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Abstract

The possibility for controlling the probe-field optical gain and absorption switching and photon

conversion by a surface-plasmon-polariton near field is explored for a quantum dot above the

surface of a metal. In contrast to the linear response in the weak-coupling regime, the calculated

spectra show an induced optical gain and a triply-split spontaneous emission peak resulting from

the interference between the surface-plasmon field and the probe or self-emitted light field in

such a strongly-coupled nonlinear system. Our result on the control of the mediated photon-

photon interaction, very similar to the ‘gate’ control in an optical transistor, may be experimentally

observable and applied to ultra-fast intrachip/interchip optical interconnects, improvement in the

performance of fiber-optic communication networks and developments of optical digital computers

and quantum communications.
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I. INTRODUCTION

It is well known that photons inherently do not interact with each other. In classical

electrodynamics, the Maxwell equations are linear and cannot describe any photon-photon

interaction. However, effective photon-photon coupling could exist in a mediated way, e.g.

through their direct interactions with matter. Very recently, an experiment [1], which in-

volves firing pairs of photons through an ultra-cold atomic gas, was reported to provide the

evidence for an attractive interaction between the photons to form the so called ‘molecules’

of light. In general, if the interaction between photons and matter is strong, the optical re-

sponse of matter will become nonlinear and the resulting bandedge optical nonlinearities [2]

will enable an effective photon-photon interaction. [3] An optical transistor [4] could be built

based on this basic idea, where ‘gate’ photons control the intensity of a ‘source’ light beam.

Optical transistors could be applied to speed up and improve the performance of fiber-optic

communication networks. Here, all-optical digital signal processing and routing is fulfilled

by arranging optical transistors in photonic integrated circuits and the signal loss during the

propagation could be compensated by inserting new types of optical amplifiers. Moreover,

optical transistors are expected to play an important role in the developments of an optical

digital computer or quantum-encrypted communication.

Most previous research on optical properties of materials, including optical absorption,

inelastic light scattering and spontaneous emission, used a weak probe field as a perturba-

tion to the studied system. [5] In this weak-coupling regime, the optical response of electrons

depends only on the material characteristics, [6] and therefore, no photon-photon interaction

is expected. However, the strong-coupling regime could be reached with help from micro-

cavities and the experimental effort on searching for polariton condensation (resulting from

strong light-electron interaction) in semiconductors continues to produce results. [7–9] The

general review of exciton-polariton condensation can be found from Ref. [10]. The successful

demonstration of room-temperature polariton lasing without population inversion in semi-

conductor microcavities using both optical pumping [11, 12] and electrical injection [13, 14]

have made it possible for ultra-low lasing thresholds and very-small emitter sizes compara-

ble to the emitted wavelength. Semiconductor exciton-polariton nanolasers could advance

intrachip and interchip optical interconnects by integrating them into semiconductor-based

photonic chips, and they might also have applications in medical devices and treatments,
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such as spatially selective illumination of individual neuron cells to locally control neuron fir-

ing activities in optogenetics and neuroscience and near-field high-resolution imaging beyond

the optical diffraction limit as well.

Theoretically, a big hurdle also exists for studying photon-photon interactions in the

strong-coupling regime mainly due to intractable numerical computation for systems with

very strong nonlinearity. The obstacle of nonlinearity in such a system means that any

perturbative theories, e.g. using bare electron states or linear response theory, [5] become

inadequate for describing both field and electron dynamics in this system. The presence of

an induced polarization, regarded as a source term to the Maxwell equations, [15, 16] from

photo-excited electrons makes it impossible for us to solve the field equations by simply

using finite-element analysis [17] or finite-difference-time-domain methods [18]. Although the

semiconductor-Bloch equations [19] and density-matrix equations [5, 20], derived from many-

body theory, are able to accurately capture the nonlinear optical response of electrons, the

inclusion of pair scattering effects on both energy relaxation and optical dephasing precludes

an analytical approach for seeking solution of these equations. As a result, there exists only

very few theoretical studies [21], which heavily depend on computer simulation, that focus on

simplified one-dimensional strongly-coupled microcavity systems, in contrast to the three-

dimensional structure and self-consistent approach presented in this paper.

Physically, not only the high-quality microcavities [22] but also the intense surface-

plasmon near fields [23, 24] could be employed for reaching the strong-coupling goal in

semiconductors. In this paper we solve the self-consistent equations for strongly-coupled

electromagnetic-field dynamics and electron quantum kinetics in a quantum dot above the

surface of a thick metallic film, which has not been fully explored so far from either a the-

oretical or experimental point of view. This is done based on finding an analytical solution

to Green’s function [25, 26] for a quantum dot coupled to a semi-infinite metallic material

system, which makes it easy to calculate the effect of the induced polarization field as a

source term to the Maxwell equations. In our formalism, the strong light-electron interac-

tion is reflected in the photon-dressed electronic states with a Rabi gap and in the feedback

from the induced optical polarization of dressed electrons to the incident light. The formal-

ism derived in this paper goes beyond the weak-coupling limit and deals with a much more

realistic structure in the strong-coupling limit for the development of a surface-plasmon
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polariton laser with a very low threshold pumping. Our results clearly demonstrate the

ability to control probe-field optical gain and absorption switching and photon conversion

by a surface-plasmon field with temperature-driven frequency detuning in such a nonlinear

system led by dressed electron states, very similar to the ‘gate’ control in an optical transis-

tor. These conclusions should be experimentally observable [27, 28]. On the other hand, our

numerical results also provide an example for demonstrating the so-called quantum plasmon-

ics, [29] where the nature of surface-plasmon polaritons and the nature of quantum-confined

electrons are hybridized through near-field coupling.

In Sec. II, we will introduce our physics model and derive self-consistent equations for

determining the coupled scattering dynamics of a surface-plasmon field and the quantum

kinetics of electrons in quantum dots. Section III is devoted to a full discussion of our nu-

merical results, including scattering and optical absorption of surface-plasmon-polariton field

by quantum dots, spontaneous emission and nonlinear optical response of dressed electron

states. Some concluding remarks are given in Sec. IV.

II. MODEL AND THEORY

Our model system, as shown in Fig. 1, consists of a semi-infinite metallic materialwith

a semiconductor quantum dot above its surface. A surface-plasmon-polariton (SPP) field

is locally excited through a surface grating by normally-incident light. This propagating

SPP field further excites an interband electron-hole (e-h) plasma in the quantum dot. The

induced optical-polarization field of the photo-excited e-h plasma is strongly coupled to the

SPP field to produce split degenerate e-h plasma and SPP modes with an anticrossing gap.

Part of the brief description for our self-consistent formalism was reported earlier. [16] In

order to let readers follow up easily with the details of our model and formalism, we present

here the full derivation of the Maxwell-Bloch numerical approach for an SPP field coupled

to a photo-excited e-h plasma in the quantum dot.

A. General Formalism

The Maxwell’s equation for a semi-infinite non-magnetic medium in position-frequency

space can be written as [25]
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∇×∇×E(r; ω)− ǫb(x3; ω)
ω2

c2
E(r; ω) =

ω2

ǫ0c2
P

loc(r; ω) , (1)

where E(r; ω) is the electric component of an electromagnetic field,

H(r; ω) = −
(

i

ωµ0

)

∇×E(r; ω) is the magnetic component of the electromagnetic

field, r = (x1, x2, x3) is a three-dimensional position vector, ω is the angular frequency

of the incident light, ǫ0, µ0 and c are the permittivity, permeability and speed of light in

vacuum, P loc(r; ω) is an off-surface local polarization field generated by optical transitions

of electrons in a quantum dot, and the position-dependent dielectric function is

ǫb(x3; ω) =











ǫd , for x3 > 0

ǫM(ω) , for x3 < 0
. (2)

Here, ǫd is for the semi-infinite dielectric material in the region x3 > 0, while ǫM(ω) represents

the semi-infinite metallic material in the region x3 < 0. For the Maxwell’s equation in Eq. (1),

we introduce the Green’s function Gµν(r, r
′; ω) satisfying the following equation

∑

µ

[

ǫb(x3; ω)
ω2

c2
δλµ −

∂2

∂xλ∂xµ
+ δλµ∇2

r

]

Gµν(r, r
′; ω) = δλν δ(r− r′) , (3)

where ∇2
r =

∑

µ

∂2

∂x2µ
is the Laplace operator, δλµ represents the Kronecker delta, and the

indices λ, µ = 1, 2, 3 indicate three spatial directions. Using the Green’s function defined in

Eq. (3), we can convert the Maxwell’s equation in Eq. (1) into a three-dimensional integral

equation

Eµ(r; ω) = E(0)
µ (r; ω)− ω2

ǫ0c2
∑

ν

∫

d3r′ Gµν(r, r
′; ω)P loc

ν (r′; ω) , (4)

where E(0)
µ (r; ω) is a solution of the corresponding homogeneous equation

∑

ν

[

ǫb(x3; ω)
ω2

c2
δµν −

∂2

∂xµ∂xν
+ δµν ∇2

r

]

E(0)
ν (r; ω) = 0 , (5)

and the source term P loc
ν (r′; ω) generally depends on the electric field in a nonlinear way

and can be determined by the Bloch equation. [2, 15]
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B. Solving Green’s Function

For a semi-infinite medium, the Green’s function can be formally expressed by its Fourier

transform

Gµν(r, r
′; ω) =

∫ d2k‖

(2π)2
e
ik‖·(r‖−r′

‖
)
gµν(k‖, ω|x3, x′3) , (6)

where we have introduced the notations for the two-dimensional vectors r‖ = (x1, x2) and

k‖ = (k1, k2). Substituting Eq. (6) into Eq. (3), we obtain





















ǫb
ω2

c2
− k22 +

d2

dx23
k1k2 −ik1

d

dx3

k1k2 ǫb
ω2

c2
− k21 +

d2

dx23
−ik2

d

dx3

−ik1
d

dx3
−ik2

d

dx3
ǫb
ω2

c2
− k2‖

































g11 g12 g13

g21 g22 g23

g31 g32 g33













= δ(x3 − x′3)













1 0 0

0 1 0

0 0 1













.

(7)

After a rotational transformation [25] is performed in k‖-space, i.e.,

fµν(k‖, ω|x3, x′3) =
∑

µ′,ν′
Sµµ′(k‖)Sνν′(k‖) gµ′ν′(k‖, ω|x3, x′3) , (8)

where the rotational matrix is selected as

S(k‖) =
1

k‖













k1 k2 0

−k2 k1 0

0 0 k‖













, (9)

we acquire an equivalent version of Eq. (7)





















ǫb
ω2

c2
+

d2

dx23
0 −ik‖

d

dx3

0 ǫb
ω2

c2
− k2‖ +

d2

dx23
0

−ik‖
d

dx3
0 ǫb

ω2

c2
− k2‖

































f11 f12 f13

f21 f22 f23

f31 f32 f33













= δ(x3−x′3)













1 0 0

0 1 0

0 0 1













. (10)

To get the solution of Eq. (10), we need to employ both the finite-value boundary condition

at x′3 = ±∞ and the continuity boundary condition at the x3 = 0 interface. This leads to

the following five non-zero fµν(k‖, ω|x3, x′3) elements [25, 26]
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f22(k‖, ω|x3, x′3)

=







































































































−
(

i

2p

)

2p

pd + p
eipdx3−ipx′

3 , x3 > 0 , x′3 < 0

−
(

i

2p

)[

eip|x3−x′
3| − pd − p

pd + p
e−ip(x3+x′

3)

]

, x3 < 0 , x′3 < 0

−
(

i

2pd

) [

eipd|x3−x′
3| +

pd − p

pd + p
eipd(x3+x′

3)

]

, x3 > 0 , x′3 > 0

−
(

i

2pd

)

2pd
pd + p

e−ip(x3−x′
3) , x3 < 0 , x′3 > 0

, (11)

f13(k‖, ω|x3, x′3)

=







































































































ik‖c
2

2ǫM(ω)ω2

[

2ǫM(ω)pd
ǫM(ω)pd + ǫd p

]

eipdx3−ipx′
3 , x3 > 0 , x′3 < 0

ik‖c
2

2ǫM(ω)ω2

[

eip|x3−x′
3| sgn(x3 − x′3) +

ǫM(ω)pd − ǫd p

ǫM(ω)pd + ǫd p
e−ip(x3+x′

3)

]

, x3 < 0 , x′3 < 0

ik‖c
2

2ǫd ω2

[

eipd|x3−x′
3| sgn(x3 − x′3) +

ǫM(ω)pd − ǫd p

ǫM(ω)pd + ǫd p
eipd(x3+x′

3)

]

, x3 > 0 , x′3 > 0

− ik‖c
2

2ǫd ω2

[

2ǫd p

ǫM(ω)pd + ǫd p

]

e−ipx3+ipdx
′
3 , x3 < 0 , x′3 > 0

(12)

f33(k‖, ω|x3, x′3)
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=











































































































−
ik2‖c

2

ω2

[

1

ǫM(ω)pd + ǫd p

]

eipdx3−ipx′
3 , x3 > 0 , x′3 < 0

c2

ǫM(ω)ω2
δ(x3 − x′3)−

ik2‖c
2

2p ǫM(ω)ω2

[

eip|x3−x′
3| − ǫM(ω)pd − ǫd p

ǫM(ω)pd + ǫd p
e−ip(x3+x′

3)

]

, x3 < 0 , x′3 < 0

c2

ǫd ω2
δ(x3 − x′3)−

ik2‖c
2

2pdǫd ω2

[

eipd|x3−x′
3| +

ǫM(ω)pd − ǫd p

ǫM(ω)pd + ǫd p
eipd(x3+x′

3)

]

, x3 > 0 , x′3 > 0

−
ik2‖c

2

ω2

[

1

ǫM(ω)pd + ǫd p

]

e−ipx3+ipdx
′
3 , x3 < 0 , x′3 > 0

(13)

f11(k‖, ω|x3, x′3)

=







































































































−ipdp c
2

ω2

[

1

ǫM(ω)pd + ǫd p

]

eipdx3−ipx′
3 , x3 > 0 , x′3 < 0

− ip c2

2ǫM(ω)ω2

[

eip|x3−x′
3| +

ǫM(ω)pd − ǫd p

ǫM(ω)pd + ǫd p
e−ip(x3+x′

3)

]

, x3 < 0 , x′3 < 0

− ipdc
2

2ǫd ω2

[

eipd|x3−x′
3| − ǫM(ω)pd − ǫd p

ǫM(ω)pd + ǫd p
eipd(x3+x′

3)

]

, x3 > 0 , x′3 > 0

− ipdc
2

2ǫd ω2

[

2ǫdp

ǫM(ω)pd + ǫd p

]

e−ipx3+ipdx
′
3 , x3 < 0 , x′3 > 0

(14)

f31(k‖, ω|x3, x′3)

=







































































































ik‖c
2

ω2

[

p

ǫM(ω)pd + ǫd p

]

eipdx3−ipx′
3 , x3 > 0 , x′3 < 0

ik‖c
2

2ǫM(ω)ω2

[

eip|x3−x′
3| sgn(x3 − x′3)−

ǫM(ω)pd − ǫd p

ǫM(ω)pd + ǫd p
e−ip(x3+x′

3)

]

, x3 < 0 , x′3 < 0

ik‖c
2

2ǫd ω2

[

eipd|x3−x′
3| sgn(x3 − x′3)−

ǫM(ω)pd − ǫd p

ǫM(ω)pd + ǫd p
eipd(x3+x′

3)

]

, x3 > 0 , x′3 > 0

−ik‖c
2

ω2

[

pd
ǫM(ω)pd + ǫd p

]

e−ipx3+ipdx
′
3 , x3 < 0 , x′3 > 0

(15)

where sgn(x) is the sign function,
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pd(k‖, ω) =

√

ǫd
ω2

c2
− k2‖ , (16)

p(k‖, ω) =

√

ǫM(ω)
ω2

c2
− k2‖ , (17)

Im[pd(k‖, ω)] ≥ 0 and Im[p(k‖, ω)] ≥ 0. In addition, from these non-zero fµν(k‖, ω|x3, x′3)
functions, we obtain

gµν(k‖, ω|x3, x′3) =
∑

µ′,ν′
fµ′ν′(k‖, ω|x3, x′3)Sµ′µ(k‖)Sν′ν(k‖) , (18)

which can be substituted into Eq. (6) to calculate the Green’s function Gµν(r, r
′; ω) in posi-

tion space.

C. Local Polarization Field

In order to find the explicit field dependence in P
loc(r; ω), we now turn to the study of

electron dynamics in a quantum dot. Here, the optical-polarization field P
loc(r; ω) plays a

unique role on bridging the classical Maxwell’s equations for electromagnetic fields to the

quantum-mechanical Schrödinger equation for electrons. The electron dynamics in photo-

excited quantum dots can be described quantitatively by the so-called semiconductor Bloch

equations [30–32]. These generalize the well-known optical Bloch equations in two aspects

including the incorporation of electron scattering with impurities, phonons and other elec-

trons as well as many-body effects on dephasing in the photo-induced optical coherence.

The physical system considered in this paper is illustrated in Fig. 2, where we assume

two levels for electrons and holes, respectively, in a quantum dot. These two energy levels of

both electrons and holes are efficiently coupled by phonon scattering at high temperatures.

Additionally, the lowest electron and hole energy levels are optically coupled to each other

by an incident SPP field to form the dressed states of excitons. The SPP-controlled optical

properties of quantum-dot excitons can either probed by a plane-wave field or seen from the

spontaneous emission of excitons.

For photo-excited spin-degenerated electrons in the conduction band, the semiconductor

Bloch equations with ℓ = 1, 2, · · · are given by
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dne
ℓ

dt
=

2

h̄

∑

j

Im
[(

Y j
ℓ

)∗ (Meh
ℓ,j − Y j

ℓ V
eh
ℓ,j;j,ℓ

)]

+
∂ne

ℓ

∂t

∣

∣

∣

∣

∣

rel

− δℓ,1Rsp n
e
1 n

h
1 , (19)

where Rsp is the spontaneous emission rate and ne
ℓ represents the electron level population.

In Eq. (19), the term marked ‘rel’ is the non-radiative energy relaxation for ne
ℓ, and the Y j

ℓ ,

Meh
ℓ,j, and V

eh
ℓ,j;j,ℓ terms are given later in the text.

Similarly, for spin-degenerate holes in the valence band, the semiconductor Bloch equa-

tions with j = 1, 2, · · · are found to be

dnh
j

dt
=

2

h̄

∑

ℓ

Im
[(

Y j
ℓ

)∗ (Meh
ℓ,j − Y j

ℓ V
eh
ℓ,j;j,ℓ

)]

+
∂nh

j

∂t

∣

∣

∣

∣

∣

rel

− δj,1Rsp n
e
1 n

h
1 , (20)

where nh
j stands for the hole energy level population. Again, the non-radiative energy

relaxation for nh
j is incorporated in Eq. (20). Moreover, we know from Eqs. (19) and (20)

that

Ne(t) = 2
∑

ℓ

ne
ℓ(t) = 2

∑

j

nh
j (t) = Nh(t) , (21)

whereNe(t) andNh(t) are the total number of photo-excited electrons and holes, respectively,

in the quantum dot at time t.

Finally, for spin-averaged e-h plasmas, the induced interband optical coherence, which is

introduced in Eqs. (19) and (20), with j = 1, 2, · · · and ℓ = 1, 2, · · · satisfies the following

equations,

ih̄
d

dt
Y j
ℓ =

[

εeℓ(ω) + εhj (ω)− h̄(ω + iγ0)
]

Y j
ℓ +

(

1− ne
ℓ − nh

j

) (

Meh
ℓ,j − Y j

ℓ V
eh
ℓ,j;j,ℓ

)

+Y j
ℓ





∑

j1

nh
j1

(

V hh
j,j1;j1,j − V hh

j,j1;j,j1

)

−
∑

ℓ1

ne
ℓ1 V

eh
ℓ1,j;j,ℓ1





+ Y j
ℓ





∑

ℓ1

ne
ℓ1

(

V ee
ℓ,ℓ1;ℓ1,ℓ − V ee

ℓ,ℓ1;ℓ,ℓ1

)

−
∑

j1

nh
j1 V

eh
ℓ,j1;j1,ℓ



 , (22)

where h̄γ0 = h̄γeh + h̄γext is the total energy-level broadening due to both the finite carrier

lifetime and the loss of an external evanescent field, ω is the frequency of the external

field, and εeℓ(ω) and εhj (ω) are the kinetic energies of dressed single electrons and holes,

respectively (see Appendix A with α = 1). In Eq. (22), the diagonal dephasing (γ0) of Y
j
ℓ ,

the renormalization of interband Rabi coupling (Y j
ℓ V

eh
ℓ,j;j,ℓ), the renormalization of electron
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and hole energies (third and fourth terms on the right-hand side), as well as the exciton

binding energy, are all taken into consideration. Since the e-h plasmas are independent

of spin index in this case, they can be excited by both left-circularly and right-circularly

polarized light. The off-diagonal dephasing of Y j
ℓ has been neglected due to low carrier

density.

The steady-state solution to Eq. (22), i.e. under the condition of dY j
ℓ /dt = 0, is found to

be

Y j
ℓ (t|ω) =





1− ne
ℓ(t)− nh

j (t)

h̄(ω + iγ0)− h̄Ω
eh
ℓ,j(ω|t)



Meh
ℓ,j(t) , (23)

where the photon and Coulomb renormalized interband energy-level separation h̄Ω
eh
ℓ,j(ω|t) is

given by

h̄Ω
eh
ℓ,j(ω|t) = εeℓ(ω|t) + εhj (ω|t)− V eh

ℓ,j;j,ℓ +
∑

ℓ1

ne
ℓ1
(t)
(

V ee
ℓ,ℓ1;ℓ1,ℓ

− V ee
ℓ,ℓ1;ℓ,ℓ1

)

+
∑

j1

nh
j1
(t)
(

V hh
j,j1;j1,j

− V hh
j,j1;j,j1

)

−
∑

ℓ1 6=ℓ

ne
ℓ1
(t) V eh

ℓ1,j;j,ℓ1
−
∑

j1 6=j

nh
j1
(t) V eh

ℓ,j1;j1,ℓ
. (24)

The steady-state solution in Eq. (23) can be substituted into Eqs. (19) and (20) above.

The Coulomb interaction matrix elements introduced in Eqs.(19), (20) and (22) are de-

fined as

V ee
ℓ1,ℓ2;ℓ3,ℓ4 =

∫

d3r
∫

d3r′
[

ψe
ℓ1(r)

]∗ [

ψe
ℓ2(r

′)
]∗ e2

4πǫ0ǫb|r− r′| ψ
e
ℓ3(r

′)ψe
ℓ4(r)

=
e2

8π2ǫ0ǫb

∫

d2q‖ F e
ℓ1,ℓ4(q‖)F e

ℓ2,ℓ3(−q‖)

(

1

q‖ + qs

)

=
(

V ee
ℓ1,ℓ2;ℓ3,ℓ4

)∗
, (25)

V hh
j1,j2;j3,j4

=
∫

d3r
∫

d3r′
[

ψh
j1
(r)
]∗ [

ψh
j2
(r′)

]∗ e2

4πǫ0ǫb|r− r′| ψ
h
j3
(r′)ψh

j4
(r)

=
e2

8π2ǫ0ǫb

∫

d2q‖Fh
j1,j4

(q‖)Fh
j2,j3

(−q‖)

(

1

q + qs

)

=
(

V hh
j1,j2;j3,j4

)∗
, (26)

V eh
ℓ,j;j′,ℓ′ =

∫

d3r
∫

d3r′ [ψe
ℓ(r)]

∗
[

ψh
j (r

′)
]∗ e2

4πǫ0ǫb|r− r′| ψ
h
j′(r

′)ψe
ℓ′(r)

=
e2

8π2ǫ0ǫb

∫

d2q‖F e
ℓ,ℓ′(q‖)Fh

j,j′(−q‖)

(

1

q + qs

)

=
(

V eh
ℓ,j;j′,ℓ′

)∗
, (27)
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where the static screening length 1/qs at temperatures (kBT ≫ EF ) is determined from

qs(t) =
e2

4ǫ0ǫbS kBT
[Ne(t) +Nh(t)] , (28)

S is the cross-sectional area of a quantum dot, T is the lattice temperature, ψe
ℓ(r) and ψ

h
j (r)

are the envelope wave-functions of electrons and holes in a quantum dot (see Appendix A),

ǫb is the average dielectric constant of the host semiconductor. The two dimensionless form

factors (see Appendix A) introduced in Eqs. (25)-(27) for electrons and holes due to quantum

confinement by a quantum dot are defined by

F e
ℓ,ℓ′(q‖) = e−q‖L0

∫

d2r‖
[

ψe
ℓ(r‖)

]∗
eiq‖·r‖ ψe

ℓ′(r‖) =
[

F e
ℓ,ℓ′(−q‖)

]∗
, (29)

Fh
j,j′(q‖) = e−q‖L0

∫

d2r‖
[

ψh
j (r‖)

]∗
eiq‖·r‖ ψe

j′(r‖) =
[

Fh
j,j′(−q‖)

]∗
, (30)

where L0 is the thickness of a disk-like quantum dot. In addition, the matrix elements

employed in Eqs. (19), (20) and (22) for the Rabi coupling between photo-excited carriers

and an evanescent external field E(r; t) = θ(t)E(r; ω) e−iωt are given by

Meh
ℓ,j(t) = −δℓ,1 δj,1 θ(t)

[

E
eh
ℓ,j(ω) · dc,v

]

, (31)

where θ(x) is a unit step function, the static interband dipole moment dc,v (see Appendix

A) is

dc,v =
∫

d3r [uc(r)]
∗
r uv(r) = d∗

c,v , (32)

uc(r) and uv(r) are the Bloch functions associated with conduction and valence bands at

the Γ-point in the first Brillouin zone of the host semiconductor, and the effective electric

field coupled to the quantum dot is

E
eh
ℓ,j(ω) =

∫

d3r [ψe
ℓ(r)]

∗
E(r; ω)

[

ψh
j (r)

]∗
. (33)

The Boltzmann-type scattering term [33] for non-radiative electron energy relaxation in

Eq. (19) is

13



∂ne
ℓ

∂t

∣

∣

∣

∣

∣

rel

= W(in)
ℓ (1− ne

ℓ)−W(out)
ℓ ne

ℓ , (34)

where the microscopic scattering-in and scattering-out rates are calculated as

W(in)
ℓ =

2π

h̄

∑

ℓ′

′
∣

∣

∣V ep
ℓ,ℓ′

∣

∣

∣

2
ne
ℓ′

{

Nph(Ω0)

[

h̄Γph/π

(εeℓ − εeℓ′ − h̄Ω0)2 + h̄2Γ2
ph

]

+ [Nph(Ω0) + 1]

[

h̄Γph/π

(εeℓ − εeℓ′ + h̄Ω0)2 + h̄2Γ2
ph

]}

+
2π

h̄

∑

ℓ′

′
∑

j,j′

′
∣

∣

∣V eh
ℓ,j;j′,ℓ′

∣

∣

∣

2
(1− nh

j )n
h
j′ n

e
ℓ′

[

h̄γeh/π

(εeℓ + εhj − εeℓ′ − εhj′)
2 + h̄2γ2eh

]

, (35)

W(out)
ℓ =

2π

h̄

∑

ℓ′

′
∣

∣

∣V ep
ℓ,ℓ′

∣

∣

∣

2
(1− ne

ℓ′)

{

Nph(Ω0)

[

h̄Γph/π

(εeℓ′ − εeℓ − h̄Ω0)2 + h̄2Γ2
ph

]

+ [Nph(Ω0) + 1]

[

h̄Γph/π

(εeℓ′ − εeℓ + h̄Ω0)2 + h̄2Γ2
ph

]}

+
2π

h̄

∑

ℓ′

′
∑

j,j′

′
∣

∣

∣V eh
ℓ′,j;j′,ℓ

∣

∣

∣

2
(1− ne

ℓ′) (1− nh
j )n

h
j′

[

h̄γeh/π

(εeℓ′ + εhj − εeℓ − εhj′)
2 + h̄2γ2eh

]

. (36)

Here,the primed summations in Eqs. (35) and (36) exclude the terms satisfying either j = j′

or ℓ′ = ℓ, Nph(Ω0) = [exp(h̄Ω0/kBT )− 1]−1 is the Bose function for the thermal-equilibrium

phonons, and Ω0 and Γph are the frequency and lifetime of longitudinal-optical phonons in the

host semiconductor. Similarly, the Boltzmann-type scattering term for hole non-radiative

energy relaxation in Eq. (20) is

∂nh
j

∂t

∣

∣

∣

∣

∣

rel

= W(in)
j (1− nh

j )−W (out)
j nh

j , (37)

where the scattering-in and scattering-out rates are

W (in)
j =

2π

h̄

∑

j′

′
∣

∣

∣V hp
j,j′

∣

∣

∣

2
nh
j′

{

Nph(Ω0)

[

h̄Γph/π

(εhj − εhj′ − h̄Ω0)2 + h̄2Γ2
ph

]

+ [Nph(Ω0) + 1]

[

h̄Γph/π

(εhj − εhj′ + h̄Ω0)2 + h̄2Γ2
ph

]}

+
2π

h̄

∑

ℓ,ℓ′

′
∑

j′

′
∣

∣

∣V eh
ℓ,j;j′,ℓ′

∣

∣

∣

2
(1− ne

ℓ)n
h
j′ n

e
ℓ′

[

h̄γeh/π

(εeℓ + εhj − εeℓ′ − εhj′)
2 + h̄2γ2eh

]

, (38)

W (out)
j =

2π

h̄

∑

j′

′
∣

∣

∣V hp
j,j′

∣

∣

∣

2
(1− nh

j′)

{

Nph(Ω0)

[

h̄Γph/π

(εhj′ − εhj − h̄Ω0)2 + h̄2Γ2
ph

]
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+ [Nph(Ω0) + 1]

[

h̄Γph/π

(εhj′ − εhj + h̄Ω0)2 + h̄2Γ2
ph

]}

+
2π

h̄

∑

ℓ,ℓ′

′
∑

j′

′
∣

∣

∣V eh
ℓ,j′;j,ℓ′

∣

∣

∣

2
(1− ne

ℓ) (1− nh
j′)n

e
ℓ′

[

h̄γeh/π

(εeℓ + εhj′ − εeℓ′ − εhj )
2 + h̄2γ2eh

]

, (39)

and again the primed summations in Eqs. (38) and (39) exclude the terms satisfying either

j′ = j or ℓ = ℓ′. The coupling between the longitudinal-optical phonons and electrons or

holes in Eqs. (35), (36), (38) and (39) are calculated as

∣

∣

∣V ep
ℓ,ℓ′

∣

∣

∣

2
=
e2h̄Ω0

8π2ǫ0

(

1

ǫ∞
− 1

ǫs

)
∫

d2q‖

∣

∣

∣F e
ℓ,ℓ′(q‖)

∣

∣

∣

2
(

1

q‖ + qs

)

, (40)

∣

∣

∣V hp
ℓ,ℓ′

∣

∣

∣

2
=
e2h̄Ω0

8π2ǫ0

(

1

ǫ∞
− 1

ǫs

)
∫

d2q‖

∣

∣

∣Fh
j,j′(q‖)

∣

∣

∣

2
(

1

q‖ + qs

)

, (41)

where ǫ∞ and ǫs are the high-frequency and static dielectric constants of the host polar

semiconductor.

By generalizing the Kubo-Martin-Schwinger relation, [20] the time-dependent sponta-

neous emission rate, Rsp(t), introduced in Eqs. (19) and (20), can be expressed as

Rsp(t) =

∣

∣

∣d′
c,v(t)

∣

∣

∣

2

ǫ0
√
ǫb

∣

∣

∣

∣

∫

d3rψe
1(r)ψ

h
1 (r)

∣

∣

∣

∣

2
∞
∫

0

dω′ θ
[

h̄ω′ − Ec(t)− εe1(ω|t)− εh1(ω|t)
]

× h̄ω′ ρ0(ω
′)

{

h̄γeh

[h̄ω′ − Ec(t)− εe1(ω|t)− εh1(ω|t)]2 + h̄2γ2eh

}

, (42)

where

∣

∣

∣d′
c,v(t)

∣

∣

∣

2
=

e2h̄2

2m0 EG(T )

[

1 +
Ec(t)
EG(T )

](

m0

m∗
e

− 1

)

, (43)

EG(T ) = EG(0)−5.41×10−4 T 2/(T +204) (in units of eV) is the energy bandgap of the host

semiconductor, ρ0(ω) = ω2/c3π2h̄ is the density-of-states of spontaneously-emitted photons

in vacuum, m0 is the free electron mass, m∗
e is the effective mass of electrons, and the

Coulomb renormalization of the energy bandgap Ec(t) is calculated as

Ec(t) =
∑

ℓ1

ne
ℓ1
(t)
(

V ee
1,ℓ1;ℓ1,1

− V ee
1,ℓ1;1,ℓ1

)

+
∑

j1

nh
j1
(t)
(

V hh
1,j1;j1,1

− V hh
1,j1;1,j1

)

−
∑

ℓ1

ne
ℓ1
(t) V eh

ℓ1,1;1,ℓ1
−
∑

j1

nh
j1
(t) V eh

1,j1;j1,1
−
[

1− ne
1(t)− nh

1(t)
]

V eh
1,1;1,1 . (44)

15



In Eq. (44), the first two terms are associated with the Hartree-Fock energies of electrons

and holes, while the rest of the terms are related to the exciton binding energy.

Finally, the photo-induced interband optical polarization P
loc(r; ω), which is related to

the induced interband optical coherence, by dressed electrons in the quantum dot is given

by [2]

P
loc(r; ω) = 2 |ξ(r)|2 dc,v

{
∫

d3r′ ψe
1(r

′)ψh
1 (r

′)
}

× 1

h̄
lim
t→∞





1− ne
1(t)− nh

1(t)

ω + iγ0 − Ω
eh
1,1(ω|t)



Meh
1,1(t) , (45)

where dc,v = dc,v êd represents the interband dipole moment [see Eq. (32)], êd is the unit

vector of the dipole moment, and |ξ(r)|2 comes from the confinement of a quantum dot.

D. Self-Consistent Field Equation

Since the wavelength of the incident light is much larger than the size of a quantum dot,

we can treat the quantum dot, which is excited resonantly by the incident light, as a point

dipole at r = r0 = (0, 0, z0), i.e. we can assume P
loc(r′; ω) = P

loc(ω) δ(r′ − r0) in Eq. (4) to

neglect its geometry effect. This greatly simplifies the calculation and gives rise to

Eµ(r; ω) = E(0)
µ (r; ω)− ω2

ǫ0c2
∑

ν

Gµν(r, r0; ω)P loc
ν (ω) , (46)

where

P
loc(ω) = 2dc,v

{
∫

d3r′ ψe
1(r

′)ψh
1 (r

′)
}

× 1

h̄
lim
t→∞







1− ne
1(t)− nh

1(t)

ω + iγ0 − Ω
eh
1,1(ω|t)







Meh
1,1(t) , (47)

Meh
1,1(t) = −θ(t) [E(r0; ω) · dc,v]

{
∫

d3rψe
1(r)ψ

h
1 (r)

}∗

. (48)

Substituting Eqs. (47) and (48) into Eq. (46), we get the following nonlinear equations for

the electromagnetic field

Eµ(r; ω) = E(0)
µ (r; ω) +

2ω2

ǫ0c2
[E(r0; ω) · dc,v] dc,v

∣

∣

∣

∣

∫

d3r′ ψe
1(r

′)ψh
1 (r

′)

∣

∣

∣

∣

2
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× 1

h̄
lim
t→∞







1− ne
1(t)− nh

1(t)

ω + iγ0 − Ω
eh
1,1(ω|t)







∑

ν

Gµν(r, r0; ω) ê
ν
d , (49)

where the quantum-dot level populations ne
ℓ(t) and n

h
j (t) depend nonlinearly on E(r0; ω) in

the strong-coupling regime.

If the electromagnetic field is not very strong, we can neglect the pumping effect. In this

linear-response regime, we can write down the electron and hole populations in a thermal-

equilibrium state [without solving Eqs. (19) and (20)]

ne
ℓ(t) ≈ f0(ε

e
ℓ) ≡

1

exp[(εeℓ − µe)/kBT ] + 1
, (50)

nh
j (t) ≈ f0(ε

h
j ) ≡

1

exp[(εhj − µh)/kBT ] + 1
, (51)

where f0(x) is the Fermi function, µe and µh are the chemical potentials of electrons and

holes, respectively, determined by Eq. (21). As a result of Eqs. (50) and (51), we get from

Eq. (49) the linearized self-consistent field equation at r = r0

∑

ν

Aµν(r0; ω)Eν(r0; ω) = E(0)
µ (r0; ω) (52)

with

Aµν(r0; ω) = δµν −
2ω2

ǫ0c2h̄





1− f0(ε
e
1)− f0(ε

h
1)

ω + iγ0 − Ω
eh
1,1(ω)





∣

∣

∣

∣

∫

d3r′ ψe
1(r

′)ψh
1(r

′)

∣

∣

∣

∣

2

× d2c,v

[

êνd
∑

ν1

Gµν1(r0, r0; ω) ê
ν1
d

]

, (53)

where, according to Eq. (6), we have

Gµν(r0, r0; ω) =
∫ d2k‖

(2π)2
gµν(k‖, ω|z0, z0) . (54)

The solution E(r0; ω) of the linear-matrix equation in Eq. (52) can be substituted into

Eq. (49) to find the spatial distribution of the electromagnetic field E(r; ω) at all positions

other than r = r0, i.e.,

Eµ(r; ω) = E(0)
µ (r; ω) +

2ω2

ǫ0c2h̄





∑

ν,ν′
êνd A−1

νν′(r0; ω)E
(0)
ν′ (r0; ω)





×
∣

∣

∣

∣

∫

d3r′ ψe
1(r

′)ψh
1 (r

′)

∣

∣

∣

∣

2

d2c,v





1− f0(ε
e
1)− f0(ε

h
1)

ω + iγ0 − Ω
eh
1,1(ω)





∑

ν1

Gµν1(r, r0; ω) ê
ν1
d . (55)
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In order to find the coupled e-h plasma and plasmon dispersion relation ω = Ωex−pl(k‖),

we perform Fourier transforms to both E(r; ω) and E
(0)(r; ω) in Eq. (46) with respect to

r‖. This leads to

Eµ(k‖, ω|x3) = E(0)
µ (k‖, ω|x3)−

ω2

ǫ0c2
∑

ν

gµν(k‖, ω|x3, z0)P loc
ν (ω) . (56)

After setting x3 = z0 in Eq. (56), we get

∑

ν







δµν −
2ω2

ǫ0c2h̄





1− f0(ε
e
1)− f0(ε

h
1)

ω + iγ0 − Ω
eh
1,1(ω)





∣

∣

∣

∣

∫

d3r′ ψe
1(r

′)ψh
1(r

′)

∣

∣

∣

∣

2

d2c,v

×
[

êνd
∑

ν1

gµν1(k‖, ω|z0, z0) êν1d
]}

Eν(k‖, ω|z0) = E(0)
µ (k‖, ω|z0) . (57)

Here, the zero determinant of the coefficient matrix in Eq. (57) determines the coupled e-h

plasma and plasmon dispersion relation ω = Ωex−pl(k‖). We emphasize that the assumption

of thermal-equilibrium states for electrons and holes is just for obtaining analytical expres-

sions. Therefore, some qualitative conclusions can be drawn for guidance from these ana-

lytical solutions. Our numerical results, however, are based on the non-thermal-equilibrium

steady states calculated after solving self-consistently the coupled Maxwell-Bloch equations.

By assuming an incident SPP field within the x1x2-plane, we can write

E
(0)(r; ωsp) = Esp e

ik0(ωsp)·D0
c

ωsp

[

ik̂0β3(k0, ωsp)− x̂3k0(ωsp)
]

eik0(ωsp)·x‖ e−β3(k0, ωsp)x3 , (58)

where x‖ = {x1, x2}, k̂0 and x̂3 are the unit vectors in the k0 = k0(ωsp){cos θ0, sin θ0} and

x3 directions, Esp is the field amplitude, ωsp is the field frequency, θ0 is the angle of the

incident SPP field with respect to the x1 direction, D0 = {−xg, −yg} is the position vector

of the surface grating, and the two wave numbers are

k0(ωsp) =
ωsp

c

√

√

√

√

ǫd ǫM(ωsp)

ǫd + ǫM(ωsp)
, (59)

β3(k0, ωsp) =

√

k20(ωsp)−
ω2
sp

c2
, (60)
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with Re[k0(ωsp)] ≥ 0 and Re[β3(k0, ωsp)] ≥ 0. Here, the in-plane wave number k0 is produced

by the surface-grating diffraction of the p-polarized normally-incident light, which in turn

determines the resonant frequency ω of the SPP mode. Equation (59) stands for the full

dispersion relation of the SPP field, including both radiative and non-radiative parts. From

Eq. (58), it is easy to find its Fourier transformed expression

E
(0)(k‖, ωsp|z0) = δ(k‖ − k0)Esp e

ik0(ωsp)·D0
(2π)2c

ωsp

×
[

ik̂0β3(k0, ωsp)− x̂3k0(ωsp)
]

e−β3(k0, ωsp)z0 . (61)

E. Quantum-Dot Absorption

On the basis of the above electromagnetic field E(r0; ω) at the quantum dot, we are able

to compute the time-resolved nonlinear interband absorption coefficient of dressed electrons

in a quantum dot for the SPP field. [34] In this case, we find

β0(ω; t) =
ω
√
ǫb

nspp(ω; t) c

[

1

exp(h̄ω/kBT )− 1
+ 1

]

Im [αspp(ω; t)] , (62)

where αspp(ω; t) is the complex Lorentz function given by

Im[αspp(ω; t)] = θ(t)

(

2

ǫ0ǫbV|E(0)(r0; ω)|2

)

|E(r0; ω) · dc,v|2
∣

∣

∣

∣

∫

d3rψe
1(r)ψ

h
1 (r)

∣

∣

∣

∣

2

×
[

1− ne
1(t)− nh

1(t)
]

{

[A2(ω; t)−B2(t)]2 + 4h̄2γ20A
2(ω; t)

[A2(ω; t) +B2(t)]2 + 4h̄2γ20A
2(ω; t)

} [

h̄γ0

∆2(ω; t) + h̄2γ20

]

, (63)

Re[αspp(ω; t)] = −θ(t)
(

2

ǫ0ǫbV|E(0)(r0; ω)|2

)

|E(r0; ω) · dc,v|2
∣

∣

∣

∣

∫

d3rψe
1(r)ψ

h
1 (r)

∣

∣

∣

∣

2

×
[

1− ne
1(t)− nh

1(t)
]

{

A4(ω; t)−B4(t)]2

[A2(ω; t) +B2(t)]2

} [

∆(ω; t)

∆2(ω; t) + h̄2γ20

]

, (64)

and the scaled refractive index function nspp(ω; t) can be calculated by

nspp(ω; t) =
1√
2
(1 + Re [αspp(ω; t)]

+
√

{1 + Re [αspp(ω; t)]}2 + {Im [αspp(ω; t)]}2
)1/2

. (65)
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In Eqs. (63) and (64), the dressed-state effects on both the level population and dipole

moment have been included. In addition, we have introduced the following notations in

Eqs. (63) and (64)

∆(ω; t) =
√

[EG(T ) + εe1 + εh1 − h̄ω]2 + 4|Meh
1,1(t)|2 , (66)

A2(ω; t) =
[

h̄ω − EG(T )− εe1 − εh1 +∆(ω; t)
]2

, B2(t) = 4|Meh
1,1(t)|2 . (67)

F. Probing Quantum-Dot Dressed States

We are also able to compute the time-resolved linear interband absorption coefficient of

electrons, dressed by the SPP field, for a weak probe field (not the strong SPP field) on

the basis of the above calculated electromagnetic field E(r0; ω) at the quantum dot. [34]

Assuming a spatially-uniform probe field Ep(t) = θ(t− τ)Ep e
−iωpt with τ being the delay

time, the probe-field absorption coefficient βabs(ωp; t) of the lowest dressed state is given by

Eq. (62) with the replacements of ω, nspp, and αspp by ωp, npf , and αpf , respectively, where

αpf(ωp; t) = −θ(t− τ)

(

2

ǫ0ǫbV|Ep|2h̄

)

|Ep · dc,v|2
∣

∣

∣

∣

∫

d3rψe
1(r)ψ

h
1 (r)

∣

∣

∣

∣

2 [

1− ne
1(t)− nh

1(t)
]

×
{

A2(ω; t)−B2(t)

[A2(ω; t) +B2(t)]2

}







A2(ω; t)

ωp + iγeh − Ω
eh
1,1(ω−|t)

− B2(t)

ωp + iγeh − Ω
eh
1,1(ω+|t)







, (68)

npf(ωp; t) =

1√
2

(

1 + Re [αpf(ωp; t)] +
√

{1 + Re [αpf(ωp; t)]}2 + {Im [αpf(ωp; t)]}2
)1/2

. (69)

Here, using Eq. (24) we have

h̄Ω
eh
1,1(ω±|t) = h̄ω±(t)−

[

1− ne
1(t)− nh

1(t)
]

V eh
1,1;1,1 +

∑

ℓ1

ne
ℓ1(t)

(

V ee
1,ℓ1;ℓ1,1 − V ee

1,ℓ1;1,ℓ1

)

+
∑

j1

nh
j1(t)

(

V hh
1,j1;j1,1 − V hh

1,j1;1,j1

)

−
∑

ℓ1

ne
ℓ1(t) V

eh
ℓ1,1;1,ℓ1 −

∑

j1

nh
j1(t) V

eh
1,j1;j1,1 , (70)

and

h̄ω±(t) = h̄ω ±∆(ω; t) . (71)
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Moreover, the time-resolved photoluminescence spectrum Pem(ω
′; t) of dressed electrons

in the quantum dot is proportional to

Pem(ω
′; t) ∝ |d′

c,v|2
ǫ0
√
ǫbL0

ne
1(t)n

h
1(t) h̄γeh

{

1

[A2(ω; t) +B2(t)]2

}

∣

∣

∣

∣

∫

d3rψe
1(r)ψ

h
1(r)

∣

∣

∣

∣

2

h̄ω′ ρ0(ω
′)

×
{

A2(ω; t)B2(t)

[h̄ω′ − Ec(t)− h̄ω−(t)]2 + h̄2γ2eh
+

A2(ω; t)B2(t)

[h̄ω′ − Ec(t)− h̄ω+(t)]2 + h̄2γ2eh

+
A4(ω; t) +B4(t)

[h̄ω′ − Ec(t)− h̄ω]2 + h̄2γ2eh

}

. (72)

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Results for the dynamics of an SPP field

In the first part of our numerical calculations, we have taken: L0 = 100 Å, Ly = 100 Å,

m∗
e = 0.067m0, m

∗
h = 0.62m0, θ0 = 45o, xg = yg = 610 Å, ǫb = 12, ǫs = 11, ǫ∞ = 13,

h̄Ω0 = 36meV and h̄γeh = h̄Γph = h̄γ0. The silver plasma frequency is 13.8 × 1015Hz and

the silver plasma dephasing is 0.1075 × 1015Hz. The energy gap EG of the quantum-dot

host material is 1.927 eV at T = 300K. Other parameters, including T , Esp, Lx, h̄γ0, z0 and

ǫd, will be directly indicated in the figures.

Figure 3 presents the quantum dot absorption coefficient β0(ωsp) for an SPP field, the

scattering field |Etot − Esp| of the SPP field, and the energy-level occupations for electrons

nℓ,e and holes nj,h with ℓ, j = 1, 2 as functions of frequency detuning ∆h̄ωsp ≡ h̄ωsp −
(EG + ε1,e + ε1,h). A dip is observed at resonance ∆h̄ωsp = 0 in the upper-left panel,

which appears to become deeper with decreasing amplitude Esp of the SPP field in the

strong-coupling regime due to a decrease in the saturated absorption. However, this dip

completely disappears when Esp drops to 25 kV/cm in the weak-coupling regime due to the

suppression of the photon-dressing effect, which is accompanied by an order of magnitude

increase in the absorption-peak strength. The dip in the upper-left panel corresponds to a

peak in the scattering field, as can be seen from the upper-right panel of the figure. The

scattering field increases with frequency detuning away from resonance, corresponding to

the decreasing absorption. As a result, two minima show up on both sides of resonance

for the scattering field in the strong-coupling regime. Maxwell-Bloch equations couple the
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field dynamics outside of a quantum dot with the electron dynamics inside the dot. At

Esp = 125 kV/cm in the lower-right panel, we find peaks in energy-level occupations at

resonance, which are broadened by the finite carrier lifetime as well as the optical power of

the SPP field. Moreover, jumps in the energy-level occupations can be seen at resonance due

to Rabi splitting of the energy levels in the dressed electron states. The effect of resonant

phonon absorption also plays a significant role in the finite value of n2,e with energy-level

separations ε2,e−ε1,e ≈ h̄Ω0. However, as Esp decreases to 25 kV/cm in the lower-left panel,

peaks in the energy-level occupations are greatly sharpened and negatively shifted due to the

suppression of the broadening from the optical power and the excitonic effect, respectively.

Additionally, jumps in the energy-level occupations become invisible because the Rabi-split

energy gap in this case is much smaller than the energy-level broadening from the finite

lifetime of electrons (i.e. severely damped Rabi oscillations between the first electron and

hole levels).

We know that a decrease in temperature T gives rise to an increase in the crystal bandgap

EG. On the other hand, the localization of an SPP field (i.e. an exponential decay of the field

strength on either side of a metallic surface) is greatly enhanced when the SPP frequency

ωsp approaches that of a surface plasmon. As a result, the field at the quantum dot is

expected to decrease as T is reduced. This gives rise to a higher absorption coefficient for

a lower temperature, as shown in the upper-left panel of Fig. 4. Interestingly, although the

suppressed absorption coefficient can be seen from β0(ωsp) for high SPP-field amplitudes,

as shown by Eq. (63), from the upper-right panel of this figure we find the resonant peak

at h̄ωsp = EG + ε1,e + ε1,h initially increases with T but then decreases with T at room

temperature. This subtle difference demonstrates the effect of reduced phonon absorption at

T = 77K on the resonant scattering field by the factor 1−ne(t)−nh(t) in Eq. (49). Moreover,

the strong effect of the suppressed optical-phonon absorption between two electron energy

levels at 77K is clearly demonstrated in the lower panels of Fig. 4, where the level occupation

n2,e becomes negligible at T = 77K in comparison with that at T = 300K.

The electron thermal dynamics due to phonon absorption has been demonstrated in Fig. 4

for various temperatures. In Fig. 5, we present the electron dynamics resulting from the op-

tical dephasing, due to the finite lifetime of electrons, at different energy-level broadenings

h̄γ0. As h̄γ0 is increased from 3meV to 7meV, the dip in β0(ωsp) at resonance is suppressed,
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leading to a single peak with a reduced strength and an increased width, as shown in the

upper-left panel of the figure. This increase in the resonant absorption is further accompa-

nied by an enhanced resonant peak for the scattering field in the upper-right panel of this

figure. As expected, the energy-level occupations at h̄γ0 = 7meV become much broader

than those at h̄γ0 = 3meV, as displayed in the lower two panels of the figure.

We further notice that the effective bandgap EG + ε1,e + ε1,h also depends on the size

Lx of a quantum dot due to the quantization effect, and the effective bandgap will increase

with decreasing Lx. The size effect from such an Lx dependence is displayed in Fig. 6.

From the upper-left panel of Fig. 6, we find that the peak of β0(ωsp) is enhanced as Lx is

reduced. This phenomenon is connected to the increased localization of the SPP field at

Lx = 170 Åas the SPP frequency approaches the saturation part of its dispersion. Moreover,

the dip in β0(ωsp) is lifted somewhat uniformly at the same time due to decreased ne
1(t) from

the enhanced Coulomb and phonon scattering at Lx = 170 Å. Here, β0(ωsp) is proportional

to the population factor 1−ne
1(t)−nh

1(t), as can be seen from Eq. (63). Besides the slightly-

reduced resonant peak strength of the scattering field for Lx = 170 Å (also resulting from

the enhanced carrier scattering), |Etot −Esp| keeps the same peak position, as shown in the

upper-right panel of the figure. In this case, |Etot−Esp| at the dot approaches a nonzero value
at resonance, as can be seen from Eq. (55), and tends to zero rapidly away from resonance.

Additionally, n2,h is reduced for Lx = 170 Å, as can be found from a comparison between the

two lower panels of the figure. This is attributed to the reduced phonon absorption between

two hole energy levels.

In Figs. 4 and 6, we vary the localization of an SPP field by changing the effective bandgap.

Since the frequency of the surface plasmon (saturated dispersion part) is proportional to

the factor of 1/
√
1 + ǫd, a smaller value of ǫd implies a higher surface-plasmon frequency

or a reduced localization of the SPP field. We verify the change in the SPP localization

by observing the upper two panels of Fig. 7, where the absorption peak, as well as the

resonant scattering-field peak, become much stronger as ǫd is increased from 8 to 12 due

to the reduction of saturated absorption for a lower field strength at the quantum dot.

Furthermore, from the two lower panels of this figure we also observe, via the jumps in the

population curves, an enhanced Rabi-split energy gap in the electron dressed states as ǫd is

reduced from 12 to 10 due to the enhanced field strength at the quantum dot.
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In the presence of the localization of an SPP field, we can move a quantum dot closer

to a metallic surface to gain a higher field at the quantum dot. The upper-left panel of

Fig. 8 has elucidated this fact, in which a larger z0 corresponds to a weaker field, and then,

a higher absorption peak due to the reduction of saturated absorption. This fact is also

reflected in the upper-right panel of the figure, where a higher resonant scattering-field peak

occurs for a larger value of z0. At z0 = 510 Å, a Rabi-split energy gap at resonance is clearly

visible from the lower-left-panel of the figure for electron dressed states. Additionally, at

z0 = 710 Å, by entering into a weak-coupling regime for a weaker field at the dot, we find

sharpened resonant peaks in the energy-level occupations of electrons and holes, similar to

the observation from the lower-left panel of Fig. 3.

B. Results for the dressed states of electrons

In the second part of the numerical calculations, besides the parameters given in the first

subsection, we have fixed Lx = 210 Å, h̄γ0 = 3meV, z0 = 610 Å and ǫd = 12. Other param-

eters, including T , Esp and ∆h̄ωsp, will be directly indicated in the figures. Additionally,

∆h̄ωsp is given with respect to the energy gap at T = 300K.

From the left panel of Fig. 9 we find a strong absorption (positive) peak and a weak

gain (negative) peak for the probe-field absorption coefficient βabs(ωp) due to a quantum

coherence effect from the electron states being dressed by an SPP field. In the strong-

coupling regime, the dispersion of the quantum-dot e-h plasmas (dot-like branch) and SPPs

(photon-like branch) form an anticrossing gap, where a higher-energy dot-like branch at a

negative frequency detuning switches to a photon-like branch for a positive detuning. The

positive peak is associated with the absorption of a probe-field photon by a quantum-dot e-h

plasma, while the negative peak relates to the process with absorption of two photons from

an SPP field and emission of one probe-field photon. The absorption peak is significantly

reduced by saturation at Esp = 1000 kV/cm, and the gain peak is suppressed by a smaller

Rabi-coupling frequency at Esp = 250 kV/cm (see the inset of the left panel). In addition,

we observe from the right panel of Fig. 9 that two Rabi-splitting-induced side emission peaks

for the spontaneous emission Pem(ω) become weaker and closer to the strong central peak as

Esp is reduced (see the inset of the right panel). Moreover, the strength of the central peak

due to the coherent conversion of an absorbed SPP-field photon to a spontaneously-emitted
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photon (non-linear optical behavior) is slightly reduced at Esp = 1000 kV/cm as a result of

saturated absorption of the SPP field.

Figure 10 demonstrates the effect of frequency detuning ∆h̄ωsp of an SPP field with

respect to the bandgap of a quantum dot. The switching of the detuning from 10meV to

−10meV reveals the corresponding spectral-position interchange between the absorption

(dot-like branch) and the gain (photon-like branch) peaks for βabs(ωp) in the left panel

of the figure. The Rabi oscillations between the first electron and hole energy levels are

weakened with increasing |∆h̄ωsp|. At resonance with a zero detuning, both the absorption

and gain peaks are suppressed by very strong Rabi oscillations. This detuning also shifts the

emission peaks correspondingly because of the coherent conversion of an SPP-field photon to

a spontaneously-emitted one, as can been seen from the right panel of this figure. Moreover,

the central peak is weakened and the two side peaks are enlarged at resonance as a result

of energy transfer to the side peaks by strong coupling and enhanced Rabi oscillations,

respectively.

Since the temperature affects the crystal bandgap energy EG, by changing the tempera-

ture we are able to scan the detuning ∆h̄ωsp of the SPP field with a fixed SPP frequency

h̄ωsp from negative to positive or vice versa. This leads to a spectral-position interchange

between the absorption and gain peaks, similar to Fig. 10. The results in Fig. 11 prove

such an expected feature by increasing T from 250 to 300K in steps of 5K. Technically,

changing the temperature in the experiment is much easier than changing the tuning of a

laser frequency over a large range. Here, the shift of the central peak in the right panel

of the figure directly reflects the variation of the SPP-field detuning with T . Furthermore,

the interchange between the dot-like and photon-like modes with T in the left panel can be

regarded as direct evidence for the existence of an anticrossing energy gap resulting from a

strongly-coupled e-h plasma and SPP field or coupled e-h plasmas and surface plasmons.

C. Time-resolved optical spectra

In our previously presented numerical results, we only showed steady-state dynamics of

photo-excited e-h plasmas in a quantum dot by using a continuous SPP field, where the ef-

fects of both phonon scattering and e-h pair radiative recombination are combined with each

other. Using a laser pulse to launch a pulsed SPP field, we are able to study the dynamics
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of phonon scattering (narrow pulse) as well as the dynamics of e-h pair radiative recombina-

tion (wide pulse), separately. Dynamically, phonon scattering becomes effective only after

a characteristic time (around 1 ps), its effect can be seen from a significant increase of n2,e

in our system. Figure 12 displays the results for β0(ωsp) (upper-left), |Etot − Esp| (upper-
right), n1,e (lower-left) and n2,e (lower-right) for various detection times τ0 in the presence of

a narrow laser pulse (with pulse width Tp = 500 fs and peak value Esp = 500kV/cm) which

is turned on at t = 0. We see from Fig. 12 that β0(ωsp) starts with a dip for the dressed state

at resonance, then shifts to a single peak (at half-pulse width) due to a suppression of the

photon-dressing effect. It eventually becomes a single peak plus a shifted dip after the pulse

has passed due to formation of resonant peaks in n1,e and n1,h. Correspondingly, |Etot−Esp|
starts by showing a non-resonant behavior with a relatively large magnitude, then shifts to

a quasi-resonant behavior, and finally looks like suppressed resonant behavior with a peak

at and dips on both sides of ∆h̄ωsp = 0. The resonant build up of n1,e after τ0 ≥ 500 fs can

also be verified from this figure, which is accompanied by the start of significant phonon

absorption after τ0 ≥ 1 ps.

Technically, detecting dynamics of photo-excited e-h plasmas by using another time-

delayed weak probe field is much more feasible, as shown in Fig. 13. From the left panel of

this figure, we find that βabs(ωp) starts with a pair of positive absorption and negative gain

peaks due to a very strong photon dressing effect for the delayed times τd = 60 and 120 fs.

This is changed to a strong absorption peak plus a very weak gain peak at τd = 240 fs. At

the end, βabs(ωp) becomes independent of τd, indicating that a linear optical-response regime

has been reached. On the other hand, from the right panel of this figure, we see that the

central peak of Pem(ω) is gradually built up with increasing τd due to enhanced n1,e and

n1,h around resonance, while two side peaks become weakened and disappear at the same

time due to weakened Rabi oscillations. Interestingly, we also find that the central peak of

Pem(ω) slightly decreases at τd = 1ps, which agrees with the observed start of significant

phonon absorption seen in the lower-left panel of Fig. 12.

In order to explore the dynamics of e-h pair radiative recombination in our system, a

wide pulse with a full-pulse width around 300 ps is required, as displayed in Fig. 14. From

the upper-middle panel of this figure, we find that β0(ωsp) starts with a resonant dip due

to a strong photon dressing effect, then shifts to a sole peak at ∆h̄ωsp = 0 as τ0 ≥ 400 ps
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where a steady state is almost reached in the linear-response regime. Accordingly, the

level populations n1,e and n2,e in the lower two panels show a transition from an initial non-

resonant behavior to a final resonant behavior. This is accompanied by dramatically reduced

level populations due to the start of a radiative recombination process for photo-excited e-h

pairs.

Recombination dynamics for e-h plasmas can also be demonstrated clearly by the time-

delayed probe-field absorption as well as by the time-resolved spontaneous emission, as

shown in Fig. 15. As presented in the left panel of this figure, we find that the initial weak

absorption and gain peaks (see the inset) in βabs(ωp) occur at τd = 200 ps and are replaced by

a strong single absorption peak due to a suppressed photon dressing effect and phase-space

blocking. On the other hand, from the right panel of the same figure, we see that the initial

central peak in Pem(ω) is increased very rapidly due to accumulation of photo-excited e-h

pairs and accompanied by the reduction of two side peaks resulting from the weakened Rabi

oscillations. Importantly, the very-strong central peak in Pem(ω) is significantly reduced at

τd = 200 ps, indicating the start of a radiative-recombination process for photo-excited e-h

plasmas. This recombination process is continuously enhanced with the increasing delay

time τd and suppresses the central peak in Pem(ω) after τd ≥ 400 ps due to draining out the

photo-generated electrons and holes at the same time.

IV. CONCLUSIONS AND REMARKS

In conclusion, we have demonstrated the possibility of using a SPP field to control the

optical gain and absorption of another passing light beam due to their strong nonlinear field

coupling mediated by electrons in the quantum dot. We have also predicted the coherent

conversion of a surface-plasmon-field photon to a spontaneously-emitted free-space photon,

which is simultaneously accompanied by another pair of blue- and red-shifted photons.

Although we studied only the coupling of a SPP field to a single quantum dot in this paper

for the simplest case, our formalism can be generalized easily to include many quantum dots.

The numerically-demonstrated unique control of the effective photon-photon coupling by

the quantum dot can be used for constructing an optical transistor, where the ‘gate’ photon

controls the intensity of its ‘source’ light beam. These optical transistors are very useful for

speeding up and improving the performance of fiber-optic communication networks, as well
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as for constructing quantum information and developing optical digital computers.

Furthermore, instead of a resonant coupling to the lowest pair of electron-hole energy

levels, we may select the surface-plasmon frequency for resonant coupling to the higher

pair of electron-hole levels. In such a case, the optical pumping from the intense surface-

plasmon near-field could create a population inversion with respect to the ground pair of

electron-hole levels by emitting thermal phonons, leading to a possible lasing action if the

optical gain can overcome the metal loss for the surface plasmons. Such a surface-plasmon

quantum-dot laser would have a beam size as small as a few nanometers beyond the optical

diffraction limit, and it is expected to be very useful for spatially-selective illumination of

individual molecules or neuron cells in low-temperature photo-excited chemical reactions or

optogenetics and neuroscience.
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Appendix A: Electronic States of a Quantum Dot

We have employed a box-type potential with hard walls for a quantum dot, which is given

by

V (r) =











0 , 0 ≤ xi ≤ Li for i = 1, 2, 3

∞ , others
, (A1)

where the position vector r = (x1, x2, x3), L1, L2 and L3 are the widths of the potential in

the x1, x2 and x3 directions, respectively. The Schrödinger equation for a single electron or

hole in a quantum dot is written as

− h̄2

2m∗

[

∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
+ V (r)

]

ψ(r) = ε ψ(r) , (A2)

where the effective mass m∗ ism∗
e for electrons orm

∗
h for holes. The eigenstate wave-function

associated with Eq. (A2) is found to be
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ψn1,n2,n3
(r) =

√

2

L1
sin

[(

n1π

L1

)

x1

]

√

2

L2
sin

[(

n2π

L2

)

x2

]

√

2

L3
sin

[(

n3π

L3

)

x3

]

, (A3)

which is same for both electrons and holes, and the eigenstate energy associated with

Eq. (A2) is

εn1,n2,n3
=

h̄2

2m∗

[

(

n1π

L1

)2

+
(

n2π

L2

)2

+
(

n3π

L3

)2
]

, (A4)

where the quantum numbers n1, n2, n3 = 1, 2, · · ·.

By using the calculated bare energy levels in Eq. (A4), the dressed electron (λeα) and hole

(λhα) energy levels under the rotating wave approximation take the form of [2]

λeα(ω|t) = λhα(ω|t) =



















































1
2

(

h̄ω +
√

[EG(T ) + εeα + εhα − h̄ω]2 + 4|Meh
α,α(t)|2

)

if h̄ω ≤ EG(T ) + εeα + εhα

1
2

(

h̄ω −
√

[EG(T ) + εeα + εhα − h̄ω]2 + 4|Meh
α,α(t)|2

)

if h̄ω ≥ EG(T ) + εeα + εhα

, (A5)

where the composite index α = {n1, n2, n3}. Moreover, we get the energy levels of dressed

electrons εeα(ω|t) = λeα(ω|t) + (εeα − εhα)/2 and εeℓ(ω|t) = εeℓ + EG(T )/2 for ℓ 6= α. Similarly,

we obtain the energy levels of dressed holes εhα(ω|t) = λhα(ω|t) + (εhα − εeα)/2 and εej(ω|t) =
εhj + EG(T )/2 for j 6= α.

Based on the calculated wave-functions in Eq. (A3), the form factors introduced in

Eqs. (11) and (12) can be obtained from

F e
n1,n2,n3;n′

1,n
′
2,n

′
3
(q) = Fh

n1,n2,n3;n′
1,n

′
2,n

′
3
(q) = Q(1)

n1,n′
1
(q1)Q(2)

n2,n′
2
(q2)Q(3)

n3,n′
3
(q3) , (A6)

where the wave vector q = (q1, q2, q3) and we have defined the following notation for j =

1, 2, 3

Qj
nj ,n′

j
(qj) =

(

2

Lj

) Lj
∫

0

dxj e
iqjxj sin

[(

njπ

Lj

)

xj

]

sin

[(

n′
jπ

Lj

)

xj

]

. (A7)
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Moreover,the overlap of the electron and hole wave-functions in this model can be easily

calculated as

∫

d3rψe
n1,n2,n3

(r)ψh
n′
1,n

′
2,n

′
3
(r) = δn1,n′

1
δn2,n′

2
δn3,n′

3
. (A8)

The interband dipole moment dc,v = dc,v êd at the isotropic Γ-point, which is defined in

Eq. (32), can be calculated according to the Kane approximation [35, 36]

dc,v =

√

√

√

√

e2h̄2

2m0 EG(T )

(

m0

m∗
e

− 1

)

. (A9)

Furthermore, the direction of the dipole moment êd is determined by the quantum-dot

energy levels in resonance with the photon energy h̄ω.
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[4] W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki and Vladan
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FIG. 1: (Color online) Schematic illustration for a semi-infinite metal and a quantum dot above

its surface at x3 = 0. Here, the surface-plasmon polariton (SPP) is locally excited by incident light

with the help of a surface grating. The propagating SPP field further excites e-h pairs (plasmas)

in the adjacent quantum dot. As a result, the optical-polarization field of the photo-excited e-h

plasma is strongly coupled to the propagating SPP field to form split plasma-SPP modes with an

anticrossing gap. Also, a probe-field is used for studying the photon dressing effect.
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of spontaneous emission from photo-excited excitons, and the ground states of electrons and holes

are coupled to their first excited states by lattice phonons at finite temperatures.
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FIG. 3: (Color online) Optical absorption coefficients β0(ωsp) (upper-left panel) and scattering

field |Etot − Esp| at the quantum dot (upper-right panel), as well as the energy-level occupations

for electrons nℓ,e and holes nj,h (lower panels) with ℓ, j = 1, 2, as functions of frequency detuning

∆h̄ωsp ≡ h̄ωsp − (EG + ε1,e + ε1,h). Here, the results for various amplitudes Esp of an SPP field

with frequency ωsp are presented in the upper panels, along with a comparison of the energy-level

occupations for Esp = 25 and 125 kV/cm in the lower panels. The label ×0.1 in the upper-left

panel indicates that the result is multiplied by a factor of 0.1.
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FIG. 4: (Color online) β0(ωsp) (upper-left panel) and |Etot − Esp| (upper-right panel), as well

as nℓ,e and holes nj,h (lower panels), as functions of ∆h̄ωsp. Here, the results for three different

temperatures T = 300, 175 and 77K are displayed in the upper panels, along with a comparison

of nℓ,e and holes nj,h for T = 300 and 77K in the lower panels.
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FIG. 5: (Color online) β0(ωsp) (upper-left panel) and |Etot−Esp| (upper-right panel), as well as nℓ,e

and holes nj,h (lower panels), as functions of ∆h̄ωsp. Here, the results with different energy-level

broadening h̄γ0 = 3, 5 and 7meV are shown in the upper panels, along with a comparison of nℓ,e

and holes nj,h for h̄γ0 = 3 and 7meV in the lower panels.
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FIG. 6: (Color online) β0(ωsp) (upper-left panel) and |Etot − Esp| (upper-right panel), as well as

nℓ,e and holes nj,h (lower panels), as functions of ∆h̄ωsp. Here, the results for three different sizes

Lx = 210, 190 and 170 Å of a quantum dot are shown in the upper panels, along with a comparison

of nℓ,e and holes nj,h for Lx = 210 and 170 Å in the lower panels.
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FIG. 7: (Color online) β0(ωsp) (upper-left panel) and |Etot − Esp| (upper-right panel), as well as

nℓ,e and holes nj,h (lower panels), as functions of ∆h̄ωsp. Here, the results for three dielectric

constants of a cladding layer, with ǫd = 8, 10 and 12, are displayed in the upper panels, along with

a comparison of nℓ,e and holes nj,h for ǫd = 12 and 10 in the lower panels.
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FIG. 8: (Color online) β0(ωsp) (upper-left panel) and |Etot − Esp| (upper-right panel), as well as

nℓ,e and holes nj,h (lower panels), as functions of ∆h̄ωsp. Here, the results for different vertical

distances of a quantum dot from a metallic surface are displayed in the upper panels for z0 = 510,

610 and 710 Å, along with a comparison of nℓ,e and holes nj,h for z0 = 510 and 710 Å in the lower

panels.
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FIG. 10: (Color online) βabs(ωp) (left panel) and Pem(ω) (right panel) as a function of h̄ωp −

(EG + ε1,e + ε1,h) and h̄ω − (EG + ε1,e + ε1,h), respectively, are displayed. Here, we show the

comparisons with three values of SPP-field detunings ∆h̄ωsp = 0 and ±10meV. The label ×100

for zero SPP-field detuning indicates the result is multiplied by a factor of 100.
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FIG. 11: (Color online) βabs(ωp) (left panel) and Pem(ω) (right panel) as a function of h̄ωp− (EG+

ε1,e + ε1,h) and h̄ω − (EG + ε1,e + ε1,h), respectively, are shown. Here, a series of offset curves are

displayed for various temperatures from T = 250K (bottom black curves) to T = 300K (top blue

curves) in steps of 5K.
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FIG. 12: (Color online) β0(ωsp) (upper-left panel) and |Etot − Esp| (upper-right panel), as well

as n1,e and holes n2,e (lower panels), as functions of ∆h̄ωsp at different detection times τ0 for a

Gaussian-shape laser pulse with pulse width Tp = 500 fs. Here, Esp = 500 kV/cm is taken, and

the other parameters are the same as those in Fig. 3. The labels ×10 and ×105 in the upper-right

panel indicate that the results are multiplied by factors of 10 and 105, respectively.
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FIG. 13: (Color online) βabs(ωp) (left panel) and Pem(ω) (right panel) as a function of h̄ωp− (EG+

ε1,e + ε1,h) and h̄ω − (EG + ε1,e + ε1,h), respectively, at different delayed times τd for a Gaussian-

shape laser pulse with pulse width Tp = 500 fs. Here, Esp = 500 kV/cm and ∆h̄ωsp = 5meV are

chosen, and the other parameters are the same as those in Fig. 3.
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FIG. 14: (Color online) β0(ωsp) (upper-middle panel), n1,e and holes n2,e (lower two panels), as

functions of ∆h̄ωsp at different detection times τ0 for a wide laser pulse with pulse width Tp = 300 ps.

Here, Esp = 500 kV/cm is taken, and the other parameters are the same as those in Fig. 3. The

labels ×0.05 in the upper-middle panel indicate that the results in the upper panel for τ0 = 60 and

120 ps are multiplied by a factor of 0.05.
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FIG. 15: (Color online) βabs(ωp) (left panel) and Pem(ω) (right panel) as a function of h̄ωp− (EG+

ε1,e + ε1,h) and h̄ω − (EG + ε1,e + ε1,h), respectively, at different delayed times τd for a Gaussian-

shape laser pulse with pulse width Tp = 300 ps. Here, Esp = 500 kV/cm and ∆h̄ωsp = 5meV are

assumed, and the other parameters are the same as those in Fig. 3. The inset in the upper-left

panel shows an enlarged view for the gain and absorption peaks for small delayed times. The labels

×10 for τd = 50 and 100 ps in the left panel, as well as the label ×0.02 in the right panel, indicate

that the results are multiplied by a factor of 10 and a factor of 0.02, respectively.
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