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AUTO-TUNE: selecting the
distance threshold for inferring
HIV transmission clusters

Steven Weaver1, Vanessa M. Dávila Conn2, Daniel Ji3,
Hannah Verdonk1, Santiago Ávila-Ríos4, Andrew J. Leigh Brown3,
Joel O. Wertheim3 and Sergei L. Kosakovsky Pond1*
1Center for Viral Evolution, Temple University, Philadelphia, PA, United States, 2Center for Research in
Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico, 3Department of
Medicine, University of California San Diego, La Jolla, CA, United States, 4National Institute of Respiratory
Diseases, Mexico City, Mexico

Molecular surveillance of viral pathogens and inference of transmission networks
from genomic data play an increasingly important role in public health efforts,
especially for HIV-1. For many methods, the genetic distance threshold used to
connect sequences in the transmission network is a key parameter informing the
properties of inferred networks. Using a distance threshold that is too high can
result in a network with many spurious links, making it difficult to interpret.
Conversely, a distance threshold that is too low can result in a network with too
few links, which may not capture key insights into clusters of public health
concern. Published research using the HIV-TRACE software package
frequently uses the default threshold of 0.015 substitutions/site for HIV pol
gene sequences, but in many cases, investigators heuristically select other
threshold parameters to better capture the underlying dynamics of the
epidemic they are studying. Here, we present a general heuristic scoring
approach for tuning a distance threshold adaptively, which seeks to prevent
the formation of giant clusters. We prioritize the ratio of the sizes of the largest
and the second largest cluster, maximizing the number of clusters present in the
network. We apply our scoring heuristic to outbreaks with different
characteristics, such as regional or temporal variability, and demonstrate the
utility of using the scoring mechanism’s suggested distance threshold to identify
clusters exhibiting risk factors that would have otherwise been more difficult to
identify. For example, while we found that a 0.015 substitutions/site distance
threshold is typical for US-like epidemics, recent outbreaks like the CRF07_BC
subtype among men who have sex with men (MSM) in China have been found to
have a lower optimal threshold of 0.005 to better capture the transition from
injected drug use (IDU) to MSM as the primary risk factor. Alternatively, in
communities surrounding Lake Victoria in Uganda, where there has been
sustained heterosexual transmission for many years, we found that a larger
distance threshold is necessary to capture a more risk factor-diverse
population with sparse sampling over a longer period of time. Such
identification may allow for more informed intervention action by respective
public health officials.
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1 Introduction

The use of genomic data to infer and characterize transmission
networks of various pathogens has grown in prominence in the past
2 decades, with applications to a growing list of pathogens, including
viruses such as HIV (Paraskevis et al., 2016), hepatitis C virus (HCV)
(Murphy et al., 2019a), or influenza A virus (IAV) (Jombart et al.,
2011), and bacteria such as M. tuberculosis (Mai et al., 2018) or A.
baumanii (Thoma et al., 2022). Notably, genomic surveillance had a
prominent role during the COVID-19 pandemic, including the use
of sequencing for the study of transmission clusters (von Rotz et al.,
2023; Campigotto et al., 2023).

Many competing approaches for inferring transmission clusters,
transmission parameters, and source attribution have been
described (e.g., for an HIV-1 centric review, see Grabowski et al.
(2018)). These approaches can be roughly categorized into distance-
based (infer clusters from pairwise genetic distances, e.g.,
(Kosakovsky Pond et al., 2018), phylogeny-based (infer
phylogenetic trees from the data, then process the resulting tree,
e.g., Ragonnet-Cronin et al. (2013), or phylodynamic (transmission
model is directly incorporated into tree inference, e.g., Volz et al.
(2017)). These methodological categories differ considerably in
model and computational complexity, as well as in
interpretability of results. Comparisons of different methods have
been undertaken, showing broad compatibility of results, but also
highlighting application-specific differences between them
(Novitsky et al., 2020). Our goal here is not to develop a
conceptually new method, but rather to propose a systematic
approach to selecting the key parameter (distance threshold) for
the popular HIV-TRACE (Kosakovsky Pond et al., 2018) class
distance-based methods for identifying transmission clusters.

Choosing an appropriate genetic distance threshold is an
important part of using a molecular transmission network to
track the spread of rapidly evolving pathogens (Liu et al., 2020;
Rose et al., 2020). This distance threshold defines the degree of
genetic closeness between pathogen sequences, isolated from two
individuals, required to suggest them as potential transmission
partners in the network. Using a distance threshold that is too
large can result in a network with many spurious, making it difficult
to interpret and analyze. On the other hand, using a distance
threshold that is too small can result in a network with too few
links, underestimating connections between individuals and making
it difficult to accurately track the spread of the disease (Gore
et al., 2022).

To enhance the utility of inferred transmission networks, it is
important to carefully consider the appropriate distance threshold,
d. This threshold may vary depending on the specific disease and the
context in which it is spreading. For example, a highly contagious
acute respiratory illness (e.g., SARS-CoV-2) may require a smaller d
than a less contagious chronic illness that is primarily spread
through direct contact (e.g., HIV-1). Viruses are more amenable
to molecular studies compared to bacteria due to their high genetic
divergence and compact genomes. Given the relatively high
evolutionary rate of RNA viruses detectable genetic fingerprints
can be prioritized for epidemiological studies over short time
periods (Paraskevis et al., 2016).

For chronic infections such as HIV, the most appropriate
genetic distance threshold should be determined according to the

characteristics of the epidemic such as the speed of transmission,
and the evolutionary rate of the genomic region analyzed (Liu
et al., 2020). Sampling density and possible delays between
infection and diagnosis should be considered, since samples
close to the time of seroconversion are more likely to cluster
than samples from well after infection. Lower thresholds will
capture the most closely related sequences, while higher
thresholds will capture long-term epidemics and chronically
infected individuals (Junqueira et al., 2019).

Cluster analysis, i.e., identification and analysis of connected
network components, in public health has been used for early
identification of increased transmission (Oster et al., 2021;
2018), monitoring response to an HIV outbreak (Sizemore
et al., 2020; Tookes et al., 2020; Tumpney et al., 2020),
evaluating the effectiveness of interventions (Wang et al.,
2015; Peters et al., 2016; Liu et al., 2020) or predicting
clusters that are most likely to grow in the near future (Erly
et al., 2021; Ragonnet-Cronin et al., 2022). This balance can be
achieved through careful analysis and consideration of the
specific disease and context.

This study introduces AUTO-TUNE, a method that offers a
systematic approach to select genetic distance thresholds for
molecular HIV transmission network analysis, based purely on
the structure of the collected data. By autonomously optimizing
clustering metrics derived from pairwise genetic distances, AUTO-
TUNE has the potential to improve the accuracy and reliability of
network inference, irrespective of data attributes. The AUTO-TUNE
methodology’s independence from supplementary data makes it less
sensitive to variations in data collection protocols and enhances its
adaptability to various contexts, including potentially other
viral diseases.

2 Methods

Assume that there are S aligned genomic sequences (full or
partial, e.g., the HIV-1 pol gene) for a pathogen of interest, each
representing the “consensus” circulating viral diversity at the time of
sampling in a single infected individual. We shall infer a putative
transmission network comprising S nodes, and E links (edges),
where an edge is drawn between a pair of sequences if the
genetic distance between them is at or below a threshold d. In
such a network, there will be 0 ≤ C < S connected components with
more than one node (clusters), which are the primary object of
inference. This network inference strategy is used by HIV-TRACE
(Kosakovsky Pond et al., 2018), where the genetic distance is
computed using the Tamura-Nei (TN93) (Tamura and Nei,
1993) model, with a variety of options controlling how to deal
with ambiguous nucleotide bases; for HIV-1 such bases are
informative since they often represent variants co-circulating in
the infected individual at the time of sampling at substantial
frequencies (Kosakovsky Pond et al., 2009).

We begin by describing an approach to assign a score to each of
the choices of d in a plausible/informative range of distances. Note
that while such a range is continuous, it is sufficient to only consider
distance cutoffs that are in the array of pairwise distances between
the sequences, as those are the cut-points where one or more
additional edges will be added to the network as d is increased.
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2.1 Scoring heuristic procedure

The network threshold selection procedure proceeds as follows
(we provide an example in the Results section as well).

1. For each candidate threshold dL, in increasing order, ranging
from the smallest genetic distance in the dataset, up to either
the largest distance or a predetermined maximal threshold, we
compute two network statistics: R12, the ratio of the size of the
largest cluster to the size of the second largest cluster, and C,
the number of clusters in the network at this threshold. A
cluster is defined as a connected component in the network
with at least two nodes.

2. A priority score is assigned to each dL. This score measures two
properties of the threshold: Does R12 jump at dL? How far is the
number of clusters C at dL from the maximal number of
clusters computed over all threshold values? Let there be N
overall dL candidate values, and assume we are examining the
ith candidate, diL with W < i ≤ N − W (W is a positive integer
defined below).
a. The R12 jump is computed by looking at the normalized

ratio of the mean R12 values computed over the leading
window di+1L . . . di+WL and the trailing window di−WL . . . di−1L .
The width of the window, W, is defined as
min(max([ N

100], 3), 30). The distribution of ratios is
converted to Z scores, and normalized relative to the
largest positive Z score across all candidate distances,
yielding the jump component of the score.

b. The number of clusters, Ci at threshold diL is first
normalized to [0,1] through Cmax−Ci

Cmax−Cmin
and next gated via a

Gompertz function transform 1 − e−e−25x+3. This function
provides an ad hoc means for penalizing having too few
clusters relative to the maximum over all ranges. For
example, a threshold that yields 95% of the maximal
number of clusters receives a score of 0.996, a threshold
that yields 85% - a score of 0.376, and a threshold that yields
60% - a score of 0.0009.

c. The priority score for diL is the sum of the two components
defined in a) and b), and ranges from 0 to 2.

3. The threshold with the highest priority score will be selected as
the suggested automatic distance threshold, if the score is high
enough (1.9 or more), and either of the two conditions hold.
a. No other thresholds have priority scores of 1.9 or higher
b. If other thresholds have priority scores of 1.9 or higher, then

the range of thresholds represented by these options is small
(no more than log N times the mean step between
successive diL).

4. If no single threshold can be selected in step 3, then the one
with the highest priority score is suggested, and an inspection
of a plot of scores is recommended to ensure that the threshold
is sensible.

The corresponding flowchart can be found in Figure 1. The R12
jump component of the score is motivated by the giant component
formation result from network theory: when the degree distribution
satisfies particular conditions, most nodes in the network will belong to
a single component, or cluster (Molloy and Reed, 1995). This situation
leads to emidemiologically uninformative networks, and should be

avoided. The default configuration considers all clusters (i.e., with
two or more nodes), but users can specify that only clusters with K
or moremembers (K ≥ 2) should be included in R12 and Ci calculations.

2.2 Assortativity

Degree-weighted homophily (DWH) is a measure of similarity
between nodes in a network based on their attributes (such as
demographic characteristics or behaviors) and their degree
centrality (i.e., the number of connections they have to other
nodes in the network). It is used to quantify the extent to which
nodes with similar attributes tend to be connected to each other
more frequently than would be expected by chance (Golub and
Jackson, 2012). DWH is calculated as the ratio of the observed
number of connections between nodes with similar attributes to the
expected number of connections between such nodes, based on their
network degree.

For any two subsets A and B of nodes in a network without
singletons (each node has a positive degree), define the weight
between A and B as

WA,B � 1
|A‖B| ∑

i∈A,j∈B, i,j( )are connected
1

didj
,

where di is the degree of node i, and |X| is the cardinality (size)
of subset X.

Then for any proper (not empty and not the complete network)
subset of the network, G, e.g., a group of nodes sharing an attribute,
e.g., transmission risk factor, define

DWH � WG,G +W �G, �G − 2WG, �G

|G|−2∑i∈G1/di + | �G|−2∑i∈ �G1/di

, (1)

with

• �G: the complement of G (all nodes not in G)
• di: the degree of node i

DWHranges from−1 to 1. ADWHvalue of 0 indicates that there is
no more homophily than expected by chance (conditioned on network
structure), while a value of 1 indicates that there is perfect homophily (G
consists of connected components disconnected from the rest of the
network). A value of −1 is achieved for perfectly disassortative networks
(the only links are between G and �G).

Homophily metrics have been used in social network analysis and
in the study of how different attributes are related to the formation of
connections between individuals (Ragonnet-Cronin et al., 2021). To
assess whether or not DWH is significantly different from 0 (and from
random expectation), we generate the null distribution of DWH
obtained by randomly reshuffling node attributes used to define
group G and recomputing DWH for each such replicate.

2.3 Implementation

The software implementation involves a step-by-step process
that utilizes the HIV-TRACE suite of packages. It starts with
calculating pairwise distances with the tn93 tool and a supplied
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multiple sequence alignment. Thus generated pairwise distances are
supplied to the hivnetworkcsv script while providing the -A

keyword argument. A brief outline of the software’s implementation
is as follows.

1. Calculate pairwise distances: The user first calculates the
pairwise distances using the tn93 fast pairwise distance
calculator, providing the maximum threshold value to
consider (0.03 in this case, which may be revised upwards
for sufficiently divergent sequences, as this provides an upper
bound of thresholds to consider) and the input FASTA file. The
command for this step is

Please note that the threshold should include the maximal range
one is intending to test.

2. Compute priority scores for each candidate threshold: The
hivnetworkcsv script is then executed with the required
input file, format, and autotune option to generate a tab-
separated output file, as shown below

3. Visualize the report: Users can upload the generated autotune_
report.tsv file to
http://autotune.datamonkey.org/analyze for visualization and

further analysis of the data. This web-based site extends the

FIGURE 1
Method flowchart for computing and recommending a distance threshold. See text for details on normalization and specific transforms used.
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Datamonkey platform (Weaver et al., 2018) to provide an
interactive environment to explore scores and other metrics
across the range of tested outputs.
4. Run HIV-TRACE: Once AUTO-TUNEd threshold(s) are

settled upon after review, the user runs the HIV-TRACE
command with the appropriate input FASTA file, distance
threshold, and other required arguments. The output is
saved as a JSON file. An example command is

2.3.1 Optional: compute assortativity metrics
1. Annotate results: The hivnetworkannotate script is

used to annotate the results obtained from the HIV-
TRACE step with attributes. The script takes the JSON
results file, node attributes file, schema file, and a resolve
flag as input.

For more information, users can refer to the
hivnetworkannotate documentation.

2. Analyze the results with DWH: After the results file has been
annotated, the user can proceed to the assortativity page,

http://autotune.datamonkey.org/assortativity, for further
analysis of the output.

The described workflow offers a systematic approach to analyze
potential distance thresholds for one’s data with AUTO-TUNE,
from calculating pairwise distances to visualizing and
annotating results.

2.4 Visualization

Visualizations of AUTO-TUNE results are accessible at http://
autotune.datamonkey.org/analyze. These include the priority score
plot, and the two contributing statistics: cluster count relative to the
maximum and the ratio of two largest cluster sizes (Figure 2). An
assortativity tool is available at http://autotune.datamonkey.org/
assortativity, and is an analytical tool engineered to facilitate the
calculation of Degree-weighted homophily (DWH) values. It utilizes
the DWH NPM package to generate a tabular representation of
DWH values corresponding to each value for a selected attribute
annotation, providing an exhaustive examination of the
interrelationships for the field. The tool also computes the
panmictic (null) range, which involves a label permutation test to
generate the null distribution of DWH values. This feature
establishes a comparative baseline that aids in determining the
significance of homophily versus what would be expected by chance.

The visualization code is available on Github (https://github.
com/stevenweaver/autotune-app/).

FIGURE 2
The user interface of the AUTO-TUNE web application (http://autotune.datamonkey.org/analyze). The platform provides a multi-faceted view of
AUTO-TUNE’s analysis, including a score plot that visualizes trends across different genetic distance thresholds. It also displays graphs of the number of
clusters and the R1/R2 ratio—both key metrics in AUTO-TUNE’s heuristic scoring system. These interactive visualizations aid researchers in making
nuanced decisions for threshold selection, especially when multiple thresholds yield similar scores.
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2.5 Comparisons with previously
published analyses

First, we set out to compare the thresholds used in numerous
published studies with those obtained by AUTO-TUNE. To select the
data sets for this analysis, we conducted a scientific literature search to
identify studies focused on HIV networks for public health purposes.
We then filtered the studies that utilized HIV-TRACE to infer genetic
networks and had publicly available sequences. Due to privacy
concerns, HIV-1 sequences are frequently not released in the public
domain (Inzaule et al., 2023). Some of the best-sampled datasets are
national-level cohorts, such as the UK HIV Drug Resistance Database
(Dunn and Pillay, 2007), the Swiss HIV cohort (Scherrer et al., 2022), or
the Dutch ATHENA cohort (Boender et al., 2018). However, because
sequences from these cohorts are not in the public domain and are
typically subject to strong usage restrictions, we elected not to use such
data, for reasons of reproducibility, practicality, and data transparency.

We also attempted to include studies from different countries
and regions, enabling us to assess the performance of our method
across various epidemic contexts, risk groups, and network sizes in
real-data sets that used variable clustering thresholds.

Second, we compared AUTO-TUNE with the most direct
published alternative: the clustuneR method (Chato et al.,
2020). We procured datasets from Wolf et al. (2017) and
Vrancken et al. (2017) utilizing the approach delineated in Chato
et al. (2020). These datasets, namely, Middle Tennessee, Seattle, and
Alberta were processed using the workflow described in Section 2.3.
This enabled us to determine an optimal threshold for each dataset
using AUTO-TUNE. We further executed the command as detailed
in step 4 of Section 2.3, deploying thresholds previously established
as optimal by Chato et al. (2020). Note that clustuneR requires
and uses temporal information (dates sequences were collected),
whereas AUTO-TUNE does not.

Lastly, we evaluated the effect of sampling density on the genetic
distance threshold as determined by AUTO-TUNE, we implemented a
strategy of random subsampling from the original dataset sourced from
Rhee et al. (2019). This study was selected due to its satisfactory AUTO-
TUNE score when utilized in its entirety, as well as its inherent design as
aGeographically-Stratified set of 716 pol Subtype/CRF (GSPS) reference
sequence dataset. The dataset, which comprises 6034 samples gathered
between 1989 and 2016, was subjected to random subsampling ten
times at proportions of 25%, 50%, and 75% of the original sample size.
For each subsample, the optimal threshold and associated scores were
determined via AUTO-TUNE.

3 Results

3.1 Comparisons with published HIV-1
molecular epidemiology studies

We selected several publications citing HIV-TRACE for our
analysis, primarily because these studies not only referenced the tool
but also made some or all of their sequence data publicly available
(Tables 1, 2). These studies adopted several different approaches for
selecting genetic distance thresholds, including using US CDC
guidelines (Yan et al., 2020), picking thresholds based on prior
studies (Sivay et al., 2018), and visually inspecting the numbers of

clusters and nodes in the networks across candidate distance
thresholds (Liu et al., 2020). These thresholds, often qualitatively
determined, tended to be round numbers, and were usually
determined using ad hoc or subjective procedures. Some studies
stratified their analyses by viral subtype (major clade), while others
did not (or this was not applicable).

A direct comparison with published networks is not feasible
because only the underlying sequence data (and often only some of
the sequences) are made available, not the networks themselves. To
facilitate comparison here, we used distance thresholds and all available
sequences from primary publications to infer transmission networks
anew (the scripts for doing so and the corresponding settings are
available in github. com/veg/auto-tune) and compare them with the
networks obtained using the highest scoring AUTO-TUNE threshold.

With a few exceptions (e.g., Dalai et al. (2018); Sivay et al.
(2018)), both the distance thresholds and the inferred networks were
quite different, in terms of the numbers of connected nodes, clusters,
degree distributions, and even hyper-parameters, such as the
characteristic exponent of the scale free degree distribution, ρ.
This is true even for the studies where the published threshold
was tuned (typically to maximize the number of clusters). AUTO-
TUNE thresholds were larger than the published values in 13/21
datasets, and smaller in 8/21 datasets.

3.1.1 Examples of how changing thresholds affects
inferred networks
3.1.1.1 Cluster size reduction

The 0.02 subs/site (substitutions/site) threshold used by Dalai et al.
(2018), yielded one large cluster composed of two loosely connected
components (one PWID/HSX, oneMSM, see Figure 3 in that paper). A
minute change to the threshold by AUTO-TUNE to 0.0194 subs/site
splits one large cluster into three (some nodes also became
disconnected), separating the two major risk groups; this is because
the “bridging” connections were between these two thresholds (see
Figure 4A). This minor change also reduced R12 from 21 to 2.6.

3.1.1.2 Cluster size increase
Increasing the threshold from 0.015 to 0.02495 subs/site on data

from Little et al. (2014) combined several small clusters (and
singletons) into a single larger cluster, while preserving the
overall size and properties of the network (see Figure 4B). This
change also reduced R12 from 2.5 to 1.5.

3.1.1.3 Thinning out the network
Reducing the threshold from 0.015 to 0.01139 subs/site on data

from Rhee et al. (2019) dramatically reduced the size of the largest
cluster, and thinned out most clusters with five or more nodes (see
Figure 4C). This is different from the Dalai et al. (2018) case above,
because the entire network is affected, rather than a single or a
few clusters.

3.1.1.4 Materially changing the degree distribution of
the network

For the sequences from Li et al. (2022), AUTO-TUNE suggests
D = 0.01483 subs/site with robust (1.76) confidence, whereas the
original D = 0.013 subs/site was selected based on maximizing the
number of clusters (and likely rounding to the nearest decimal).
While the total number of the clusters only increases by 1, the
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number of nodes connected in the network grows from 95 to 119,
and the scale free exponent of the distribution is dramatically
affected. The latter is informed by the degree distribution of the
network, and Figure 4D shows, the degree distribution is
dramatically affected. The degree distribution of network, which

tabulates the number edges connected to each node, is a
fundamental feature of network analysis. For each integer 0 ≤
K ≤ Kmax, the degree distribution function counts how many
nodes have exactly K edges connected to them. Kmax is simply
the highest such number for a given network. Many commonly used

TABLE 1 Comparison of AUTO-TUNE and published thresholds from prior studies using partial HIV-1 polymerase gene sequences. N: the number of
sequences; L: length of themultiple sequence alignment, bp; E [D] mean pairwise TN93 distance; (the studies are sorted on this column, in ascending order)
¶: the original study performed threshold tuning (varied methods); †: distance thresholds were specific to subtypes; +: the corresponding AUTO-TUNE
score is ≥ 1.9; •: only a subset of the complete dataset wasmade available (privacy, data use restrictions, incomplete GenBank submissions), the number of
sequences analyzed here is shown after the/symbol; N.R: not reported.

References N L E
[D]
(%)

Scope Location/
Country

Timespan Common
subtypes

Distance threshold,
sub/site

Published AUTO-
TUNE

Zai et al. (2020) 209 1056 1.5 Country China 2007–2015 CRF55/01B ¶ 0.002 0.00255

Liu et al. (2020) 2087/
1907 •

1053 5.3 City Shenyang, China 2008–2016 CRF01, CRF07, B ¶ 0.005/0.007 † 0.00621

Dalai et al. (2018) 317 1044 5.5 City San Mateo, CA,
United States of America

1997–2008 96% B 0.02 0.01944

Chato et al. (2020) 1653/
1840 •

1020 5.5 City Seattle, United States of
America

2000–2013 B ¶0.016 0.01538

Chato et al. (2020) 808 1017 5.6 Province Northern Alberta, Canada 2007–2013 B ¶0.0104 0.01201

Little et al. (2014) 648/
646 •

1212 5.9 City San Diego, CA,
United States of America

1996–2011 98.5% B 0.015 0.02495

Pérez-Losada et al.
(2017)

1879/
3411 •

1027 6.0 City Washington DC,
United States of America

1987–2015 B 0.010 0.01733

Rhee et al. (2019) 4553 897 6.1 State CA, United States of
America

1998–2016 95.5% B 0.015 0.01139 +

Chato et al. (2020) 2779/
2750 •

1398 6.3 State Tennessee, United States
of America

2001–2015 B ¶0.016 0.01872

Temereanca et al.
(2017)

37 1302 6.7 City Bucharest, Romania 2010–2013 F1, G, B 0.015 0.00194 +

Brenner et al. (2021) 10945/
448 •

738 6.7 Province Quebec, Canada 2002–2020 B 0.015/0.025 0.02741

Sivay et al. (2018) 201 1302 6.9 Province Mpumalanga, South
Africa

2011–2015 C 0.025 0.02506

Li et al. (2022) 295 1206 7.8 Prefecture Pu’er, China 2021 CRF08, CRF01,
CRF07

¶ 0.013 0.01483 +

Yu et al. (2022) 316 1074 7.9 Province Guangxi, China 2012–2018 CRF01, CRF08,
CRF07

¶0.013 0.01178

Yan et al. (2021) 1695/
1569 •

1569 8.4 City Guangzhou, China 2008–2012 CRF01, CRF07,
CRF55,G

0.015 0.00839

Billings et al. (2019) 150 1597 8.5 City Lagos, Nigeria 2013–2016 CRF02, URF 0.015 0.0233

Chen et al. (2023) 1975/
209 •

1050 8.7 Province Guangxi, China 2016–2018 CRF01, CRF07,
CRF08

¶0.0075 0.01295

Fabeni et al. (2020) 726/
3499 •

1029 9.2 Country Italy 1998–2018 B 0.010 0.0037

Leal et al. (2020) 630/
633 •

990 9.2 State Maranhão, Brazil 2008–2017 B 0.020 0.04033

Bbosa et al. (2020) 2018 1257 9.3 Country Uganda 2009–2016 N.R 0.015 0.02035 +

Stecher et al. (2018) 2774 1028 12.1 Multi-
City

Germany 1999–2016 B 0.015 0.03056
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network-derived correlates (e.g., degree centrality) can be strongly
affected by such changes.

3.1.1.5 Expanding the network
Increasing the .015 subs/site threshold in Billings et al. (2019) to

0.0233 subs/site more than doubles the number of nodes included
(Figure 4E). This is distnict from the Rhee et al. (2019) case above,
because, once again, most of the network is affected, rather than a
few key clusters.

3.2 Interpretation

Networks with high AUTO-TUNE scores are exemplified by
the alignment (in the distance space) of the points where the
number of clusters is maximized and where the network

transitions to having an “unusually” large cluster (see
Figure 5A). In cases of low scores, AUTO-TUNE effectively
falls back to maximizing the number of clusters as a function
of the distance thresholds, which is a common strategy found in
empirical studies (see Figure 5B).

As expected, AUTO-TUNE inferred smaller thresholds for
younger (e.g., studies based in China) epidemics. While AUTO-
TUNE will always return a score, in the majority of cases there is no
clear “winner” threshold, with priority scores exceeding 1.5 in only
6/18 cases (Table 2). One interpretation for such lack of clarity is
that the underlying network has several different (e.g., spatial,
temporal, or subtype-specific) thresholds which cannot be well-
represented by any single value. For instance, when analyzing the
data from Yan et al. (2021), AUTO-TUNE returned a low score of
1.14 for D = 0.00839 subs/site. However, when we split the data into
major constituent subtypes and ran AUTO-TUNE on each one

TABLE 2 Network properties at the published and AUTO-TUNE thresholds. In cases when the original paper used more than one threshold, we selected the
largest for comparison. The datasets are ordered by the AUTO-TUNE priority score from highest to lowest. ρ is the fitted characteristic scale-free exponent
of the corresponding degree distributions.

References AUTO-
TUNE
score

Nodes in network Clusters in network R12 Scale parameter ρ

Published AUTO-
TUNE

Published AUTO-
TUNE

Published AUTO-
TUNE

Published AUTO-
TUNE

Li et al. (2022) 2.00 1364 1224 277 277 1.7 2.4 2.8 2.6

Chato et al.
(2020) TN

2.00 394 445 108 109 1.0 1.7 2.7 2.9

Rhee et al. (2019) 1.95 2044 1636 524 488 13.2 1.5 2.6 2.7

Bbosa et al. (2020) 1.93 222 296 102 119 2.2 1.6 3.2 2.6

Dalai et al. (2018) 1.89 60 54 9 11 22 2.6 2.0 2.2

Temereanca et al.
(2017)

1.79 30 16 5 3 3 1.5 N/A 2.8

Yu et al. (2022) 1.76 55 51 19 19 2.75 1.75 10.4 34.0

Sivay et al. (2018) 1.42 51 51 19 19 1.5 1.5 3.2 3.0

Zai et al. (2020) 1.40 96 98 26 27 1.5 1.5 24.1 17.7

Little et al. (2014) 1.31 301 394 98 87 2.5 6.1 3.6 3.1

Brenner et al. (2021) 1.22 363 379 71 70 5.6 5.5 2.7 2.8

Stecher et al. (2018) 1.20 97 558 36 155 2.2 4.9 3.2 3.3

Chato et al. (2020)
Seattle

1.16 505 484 148 149 2.5 1.7 2.7 2.6

Billings et al. (2019) 1.16 38 78 13 23 2 2.3 2.6 11.5

Yan et al. (2021) 1.14 1084 753 124 116 2.0 1.8 1.2 2.0

Chen et al. (2023) 1.11 20 47 8 16 1.3 2.0 ∞ ∞

Leal et al. (2020) 1.11 50 270 25 57 1 1.6 53.6 3.1

Pérez-Losada et al.
(2017)

1.06 172 431 76 134 5.1 1.4 5.2 2.9

Liu et al. (2020) 1.05 885 797 156 161 6.0 4.5 3.1 3.0

Chato et al. (2020)
Alberta

1.03 394 445 108 109 1.0 1.7 2.7 2.9

Fabeni et al. (2020) 1.00 626 221 197 83 2.1 3.2 2.1 3.2
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separately, starkly discrepant thresholds were found for different
subtypes:D = 0.0102 subs/site (score = 1.59) for CRF01,D = 0.00193
subs/site (score = 2) for CRF05, D = 0.02615 subs/site (score = 1.65)
for B, and D = 0.0111 subs/site (score = 1.04) for CRF07. Although
many networks from the literature tend to be dominated by
sequences from the same subtype, in more heterogeneous
settings it seems prudent to partition the data by subtype
(corresponding to major phylogenetic clades), and perform
network analyses within subtypes.

3.3 Minimum cluster size setting

We explored how selecting the minimum number of
connected nodes needed to define a cluster affected the
selected threshold and the score for the same collection of
21 empirical datasets (Table 3). For the majority of the
datasets, requiring three or more connected nodes to define a
cluster had a minor effect on the selected distance, with the
maximal priority score achieved for the standard minimum of
two nodes. The few exceptions where higher distances yield larger

scores come from very small networks, where there are only a few
clusters, e.g., Chen et al. (2023); Dalai et al. (2018).

3.4 Comparisons with published non-HIV
molecular epidemiology studies

While HIV-1 epidemiology is the predominant niche for distance-
based molecular transmission analyses, other rapidly evolving viruses,
especially HCV, have also been analyzed with these approaches (Bartlett
et al., 2017). Unlike HIV-1, there is considerably less work on how to
choose an appropriate distance threshold, further complicated by the
use of different genes to build networks (see Chan et al. (2020) for a
comprehensive summary). Two commonly seen methods exist: use
somemeasure of intra-host variation (obtained by deep sequencing) as a
lower bound for the threshold, or tune D to obtain some desired
network property, e.g., the maximal number of clusters. Like with HIV-
1, we searched the literature for relevant studies, and selected several
with publicly available sequence data.

Most of the datasets are much smaller and less systematically
sampled than those for HIV-1, and often combine highly divergent

FIGURE 3
(A) Box plot representing the AUTO-TUNE scores across ten random samples at 25%, 50%, and 75%of the (Rhee et al., 2019) dataset, showing a trend
of increasing confidence in score estimates with denser sampling. (B) Box plot of the selected distance thresholds across the same random samples at
25%, 50%, and 75% proportions, demonstrating improved consistency in threshold selection with increased sample size. (C) Scatterplot of the chosen
thresholds (Y-axis) against their corresponding AUTO-TUNE scores (X-axis) for the three subsample proportions.
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subtypes in the same collection, making a joint analysis challenging.
As with HIV-1, AUTO-TUNE returns a wide range of scores and D
thresholds. For example, effectively maximizing the number of
clusters on rhinovirus sequences from Ng et al. (2022) yields a D
estimate very similar to that obtained by the authors from intra-host
variability (information not available to AUTO-TUNE). Table 4.

3.5 Large-scale HIV-1 database analyses

3.5.1 Markedly different thresholds for
different subtypes

Following the spirit of the analysis performed by Wertheim et al.
(2014), we downloaded partial pol sequences (between HXB-2
coordinates 2253 and 3200, one sequence per patient) from the Los
Alamos HIV-1 Database, split them by annotated subtype and applied
AUTO-TUNE to individual subtypes with 1000 or more sequences.

Some (but not all) HIV-1 subtypes often act as strong correlates
of regional and temporal distributions of sequences, and are
expected to represent epidemics with different sampling rates and
transmission dynamics. These differences are reflected in a wide
range of mean pairwise distances and inferred AUTO-TUNE

thresholds shown in Table 5. For example, the relatively young
subtype A6, which is the most common subtype in the countries of
the former Soviet Union (Abidi et al., 2021), has a lowmean pairwise
distance (0.046) and a low AUTO-TUNE threshold (0.0056). In
contrast A1D recombinant sequences have high distance and
threshold values (0.089 and 0.0323, respectively), because
sequences of this “subtype” represent broadly circulating strains
with complex backgrounds, and extensive histories of
recombination (Foster et al., 2014; Yebra et al., 2015).

There was extensive variability among subtypes in all high-
level network statistics, including the mean degree, fractions of
nodes that were in the network, and the characteristic exponent ρ,
where ρ is inferred from by fitting the degree distribution to
various network formation models, and with Prob (degree = k) ~
1/kρ for large k.

For A1, B, C, and CRF08 networks there’s very strong
support for a single AUTO-TUNE threshold (score > 1.9),
while for many other subtypes there is extreme ambiguity in
which threshold to choose (score < 1.1). We suggest that
networks where AUTO-TUNE fails to find a single threshold
may comprise heterogeneous data which require multiple
thresholds to resolve.

FIGURE 4
Examples of AUTO-TUNE scores profiles. (A) Lowering the genetic distance threshold removes some of the edges from the network (shown in grey)
and disconnects a large cluster into color-coded smaller clusters; here “None”means that the node is not connected to anything at the lower threshold.
(B) Raising the genetic distance threshold adds edges to the network (shown in grey) and connectes previously separte clusters into a larger component
(C) Each circle is a cluster in the larger threshold network, and with a proportion of nodes removed when the threshold is lowered. (D) Changes to
the node degree distribution (colors represent the counts of nodes with the same degree). (E) A significant enlargement of a small network at a higher
threshold, with grey edges only present at the larger threshold.
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3.5.2 Congruence of networks inferred from
different genes

Very few published studies of HIV-1 transmission networks use
genes other than pol, and nearly all of the extrinsically motivated
thresholds have been derived for this gene, the utility of other genes
and the appropriate D values for them are unclear. Because of
different rates of evolution in HIV-1 genes and, possibly, subtypes
(Penn et al., 2008), one would expect D to be different for different
subtypes and genes. As a simple exercise, we downloaded full-length
HIV-1 genomes from the LANL database, stratified them by
subtype, and conducted AUTO-TUNE inference using four
genomic segments: protease + reverse transcriptase, integrase,
matrix (gag), and the less variable gp41 segment of the
envelope gene.

Only three subtypes had ≥ 500 full-length sequences in the
LANL HIV database (Table 6): B, C, and CRF01. As expected, the
inferred thresholds differed by gene and subtype, with lower
thresholds inferred for more slowly evolving segments (PR + RT
and INT), and similar numbers of clusters found in the resulting
subtype-level networks. For all three subtypes, the level of agreement
between the four networks on whether or not nodes were clustered

or not (present/absent from the network), measured by
Krippendorff’s α (Hayes and Krippendorff, 2007), were
substantially higher than expected by chance (α = 0). All four
networks also had between a quarter and a half of all the clusters
in perfect agreement.

3.6 Evaluating inferred networks
using homophily

Non-random mixing and attribute-based homophily are
intrinsic characteristics of human contact networks and can be
expected to be present in transmission networks, particularly in
the context of HIV transmission. People frequently engage in
relationships with those who share similar attributes or
behaviors, such as risk factors (e.g., PWID, MSM). Recent
evidence suggests that race/ethnicity is also a strong predictor of
homophily in HIV networks (Ragonnet-Cronin et al., 2021). The
effect of these nonrandom mixing patterns on the genetic diversity
of HIV-1 has not only been extensively explored via modeling and
simulations (Goodreau, 2006), but the structure of sexual contact

FIGURE 5
Examples of how changing thresholds affects inferred networks. (A) A high-scoring network Bbosa et al. (2020) has a distance threshold which
achieves the number of clusters near themaximum,while also avoiding the formation of a large (weakly connected) cluster. (B) A low-scoring network Liu
et al. (2020) has a misalignment between the distance for which the maximum number of clusters is found, and where the big jumps in the cluster size
ratio occur. Here, AUTO-TUNE effectively optimizes the number of clusters while preventing excessive growth of the largest cluster.

Frontiers in Bioinformatics frontiersin.org11

Weaver et al. 10.3389/fbinf.2024.1400003

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1400003


networks has been found to directly influence pathogen phylogenies
(Robinson et al., 2013). Phylogenetic analysis of HIV type
1 sequences has revealed distinct grouping patterns based on risk
behaviors (Holmes et al., 1995). The expectation of homophily is so
strong, that its disruption, e.g., the presence of a self-reported
heterosexual risk group individual in a cluster exclusively
composed of MSMs has been used as a marker of undisclosed/
incomplete risk factor reporting (Ragonnet-Cronin et al., 2018).
Therefore, when subject-level attributes are available, homophily is
an expected and desired feature of the network.

To assess the performance of an AUTO-TUNEd optimized
threshold using degree-weighted homophily, we first evaluated a
CRF07_BC network with national survey data from China (Ge et al.,
2021). Each of the 8178 pol sequences was annotated with a
transmission risk factor: heterosexual contact (Hetero), people
who use injection drugs (PWID), or men who have sex with men
(MSM), among other attributes.

When we analyze the dataset with AUTO-TUNE, local maxima
of AUTO-TUNE scores were achieved with 0.0076 sub/site and
0.0019 sub/site thresholds, at scores 1.137 and 1.030, respectively.

Notably, the DWH scores for PWID exhibited a significant surge at
these thresholds, indicating a robust pattern of increased PWID
homophily even when relatively low scoring. The close proximity of
AUTO-TUNE scores and the consistent rise in PWID homophily at
0.0076 and 0.0019 thresholds suggest comparable performance at
these thresholds compared to the default 0.015 threshold, suggesting
that these thresholds might be more effective in representing
homophilic relationships in this network. At each
threshold—0.015, 0.0076, and 0.0019—all DWH scores for the
risk groups (MSM, Hetero, and PWID) lie outside their
respective panmictic ranges. This consistently indicates non-
random mixing and attribute-based homophily across the
network. Detailed results are in Tables 7, 8.

3.7 Comparison with clustuneR

We benchmarked AUTO-TUNE versus clustuneR (Chato
et al., 2020), which employs the recency of sample collection or
diagnosis as individual-level weights in a predictive model to

TABLE 3 AUTO-TUNE distance thresholds and scores as a function of theminimal cluster size. Rows are sorted by the score at cluster size ≥2. Themaximum
score (or scores) for each row are highlighted in boldface.

References AUTO-TUNE minimum cluster size

Size ≥2 Size ≥3 Size ≥4 Size ≥5

Threshold, % Score Threshold, % Score Threshold, % Score Threshold, % Score

Li et al. (2022) 1.15 2.0 1.15 1.97 1.8 1.4 1.15 2.0

Chato et al. (2020) TN 1.87 2.0 1.87 2.0 1.87 2.0 1.87 2.0

Rhee et al. (2019) 1.14 1.94 1.14 1.17 2.05 1.12 1.14 1.11

Bbosa et al. (2020) 2.04 1.94 2.49 1.01 2.04 1.00 2.31 1.03

Dalai et al. (2018) 1.94 1.89 1.50 1.02 1.95 1.00 1.95 2.0

Temereanca et al. (2017) 0.19 1.78 0.27 2.0 2.79 1.00 2.79 1.06

Yu et al. (2022) 1.18 1.76 1.22 1.00 2.67 1.18 2.67 1.37

Sivay et al. (2018) 2.51 1.41 3.68 1.07 3.67 1.07 3.67 1.07

Zai et al. (2020) 0.26 1.41 0.26 1.41 0.26 1.19 0.27 1.18

Little et al. (2014) 2.35 1.58 2.35 1.20 1.76 1.04 2.10 1.03

Brenner et al. (2021) 2.74 1.22 2.74 1.22 2.01 1.26 2.01 1.26

Stecher et al. (2018) 3.06 1.20 3.46 1.14 3.49 1.12 3.88 1.09

Chato et al. (2020) Seattle 1.53 1.16 1.76 1.11 1.54 1.16 1.54 1.09

Billings et al. (2019) 2.33 1.16 2.97 1.12 2.33 1.17 3.00 1.31

Yan et al. (2021) 1.22 1.09 1.29 1.01 1.48 1.00 1.62 1.01

Chen et al. (2023) 1.30 1.11 2.7 1.31 1.89 1.08 2.73 1.83

Leal et al. (2020) 4.03 1.11 4.03 1.12 4.24 1.19 4.05 1.21

Pérez-Losada et al. (2017) 1.73 1.06 2.04 1.04 2.04 1.03 2.04 1.04

Liu et al. (2020) 0.62 1.13 0.62 1.13 0.62 1.13 1.29 1.00

Chato et al. (2020) Alberta 1.20 1.03 3.87 1.00 3.87 1 1.15 1.01

Fabeni et al. (2020) 1.77 1.00 3.05 1.00 3.97 1.15 3.97 1.45
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estimate the growth of HIV clusters. The thresholds deemed optimal
by clustuneR were found by a grid-search for the minimum
GAIC (generalized Akaike Information Criterion) across candidate
distances between 0 and 0.04 in steps of 8 × 10−4. GAIC is the
difference between a null model that is only influenced by cluster
size, and a weighted model that includes individual-level attributes
among known cases in the cluster. Using the minimum GAIC
metric, it was found that 0.016 (±0.5 × 10−4) was the optimal
threshold for Tennessee and Seattle, and 0.0104 for
Northern Alberta.

In contrast, AUTO-TUNE does not incorporate any attribute
data in its scoring heuristic. Instead, it relies on clustering metrics
constructed purely from pairwise distances between sequences.
Using nearly same datasets analyzed by clustuneR (Chato
et al., 2020), AUTO-TUNE found the thresholds with the highest
scores to be 0.01872 for Middle Tennessee, 0.01538 for Seattle, and
0.01201 for Northern Alberta Table 9. We use the adjective “nearly”
because we were not able to exactly match the number of sequences
analyzed in Chato et al. (2020) by obtaining the referenced GenBank
accession number and our best-effort intepretation of the
filtering steps.

Both methods agree that there is a qualitative relationship of
Northern Alberta < Seattle ~Tennessee for distance thresholds.
AUTO-TUNE thresholds, while not optimal in the GAIC sense
all yield improvements over the null model, hence they are
qualitatively similar to clustuneR (Figure 2 in Chato et al.
(2020)). AUTO-TUNE is notably faster in computation than
clustuneR due to the fact that AUTO-TUNE only clusters based
on pairwise distances rather than inferring a maximum-likelihood
phylogeny. For example, the entire pipeline for the Seattle dataset
took less than 16 s on an Apple M1 Max. Alternatively, the tree

inference step alone with clustuneR takes several hours
to complete.

Because the methods optimize very different objectives and
clustuneR makes use of additional data, broad agreement
between the inferred thresholds is encouraging.

3.8 The effect of subsampling on optimal
thresholds and AUTO-TUNE scores

To address the challenges of applying network inference
algorithms to incompletely sampled datasets, this study includes
a focused evaluation of AUTO-TUNE’s performance across varying
data densities. Given logistical limitations, obtaining a fully sampled
HIV transmission network is often infeasible. Therefore, we label a
dataset as ‘full’ to serve as a closest approximation of a fully sampled
network. Using the selected dataset as a benchmark, we assess
AUTO-TUNE’s adaptability and robustness when applied to
sparser datasets, a prevalent issue in real-world settings. In this
analysis there is no expectation that any specific fraction of
undelying infections was sampled, but simply that the complete
dataset acts as the upper bound for inference. This was done in
Dasgupta et al. (2019), for example,.

Since the Rhee et al. (2019) dataset exhibited a clear optimal
peak, we used the dataset for analysis, and randomly sampled
10 times from the entire dataset at 25%, 50%, and 75% each. The
original full dataset confidently determined 0.01699 (AUTO-TUNE
score 1.9998).

Sampling at 25% yielded a mean top threshold of 0.021509,
median at 0.019765, and standard deviation of 0.004388 (Figure 3).
50% yielded 0.018581 and 0.01871 mean and median, respectively

TABLE 4 Comparison of AUTO-TUNE and published thresholds from prior studies using sequences from viruses other than HIV-1. “N/A”: no distance-based
clustering analyses were done. Other notation is the same as in Table 1.

References Virus Gene N L E
[D]
(%)

Scope Location/
Country

Timespan Distance threshold, subs/
site

Published AUTO-TUNE
(score)

Jia et al. (2023) HCV NS5B 503 315 34.9 Province Yunnan, China 2008–2018 N/A 1.933 (1.92)

97 8.0 Genotype 1b only ¶ 2.3 1.944 (2.0)

53 7.4 Genotype 2a only ¶ 3.3 3.3 (1.3)

110 5.4 Genotype 3a only ¶ 2.0 3.6 (1.0)

189 5.5 Genotype 3b only ¶ 1.7 1.6 (1.0)

Murphy et al.
(2019b)

HCV NS5B 119 340–850 5.6 Province Quebec, Canada 2001–2017 N/A 0.0251 (1.05)

Paraschiv et al.
(2017)

HCV NS5B 117 ~ 300 24.6 Country Romania 2011–2014 N/A 1.394 (1.11)

Ye et al. (2023) HCV NS5B 1603/
399 •

701 27.6 Country China 1999–2017 ¶ 0.010 0.359 1)

C/E2 865/
396 •

837 37.3 ¶ 0.0325 1.572 (1.98)

Ng et al. (2022) Rhinovirus VP2/
VP4

977 388 43.2 City Kuala Lumpur,
Malaysia

2012–2014 ¶ 0.005 0.523 1)
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with a standard deviation of 0.001629. Finally, 75% calculated mean
is approximately 0.017403, with a median of approximately 0.01699.
The standard deviation was 0.000924.

As the dataset becomes sparser due to subsampling, the
algorithm tends to select higher distance thresholds. This

phenomenon can be understood by considering the effect of
reduced sampling density on the network topology. Sparse
datasets naturally result in less interconnected clusters. To
capture a comparable level of network connectivity as in denser
datasets, higher distance thresholds are necessary. This is evidenced

TABLE 5 An application of AUTO-TUNE to subtype stratified HIV-1 pol sequences from the LANL database. Fraction clustered is the proportion of all
sequences that are connected to at least one other sequence. Subtypes are sorted by the inferred threshold, lowest first. Other notation is the same as in
Table 1.

Subtype N E [D] AUTO-TUNE Fraction Mean ρ

Threshold, % Score Clustered, % Degree

CRF55 2237 2.6 0.187 1.20 29.6 1.41 2.41

CRF07 11682 3.3 0.26 1.00 26.9 3.42 1.87

CRF63 1649 3.6 0.505 1.01 22.1 4.85 1.8

01B 2237 7.8 0.518 1.08 22.2 0.97 5.05

A6 11991 4.6 0.558 1.09 18.6 5.55 1.6

CRF08 2538 3.9 0.82 1.95 25.6 1.95 2.12

CRF01 25689 5.1 0.875 1.73 47.0 1.94 5.54

B 106261 6.4 1.084 2.00 46.4 4.77 1.95

D 3561 6.6 1.133 1.12 20.8 3.65 0.79

C 30714 6.7 1.438 2.00 19.3 1.26 2.22

A1 7154 7.0 1.89 2.00 17.0 5 1.7

CRF02 7821 6.3 1.97 1.01 34.3 10.44 1.53

BF1 4825 8.1 2.046 1.03 25.1 2.27 1.95

G 2162 7.3 2.407 1.03 49.0 9.1 1.66

F1 3986 7.6 2.941 1.34 50.4 15.03 1.40

A1D 1284 8.9 3.23 1.70 27.5 1 4.3

BC 2724 8.0 3.54 1.00 81.4 71.2 1.32

Wertheim et al. (2014) 84527 1.0 N/A 15.6 3.84 1.74

TABLE 6 Distance thresholds and key network properties using four different HIV-1 genomic regions, stratified by subtype (minimum 500 sequences).

Subtype N AUTO-TUNE D, subs/site Number of clusters Full agreement Krippendorff α

pr + rt Integrase gag gp41 pr + rt Integrase gag gp41 Clusters

B 1843 0.02081 2.0005 3.137 5.095 115 128 119 144 64 0.723

C 877 0.03266 0.02 4.754 5.325 44 35 47 46 21 0.588

CRF01/AE 624 0.01635 0.818 2.285 2.037 40 30 40 41 12 0.610

TABLE 7 CRF07_BC nodes count at different thresholds.

Threshold subs/site AUTO-TUNE score Nodes PWID MSM Hetero

0.015 0.029 5923 559 3371 1993

0.0076 1.1369 3537 236 2271 1030

0.0019 1.0303 1654 151 1075 428
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by the observed mean thresholds: 0.021509 at 25%, 0.018581 at 50%,
and 0.017403 at 75%. The standard deviations also narrow as the
sampling density increases, corroborating the increased precision of
the threshold selection in denser datasets.

As the proportion increased from 25% to 50% and 75%, observable
shifts were also noted in the mean, median, and standard deviation of
the AUTO-TUNE scores. At 25%, the mean and median scores were
1.5585 and 1.5014 respectively, with a standard deviation of 0.3568. At
50%, both mean and median scores significantly increased to
1.8171 and 1.9191 respectively, and the standard deviation dropped
to 0.2482. Upon reaching an AUTO-TUNE of 75%, the mean and
median scores rose further to 1.9870 and 1.9997 respectively, while the
standard deviation shrank substantially to 0.0364, indicating higher
consistency in scores.

Next to determine how well subsampled datasets aligned with
the full dataset, we used two primary outcomes to gauge this
concordance: the proportion of nodes that remained clustered
after subsampling and the proportion of singletons from the
original network that clustered in the subsampled networks.

We observed a consistent increase in the proportion of nodes
that remained clustered from the 0.015 sub/site threshold to the
AUTO-TUNE threshold for each respective subsampling
proportion, with 25% subsampling being the most profound
difference rising from a roughly 80%–86% interquartile range
(IQR) for 0.015 threshold to a 90% 96% IQR for AUTO-TUNE,
which indicates that the AUTO-TUNE thresholds retain a higher
degree of stability in the network’s structure across sampling density
(Please see Figure 6, Panel A).

Since the thresholds inferred by AUTO-TUNE for the
subsampled networks were larger than the “fully” sampled

network, we also measured the impact of thresholding on the
network’s nodes that were originally singletons. Across all
variations in subsampling rates, the proportion of sampled
singletons that clustered all maintained low IQRs (See Figure 6,
Panel B). This implies that while AUTO-TUNE is effective in
maintaining the core structure of the network, it does not
significantly alter the clustering of nodes that were singletons in
the full dataset.

As the sample proportion increased, an upward trend was noted
in average AUTO-TUNE scores. Additionally, the standard
deviation reduced significantly when increasing sample
proportion. This implies that as sampling becomes denser,
AUTO-TUNE will become more confident in determining the
optimal threshold for a particular dataset.

4 Discussion

AUTO-TUNE addresses the challenge of selecting an
appropriate genetic distance threshold to construct HIV
transmission networks by implementing a heuristic scoring
system. This system is predicated on two key features of
networks generated by candidate genetic distance thresholds: a
high number of clusters and the absence of a giant component.
Few small clusters indicate an excessively low threshold, while a
giant cluster comprising numerous sequences signals an overly high
threshold. The efficacy of AUTO-TUNE is evidenced by its ability to
select thresholds that yield higher quality clustering, as
demonstrated by improved Degree-Weighted Homophily (DWH)
scores across various datasets, epidemic contexts, and risk groups.

TABLE 8 Panmictic ranges for CRF07_BC DWH at different thresholds.

Threshold subs/site Risk group DWH (panmictic range)

0.015 MSM 0.211 (−0.213, −0.085)

Hetero 0.133 (−0.190, −0.087)

PWID 0.168 (−0.091, 0.002)

0.0076 MSM 0.237 (−0.240, −0.120)

Hetero 0.185 (−0.211, −0.100)

PWID 0.401 (−0.081, −0.005)

0.0019 MSM 0.292 (−0.280, −0.146)

Hetero 0.250 (−0.256, −0.093)

PWID 0.445 (−0.129, −0.012)

TABLE 9 ClustuneR Comparison.

Dataset AUTO-TUNE clustuneR

Threshold subs/site Avg. Homophily Max score Threshold Avg. Homophily

Seattle 0.01354 0.0348 1.53325 0.0160 0.0259

Tennessee 0.01431 0.0147 1.25807 0.0160 0.0079

Canada 0.01099 −0.0448 1.01678 0.0104 −0.0536
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Furthermore, AUTO-TUNE thresholds not only matched but often
outperformed those manually selected in prior studies, thus
underlining the benefits of a more systematic, automated, and
data-responsive approach.

For example, the results of our study suggest that AUTO-TUNE,
which relies solely on clustering metrics from pairwise distances,
could be an effective alternative to other distance-basedmethods, such
as clustuneR while less time-consuming and possessing a gentle
learning curve, whichmakes it easy to use by personnel not specialized
in bioinformatics and computer science. Furthermore, the simplicity
of the method without compromising results represents an advantage
over phylogenetic methods where, in addition to the calculation of
genetic distances, it must also determine a support/distance threshold
where a rationale for the selection of these thresholds is rarely
provided (Junqueira et al., 2019).

AUTO-TUNE generated thresholds for all three examined
datasets (Middle Tennessee, Seattle, and Northern Alberta) that
outperformed clustuneR using DWH on 3-year collection date
windows across all three datasets. This indicates that even without
incorporating attribute data, AUTO-TUNE’s scoring heuristic could
provide reliable thresholds for HIV clusters. However, for the
determination of the optimal genetic distance threshold, time-
related and context-specific factors might need to be considered
if there is no significant score for any one candidate threshold,
especially if there are multiple peaks. For example, during HIV
outbreaks in injection drug users (that usually occur over several
months), it may be more appropriate to use the shorter genetic
distance threshold (Peters et al., 2016; Campbell et al., 2017) between
multiple high-scoring thresholds. On the contrary, larger and more
extended epidemics over time exhibit a tendency toward larger
genetic distance thresholds in order to capture transmission than
younger epidemics and less densely sampled epidemic investigations
(Leung et al., 2019; Di Giallonardo et al., 2021; Patil et al., 2022).

Our review of publications citing HIV-TRACE revealed the
largely qualitative determination of distance thresholds. This

approach may result in less accurate or suboptimal thresholds
due to a lack of systematic analysis. In contrast, AUTO-TUNE
offers a more systematic and granular approach to threshold
selection, with our findings demonstrating that even minor
adjustments to the distance can drastically change the score.
Therefore, using AUTO-TUNE could potentially improve the
quality of HIV clustering and transmission network studies.

The Degree-Weighted Homophily (DWH) evaluation showed
that AUTO-TUNE could improve network quality based on specific
attributes, such as risk factor, which is an important part of HIV
studies and informing prevention measures (Potterat et al., 2002;
Fujimoto et al., 2021). For example, the use of AUTO-TUNE
resulted in an increased DWH among the MSM, Hetero, and
PWID groups when analyzing a CRF07_BC network.
Additionally, the results from the Rhee et al. dataset also
demonstrated AUTO-TUNE’s ability to improve DWH
geographically, enhancing the network’s ability to accurately
reflect transmission dynamics. However, in contexts with
overlapping risk factors, the interpretation of these improvements
requires caution. The complexities of risk group interactions mean
that applying AUTO-TUNE’s thresholds should be tailored to the
specific epidemiological setting to ensure accurate modeling of HIV
transmission networks. More broadly, the ultimate impact of
AUTO-TUNE on network quality and interpretation will be case
specific, strongly dependant on how clusters are ultimately used in
the study, and what types of data in addition to sequences alone
are available.

Our analysis of AUTO-TUNE’s performance on subsamples of a
dataset revealed its sensitivity to sample size. The results indicated a
correlation between increased sample size and higher average
AUTO-TUNE scores, as well as lower score variability. This
suggests that denser sampling could enhance AUTO-TUNE’s
ability to determine the optimal threshold for a dataset. Further
studies might be needed to establish the minimum sample size
required for reliable threshold determination.

FIGURE 6
Figure A and B present the effects of subsampling on network structure using different thresholds. Figure A illustrates the proportion of nodes
subsampled that remained clustered in both the original and the subsampled networks, with an observable increase in nodes captured as the threshold
transitions from 1.5.
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4.1 When a score is below 1.9

In some cases, multiple scores at different thresholds could suggest
the presence of inherently different scales in the network. For instance,
if a network combines both global and local transmission patterns,
AUTO-TUNEmay produce more than one high score, reflecting these
different scales. This was observed in a study on HIV-1 CRF07_BC
transmission networks in China, where two distinct clusters, 07BC_N
and 07BC_O, showed different transmission routes and geographic
concentrations (Ding et al., 2022). Such network complexities could
mean that different thresholds might offer more accurate insights into
subpopulations or transmission dynamics.

The use of AUTO-TUNE, while offering a method for
automated threshold selection, may not always provide a single,
decisive score that unambiguously determines the optimal
threshold. In certain situations, such as datasets with lower
sampling densities or those reflecting heterogenous dynamics
within an epidemic, several candidate thresholds may yield
similar AUTO-TUNE scores, making it difficult to single out one
as the clear-cut ‘optimal’ threshold. In these scenarios, the process of
threshold selection becomes more nuanced and requires a deeper
analysis. The plot of AUTO-TUNE scores across candidate
thresholds can serve as a valuable tool in these cases. For
instance, researchers could identify a range of thresholds that all
produce similar scores, suggesting that the specific choice of
threshold within this range may not significantly impact the
resulting network. Moreover, combining AUTO-TUNE with the
DWH measure can enhance the interpretation of such plots. By
considering how assortativity changes across the range of
candidates, researchers can make more informed decisions about
the appropriate choice. If there is a certain threshold at which the
DWH measure noticeably changes for an attribute of interest, this
could suggest a meaningful shift in the network structure that would
be worth considering when selecting a threshold. The symbiotic
approach of combining AUTO-TUNE scores, DWH measure, and
visual analysis of score plots provides a more nuanced method for
threshold selection when no clear optimal threshold emerges from
the AUTO-TUNE scores alone.

The AUTO-TUNEmethodology has several limitations. First, even
though it provides the advantage of operating without the need for
metadata, the size and the subgenomic region analyzed may affect the
accuracy of transmission inference (Junqueira et al., 2019). Second, our
analysis of AUTO-TUNE’s performance on subsamples of a dataset
revealed its sensitivity to sample size, as the performance of the method
can be affected by sampling density, improving the reliability of the test
as the sampling density increases. However, our results were consistent
with previous studies, which have suggested an optimal sampling
density of 50–70% for HIV-1 cluster analysis (Novitsky et al., 2014),
and the significant drop-off in power to detect clusters using a fixed
distance threshold as the sampling fraction was reduced (Dasgupta
et al., 2019). Third, even when it provides an insight of the optimal
threshold to analyze a network, the supplied information might still
need validation by experts, especially when no clear threshold is
identified. In this case, it has been recommended to combine genetic
data with clinical and sociodemographic information for a better
characterization of the network structure. Finally, the performance
of the method needs to be assessed in pathogens different from
HIV, leading to opportunities for future research.

5 Conclusion

AUTO-TUNE operates solely utilizing genetic sequence data to
ascertain a decisive threshold. It employs a scoring heuristic, which
is based on the number of clusters produced by a pairwise distance
threshold and the ratio of the largest cluster to the second largest
across a range of possible thresholds using sliding windows.

A key advantage of this approach is its autonomy from
supplementary data. When a patient receives an HIV diagnosis,
data collection protocols can greatly vary, and additional data are
not always available or consistent. However, by leveraging only
genetic sequence data, AUTO-TUNE eliminates the need for such
information in some cases, and at minimum serves as a preliminary
assessment of candidate thresholds.

Consequently, AUTO-TUNE’s performance is consistently
controlled, irrespective of the fluctuations seen in data collection
protocols after an HIV diagnosis. This level of adaptability
demonstrates its suitability for integration into various contexts
related to HIV, and possibly other viral cluster detection and
response protocols. This versatility underscores the strong
methodological foundation of AUTO-TUNE and its potential utility.
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