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Abstract

Statistical descriptions of reaction times are central compo-
nents of quantitative attention models. It is often assumed
that total reaction time is comprised of various components,
e.g. sensory delays, decision making and motor execution con-
tributions. We use machine learning to decompose observed
total reaction times into sensorimotor and decision compo-
nents, and evaluate which model assumptions maximize ap-
proximate Bayesian model evidence (free energy or evidence
lower bound). We find that an inverse Gaussian decision time
distribution combined with a very narrow Gaussian sensorimo-
tor distribution can best explain human reaction time data. We
also model outliers explicitly by a uniform background dis-
tribution. We find that the model assigns a small fraction of
datapoints to this outlier distribution.

Keywords: Decision component; Expectation maximization;
Free energy; Inverse Gaussian; Mixture models; Reaction
time; Sensorimotor component; Visual attention.

Introduction
Reaction time has been widely used as a measure of cognitive
processes, e.g. in attention research. It is believed that total
observed reaction time (RT) is a sum of different time compo-
nents. As Luce (1986) mentioned at least five processes may
contribute to a total reaction time: physical input transduction
into neural spikes, spike transmission to the brain, signal pro-
cessing and motor programming for the target muscle group
(we call this part decision time), signal transmission to the
muscles and eventually muscle contraction. As it is hard to
observe all these components separately, we stack them all –
except decision time – and call them the sensorimotor com-
ponent of reaction time. This component is commonly called
residual latency (Luce, 1986) or non-decision time (Ratcliff
& Tuerlinckx, 2002). During the last decades, there have been
many proposals and investigations on how these components
combine to yield the final RT distributions.

In some older research (Christie & Luce, 1956; Hohle,
1965), it is reported that RT is a sum of a Gaussian and a ex-
ponentially distributed component, where one represents the
decision time and another represents the motor component.
Consequently, the Ex-Gaussian distribution, which results
from convolving these two distributions has been used for
modelling RT distributions and cognitive processes (Ratcliff,
1978; Hohle, 1965; Fitousi, 2020; Meibodi, Abbasi, Schubö,
& Endres, 2021b) and also psychological disorders (Hwang-
Gu et al., 2019). Meibodi et al. (2021b) proposed a model

of visual attention which predicts parameters of RT distri-
butions. In that study, an analysis of RTs showed that the
ex-Gaussian is a better descriptor than other commonly used
distributions, followed by an inverse Gaussian (Meibodi, Ab-
basi, Schubö, & Endres, 2021a). The authors of that study
modelled total RTs without considering a decomposition into
separate components, we would like to remedy this shortcom-
ing here. However, the ex-Gaussian has several features that
are theoretically not convincing (Schwarz, 2001): first, the
Gaussian component has been linked to either the decision or
the motor process. Since both processes must take a positive
amount of time, a (wide) Gaussian is not a plausible distribu-
tion. Second, there is no compelling connection between the
distribution parameters and theoretical accounts of the ori-
gin of reaction times. Third, the hazard function of the ex-
Gaussian is increasing although the best descriptive RT dis-
tributions have been reported to have peaked hazard functions
(Maddox, Ashby, & Gottlob, 1998).

To address these issues, Schwarz (2001) proposed the ex-
Wald distribution for RTs, which is a convolution of an in-
verse Gaussian with an exponential. Here, the inverse Gaus-
sian describes the decision time, whereas the non-decision
component is distributed exponentially (Palmer, Horowitz,
Torralba, & Wolfe, 2011). One appealing feature of the
ex-Wald is the inverse Gaussian component which models
the first passage time distribution of a random walk (Folks
& Chhikara, 1978). Such random walks describe quasi-
Bayesian sensory evidence accumulation, or drift-diffusion
processes. On the other hand, the claim that non-decision
time has an exponential distribution seems unjustified. Al-
though the exponential component is commonly interpreted
as the effect of a residual process, there are some controver-
sial opinions mentioning that the exponential effect on RT
distribution just reflects the search process in visual search
tasks (Horowitz & Wolfe, 2003; Palmer et al., 2011).

In (Ratcliff & Tuerlinckx, 2002)’s drift diffusion model
(DDM), the parameter Ter denotes the time that is spent on
processes other than the decision making – such as stim-
ulus encoding, response output and memory access. The
parameter has variability to correct the model fits on dif-
ferent data sets under variety of conditions. In this model
non-decision time is uniformly distributed (Ratcliff & Tuer-
linckx, 2002; Hawkins, Forstmann, Wagenmakers, Ratcliff,
& Brown, 2015) although it is mentioned that the true dis-
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tribution might be normal (Wiecki, Sofer, & Frank, 2013) or
skewed. Ratcliff claimed that the shape of the reaction time
distribution is primarily determined by the shape of the de-
cision component and the precise shape of the non-decision
distribution has a small effect on that as the former has a
very large standard deviation (Ratcliff & Tuerlinckx, 2002;
Ratcliff & Smith, 2004; Ratcliff, 2006; Ratcliff & McK-
oon, 2008; Ratcliff & Childers, 2015). One drawback of that
model is that the non-decision component happens before and
after decision part (Ratcliff & McKoon, 2008) although the
result of some studies indicated that these component are in-
tertwined (Evans & Wagenmakers, 2020).

The mean of the non-decision time reported in DDM is
about 300 ms with a standard deviation in range 3 to 10
(Ratcliff & Tuerlinckx, 2002). The reported range of non-
decision time might differ in other studies based on the ex-
periment, apparatus or participants’ attributes. Using sim-
ple reaction time (SRT) experiments, previous research has
tried to determine how response delay is influenced by fea-
tures such as: colour of stimuli (Amini Vishteh, Mirzajani, Ja-
farzadehpour, & Darvishpour, 2019), participants’ age (Jain,
Bansal, Kumar, & Singh, 2015; Woods, Wyma, Yund, Her-
ron, & Reed, 2015), gender (Dykiert, Der, Starr, & Deary,
2012; Jain et al., 2015), physical activities (Jain et al., 2015)
or computer hardware and software (Dodonova & Dodonov,
2013). In a typical SRT study, participants have to press a
key as soon as they see the stimulus on the screen (Ulrich &
Stapf, 1984). We therefore assume that a SRT contains only a
very short decision component and that it is dominated by the
sensory and motor processing times. Hence, a SRT approxi-
mates the part of a RT which we call the SM component. See
Table 1 for an overview of the reported results.

The importance of good RT distribution models is their ap-
plicability to statistical analysis and to the modelling of cog-
nitive psychological processes. Most psychologists are in-
terested in decision component of RT and look at the rest
of it (commonly called residual latency) as a nuisance vari-
able that should be subtracted from RT (Luce, 1986). How-
ever, in addition to decision component analysis, looking at
residual latency is also informative. For instance the result of
Pedersen, Frank, and Biele (2017) showed that longer RTs in
medicated ADHD participants arose because of a strong in-
crease in their non-decision (residual latency) time. Ratcliff,
Thapar, and McKoon (2001) found that in some tasks, slower
responses of older participants can also be the effect of longer
non-decision time.

In this paper we try to disentangle the components of RTs
and to recognize outlier responses using a machine learn-
ing approach derived from free energy minimization (Friston,
Kilner, & Harrison, 2006). We do this with the aim of mak-
ing attention models, e.g. the one presented by Meibodi et al.
(2021b) more interpretable in terms of the underlying psy-
chological processes. We investigate several proposals for
the distribution of the SM component: Gaussian, gamma and
Laplace. Our motivation for testing the Gaussian distribu-

tion is its popularity in previous research, e.g. Christie and
Luce (1956); Hohle (1965); Ratcliff and Tuerlinckx (2002)
as discussed above. The Laplace distribution has heavier tails
rather than the Gaussian and might therefore be less sensitive
to extreme SM variations. Both distributions are supported
on R and assign non-zero probability to negative SM compo-
nents, which is implausible. We therefore experimented with
the gamma distribution that has a positive support. Further-
more, since motor output is driven by neuronal spiking ac-
tivity, its timing would be determined by spike arrival at the
neuromuscular synapses. The gamma distribution has been
used before to model inter-spike intervals (Ostojic, 2011). In
the next section, we will describe the models, followed by a
short description of the database used for learning. We then
present model comparison results, which indicate that an in-
verse Gaussian decision time distribution combined with a
very narrow Gaussian sensorimotor distribution can best ex-
plain human reaction time data. We also model outliers ex-
plicitly by a uniform background distribution. We find that
the model assigns only a small fraction of datapoints to this
outlier distribution. Finally, we discuss the implications of
our findings.

Methods
We model an RTs as mixtures of two models (M = 0 and
M = 1) as shown in Figure 1. If M = 1 (the response model),
then an RT has two components, namely ‘decision’ and ‘sen-
sorimotor (SM)’. If M = 0, then the RT is assumed to be an
outlier which is drawn from a uniform distribution in range
(0, tmax), i.e. an outlier response has no relationship to the
task other than its occurrence before the trial’s end at tmax. In
this case, all we know about the response is that it may hap-
pen at any time point in [tmin, tmax], which is captured by the
uniform distribution. For M = 1, we assume that the decision
component can be viewed as the first passage time in a Wiener
diffusion process, which is a model of Bayesian evidence ac-
cumulation. Thus, the distribution of the decision component
is an inverse Gaussian (Folks & Chhikara, 1978; Schwarz,
2001). The SM component’s distribution precise shape has
no clear theoretical motivation, hence we try to determine it

Table 1: Mean and standard deviation (SD) of some SRT ex-
periments. The smallest and largest reported mean can be
seen in the table for each study. The reported means vary
based on between-group differences such as participants’
age/gender or stimuli features.

Study Mean ±SD (ms)
Amini Vishteh et al. (2019) 207.88 ±7.14

224.39 ±15.62
Jain et al. (2015) 217.13 ±12.60

256.36 ±20.34
Woods et al. (2015) 217.9 ±19.5

239.1 ±28.1
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𝑟𝑖
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(0.0, 𝜎)

Figure 1: Mixture model of inverse Gaussian and uniform
distributions. The blue and red boxes represent participants
and trials respectively. P is the number of participants and N
is the number of trials for each participant. Each trial’s re-
action time (ri) can follow one of the models (M=0 or M=1).
When M=0, ri is a sample of uniform distribution (0, tmax) and
tmax is maximum time window that participants had for each
trial. In that case, the assumption is that RT can not be decom-
posed into SM and decision components and it is considered
as an outlier. When M=1 then each ri has 2 main components
–decision component (rd

i ) and SM component (rs
i )– and also

noise (ηi) which is normally distributed. The assumption is
that (rs

i ) can be a sample from a distribution (X) with param-
eters a and b. Here, X is either Gaussian, gamma or Laplace
which we determine by model comparison.

by model comparison between a Gaussian, a Laplacian and
a Gamma distribution. Note that the Gaussian can only be a
suitable candidate if it is so narrow that the probability for a
negative RT is virtually zero.

We assume that there is one SM distribution per partici-
pant, as shown in Figure 1, Thus, each reaction time (ri) is a
sum of a decision component (rd

i ) , SM component (rs
i ) and

measurement noise (ηi)

ri = rs
i + rd

i +ηi

ηi ∼N (0.0,σ)
rs

i ∼ X(a,b)

rd
i ∼ IG(µ,λ)

(1)

where IG is inv-Gaussian (inverse Gaussian) distribution and
X is the SM distribution. We tested the model with gamma,
Gaussian and Laplace as the X distribution (see the models
comparison in result section). Normally distributed noise (ηi)
describes the random effects on the measurement process.

Since exact inference is intractable in this model, we are
instead maximizing a lower bound on the expected log likeli-
hood, or evidence lower bound (ELBO) (Bishop, 2006) a.k.a.

free energy (Friston, 2003). The ELBO of our model is

L =
∫

drs
i

∫
drd

i

1

∑
Mi=0

N

∑
i=1

[
Mi

[
log p(ri|rs

i ,r
d
i ,σ)+

− log
(
q(rd

i |θ̈d
i )/p(rd

i |θd)
)
− log

(
q(rs

i |θ̈s
i )/p(rs

i |θs)
)]

+(1−Mi) log p(ri)− log
(
q(Mi)/p(Mi)

)]
q(Mi)

(
q(rs

i |θ̈s
i ) q(rd

i |θ̈d
i )
)Mi

(2)

where N is the number of trials for each participant, M is the
model type, q is the variational posterior distribution and θ

includes inv-Gaussian parameters for each ri when Mi = 1. θs

and θd are prior parameters on the decision component (µ,λ)
and SM component (a,b) and θ̈s

i , θ̈d
i are posterior parameters

on the same components for each trial (i). When M = 0, the
RT can not be decomposed, which is modelled by the uniform
distribution p(ri) (see Figure 1).

Using the usual definition of the Kullback-Leibler diver-
gence (KL) between distributions q and p

KL(q(x)|p(x)) =
∫

dxq(x)
[

log(q(x)/p(x))
]

(3)

we can rewrite Eq 2 as

L =
N

∑
i=1

[
q(Mi = 1)

[
〈log p(ri|rs

i ,r
d
i ,σ)〉q(rs

i |θ̈s
i ) q(rd

i |θ̈d
i )

−KL(q(rs
i |θ̈s

i )|p(rs
i |θs))−KL(q(rd

i |θ̈d
i )|p(rd

i |θd))]

+q(Mi = 0) log p(ri)−KL(q(Mi)|p(Mi))

] (4)

where 〈p(ri|rs
i ,r

d
i ,σ)〉q(rs

i |θ̈s
i ) q(rd

i |θ̈d
i )

is the expectation of the
conditional probability with respect to q(rs

i |θ̈s
i ) and q(rd

i |θ̈d
i ).

See Appendix for the derivations of this term. We assume that
the variational posteriors are from the same family of distri-
butions as the respective prior.

We then optimize the bound with respect to q parame-
ters: θ̈d

i and θ̈s
i . These optimizations, which we carry out

in an alternating fashion, can be viewed as the E and M
steps of a variational expectation maximization (EM) algo-
rithm (Barber, 2012). In each E-step, for fixed parameters
(θ̈s

i , θ̈d
i ) we find the distribution q(M) which maximizes Eq 4

and in each M-step, we find θ̈d and θ̈s that maximize Eq 4
while q(M) is fixed. Additionally, we also update the prior
parameters at the end of each M-step. We did not choose to
equip the prior parameters with a hyperprior, because we ex-
pect them to be well determined by the data (N > 1000 trials
per participant). Figure 2 shows a flow chart of the optimiza-
tion steps. We implemented the model with Pytorch (1.10.1)
in Python (3.9.7) using the Adam optimizer. For more infor-
mation about learning rates and iteration steps, see the code
at: http://dx.doi.org/10.17192/fdr/88.
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E-step

Predicted parameters

( ሷ𝜃𝑠, ሷ𝜃𝑑, σ)

Parameter initialization
(𝜃𝑠 , 𝜃𝑑 , 𝜎)

M-step
Posterior updating

( ሷ𝜃𝑠, ሷ𝜃𝑑)

M-step
Prior updating

(𝜃𝑠 , 𝜃𝑑)

M-step
Posterior updating

( ሷ𝜃𝑠, ሷ𝜃𝑑)

σ updating  
(𝜎 ∶= 𝜎 − 1)

𝑖 < 𝐼𝑟1

𝑖 < 𝐼𝑟2 𝑖 < 𝐼𝑟3

𝑖 < 𝐼𝑟4

𝑖 > 𝐼𝑟4

Figure 2: Flowchart of the variational E-M algorithm used
for model optimization. θs, θd and σ are the parameters of
SM component, decision component and the standard devia-
tion of the noise, respectively (see Eq 4). Each blue box is
an optimization step and blue arrows indicate that the parts
are iterated to converge – with negative ELBO as the loss
functions. Ir is iteration rate and its value differs among op-
timization parts (Ir1 · · · Ir4). The whole green box is also iter-
ated to converge. Additionally, after each σ updating (to seek
the smallest possible standard deviation for the noise func-
tion) the whole green box is iterated again. θ̈s, θ̈d and σ are
predicted posterior parameters for SM component, decision
component and standard deviation of the noise function, re-
spectively. In the first M-step (the one out of the green box)
we assume that all data points belong to M = 1 (the response
model), to obtain initial parameter estimates, since we expect
a only a small fraction of outliers.

Database
We optimized the model on a RT database of a visual attention
experiment from (Feldmann-Wüstefeld, Uengoer, & Schubö,
2015) (the first experiment out of four) which includes two
different types of intermixed tasks. Participants were pre-
sented with eight elements on an imaginary circle around the
fixation point. In one task, they had to responded to either the
shape or the colour singleton based on their group member-
ship. In the other task , both groups of participants responded
to the orientation of a line embedded in the shape singleton
while they had to ignore a color distractor in half of the tri-
als. The target of the experiment was investigating the role
of selection history (Awh, Belopolsky, & Theeuwes, 2012)
on selective visual attention. The participants (11 males and
17 females) were in 18-32 age range and all but two were
right handed. Each participant responded to 1024 trials. For
more information about the experiment, see the main ref-
erence (Feldmann-Wüstefeld et al., 2015). Meibodi et al.
(2021b) proposed a model for these data which assumes an
ex-Gaussian RT distribution, we aim to replace this model
assumption by a more theoretically motivated one.

Results and discussion
As mentioned in previous section, we tested three versions of
the model with different X distributions (Gaussian, gamma
or Laplace) (see Eq 1 and Figure 1). We selected the prior

on these distributions’ parameters in a way that matches the
reported means and standard deviations in other SRT stud-
ies(see Table 1). We chose the prior on inv-Gaussian pa-
rameters based on a preliminary analysis of the data which
assumed that the SM component is a constant. More specifi-
cally, priors parameter values are

rd ∼ IG(µ = 500.0,λ = 10000.0)
η∼N (0.0,σ = 12.0)
rs ∼ Laplace(m = 200.0, std = 9.8) or

Gaussian(m = 200.0, std = 10.0) or

Gamma(m = 200.0, std = 10.0).

(5)

The model was then fitted to the data of each of the 28 partic-
ipants. The number of participants is within the range typ-
ically used in mixed model repeated measurement designs
(Feldmann-Wüstefeld et al., 2015). For each participant the
final free energy is computed (the results are plotted in Fig-
ure 3a for all models) and the sum over all participants is used
for model comparison (see Table 2). Smaller free energy val-
ues indicate better fits (higher ELBO). Thus, the best model
is the one with Gaussian SM distribution. The results of the
Laplace model are very close to the Gaussian. The mean
of outliers over all participants is also shown in Table 2. The
models label a very similar proportion of trials as outliers, in-
dependent of the choice of SM distribution, as can be seen in
Figure 3b. This closeness might be due to having similar de-
cision components in all versions of the model. The decision
component (inv-Gaussian) has a much bigger variance than
the narrow SM components– and it is therefore driving the
outlier determination. As explained in the methods section,
outliers are RTs which can not be separated to decision and
SM components by the model. So they are sampled from a
uniform distribution (M=0). Thus, an outlier is either a very
fast or a very slow response. For two example participants,
Figure 4 illustrates that which part of the data is considered
as an outlier by our model. The criterion in these plots is

Table 2: Model comparison results for different SM distribu-
tions. ‘FE’ is free energy (sum over all participants for each
model), smaller values indicate a better RT database fit. ‘Out-
liers’ shows the mean fraction of outliers over all participants.
For each participant the amount of outliers is the sum over the
outlier posterior distribution (q(M = 0)). ‘θs’ includes the up-
dated prior parameters (mean and standard deviation) of the
SM distribution which are optimized by the model. The re-
ported values are the grand means of the means and standard
deviations over all participants.

SM distribution FE Outliers θs (mean, std)
Gaussian 187387.66 1.52% 199.58, 0.37
Laplace 187685.74 1.53% 199.59, 0.40
Gamma 191684.43 1.68% 199.50, 0.52
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Figure 3: Results per participants. For 28 participants see
the free energy values (a) and the percentage of outliers (b)
resulting from the optimization of three different SM distri-
bution models.

qi(M = 0)> 0.6 which means ri is labelled as an outlier if it
belongs to M = 0 with a probability of more than 0.6.

For each trial, the model predicts posterior parameters on
both decision and SM components through minimizing free
energy and afterwards priors are updated (these steps are
shown in Figure 2). The final prior parameters of SM com-
ponent (θs) for each version of the model can also be seen in
Table 2. These predicted parameters are close in mean and all
are very narrow distributions (see Figure 5).

Subtracting both the expected SM component (rs
i ) and the

noise component (ηi) from the RTs (rd
i = ri − rs

i − ηi), we
obtain the expected decision component. The inverse Gaus-
sian distribution fits better on this component rather than on
the total RT data, indicating that the Wiener process assump-
tion might be justified. However, this assumption should be
investigated more in future studies. For an illustration, see
Figure 6: here, the inverse-Gaussian fits to the total RT data
(orange histograms) are worse than the fits to the expected
decision components only (in green) for two participants (6th
and 18th). These participants have the smallest and the largest
numbers of outliers (see and compare their outliers in Fig-
ure 3 b). The plots (Figure 6) show that the model works well
in either case. In addition, the best distribution for the mea-
surement noise is N (0.0,2.0) which is obtained by updating
σ at the end of the optimization iterations as shown in Fig-
ure 2. Finally, for each participant is possible to reverse the
process and reconstruct the RTs from the posteriors. In this
case, the mean of reconstruction error for each participant is
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Figure 4: Outliers. Histograms of RTs with predicted outliers
(marked in red) by the model for the 18th and the 3rd partici-
pant. These participants have relatively: the highest numbers
of outliers (a) and an average numbers of outliers –with very
short and long RTs (b).

less than 8.5 ms.

Conclusion
The role and importance of different RT components in shap-
ing the total RT distribution has long been a matter of ques-
tion in cognitive modelling. Quantitative models, such as
the ones proposed in this paper, can be helpful in comparing
the predictions of different theoretical accounts of RTs objec-
tively and disentangling the components. Moreover, differ-
ent lines of research might be interested in different compo-
nents such as the effect of brain disorders on decision mak-
ing (Herz, Bogacz, & Brown, 2016) versus motor responses
(Low, Miller, & Vierck, 2002).

The purpose of the modelling reported in this paper was to
investigate if machine learning methods can help to disentan-
gle a RT distribution into two main components of decision
time and sensorimotor time. The motivation for our research
was a previous study by Meibodi et al. (2021b) which pre-
sented an algorithmic model of selection history effects with-
out a solid theoretical foundation for the chosen RT distri-
bution. We are now in a position to remedy this issue. We
expect that our proposed model will be useful whenever RT
components need to be extracted in cognitive RT modeling.

The results showed that the final predicted SM distributions
are very narrow which is comparable with the assumption in
Ratcliff diffusion model: non-decision component might be
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Figure 5: Posterior sensorimotor (SM) components in three
versions of the model for a random participant. In these mod-
els, it was assumed that SM distributions might be Gaussian,
gamma or Laplace. The results show very narrow distribu-
tions under all assumptions. Gaussian fits best, see also table
2.

sampled from any distribution and the shape of it can not in-
fluence the final RT distribution as the decision part has a
very large standard deviation and the other one has a small
one (Ratcliff & Childers, 2015). The predicted mean of this
distribution is in range of 199.58± 0.37 by the best fitted
model. The best fitted model is the version which assumes
the SM component is Gaussian. The predicted mean has a
close range to some simple reaction time experiments results
(see Table 1).

The model can successfully label an acceptable number of
extreme-valued RTs as outliers. Importantly, in our approach
this labelling is driven by the model assumptions and the la-
bels will therefore be internally consistent with the model’s
predictions, unlike more traditional methods for outlier labels
based e.g. on standard deviation measurements. This prop-
erty might be useful for the principled detection of inattentive
participants, e.g. in ADHD or autism studies, where a larger
proportion of outliers is to be expected.
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Figure 6: Inverse Gaussian distributions for the 6th partici-
pant (a) and the 18th participant (b). The orange histograms
contain the total RTs (r), red curves fitted by maximizing log-
likelihood. The green histograms show the expected deci-
sion components (rd) after subtracting the SM components
(rs) and noises (η) and also discarding the outliers (q(M =
0) > 0.6). Parameters of the green densities are updated pri-
ors which are predicted by the model for each participant.

above equation can be rearranged
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