Title
Heterogeneity in Clinical, Endoscopic, and Histologic Outcome Measures and Placebo Response Rates in Clinical Trials of Eosinophilic Esophagitis: A Systematic Review.

Permalink
https://escholarship.org/uc/item/1nj2s75w

Journal
Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association, 16(11)

ISSN
1542-3565

Authors
Ma, Christopher
van Rhijn, Bram D
Jairath, Vipul
et al.

Publication Date
2018-11-01

DOI
10.1016/j.cgh.2018.06.005

Peer reviewed
Heterogeneity in Clinical, Endoscopic, and Histologic Outcome Measures and Placebo Response Rates in Clinical Trials of Eosinophilic Esophagitis: A Systematic Review

Short Title: Outcomes in EoE RCTs

Authors:
Christopher Ma1,2, Bram D. van Rhijn3, Vipul Jairath2,4,5, Tran M. Nguyen2, Claire E. Parker2, Seema S. Aceves6,7,8, Glenn T. Furuta9, Sandeep K. Gupta10, David A. Katzka11, Ekaterina Safroneeva12, Alain M. Schoepfer13, Alex Straumann14, Jonathan M. Spergel15,16, Rish K. Pai17, Brian G. Feagan2,4,5, Ikuo Hirano18, Evan S. Dellon19, and Albert J. Bredenoord20

Affiliations:
1 Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
3 Robarts Clinical Trials Inc., London, Ontario, Canada
3 Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
4 Department of Medicine, Western University, London, Ontario, Canada
5 Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
6 Division of Allergy and Immunology, Department of Pediatrics, University of California San Diego, La Jolla, California, United States
7 Division of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, California, United States
8 Rady Children’s Hospital San Diego, San Diego, California, United States
Division of Gastroenterology, Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, Colorado, United States

10 Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Illinois College of Medicine, Peoria, Illinois, United States

11 Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States

12 Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland

13 Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland

14 Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland

15 Department of Pediatrics, Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States

16 Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States

17 Department of Pathology and Laboratory Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, United States

18 Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States

19 Center for Esophageal Disease and Swallowing, Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States

20 Department of Gastroenterology and Hepatology, Academic Medical Centre, Amsterdam, The Netherlands
Grant Support: Christopher Ma is supported by a Clinician Fellowship from the Canadian Association of Gastroenterology and the Canadian Institutes of Health Research.

Abbreviations: COS (core outcome set), COMET (Core Outcome Measures in Effectiveness Trials), DP (distensibility plateau), EEsAI (Eosinophilic Esophagitis Activity Index), EMA (European Medicines Agency), EoE (eosinophilic esophagitis), eos (eosinophils), EoE-HSS (EoE Histology Scoring System), EREFS (EoE Endoscopic Reference Score), FDA (Food and Drug Administration), FLIP (functional lumen imaging probe), HPF (high power field), IBD (inflammatory bowel disease), IL (interleukin), PPI (proton pump inhibitor), PRO (patient-reported outcome), RCT (randomised controlled trial), TGF (transforming growth factor).

Additional Keywords: endoscopy; histology; patient-reported outcomes; placebo.

Correspondence: Dr. Albert J. Bredenoord, MD, PhD Department of Gastroenterology and Hepatology Academic Medical Centre Room C2-325, PO Box 22700 1100 DE Amsterdam, the Netherlands Email: a.j.bredenoord@amc.uva.nl Fax: +31-20-6917033

Disclosures: Christopher Ma has no conflicts of interest to declare.
Bram van Rhijn has no conflicts of interest to declare.
Vipul Jairath has received consulting fees from AbbVie, Sandoz, Takeda, Janssen, Robarts Clinical Trials; speaker’s fees from Takeda, Janssen, Shire, Ferring. Vipul Jairath is the Director for Medical Research & Development at Robarts Clinical Trials.
Tran Nguyen is an employee of Robarts Clinical Trials
Claire Parker is an employee of Robarts Clinical Trials
Seema Aceves is a co-inventor of oral viscous budesonide (UCSD patented, licensed to Shire Pharma), and has received consulting fees from Regeneron.
Glenn Furuta is the founder of EnteroTrack, has received royalties from UpToDate, and consulting fees from Shire.
Sandeep Gupta has received consulting fees from Abbott, Allakos, Receptos, and QOL; and research support from Shire.
David Katzka has received research support from Shire.

Ekaterina Safroneeva has received consulting fees from Celgene Corp., Regeneron Pharmaceuticals Inc., and Novartis AG.

Alain Schoepfer has received consulting fees and/or speaker fees and/or research grants from Adare Pharmaceuticals, Inc., AstraZeneca, AG, Switzerland, Aptalis Pharma, Inc., Dr. Falk Pharma, GmbH, Germany, Glaxo Smith Kline, AG, Nestlé S. A., Switzerland, Receptos, Inc. and Regeneron Pharmaceuticals, Inc.

Alex Straumann has no conflicts of interest to declare.

Jonathan Spergel has no conflicts of interest to declare.

Rish Pai has received consulting fees from Genentech.

Brian Feagan has received grant/research support from Millennium Pharmaceuticals, Merck, Tillotts Pharma AG, AbbVie, Novartis Pharmaceuticals, Centocor Inc., Elan/Biogen, UCB Pharma, Bristol-Myers Squibb, Genentech, ActoGenix, and Wyeth Pharmaceuticals Inc.; consulting fees from Millennium Pharmaceuticals, Merck, Centocor Inc., Elan/Biogen, Janssen-Ortho, Teva Pharmaceuticals, Bristol-Myers Squibb, Celgene, UCB Pharma, AbbVie, AstraZeneca, Serono, Genentech, Tillotts Pharma AG, Unity Pharmaceuticals, Albireo Pharma, Given Imaging Inc., Salix Pharmaceuticals, Novonordisk, GSK, Actogenix, Prometheus Therapeutics and Diagnostics, Athersys, Axcan, Gilead, Pfizer, Shire, Wyeth, Zealand Pharma, Zynegia, GiCare Pharma Inc., and Sigmoid Pharma; and speakers bureaux fees from UCB, AbbVie, and J&J/Janssen. Brian Feagan is the Senior Scientific Director for Robarts Clinical Trials.

Ikuo Hirano has received consulting fees from Receptos, Regeneron, Shire and Roche.

Evan Dellon has received research funding from Adare, Meritage, Miraca, Nutricia, Celgene/Receptos, and Shire; has consulted for Adare, Alivio, Allakos, AstraZeneca, Banner, Enumeral, Celgene/Receptos, GSK, Regeneron, and Shire, and has received educational grants from Banner and Holoclara.

Albert Bredenoord has received research funding from Nutricia and Bayer and received speaker and/or consulting fees from MMS, Dr Falk Pharma, Regeneron, Astellas, AstraZeneca, Bayer, Norgine, Almirall and Allergan.

Robarts Clinical Trials began in 1986 as an academic research unit within the Robarts Research Institute which is affiliated with University Hospital and the University of Western Ontario. A subsequent international (United States of America and Netherlands) expansion in 2012 necessitated establishment of a corporate entity to meet international federal/taxation regulations. All profits from Robarts Clinical Trials, Inc. are directed towards academic research. None of the authors with affiliation to Robarts Clinical Trials, Inc. have an equity position or any shares in the corporation. Robarts Clinical Trials provides central endoscopy and histology reading as a commercial service. Affiliated authors have not received specific individual research support from Robarts Clinical Trials.

Author Contributions:
Ma et al.

Outcomes in EoE RCTs

CM, BDvR, VJ: study conception and design, data collection, data analysis, manuscript drafting, manuscript editing
TMN, CEP: study conception and design, data collection, manuscript editing
SSA, GTF, SKG, DAK, ES, AMS, AS, JMS, RKP, BGF, IH, ESD: manuscript editing
AJB: study conception and design, manuscript editing
AJB is acting as the guarantor of the article.

Word Counts:

Abstract: 299
Manuscript: 3992
Manuscript with references: 5739
Tables: 4
Figures: 2
Supplemental Files: 3

Version: May 16, 2018
Abstract

Background & Aims: Agents are being developed for treatment of eosinophilic esophagitis (EoE). However, it is not clear what outcome measures would best determine the efficacy and safety of these agents in clinical trials. We performed a systematic review of outcomes used in randomized placebo-controlled trials of EoE and we estimate the placebo response and rates of remission.

Methods: We searched MEDLINE, Embase, CENTRAL, ClinicalTrials.gov, and the EU Clinical Trials Register from inception through February 20, 2018 for randomized controlled trials of pharmacologic therapies for EoE. Efficacy outcome definitions, measurement tools, and the proportion of patients responding to placebo were collected and stratified by based on histologic, endoscopic, and patient-reported outcomes.

Results: We analyzed data from 22 placebo-controlled trials, comprising 1112 patients with EoE. Ten additional active registered trials were identified. Most published trials evaluated topical corticosteroid therapy (13/22, 59.1%). Histologic outcomes measuring eosinophil density and patient-reported outcomes were reported in 21/22 published trials (95.5%). No consistently applied definitions of histologic or patient-reported response or remission were identified. Endoscopic outcomes were described in 60% (12/20) of published trials. The EoE Endoscopic Reference Score is the most commonly applied tool for describing changes in endoscopic appearance. The median histologic response to placebo was 3.7% (range 0%-31.6%) and the median rate of remission in patients given placebo was 0.0% (range 0%-11.0%). The median patient-reported response to placebo was 14.4% (range 8.6%-77.8%) and rate of remission in patients given placebo was 26.2% (range 13.2%-35.7%).
Conclusions: In a systematic review of the literature, we found that no standardized definitions of histologic, endoscopic, or patient-reported outcomes are used to determine whether pharmacologic agents produce a response or remission in patients with EoE. A core outcome set is needed to reduce heterogeneity in outcome reporting and facilitate trial interpretation and comparison of results from trials.

Keywords:
esophagus, inflammation, drug, endoscopy, histology
Background & Aims

Eosinophilic esophagitis (EoE) is a chronic inflammatory condition characterized histologically by eosinophilic infiltration and clinically by symptoms of esophageal dysfunction in the context of an antigen-mediated immune response.\(^1\) Consensus guidelines have established first-line pharmacologic, dietary, and endoscopic treatment for EoE, emphasizing the role of topical corticosteroids, dietary restriction, and endoscopic dilation targeted at improving patient symptoms and reducing histologic eosinophil burden.\(^2, 3\) Topical corticosteroids are the mainstay of drug-based therapy, but there are no US Food and Drug Administration (FDA)-approved treatments and only one orodispersible budesonide formulation has been approved by the European Medicines Agency (EMA) for treatment of EoE.\(^4, 5\) Accordingly, there is great interest in therapeutic development in this field with multiple classes of agents under evaluation.

Several barriers to efficient drug development in EoE exist.\(^6\) Importantly, there is a lack of standardized outcome measures for use in registration trials that can support labelling claims. The FDA mandates that “clinically meaningful” endpoints that measure the way patients feel, function, and survive be used.\(^7\) Therefore, analogous to randomised controlled trials (RCTs) in inflammatory bowel disease (IBD), future EoE clinical trials are likely to incorporate coprimary endpoints featuring both patient-reported outcomes (PROs) and objective inflammatory measures. Nevertheless, there is uncertainty regarding the appropriateness of endpoint definitions and the responsiveness of current disease activity indices in EoE\(^8\) and unsurprisingly, there is lack of consensus on the type of outcomes to measure, the way these outcomes should be defined, and the circumstances in which these outcomes should be assessed.\(^9\)

Developing a core outcome set (COS) is thus a priority in EoE research. A COS is a consensus-derived minimum set of outcomes that should be measured and reported in all clinical trials in a given field.\(^10\) Adoption of a COS minimizes heterogeneity in reporting and potential publication
bias, improves the quality of evidence synthesis, and facilitates comparisons of interventions in meta-analyses. COS development is a multi-step process that involves systematically reviewing the literature to identify current trial endpoints, surveying affected stakeholders, and achieving consensus.\(^\text{10}\) A similar COS development initiative is underway in IBD.\(^\text{11, 12}\) In addition to selecting appropriate endpoints, understanding the placebo response in clinical trials is critical for efficient drug development. Furthermore, this process facilitates accurate sample size calculations and maximizes assay sensitivity for detecting true differences between active comparator and placebo. Whilst placebo rates in other gastrointestinal disorders have been well characterized,\(^\text{13-15}\) placebo rates and the determinants of the placebo response in EoE RCTs require further evaluation. Hirano et al. have previously demonstrated in a phase 2 trial of budesonide oral suspension that despite a placebo run-in period, symptom improvement occurred in approximately one quarter of patients randomised to placebo with no baseline demographic features predictive of this response.\(^\text{16}\)

To address these limitations, we systematically reviewed all randomised, placebo-controlled RCTs of pharmacologic interventions in EoE. We aim to describe placebo rates in EoE trials, identify relevant endpoints and outcome definitions used in current EoE trials, and establish a conceptual framework by which a COS for future EoE trials can be developed.
Methods

Search Strategy

MEDLINE (Ovid, 1948-2017), Embase (Ovid, 1947-2017), and CENTRAL (1994-2017) were searched without language restriction from inception to February 20, 2018 for RCTs of pharmacologic interventions in EoE. Using the PICO framework, we aimed to capture all studies enrolling patients with EoE regardless of age (patient population), undergoing pharmacologic therapy (intervention), compared against placebo (comparator), and describing any symptom-based, endoscopic, histologic, or exploratory outcomes (outcome). The search strategy is outlined in Supplemental File 1. Conference proceedings from Digestive Disease Week and United European Gastroenterology Week (2012-2017) and references of relevant studies and review articles were hand-searched to identify additional studies. Finally, ClinicalTrials.gov and the European Union (EU) Clinical Trials Register were searched for registered, actively recruiting RCTs. Citations and abstracts were screened and complete manuscripts were retrieved for potentially eligible studies. Articles were independently assessed by two investigators (TMN, BvR) and disagreement was resolved by consensus and discussion with a third reviewer (CM). All data were extracted independently and accuracy was verified in a quality control process by a third investigator (CEP).

Study Eligibility Criteria

Studies were eligible for inclusion if they reported a randomised, placebo-controlled trial in patients with EoE that evaluated a pharmacologic intervention. Similar criteria were applied to registered trials on ClinicalTrials.gov and the EU Clinical Trials Register. Studies of children, adolescents, or adults were eligible. However, trials of endoscopic dilation or dietary exclusion therapies, and trials without a placebo comparator arm were excluded. These restrictions were applied to focus this review on pharmacologic interventions, although we recognize that similar challenges with respect to minimizing placebo response and outcome heterogeneity apply to
trials of dietary or endoscopic therapy and non-placebo controlled studies. Separately published post-hoc or retrospective analyses of RCTs were not included to avoid duplicate inclusion.

Data Extraction

The primary data extraction included: (1) descriptions of primary and secondary efficacy outcomes, definitions, and measurement tools; (2) descriptions of exploratory outcomes; and (3) the proportion of patients randomised to placebo achieving patient-reported, endoscopic, or histologic response and remission (as defined by the original study authors). Additionally, information regarding trial design (publication year, trial phase, number of treatment arms, trial location and number of trial centres, total participants and participants randomised to placebo, follow-up duration), trial-level patient data (age and gender distribution, proportion on proton pump inhibitor (PPI) therapy at baseline, disease duration), and the active comparator (drug class and route of administration) were collected.

The risk of bias in the published studies was assessed using the Cochrane risk of bias tool, which assesses the following domains: 1) selection bias (random sequence generation, allocation concealment); 2) performance bias (blinding of participants and personnel); 3) detection bias (blinding of outcome assessment); 4) attrition bias (incomplete outcome data); 5) reporting bias (selective reporting); and 6) other sources of bias.¹⁷

Data Synthesis and Analysis

Standard descriptive statistics were used to describe trial characteristics. A comprehensive inventory of outcomes and definitions was generated through qualitative review and subsequently organized into subdomains (histology, endoscopy, patient-reported outcomes). The proportion of studies reporting each outcome was calculated and stratified by year of publication.
In the initial study protocol, we planned to pool histologic, endoscopic, and patient-reported placebo response and remission rates in meta-analysis using a random-effects model; however, due to the small number of trials and significant heterogeneity in outcome definitions, it was methodologically inappropriate to formally pool reported placebo rates. Additionally, a substantial proportion of trials reported placebo rates of 0% (see Results); pooling these studies in meta-analysis, even with a continuity factor, would likely result in biased estimates. Therefore, we generated a descriptive summary of the proportion of placebo responders or remitters where available but without pooled point estimates. For studies reporting quantitative before and after treatment changes in the mean or median scoring index, the percentage change in the placebo group was calculated by dividing the difference in quantitative score after treatment by the scale of the scoring instrument. The median and interquartile range of placebo response and remission rates was calculated and then graphically depicted in box-and-whisker, stratified by outcome domain. All statistical analyses were conducted using STATA 14.2 (StataCorp, College Station, TX: StataCorp LP).

This meta-analysis conforms to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations.18
Results

Search Results and Study Characteristics

The flow diagram for inclusion of trials identified by the literature search is illustrated in Supplemental Figure 1. Twenty-two placebo-controlled RCTs were identified; another ten registered and enrolling trials were identified through ClinicalTrials.gov and the EU Clinical Trials Register. Baseline study characteristics are summarized in Table 1. Most of the published trials were phase II studies (81.8%, 18/22), enrolling adult patients (54.5%, 12/22). Thirteen studies (59.1%, 13/22) compared a corticosteroid preparation against placebo. Ten trials reported concomitant PPI use; the mean proportion of EoE patients receiving concomitant PPI therapy was 57.0% (standard deviation ±26.5%, range 13.2%-100%). The mean follow-up duration was 12.1 weeks (SD ±10.7 weeks, range 2-50 weeks). Risk of bias assessment is summarized in Supplemental Table 1; most studies were judged to be at low risk of bias for most domains.

Outcome Reporting

The proportion of trials reporting histologic, endoscopic, and patient-reported outcomes is summarized in Figure 1, stratified by year of publication. Both histologic and patient-reported outcomes were described in nearly all reported trials (95.5%, 21/22) and registered studies (90%, 9/10). In contrast, only 13 reported RCTs (59.1%) and four (40%) registered trials defined a priori endoscopic endpoints. Exploratory outcomes were evaluated in 68.2% (15/22) of reported RCTs and included: (1) serum or tissue biomarkers (including MIB-1/Ki-67, interleukin (IL)-5, IL13, eotaxin, tryptase for mast cells, tumor necrosis factor, tenascin C, cytokeratin, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling positive inflammatory and epithelial cells, transforming growth factor beta (TGF-β), CD3/8, eosinophil cationic protein, eosinophil derived neurotoxin, eosinophil peroxidase, serum...
immunoglobulins29, and thymic stromal lymphopoietin35); (2) esophageal thickness23 (as measured on endoscopic ultrasound); (3) genetic factors associated with EoE (including single nucleotide polymorphisms of TGF-\(\beta\)20 and measures of the EoE transcriptome28, 30), and (4) esophageal distensibility measures as assessed by functional lumen imaging probe (FLIP).38

Histology Outcome Definitions

Definitions of histology outcomes for reported RCTs are summarized in Table 2 and for registered RCTs in Table 3. Most trials defined histology outcomes using eosinophil density as defined most commonly by peak eosinophil counts although no consistent thresholds for defining histologic response or remission were used. Furthermore, the definition of peak eosinophil count varied depending on field size, number of HPFs evaluated, and from which level of the esophagus samples were obtained. For histologic remission, peak eosinophil thresholds ranged from 0 to 6 eosinophils/high power field (HPF); for histologic response, peak eosinophil count thresholds ranged from 5 to 24 eosinophils/HPF. Fourteen studies reported change in absolute eosinophil counts before and after therapy or by percentage changes from baseline in eosinophil density.23, 24, 26-30, 32, 33, 35, 37-40 One study used the EoE Histology Scoring System (EoE-HSS) to evaluate both severity and extent of eight features (eosinophil density, basal zone hyperplasia, eosinophil abscesses, eosinophil surface layering, dilated intercellular spaces, surface epithelial alteration, dyskeratotic epithelial cells, and lamina propria fibrosis).38 Four studies specified that histologic outcomes required changes at multiple esophageal levels (e.g. proximal and distal esophagus).19, 28, 30, 31

Endoscopy Outcome Definitions

Definitions of endoscopy outcomes for reported RCTs are summarized in Table 2 and for registered RCTs in Table 3. Several authors used non-validated changes in overall or global
endoscopic appearance with descriptions of classic EoE endoscopy findings (such as linear furrows, white exudates, and esophageal rings). Two studies used a visual analogue scale and four studies used the EoE Endoscopic Reference Score (EREFS). The EREFS is the only endoscopic outcome instrument that has undergone inter- and intra-observer validation in both North American and European studies. The EREFS is also the most commonly used measurement tool for endoscopy outcomes in registered trials (4 studies, 40%). No consistently used thresholds for endoscopy scores were identified to determine endoscopic response/remission; rather, changes compared to baseline were commonly reported.

Patient-Reported Outcome Definitions

Definitions of patient-reported outcomes for reported RCTs are summarized in Table 2 and for registered RCTs in Table 3. Multiple different scoring systems, mostly non- or only partially validated, have been used to assess patient-reported response or remission. These include the Mayo Dysphagia Questionnaire, the Dysphagia Symptom Questionnaire, the EoE Activity Index (EEsAI), patient or physician global assessments of disease severity, the Dysphagia Score (also termed the Straumann Dysphagia Index), the EoE Clinical Symptom Score, the Pediatric Eosinophilic Esophagitis Symptom Score (PEESS), and the Visual Dysphagia Questionnaire. As with endoscopy and histology endpoints, no uniformly applied thresholds for patient-reported remission or response have been identified although the complete absence of symptoms has been used by some authors to define remission. Health-related quality of life was not specifically defined as a treatment endpoint in any of the currently published RCTs.

Histology, Endoscopy, and Patient-Reported Placebo Rates

Placebo rates in EoE RCTs are summarized in Figure 2 and Table 4, presented as either: (1) proportion of patients achieving response/remission defined by the original study authors; or (2)
percentage change in before and after treatment disease activity scores relative to the scale of
scoring index when placebo response was reported as a continuous variable. The median
histologic placebo response rate was 3.7% (range 0% to 31.6%). Two studies reported
histologic placebo response or partial remission rates of >20%. Both studies used an eosinophil
density cutoff of <20 eos/HPF (<65 eos/mm^2 HPF). The median histologic placebo
remission rate was 0.0% (range 0% to 11.0%). Eight studies reported histologic placebo
remission rates of 0%. When assessed as a continuous measure relative to
the scale of the measurement tool, endoscopy scores before and after placebo administration
changed between -0.6% to -16%. Larger variances were evident when assessing patient-
reported placebo response (Figure 2): patient-reported scores before and after placebo
administration varied between -28.6% to +36.6. The median symptomatic response rate was
14.4% (range 8.6% to 77.8%); the median symptomatic remission rate was 26.2% (range 13.2%
to 35.7%).
Discussion

Over the past two decades, clinical trials of therapeutic agents in EoE have evolved from retrospective case series with symptom-based outcomes to prospective, randomised, placebo-controlled trials that include both valid patient-reported outcomes and objective measures such as histopathology and endoscopy. In this systematic review of all reported and registered placebo-controlled trials of pharmacologic therapies for EoE, we describe the placebo response and summarise the outcome measures used in existing and planned RCTs. We found that histologic placebo response and remission rates in EoE trials are relatively low compared to RCTs in other gastrointestinal disorders, although there is greater variance in patient-reported placebo responses. We also highlight the significant heterogeneity in outcome measurement and outcome definitions used in current studies for histology, endoscopy, and patient-reported endpoints and there is no consensus on thresholds for defining response or remission. Development of a COS that standardises outcome measurement and reporting in EoE RCTs is thus a priority.

Potential determinants of the histologic placebo response in EoE RCTs include: 1) inclusion of patients with PPI-responsive EoE who derive both clinical and histologic benefits from concomitant PPI therapy; 2) sampling of histologically normal mucosa in the context of patchy eosinophilic infiltration in EoE; 3) regression to the mean; and 4) spontaneous changes in disease activity in the natural history of EoE, possibly as a response to fluctuations in allergen or dietary exposures. Although symptomatic placebo rates in EoE tend to be lower than in other allergic and gastrointestinal disorders, they still remain higher and more variable compared to histologic placebo response. Some EoE studies report greater than one third to one half of placebo patients achieving response or remission using patient-reported endpoints. Symptomatic placebo rates may be influenced by dietary avoidance or modifications that reduce dysphagia or by endoscopic dilation at baseline if not precluded by the study entry criteria. However, this discrepancy between histologic and symptomatic placebo response also
underscores the discordance between patient-reported symptoms and objective measures of disease activity: in an international cohort study of 269 EoE patients, an Eosinophilic Esophagitis Activity Index (EEsAI) patient-reported outcome score of ≤15 points identified only 67.2% of patients with endoscopic and histologic remission.44

Additionally, histologic endpoints defined by eosinophil density may not closely correlate with patient-reported outcomes because dysphagia symptoms and risk of food impaction in EoE are driven primarily by complications of esophageal remodeling, rather than mucosal inflammation.45, 46 Histologic outcomes are assessed in nearly all EoE RCTs defined by either peak or mean eosinophil count per HPF. Although this paradigm is attractive because it provides a quantitative measure of inflammatory burden, several potential pitfalls exist. First, variability in results may be influenced by technical factors such as the cross-sectional area of the microscope manufacturer (correctable by using normalised density to eosinophils per mm2) and by sampling differences in the number and location of acquired biopsies.47-49 Second, mucosal biopsies may underestimate the full extent of histologic involvement in EoE given that eosinophilic infiltration is not confined to the superficial mucosa, eosinophil density does not necessarily correlate with eosinophil degranulation or function, and other histologic features such as basal cell hyperplasia, mast cell infiltration, and subepithelial fibrosis are not captured.50, 51

To address some of these potential limitations of peak eosinophil density as a measure of disease activity in EoE, Collins et al. have developed and validated an EoE Histology Scoring System (EoE-HSS), based on eight features (eosinophil density, basal zone hyperplasia, eosinophil abscesses, eosinophil surface layering, dilated intercellular spaces, surface epithelial alteration, dyskeratotic epithelial cells, and lamina propria fibrosis), graded and staged using a four point scale.52 Future studies should assess the responsiveness to change of this instrument.
after a therapeutic intervention. Furthermore, adoption of blinded central reading to minimize observation bias at both enrolment and outcome ascertainment has gained traction in IBD. Although a single pathologist frequently evaluates histologic endpoints in current EoE RCTs, proper assessment inter- and intra-rater reliability using multiple blinded central readers for EoE histopathology endpoints is needed before this is routinely incorporated in clinical trials.

Patient-reported outcomes will likely be an essential component of future registration trials in EoE based upon existing precedents in both ulcerative colitis and Crohn’s disease, whereby co-primary endpoints of PROs and objective assessment of inflammation (endoscopy) have been mandated. Although multiple scoring systems have been used to assess dysphagia symptoms in EoE RCTs most have not been validated in this disease. Two disease-specific, validated symptom scoring systems have recently been developed. The Dysphagia Symptom Questionnaire was developed from patient focus groups and primarily assesses frequency and intensity of dysphagia symptoms, with demonstrated responsiveness in an RCT of budesonide oral suspension. The EEsAI was prospectively developed and validated for use in adults with EoE and additionally captures food avoidance and behavioral modifications, a common source of reduced quality of life in EoE patients, particularly among those with previous food bolus impactions. Notwithstanding that eating behaviors such as careful mastication, prolonged meal times, and dietary restriction may not be adequately captured by assessment of dysphagia symptoms alone, both indices are candidate measurement tools for evaluating patient-reported outcomes in future RCTs.

Endoscopic outcomes offer another potential objective treatment target in EoE RCTs. Earlier studies used non-validated global assessments of endoscopic appearance based on common EoE features. Development of the EoE Endoscopic Reference Score (EREFS), which incorporates both major (fixed rings, exudates, furrows, edema, stricture) and minor features...
(crepe paper esophagus) has been an important advance.54 The items for the EREFS were identified through a literature review and a grading scheme was developed through consensus expert opinion. Internal validation, based on evaluation of a sampling of videos by 21 endoscopists with diverse experience and practice patterns, demonstrated moderate to good interobserver reliability. The EREFS is the proposed endoscopic endpoint in four registered RCTs, but it still requires further external validation, particularly evaluating the role of central blinded endoscopy reading and comparison of video versus still-image endoscopic assessment on reliability performance characteristics.55

Although histologic, endoscopic, and symptom-based outcomes have traditionally been used to assess EoE activity, there has been growing interest in quantifying and targeting esophageal distensibility as a measure of end organ remodeling. Functional lumen imaging probe (FLIP) uses impedance planimetry to quantify esophageal distention.6 Lower distensibility plateaus (DP) are associated with food bolus impaction and the need for esophageal dilation.45 In contrast, dietary and medical therapies have been demonstrated to improve DPs and this reduction correlates with better symptomatic outcomes.56 In a recent phase 2 placebo-controlled RCT, treatment with dupilumab, a humanised anti-IL-4R\textalpha monoclonal antibody, improved esophageal distensibility and highlighted the potential of FLIP as a responsive biomarker to medical therapy.38

Understanding outcome definitions in clinical trials is crucial for translating evidence-based research to clinical practice. Indeed, many of the newer EoE disease activity indices such as the EoEHSS, EEsAI, and EREFS have not yet been routinely incorporated in daily care. It is important for physicians to recognize that heterogeneity in outcome definitions used in clinical trials may influence interpretations of response to therapy. As the patient’s treatment goals are typically resolution of dysphagia symptoms, avoidance of food bolus impactions, prevention of
long-term disease complications, and ultimately, optimization of quality of life, these are parameters should be captured in outcome definitions for use in RCTs. Additionally, choosing appropriate histologic and endoscopic targets will help dictate therapeutic decisions in clinical practice: for example, targeting more stringent histologic endpoints (<5 eos/hpf vs. <15 eos/hpf)57 or endoscopic resolution58 is associated with improved treatment response and symptom alleviation.

Our study has some limitations. First, we included only placebo-controlled RCTs and a substantial proportion of the EoE literature is rooted in observational studies and non-controlled trials. Thus, there may be outcomes of interest that are not captured in this review. Second, we excluded trials of endoscopic therapies or dietary interventions. We restricted the inclusion specifically to RCTs investigating pharmacologic therapies because the focus of COS development will be primarily applicable to RCTs of novel therapeutic compounds. However, similar symptom-based and histologic outcomes are measured in both prospective and retrospective observational studies of dietary interventions in EoE, with heterogeneity in the defined thresholds for response and remission remaining an important challenge.59-63 A previous systematic review has also evaluated outcomes after endoscopic dilation for EoE64: efficacy was typically assessed using dysphagia scoring systems although there is an increased focus on safety outcomes, particularly with respect to esophageal perforation. Finally, we could not pool placebo rates to generate single point estimates. However, it is considered methodologically inappropriate to pool studies with such heterogeneity in outcome definitions, leading to a potentially biased point estimate that is not representative of the literature. Thus, we have presented the median as a measure of central tendency with ranges rather than a pooled point estimate.
The next steps in COS development have been outlined in the Core Outcome Measures in Effectiveness Trials (COMET) handbook. First, input from relevant stakeholders, including patients, health care providers, trialists, regulators, industry representatives, health policy-makers, and researchers, will be sought. Next, relevant outcome domains will be defined. We propose that a similar framework to that presented in this review be considered, wherein a coprimary endpoint incorporating a patient-reported outcome measure and an objective histologic or endoscopic outcome in accordance with regulatory requirements be adopted. A consensus on specific outcome definitions and thresholds will be achieved through a multi-round Delphi process that permits anonymized feedback to participants. Finally, the COS will be ratified and disseminated for implementation in future RCTs.

CONCLUSION

In conclusion, choosing appropriate treatment endpoints is crucial for clinical trial design. Outcomes should be relevant, valid, support regulatory and labelling claims, and correlate with meaningful changes in quality of life and disease course. In EoE, this translates to improvements in patient-reported symptoms, histologic burden of inflammation, and possibly reversal or prevention of fibrostenotic EoE complications. Although there has been significant progress in clinical trial research in EoE over the past two decades, we identify the substantial heterogeneity in outcome definitions in this field. Many instruments for EoE outcome assessment have only recently been developed and additional RCT data applying these instruments is required to adequately define response and remission cutoffs using anchor-based methods. This systematic review serves as a conceptual framework for COS development in EoE.
Ma et al. Outcomes in EoE RCTs

Tables and Figures Legend

Table 1. Baseline study characteristics
Table 2. Histology, endoscopy, and symptom-based endpoints in published eosinophilic esophagitis placebo-controlled clinical trials
Table 3. Histology, endoscopy, and symptom-based endpoints in registered eosinophilic esophagitis placebo-controlled clinical trials
Table 4. Histology, endoscopy, and symptom-based placebo rates in published eosinophilic esophagitis placebo-controlled clinical trials

Figure 1. Endpoint reporting in eosinophilic esophagitis placebo-controlled clinical trials, stratified by year of publication
Figure 2. Box-and-whisker plots for histologic, endoscopic, and symptom-based placebo response and remission in eosinophilic esophagitis clinical trials.

Supplemental File 1. Search strategy
Supplemental Figure 1. PRISMA diagram
Supplemental Table 1. Risk of bias assessment
Ma et al.

Outcomes in EoE RCTs

References

Endpoints for Clinical Trials of Crohn's Disease: A Systematic Review for Development

Clinical Trials of Ulcerative Colitis: A Systematic Review for Development of a Core

in induction and maintenance trials of Crohn's disease. Aliment Pharmacol Ther
2017;45:1021-1042.

Rates in Induction and Maintenance Trials of Ulcerative Colitis. J Crohns Colitis

15. Elsenbruch S, Enck P. Placebo effects and their determinants in gastrointestinal

Associated with Symptomatic Placebo Response in Adolescents and Adults with
Eosinophilic Esophagitis During a Placebo Run-in Period of a Double-Blind,
Randomized, Controlled Trial of Budesonide Oral Suspension. Gastroenterology
2017;152:S854.

reviews and meta-analyses of studies that evaluate healthcare interventions: explanation
controlled trial of fluticasone propionate for pediatric eosinophilic esophagitis.
Gastroenterology 2006;131:1381-91.

eosinophilic esophagitis in a randomized, placebo-controlled trial. Gastroenterology
2010;139:418-29.

patients with active eosinophilic esophagitis. Gastroenterology 2010;139:1526-37, 1537

(mepolizumab) in active eosinophilic oesophagitis: a randomised, placebo-controlled,

partially effective for patients with eosinophilic esophagitis. Clin Gastroenterol Hepatol
2011;9:400-9 e1.

not symptomatic response of adults with eosinophilic esophagitis. Clin Gastroenterol

25. Ghaffari G. A Randomized Double Blind Placebo Controlled Crossover Study of the
Effect of Swallowed Beclomethasone Dipropionate on Inflammatory Markers in Adult

with eosinophilic esophagitis: results of a double-blind, randomized, placebo-controlled

Table 1. Baseline study characteristics

<table>
<thead>
<tr>
<th>Trial Participants (n)</th>
<th>n = 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total randomised participants</td>
<td>1112</td>
</tr>
<tr>
<td>Participants randomised to placebo</td>
<td>410</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trial Phase (n, %)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td>Phase II</td>
<td>Phase III</td>
</tr>
<tr>
<td>2 (9.1)</td>
<td>18 (81.8)</td>
<td>2 (9.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trial Publication Year (n, %)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (18.2)</td>
<td>9 (40.9)</td>
<td>9 (40.9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active Comparator (n, %)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticosteroid</td>
<td>Biologic Agent</td>
<td>Other</td>
</tr>
<tr>
<td>13 (59.1)</td>
<td>6 (27.3)</td>
<td>3 (13.6) †</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trial Population (n, %)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric/adolescent</td>
<td>Adult</td>
<td>Mixed</td>
</tr>
<tr>
<td>5 (22.7)</td>
<td>12 (54.5)</td>
<td>5 (22.7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient Characteristics</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean participant age (years, SD)</td>
<td>25.8 (13.6)</td>
<td></td>
</tr>
<tr>
<td>Mean disease duration (years, SD)</td>
<td>4.1 (1.9)</td>
<td></td>
</tr>
<tr>
<td>Mean percentage of enrolled males (% SD)</td>
<td>69.0 (14.1)</td>
<td></td>
</tr>
<tr>
<td>Mean percentage of concurrent PPI (% SD)</td>
<td>57.0 (26.5)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Follow-up (weeks, SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean follow-up duration</td>
</tr>
</tbody>
</table>

† One trial of montelukast, one trial of prostaglandin D2 receptor CRTH2 antagonist, one trial of cromolyn sodium
Table 2. Histology, endoscopy, and symptom-based endpoints in published eosinophilic esophagitis placebo-controlled clinical trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Comparator and Time to Outcome Assessment</th>
<th>Histology Endpoints</th>
<th>Endoscopy Endpoints</th>
<th>Symptom-Based Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konikoff 2006<sup>19</sup></td>
<td>Fluticasone 12 weeks</td>
<td>Response: peak eosinophil count >1 and <24 eos per 400x HPF, in both proximal and distal esophagus
Remission: peak eosinophil count <1 eosinophil in all 400x HPFs in both proximal and distal esophagus</td>
<td>Presence of endoscopic furrowing, epithelial hyperplasia</td>
<td>Presence of clinical symptoms (abdominal pain, vomiting, dysphagia)</td>
</tr>
<tr>
<td>Dohil 2010<sup>20</sup></td>
<td>Budesonide 12 weeks</td>
<td>Response: peak eosinophil count 7-9 eos/HPF
Remission: peak eosinophil count 0-6 eos/HPF
Change in epithelial histology, lamina propria histology, and lamina propria fibrosis</td>
<td>Change in endoscopy scoring tool (mucosal pallor/reduced vasculature, linear furrows/mucosal thickening, white plaques, concentric rings/stricture, friability/"tissue-paper" mucosa)</td>
<td>Change in symptom scoring tool (heartburn/regurgitation, abdominal pain, nausea/vomiting, anorexia/early satiety, dysphagia, symptom-induced nocturnal wakening, gastrointestinal bleeding)</td>
</tr>
<tr>
<td>Straumann 2010a<sup>21</sup></td>
<td>Budesonide 2 weeks</td>
<td>Response: 5-20 eos/HPF
Remission: <5 eos/HPF</td>
<td>Change in endoscopic appearance (white exudates, red furrows, corrugated rings, solitary ring, crepe-paper sign, severe stenosis)</td>
<td>Response: reduction in clinical symptom score ≥3 points compared to baseline using patient-reported outcome (frequency of dysphagia, intensity of dysphagia)</td>
</tr>
<tr>
<td>Straumann 2010b<sup>22</sup></td>
<td>Mepolizumab 34 weeks</td>
<td>Response: peak eosinophil count <5 eos/HPF</td>
<td>Change in endoscopic appearance (minor: fine nodules, fine whitish reticular structures, furrows; moderate: bright white scale- or plaque-like structures, corrugated rings; or severe: mucosal lesions, fixed stenosis)</td>
<td>Patient-reported Dysphagia Score (frequency of dysphagia, intensity of dysphagia, score 0-9)</td>
</tr>
</tbody>
</table>
Outcomes in EoE RCTs

<table>
<thead>
<tr>
<th>Study</th>
<th>Comparator and Time to Outcome Assessment</th>
<th>Histology Endpoints</th>
<th>Endoscopy Endpoints</th>
<th>Symptom-Based Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straumann 2011<sup>23</sup></td>
<td>Budesonide 50 weeks</td>
<td>Remission: mean eosinophil count <5 eos/HPF (measured in 40 HPF)</td>
<td>Endoscopic ultrasound (thickness of mucosa, submucosa, muscularis propria)</td>
<td>Patient-reported Dysphagia Score (frequency of dysphagia, intensity of dysphagia, score 0-9)</td>
</tr>
<tr>
<td>Alexander 2012<sup>24</sup></td>
<td>Fluticasone 6 weeks</td>
<td>Complete response: >90% reduction in mean eosinophil count (from 5 HPF)</td>
<td>Resolution of all endoscopic findings</td>
<td>Complete response: answer of "no" to all questions by Mayo Dysphagia Questionnaire (MDQ-30) Partial response: decrease in severity of at least 2 levels</td>
</tr>
<tr>
<td>Ghaffari 2012<sup>25</sup></td>
<td>Beclomethasone 8 weeks</td>
<td>Tissue cytokine staining</td>
<td>Not reported</td>
<td>Change in Physician’s Eosinophilic Esophagitis Global Assessment (physical findings, vital signs, predominant eosinophil esophagitis symptom assessment, patient’s symptom diary, dietary questions)</td>
</tr>
<tr>
<td>Spergel 2012<sup>26</sup></td>
<td>Reslizumab 15 weeks</td>
<td>Percentage change in peak eosinophil count</td>
<td>Not reported</td>
<td>Combination visual dysphagia questionnaire (VDQ 0-36), chest pain questionnaire (0-9) PRO</td>
</tr>
<tr>
<td>Straumann 2013<sup>27</sup></td>
<td>Prostaglandin D2 receptor CRTH2 antagonist 8 weeks</td>
<td>Reduction in esophageal eosinophil load (mean eosinophil count in 40 HPF)</td>
<td>Global appearance of endoscopic appearance using 10cm visual analogue scale</td>
<td>EoE Symptom Score (vomiting, nausea, abdominal pain, dysphagia, heartburn, chest pain, regurgitation, food impactions, early satiety, poor appetite)</td>
</tr>
<tr>
<td>Butz 2014<sup>28</sup></td>
<td>Fluticasone 6 months</td>
<td>Complete remission: ≤1 eos/HPF in proximal and distal esophagus</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Comparator and Time to Outcome Assessment</td>
<td>Histology Endpoints</td>
<td>Endoscopy Endpoints</td>
<td>Symptom-Based Endpoints</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>---</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Clayton 2014</td>
<td>Omalizumab 16 weeks</td>
<td>Reduction in esophageal eosinophil content (maximum eos/HPF)</td>
<td>Not reported</td>
<td>Change in dysphagia score (0-6 Likert scale)</td>
</tr>
<tr>
<td>Rothenberg 2014</td>
<td>Anti-IL13 (QAX576) 6 months</td>
<td>75% reduction in peak eosinophil count in proximal and distal esophagus</td>
<td>Not reported</td>
<td>Change in Mayo Dysphagia Questionnaire (eosinophilic esophagitis relevant questions, MDQ-30)</td>
</tr>
<tr>
<td>Gupta 2015</td>
<td>Budesonide 12 weeks</td>
<td>Response: peak eosinophil count ≤6 eos/HPF in all esophageal levels (composite outcome with clinical outcomes) Remission: peak eosinophil count ≤1 eos/HPF in all esophageal levels</td>
<td>Not reported</td>
<td>Symptom response: ≥50% reduction in Eosinophilic Esophagitis Clinical Symptom Score (EoE CSS) Symptom resolution: EoE CSS of 0</td>
</tr>
<tr>
<td>Hirano 2016</td>
<td>Anti-IL13 (RPC4046) 16 weeks</td>
<td>Response: change in mean eosinophil count</td>
<td>Change in EoE Endoscopic Reference Score (EREFS)</td>
<td>Change in Daily Symptom Diary (DSD), EEsAI PRO, and Subject’s Global Assessment of Disease Severity</td>
</tr>
<tr>
<td>Miehlke 2016</td>
<td>Budesonide 2 weeks</td>
<td>Response: mean eosinophil count <65 eos/mm² HPF</td>
<td>Change in endoscopic intensity score (white exudates, furrows, oedema, fixed rings, crepe paper sign, short segment stenosis, long-distance stenosis, 0-21) Global assessment of endoscopy appearance using 100mm visual analogue scale</td>
<td>Response: decrease in Dysphagia Score ≥3 (frequency of dysphagia, intensity of dysphagia, score 0-9)</td>
</tr>
<tr>
<td>Alexander 2017</td>
<td>Montelukast 26 weeks</td>
<td>Not reported</td>
<td>Not reported</td>
<td>Symptom remission: absence of dysphagia as measured by dysphagia frequency, severity, and food impaction questions from the Mayo Dysphagia Questionnaire, 2-week version</td>
</tr>
<tr>
<td>Study</td>
<td>Comparator and Time to Outcome Assessment</td>
<td>Histology Endpoints</td>
<td>Endoscopy Endpoints</td>
<td>Symptom-Based Endpoints</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Bhardwaj 2017</td>
<td>Beclomethasone 8 weeks</td>
<td>Response: change in peak eosinophil count</td>
<td>Not reported</td>
<td>Symptom response: reduction in dysphagia, heartburn, abdominal pain, and other symptoms</td>
</tr>
<tr>
<td>Dellon 2017</td>
<td>Budesonide 12 weeks</td>
<td>Response: ≤6 eos/HPF</td>
<td>Change in EoE Endoscopic Reference Score (ERFS)</td>
<td>Change in Dysphagia Symptom Questionnaire (DSQ, 0-84), ≥30% reduction in DSQ, ≥50% reduction in DSQ</td>
</tr>
<tr>
<td>Hirano 2017a</td>
<td>Fluticasone (oral disintegrating tablet) 8 weeks</td>
<td>Change in median eosinophil count</td>
<td>Improvement in endoscopic features as measured by the EoE Endoscopic Reference Score (ERFS)</td>
<td>Improvement in Patient Global Assessment of Disease Severity (PatGA), EEsAI PRO</td>
</tr>
<tr>
<td>Hirano 2017b</td>
<td>Dupilumab 12 weeks</td>
<td>Change in overall peak eosinophil count, response (peak eosinophil <6 eos/hpf, <15 eos/hpf) Change in EoE Histological Scoring System</td>
<td>Change in EoE Endoscopic Reference Score (ERFS)</td>
<td>Response: reduction in Straumann Dysphagia Index ≥3 points Response: reduction in EEsAI PRO by ≥40%</td>
</tr>
<tr>
<td>Liebermann 2017</td>
<td>Cromolyn sodium Follow-up not reported</td>
<td>Change in peak eosinophil count Remission: complete resolution of eosinophilia</td>
<td>Not reported</td>
<td>Symptom reduction by symptom score (not further specified)</td>
</tr>
<tr>
<td>Lucendo 2017</td>
<td>Budesonide 6 weeks</td>
<td>Remission: clinicopathological remission (not further specified) Change in peak eosinophil count</td>
<td>Rate of endoscopic normalization Change in total modified EEsAI endoscopic instrument score</td>
<td>Remission: EEsAI-PRO ≤20 Remission: resolution of dysphagia and pain during swallowing Time to first symptom resolution, change in Patient’s and Physician’s Global Assessment of EoE Activity Score</td>
</tr>
</tbody>
</table>

†Results reported in abstract form

EEsAI (Eosinophilic Esophagitis Activity Index), Eos (eosinophils), HPF (high power field), PRO (patient-reported outcome)
Table 3. Histology, endoscopy, and symptom-based endpoints in registered eosinophilic esophagitis placebo-controlled clinical trials

<table>
<thead>
<tr>
<th>Study (Clinicaltrials.gov)</th>
<th>Comparator and Time to Outcome Assessment</th>
<th>Histology Endpoints</th>
<th>Endoscopy Endpoints</th>
<th>Symptom-Based Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT02113267 EudraCT 2012-005842-39</td>
<td>Mometasone 8 weeks</td>
<td>Not reported</td>
<td>Not reported</td>
<td>Change in Watson Dysphagia Scale Score (WDS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Change in EORTC QLQ-OES18 Dysphagia Scale (eating scale and choking item)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Global health/social functioning dimensions of SF-36</td>
</tr>
<tr>
<td>NCT02605837 Oral budesonide suspension 16 weeks</td>
<td>Response: peak eosinophil count ≤6 eos/HPF</td>
<td>Change in peak eosinophil count, change in histopathologic epithelial features (by central reviewer)</td>
<td>Change in EoE Endoscopic Reference Score (EREFS)</td>
<td>Symptom response: ≥30% reduction in Dysphagia Symptom Questionnaire combined score</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Change in pain with swallowing</td>
</tr>
<tr>
<td>NCT01702701 Montelukast 12 weeks</td>
<td>Change in esophageal eosinophilia</td>
<td>Not reported</td>
<td>Improvement in Dysphagia Symptom Score</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT03191864 APT-1011 12 weeks</td>
<td>Response: peak eosinophil count ≤6 eos/HPF (from 5-6 biopsies from proximal and distal esophagus)</td>
<td>Response: percentage of patients with peak eosinophil count <1 eos/HPF, <15 eos/HPF</td>
<td>Change in EoE Endoscopic Reference Score (EREFS)</td>
<td>Change in baseline Global EoE Symptom Score</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sustained response (histology response maintained at week 12, 26, and 52)</td>
<td></td>
<td>Change in number of dysphagia episodes at baseline</td>
</tr>
<tr>
<td>NCT02873468 Fluticasone 8 weeks</td>
<td>Change in eosinophil infiltration (not further specified)</td>
<td>Not reported</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>NCT02371941 Cromolyn sodium 2 months</td>
<td>Change in peak esophageal eosinophil count</td>
<td>Not reported</td>
<td>Change in symptom score by Pediatric Esophagitis Symptom</td>
<td></td>
</tr>
</tbody>
</table>
Ma et al.

Outcomes in EoE RCTs

<table>
<thead>
<tr>
<th>Study (Clinicaltrials.gov)</th>
<th>Comparator and Time to Outcome Assessment</th>
<th>Histology Endpoints</th>
<th>Endoscopy Endpoints</th>
<th>Symptom-Based Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT02019758</td>
<td>Budesonide Fluticasone 8 weeks</td>
<td>Change in maximum eosinophil count</td>
<td>Change in EoE Endoscopic Reference Score (EREFS)</td>
<td>Change in Dysphagia Symptom Questionnaire</td>
</tr>
</tbody>
</table>
| NCT02493335 | Budesonide orodispersible tablet 48 weeks | Rate of patients with histological relapse | Not reported | Rate of patients free of treatment failure
Rate of patients with clinical relapse |
| NCT02736409 | Oral budesonide suspension 36 weeks | Change in peak eosinophil count | Change in EoE Endoscopic Reference Score (EREFS) | Change in Dysphagia Symptom Questionnaire |
| EudraCT 2005-006074-10 | Mepolizumab 12 weeks | Reduction in peak eosinophil count to <5 eos/HPF | Not reported | Frequency and severity of eosinophilic esophagitis-related pain, regurgitation, vomiting, swallowing disorders, feeding difficulties |
Table 4. Histology, endoscopy, and symptom-based placebo and active comparator rates in published eosinophilic esophagitis placebo-controlled clinical trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Placebo Histology Rate</th>
<th>Active Comparator Histology Rate</th>
<th>Placebo Endoscopy Rate</th>
<th>Active Comparator Endoscopy Rate</th>
<th>Placebo Symptom-Based Rate</th>
<th>Active Comparator Symptom-Based Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konikoff 2006<sup>19</sup></td>
<td>Response: 20.0% (3/15) Remission: 6.7% (1/15)</td>
<td>Response: 55.0% (11/20) Remission: 50.0% (10/20)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Dohil 2010<sup>20</sup></td>
<td>Response: 0.0% (0/9) Remission: 0.0% (0/9)</td>
<td>∆ mean peak eosinophil count: -18.3 eos/HPF</td>
<td>Response: 6.7% (1/15) Remission: 86.7% (13/15)</td>
<td>∆ mean endoscopy score: -16.0% (-2.4/15)</td>
<td>∆ mean symptom scoring tool: -6.4% (-0.9/14)</td>
<td>∆ mean symptom scoring tool: -16.4% (-2.3/14)</td>
</tr>
<tr>
<td>Straumann 2010a<sup>21</sup></td>
<td>Response: 0.0% (0/18) Remission: 11.1% (2/18)</td>
<td>∆ mean eosinophil count: -5.8 eos/HPF</td>
<td>Response: 16.7% (3/18) Remission: 72.2% (13/18)</td>
<td>∆ mean eosinophil count: -62.7 eos/HPF</td>
<td>∆ mean symptom score: -6.8% (-0.61/9)</td>
<td>∆ mean symptom score: -37.7% (-3.39/9)</td>
</tr>
<tr>
<td>Straumann 2010b<sup>22</sup></td>
<td>∆ mean peak eosinophil count: -2.7 eos/HPF</td>
<td>∆ mean peak eosinophil count: -39.4 eos/HPF</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Straumann 2011<sup>23</sup></td>
<td>Partial remission: 28.6% (4/14) Remission: 0.0% (0/14)</td>
<td>∆ mean eosinophil count: +64.3 eos/HPF</td>
<td>Partial remission: 14.3% (2/14) Remission: 35.7% (5/14)</td>
<td>∆ mean eosinophil count: +31.4 eos/HPF</td>
<td>Remission: 35.7% (5/14)</td>
<td>Remission: 64.3% (9/14)</td>
</tr>
<tr>
<td>Alexander 2012<sup>24</sup></td>
<td>Response: 0.0% (0/21)</td>
<td>Response: 61.9% (13/21)</td>
<td>Remission: 4.8% (1/21)</td>
<td>Remission: 26.7% (4/15)</td>
<td>Response: 33.3% (7/21)</td>
<td>Response: 57.1% (12/21)</td>
</tr>
</tbody>
</table>
Outcomes in EoE RCTs

<table>
<thead>
<tr>
<th>Study</th>
<th>Placebo Histology Rate</th>
<th>Active Comparator Histology Rate</th>
<th>Placebo Endoscopy Rate</th>
<th>Active Comparator Endoscopy Rate</th>
<th>Placebo Symptom-Based Rate</th>
<th>Active Comparator Symptom-Based Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghaffari 2012</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Remission: 28.6% (6/21)</td>
<td>Remission: 42.9% (9/21)</td>
</tr>
<tr>
<td>Spergel 2012</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>∆ mean physician’s EoE global assessment score: -11.4% (-1.14/10)</td>
<td>∆ mean physician’s EoE predominant symptom assessment score: -12.8% (-1.28/10)</td>
</tr>
<tr>
<td>Straumann 2013</td>
<td>∆ mean eosinophil count: -3.3 eos/HPF</td>
<td>∆ mean eosinophil count: -41.6 eos/HPF</td>
<td>∆ mean global endoscopy assessment score: -0.6% (-0.06/10)</td>
<td>∆ mean global endoscopy assessment score: -3.6% (-0.36/10)</td>
<td>∆ mean Visual Dysphagia Questionnaire: -18.9% (-6.82/36)</td>
<td>∆ mean Visual Dysphagia Questionnaire: -15.8% (-5.71/36)</td>
</tr>
<tr>
<td>Butz 2014</td>
<td>Remission: 0.0% (0/13)</td>
<td>Remission: 65.2% (15/23)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Clayton 2014</td>
<td>∆ mean eosinophil count: -4 eos/HPF</td>
<td>∆ mean eosinophil count: -2 eos/HPF</td>
<td>NR</td>
<td>NR</td>
<td>∆ dysphagia score: -25.2% (-1.7/6)</td>
<td>∆ dysphagia score: -20.0% (-1.2/6)</td>
</tr>
<tr>
<td>Rothenberg 2014</td>
<td>Response: 12.5% (1/8)</td>
<td>Response: 40.0% (6/15)</td>
<td>NR</td>
<td>NR</td>
<td>Response: 66.7% (10/15)</td>
<td>Response: 66.7% (10/15)</td>
</tr>
<tr>
<td>Gupta 2015</td>
<td>Response: 5.6% (1/18)</td>
<td>Response: 94.1% (16/17)</td>
<td>NR</td>
<td>NR</td>
<td>Response: 77.8% (14/18)</td>
<td>Response: 52.9% (9/17)</td>
</tr>
<tr>
<td>Hiranag 2016</td>
<td>∆ mean eosinophil count: -4.4 eos/HPF</td>
<td>∆ mean eosinophil count: -99.9 eos/HPF</td>
<td>∆ mean EREFS score: -4.5% (-0.9/20)</td>
<td>∆ mean EREFS score: -24.0% (-4.8/20)</td>
<td>∆ Daily Symptom Diary score: -7.6% (-6.4/84)</td>
<td>∆ Daily Symptom Diary score: -15.8% (-13.3/84)</td>
</tr>
<tr>
<td>Miehlke 2016</td>
<td>Response: 31.6% (6/19)</td>
<td>Response: 94.7% (18/19)</td>
<td>Response: 26.3% (5/19)</td>
<td>Response: 57.9% (11/19)</td>
<td>∆ mean dysphagia score: -28.6% (-2.0/9)</td>
<td>∆ mean dysphagia score: -20.0% (-1.8/9)</td>
</tr>
</tbody>
</table>
Ma et al.

Outcomes in EoE RCTs

<table>
<thead>
<tr>
<th>Study</th>
<th>Placebo Histology Rate</th>
<th>Active Comparator Histology Rate</th>
<th>Placebo Endoscopy Rate</th>
<th>Active Comparator Endoscopy Rate</th>
<th>Placebo Symptom-Based Rate</th>
<th>Active Comparator Symptom-Based Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexander 2017</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Remission: 23.8% (5/21)</td>
<td>Remission: 40.0% (8/20)</td>
</tr>
<tr>
<td>Bhardwaj 2017</td>
<td>∆ eosinophil count: -25.3 eos/HPF</td>
<td>∆ eosinophil count: -50.7 eos/HPF</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dellon 2017</td>
<td>Response: 2.6% (1/38)</td>
<td>∆ mean EREFS score: -1.0% (0.4/20)</td>
<td>Response: 38.8% (19/49)</td>
<td>∆ mean EREFS score: -19.0% (-3.8/20)</td>
<td>Response: 44.7% (17/38)</td>
<td>Remission: 13.2% (5/38)</td>
</tr>
<tr>
<td>Hirano 2017a</td>
<td>∆ median eosinophil count: -136 cells/mm² HPF</td>
<td>∆ median eosinophil count: -355 cells/mm² HPF</td>
<td>∆ median EREFS score: -7.5% (-1.5/20)</td>
<td>∆ median EREFS score: -17.5% (-3.5/20)</td>
<td>∆ mean global assessment: -5.0% (-0.5/10)</td>
<td>∆ mean global assessment: -25.0% (-2.5/10)</td>
</tr>
<tr>
<td>Hirano 2017b</td>
<td>Response: 0.0% (0/24) for both <6 and <15 eos/HPF</td>
<td>∆ mean peak eosinophil count: -11.6 eos/HPF</td>
<td>∆ mean peak eosinophil count: -117.0 eos/HPF</td>
<td>∆ mean EREFS score: -9.5% (-1.9/20)</td>
<td>Response: 12.5% (3/24) by Straumann Dysphagia Index, 8.3% (2/24) by EEsAI PRO</td>
<td>∆ Straumann Dysphagia Index: -14.4% (-1.3/9)</td>
</tr>
<tr>
<td>Lieberman 2017</td>
<td>Remission: 0.0% (0/7)</td>
<td>∆ Symptom Score: -30.7% (-9.9/32.2)</td>
<td>NR</td>
<td>NR</td>
<td>∆ Symptom Score: -58.8% (-22.3/37.9)</td>
<td></td>
</tr>
</tbody>
</table>
Ma et al.

Outcomes in EoE RCTs

<table>
<thead>
<tr>
<th>Study</th>
<th>Placebo Histology Rate</th>
<th>Active Comparator Histology Rate</th>
<th>Placebo Endoscopy Rate</th>
<th>Active Comparator Endoscopy Rate</th>
<th>Placebo Symptom-Based Rate</th>
<th>Active Comparator Symptom-Based Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lucendo 2017†</td>
<td>Remission: 0.0% (0/29)</td>
<td>Remission: 93.2% (55/59)</td>
<td>Remission: 0.0% (0/29)</td>
<td>Remission: 61.0% (36/59)</td>
<td>Remission: 13.8% (4/29)</td>
<td>Remission: 59.3% (35/59)</td>
</tr>
<tr>
<td></td>
<td>Δ mean peak eosinophil count: -4 eos/mm² HPF</td>
<td>Δ mean peak eosinophil count: -226 eos/mm² HPF</td>
<td></td>
<td></td>
<td>Δ mean patient global assessment: -19.0% (-1.9/10)</td>
<td>Δ mean patient global assessment: -38.0% (-3.8/10)</td>
</tr>
</tbody>
</table>

For trials with multiple active comparators, results reported for highest administered dose
† Results reported in abstract form
EEsAI EoE Activity Index, HPF high power field, HSS Histology Scoring System, NR not reported, eos eosinophils, EREFS EoE Endoscopic Reference Scoring System
Δ Change in pre- and post-treatment mean score in the placebo group, percentage change calibrated to scale of measurement
Ma et al. Outcomes in EoE RCTs

Supplemental File 1. Search strategy

MEDLINE
1. random$.tw.
2. factorial$.tw.
3. (crossover$ or cross over$ or cross-over$).tw.
4. placebo$.tw.
5. single blind.mp.
6. double blind.mp.
7. triple blind.mp.
8. (singl$ adj blind$).tw.
11. assign$.tw.
12. allocat$.tw.
13. randomized controlled trial/
14. or/1-13
15. (exp animal/ or animal.hw. or nonhuman/) not (exp human/ or human cell/ or (human or humans).ti.)
16. 14 not 15
17. eosinophilic esophagitis.mp. or exp eosinophilic esophagitis/
18. (eosinophil* and esophag*).mp.
19. (eosinophil* and oesophag*).mp.
20. or/17-19
21. 16 and 20

EMBASE
1. random$.tw.
2. factorial$.tw.
3. (crossover$ or cross over$ or cross-over$).tw.
4. placebo$.tw.
5. single blind.mp.
6. double blind.mp.
7. triple blind.mp.
8. (singl$ adj blind$).tw.
11. assign$.tw.
12. allocat$.tw.
13. crossover procedure/
14. double blind procedure/
15. single blind procedure/
16. triple blind procedure/
17. randomized controlled trial/
18. or/1-17
19. (exp animal/ or animal.hw. or nonhuman/) not (exp human/ or human cell/ or (human or humans).ti.)
20. 18 not 19
21. eosinophilic esophagitis.mp. or exp eosinophilic esophagitis/
22. (eosinophil* and esophag*).mp.
23. (eosinophil* and oesophag*).mp.
Ma et al. Outcomes in EoE RCTs

24. or/21-23
25. 20 and 24

Cochrane Central Register of Controlled Trials
1. eosinophilic esophagitis
2. eosinophilic oesophagitis
3. or/1-2
Ma et al. Outcomes in EoE RCTs

Supplemental Figure 1. PRISMA diagram
Supplemental Table 1. Risk of bias assessment

<table>
<thead>
<tr>
<th>Study</th>
<th>Random sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding of participants and personnel</th>
<th>Blinding of outcome assessment</th>
<th>Incomplete outcome data</th>
<th>Selective reporting</th>
<th>Other bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konikoff 2006</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Dohil 2010</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>High risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Straumann 2010a</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Straumann 2010b</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Straumann 2011</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Alexander 2012</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Spergel 2012</td>
<td>Low risk</td>
</tr>
<tr>
<td>Straumann 2013</td>
<td>Low risk</td>
</tr>
<tr>
<td>Butz 2014</td>
<td>Low risk</td>
</tr>
<tr>
<td>Clayton 2014</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Rothenberg 2014</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
</tr>
<tr>
<td>Gupta 2015</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>High risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Miehlke 2016</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>High risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Alexander 2017</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Bhardwaj 2017</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Dellon 2017</td>
<td>Low risk</td>
</tr>
</tbody>
</table>