deviations of the features that

explained humans’ and MFCC system performance.

Instead, the results highlight differences in human and

machine decision making. For example, the most important

dimensions underlying human responses were highly related

to the means of acoustic features, while MFCC responses

were more closely related to standard deviations of the same

features. This might indicate that humans perform best

with the speakers whose speech varies widely in mean val-

ues, while MFCC-based systems work best when the within-

utterance (voice quality) variance is large so that the acoustic

information in an utterance is sufficient to model the

speaker.

VI. CONCLUSION

Human and machine speaker discrimination perfor-

mance on short-utterance, text-independent stimulus pairs

were investigated in this study. Read sentences shorter than

2 s were used to evaluate performance with clear speech, and

excerpts from pet-directed speech of similar duration were

used to investigate the effect of exaggerated prosody.

Analyses compared performance when pairs were matched

(read-read) or mismatched (read-pet) for speaking style.

Results showed that human listeners were reasonably

accurate at discriminating voices based on read-read pairs, but

performance degraded significantly with style-mismatched

pairs. Contrary to expectations, humans performed worse

when discriminating between two marked speakers than when

discriminating between two unmarked speakers, both for

read-read pairs and read-pet pairs. The effect of speaker mark-

edness on speaker discrimination is worth exploring in detail

in the future. The UCLA Speaker Variability Database

includes many non-native speakers of English whose speech

could be useful for this purpose.

The machines tested here were less accurate than

humans for read-read pairs, which is consistent with previ-

ous studies that reported poor ASV performance with short-

utterance text-independent tasks. Performance degraded

even more with pet-directed speech for unmarked speakers,

especially for MFCC- and VQual2-based systems, either

because prosody exaggeration distorted acoustic features or

TABLE V. Multiple regression results on human and machine MDS coordinates (dependent variables) with acoustic speaker spaces (independent variables).

The first three columns show R2, F-statistics, and p-values of the multiple regression models. Only the MDS dimensions which can be modeled with p < 0.05

are shown in the table. SE, T, and p, which indicate the standard error, t-statistics, and p-values of the independent variables, are shown for each of the factors.

The independent variables with p < 0.05 are boldfaced.

Model Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

R2 F(5,9) p SE T p SE T p SE T p SE T p SE T p

Means

RAND1 human D1 0.76 5.82 0.01 0.25 �0.48 0.64 0.31 �0.96 0.36 0.32 �2.05 0.07 0.22 �2.74 0.02 0.15 �3.77 0.00

RAND2 MFCC D2 0.74 5.13 0.02 0.41 2.17 0.06 0.35 3.21 0.01 0.28 �2.23 0.05 0.19 0.54 0.60 0.26 0.50 0.63

RAND2 fusion D1 0.70 4.18 0.03 0.42 2.22 0.05 0.36 1.49 0.17 0.29 1.10 0.30 0.19 2.66 0.03 0.27 �0.39 0.71

RAND2 human D1 0.86 11.44 0.00 0.35 �1.44 0.19 0.30 �3.25 0.01 0.24 �0.17 0.87 0.16 �4.30 0.00 0.22 �2.01 0.08

RAND3 human D1 0.90 15.66 0.00 0.19 �0.13 0.90 0.22 �1.93 0.09 0.15 0.88 0.40 0.15 �0.29 0.78 0.13 �5.18 0.00

Standard deviations

RAND1 MFCC D1 0.71 4.36 0.03 0.31 0.38 0.71 0.27 1.72 0.12 0.28 0.40 0.70 0.34 1.71 0.12 0.35 3.23 0.01

RAND2 MFCC D1 0.78 6.44 0.01 0.30 �0.20 0.85 0.25 �2.25 0.05 0.28 �3.03 0.01 0.26 2.34 0.04 0.26 �0.70 0.50

RAND3 MFCC D1 0.67 3.64 0.04 0.33 �0.59 0.57 0.32 �0.49 0.64 0.36 1.18 0.27 0.28 �1.37 0.20 0.38 3.27 0.01

RAND3 MFCC D2 0.92 19.81 0.00 0.15 �5.32 0.00 0.15 0.49 0.64 0.17 �3.76 0.00 0.13 �2.19 0.06 0.18 �1.74 0.12

RAND3 fusion D1 0.78 6.43 0.01 0.30 2.39 0.04 0.29 �0.73 0.48 0.33 1.37 0.20 0.26 1.57 0.15 0.34 �1.49 0.17

RAND3 human D1 0.66 3.51 0.05 0.40 2.30 0.05 0.39 0.20 0.84 0.44 0.63 0.54 0.34 0.72 0.49 0.46 �1.64 0.14
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because the databases used for the pre-training did not have

a similar speaking style. Score-level fusion of the two sys-

tems improved performance, suggesting that VQual2 fea-

tures provide information that is complementary to MFCCs.

These features may be especially valuable when within-

speaker variability is large. Interestingly, with style-

mismatched pairs, speaker markedness had little effect on

VQual2 features, and MFCC and fusion performance even

improved for these pairs, to such an extent that machines

outperformed human listeners. Unfortunately, the number of

marked speakers in this study was not large enough to ensure

that this result is robust. A follow-up study will analyze what

advantage machines have when human performance is criti-

cally affected, and how to utilize that advantage in speaker

verification tasks.

Human and machine performance on read-read pairs of

unmarked speakers was further investigated with MDS on

smaller subsets of speakers. CCA results between human

and machine speaker spaces showed a weak relationship

between the human and machine spaces. Further, better

machine performance did not lead to an increase in the

strength of this association. These results suggest that

humans and machines use different strategies to distinguish

speakers. Multiple regression between acoustic feature fac-

tors and MDS spaces for humans and machines found that

human MDS axes were reasonably well-modeled as linear

combinations of means of voice quality features. On the

other hand, neither MFCC nor VQual2 MDS spaces could be

well-modeled using mean values. These findings suggest

that investigating how voice quality feature means are

related to human responses might provide valuable insights

into perceived speaker identity. Such knowledge could also

prove useful for improving machine performance, by explor-

ing how to process acoustic feature means effectively.

In future studies, we will examine human and machine

performance differences in detail. Machine performance, for

example, can be examined by varying the training data con-

ditions, such as the speakers’ language background, gender,

and/or recording conditions. Modeling prosodic features and

developing duration compensation techniques for very short

utterances (2 s) might also be a promising research direction

for ASV, as is examining how effectively human and

machine decisions can be combined. Finally, using profes-

sional voice mimics or synthetic voices will allow for a more

systematic evaluation of several acoustic factors.
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