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Abstract 

Theories that span tasks and developmental periods require 
explaining how a single cognitive system can flexibly adapt 
across contexts yet show stable age-related improvement. Here 
we present a computational model that embodies a unified the-
ory of visuospatial cognitive development. We use this model 
to bridge between previously disconnected domains, as diverse 
as infant habituation and visual working memory capacity in 
adults. We illustrate how the same real-time and developmental 
processes can account for behavior across tasks and age groups. 
We conclude with a discussion of the implications of a unified 
theory for understanding cognition and development more 
broadly, with an eye toward early intervention. 

Keywords: visual cognition; working memory; development; 
infancy; neural field model 

A Unified Theory of Visuospatial Cognition  

A central challenge in cognitive science is to create theories 

that generalize across tasks and developmental periods. 

Computational models provide a concrete tool to confront 

this challenge. We illustrate this using a dynamic neural field 

(DNF) model of visuospatial cognition. Our goal is to 

explicitly connect the processes that operate across the range 

of behavioral tasks used from infancy through adulthood to 

measure different aspects of visuospatial cognition. By 

demonstrating that such disparate tasks and phenomena arise 

through common underlying processes, we can construct a 

broader theory to contrast with prior theories that have been 

proposed to account for only a single task and age group.  

The unified theory of visuospatial working memory 

development we espouse is implemented in a single model 

architecture with a single developmental mechanism to 

explain change from infancy to adulthood. Here we show 

how this model can bridge between previously disconnected 

domains and developmental periods. We begin by describing 

the basic dynamics of DNFs. Next, we present the specific 

architecture we have applied across tasks and age groups. We 

then illustrate how this model can be used to account for 

visual and spatial working memory processes across tasks 

and development. Finally, we close by discussing the impli-

cations of our unified theory for understanding cognitive 

development and interventions that strengthen cognition in 

at-risk or developmentally delayed populations.  

Dynamic Neural Fields  

DNFs belong to a larger class of bi-stable attractor networks 

(Amari, 1977; Wilson & Cowan, 1972) and simulate neural 

population dynamics to represent a continuous dimension, 

such as space or color (Schöner, Spencer, & the DFT 

Research Group, 2015). DNFs have a functional topographic 

organization such that neighboring nodes within a field 

representing similar features (e.g., shades of blue in color, 

neighboring locations in space). In DNFs, a stimulus input 

excites selectively-tuned neurons which then interact through 

local excitatory and lateral inhibitory connections to create a 

localized “peak” of activation (illustrated in Fig.1 below). 

A peak in a DNF represents a real-time neuronal estimate 

of the stimulus. With relatively weak local excitation and 

lateral inhibition, peaks are only present when supported by 

input, that is, when the stimulus is present in the environment 

– we refer to this as an encoding state. With stronger 

connectivity, peaks can persist after a stimulus disappears 

(i.e., input is removed), which we refer to as a working 

memory state. Peaks leave excitatory memory traces, a 

simple Hebbian-type history of activation, that facilitate the 

re-formation of peaks at similar values (e.g., color, location) 

at future points in time. For example, when presented with a 

blue stimulus, the model will produce a peak that estimates 

the specific hue. The peak will leave a memory trace that 

facilitates the formation of a peak for the color blue at a future 

point in time. We will show that this feature of DNFs has 

implications for behavior in working memory tasks.  

Multiple DNFs can be coupled together to create more 

complex neural architectures that simulate neurocognitive 

processes of encoding, maintenance, comparison, and 

recognition (described further below). To use such models to 

understand behavior, these neural architectures can be 

coupled to behavioral systems to generate the particular 

behavioral dynamics of interest – below we describe systems 

to simulate looking behavior, same/different judgments, or 

pointing/recall responses. In the next section, we describe a 

three-layer architecture that we have used to simulate 

performance in visuospatial working memory tasks from 

infancy to adulthood. 

A Three-Layer Dynamic Neural Field Model 

Figure 1 shows the three-layer model (reviewed by Johnson 

& Simmering, 2015; referred to here as the “dynamic model” 

for simplicity) used for the simulations we describe. This 

instantiation of the model consists of a fixation and visual-

cognitive system. The fixation system consists of a collection 

of nodes that represent looking to left, right, center, and away 
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locations in a virtual world. The nodes compete in a winner-

take-all fashion. The winner (left node in Fig.1) opens a 

perceptual gate and the stimulus at that location (green and 

red) is input to the visual-cognitive system (see green arrow 

from virtual world to visual-cognitive system). The visual-

cognitive system consists of a perceptual field (PF), which 

receives input from the fixation system representing the color 

of the stimulus. This input creates peaks representing the 

stimulus; connectivity in this field is set to the encoding state 

described above. Activation in PF supports continued 

fixation through reciprocal connectivity (see green arrow 

from PF to virtual world) and also feeds into a working 

memory (WM) field (see green arrow from PF to WM). 

These fields interact through a shared field of inhibitory 

nodes (Inhib). When WM activity for an item is strong, WM 

sends strong activity to Inhib (see red arrow from WM to 

Inhib). This, in turn, suppresses activity for that item in PF 

(see red arrow from Inhib to WM). In addition to this three-

layer (PF-Inhib-WM) architecture, the dynamic model 

includes memory trace (MT) layers associated with PF and 

WM that accumulate activation over a longer time scale (for 

simplicity, only MTWM is shown in Fig.1), serving the 

Hebbian function described above.  

Figure 1 illustrates how the dynamic model simulates 

encoding, maintenance, and comparison of items in WM. A 

critical insight gained from applying this model across tasks 

and development is how the same real-time processes 

underlying these cognitive functions can produce a range of 

seemingly unrelated behavioral signatures (e.g., habituation, 

perseveration, novelty preferences, capacity limits, 

dimensional attention), as described below. At the moment 

represented in Figure 1, WM is maintaining the colors light 

green and orange, which has inhibited encoding in PF (see 

inhibitory troughs at sites tuned to light green and orange), 

which released fixation from the right location (see position 

in virtual world). This inhibition of encoding by WM is the 

mechanism of recognition in the model. After fixation was 

released from the right location in the simulation shown in 

Figure 1, the model fixated the left location and is encoding 

a dark green and red stimulus there. This is the mechanism of 

novelty detection in the model – fixating and encoding items 

not held in WM. Notice that the model has MTs associated 

with the light green and orange items. This will enable the 

model to form robust WM peaks for those colors in the future, 

which can support recognition of those items as familiar. 

This simulation shows the dynamic model equipped with a 

fixation system that looks at multiple locations, which 

simulates looking behavior (Perone, Simmering, & Spencer, 

2011). To simulate the behaviors required by different 

visuospatial working memory tasks, the model can be used to 

generate continuous recall responses (e.g., pointing to a 

remembered location or color) based on peak positions (e.g., 

Spencer, Smith, & Thelen, 2001) or equipped with a 

same/different response system (Johnson, Spencer, Luck, & 

Schöner, 2009). Critically, however, each of these different 

behavioral responses is driven by the same underlying 

cognitive processes embodied in the three-layer architecture. 

In the following sections, we synthesize recent applications 

of the dynamic model to provide a unified explanation of 

visuospatial cognitive processes across previously 

disconnected domains and development: habituation and 

visual recognition during infancy, and VWM capacity limits 

from infancy to early childhood and adulthood.  

Common Processes Underlying Visual 

Working Memory from Infancy to Adulthood 

In this section, we describe how this model can account for 

behavior and development in three domains, highlighting that 

a single developmental mechanism produces change in all 

three domains. We begin by describing how the model links 

infant looking at a single location to WM formation in the 

habituation paradigm. Next, we show how the same model 

looks to multiple location in a visual recognition context, the 

visual paired comparison task. After that, we show how the 

same model can once again be adapted to explain visual 

working memory capacity limits in children and adults.  

Figure 1. Three-layer dynamic neural field architecture, 

coupled to a fixation system viewing colors in a virtual 

world. Green versus red arrows indicate excitatory versus 

inhibitory connections; horizontal dashed lines indicate the 

zero threshold in each field. See text for further description. 
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Habituation 

Infant looking paradigms form the foundation of our under-

standing of the origins of human cognition. Habituation of 

looking behavior has been used for half a century to probe 

perceptual, memory, and cognitive processes during infancy. 

In a typical habituation task, infants are presented with a 

single stimulus (e.g., blue circle). Initially, they exhibit high 

levels of looking which decreases with repeated presentation. 

They typically renew looking when presented with a novel 

stimulus (e.g., red star). Prior theories have not considered 

looking behavior a central part of the learning process 

(Cohen, 1972) but rather as an output. However, there is 

evidence that how infants distribute their looking through 

time structures what they learn (Jankowski, Rose, & 

Feldman, 2001). To explore the interplay between looking 

and learning, Perone and Spencer (2013) used the dynamic 

model with a simple fixation system that stochastically oscil-

lated between looking at a single stimulus and looking away. 

As described above, when the fixation node was looking to 

the stimulus, it opened a perceptual gate that sent input PF. 

Strong activation in PF supported continued looking and led 

to the formation of memory representations in WM and MT. 

When the WM representation grew robust across 

presentations, encoding in PF was inhibited (as described 

above), and looking was released. Thus, the dynamic model 

showed habituation in looking time, just as infants do. 

Perone and Spencer (2013) tested whether the dynamic 

model could account for the developmental changes infants 

show in habituation tasks: faster habituation rates and the 

ability to make finer-grained distinctions with age. To 

simulate development in the visual-cognitive system of the 

dynamic model, they implemented the Spatial Precision 

Hypothesis (SPH). The SPH posits that the strength of 

excitatory and inhibitory connectivity within and between 

layers increases over development (see Simmering & 

Schutte, 2015, for review). Implementing the SPH in the 

context of the habituation task led to faster, more stable WM 

formation and more robust novelty detection. This led to 

quick habituation and improved discrimination with age, just 

as infants show. The dynamic model’s performance 

highlighted the link between visual exploration and learning. 

For example, spontaneous long looks helped WM form, 

which led to fast habituation. Conversely, spontaneous short 

looks led to slowed memory formation. This provides an 

explanation for how individual differences in visual 

exploration can structure learning. This highlights the 

importance of simulating real-time behavior in a model to 

understand how the cognitive system functions and develops.  

Visual Paired Comparison 

The visual paired comparison (VPC) paradigm is commonly 

used to study visual recognition and categorization processes 

during infancy. VPC differs from the habituation paradigm in 

a critical way: it introduces competition. Infants are presented 

with pairs of stimuli and can freely look back and forth 

between them. This context yields a rich set of looking 

measures, including shift rate (gaze switches per second of 

looking), look duration (mean duration of each look), peak 

look (longest look), and preferences (proportion of looking to 

one item greater than chance). Infants’ recognition memory 

is assessed via pairing a previously seen, familiar item with a 

novel item. A preference for the novel item is evidence of 

both (1) recognition of the familiar item and (2) 

discrimination between the familiar and novel items (as 

illustrated in Fig.1). With age, infants exhibit faster shift 

rates, shorter look durations, shorter peak looks, more fine-

grained discrimination, and stronger novelty preferences. 

These looking behaviors develop more slowly in at-risk 

populations, such as preterm infants (e.g., Rose, Feldman, & 

Jankowski, 2001).  

The dynamic model can adapted to VPC by equipping it 

with a fixation system that looks at left and right locations 

(see Fig.1), compared to the single item/fixation location 

used for habituation. The dynamics of the visual-cognitive 

system are otherwise identical to the model simulations of 

habituation from Perone and Spencer (2013). Perone and 

Spencer (2014) asked whether this same model and 

developmental mechanism could account for the range of 

behavioral changes infants show over development in VPC. 

They probed this by testing infants’ looking behavior and 

discrimination abilities between 5 and 10 months of age, then 

simulating the paradigm in the dynamic model. They found 

that infants exhibited faster shift rates, shorter look durations, 

and shorter peak looks with age. They also found that infants 

were able to make discriminations along a continuous 

metrically organized dimension by 7 months of age. The 

model exhibited the same behavioral pattern over 

development for precisely the same reasons as it did in the 

habituation paradigm: faster, more robust memory formation.  

Perone and Spencer (2014) also analyzed individual differ-

ences. In particular, individual differences in looking during 

the learning phase of VPC predicted their discrimination 

abilities during the testing phase. This pattern was found in 

the dynamic model’s performance as well. But where did 

these individual differences come from? There were no 

parameter changes to simulate “individuals” in the model; 

rather, the individual differences in patterns of performance 

were emergent. The structure of looking behavior that builds 

memory representations and supports discrimination in the 

dynamic model emerged autonomously. This parallels the 

insight gained from the simulations of habituation: infants’ 

exploratory behavior in the task influenced the formation of 

memory, which in turn shaped their subsequent looking 

behavior. Although the processes at work in the habituation 

and VPC are generally considered similar, what infants 

remember in each paradigm is different (Oakes & Ribar, 

2005). This is the first theory to formally account for how the 

same learning process unfolds in both contexts.  

Capacity Limits over Development 

One of the hallmarks of WM is its limited capacity. Visual 

working memory (VWM ) in particular is limited to only 

three or four items in adults (Luck, 2008). The majority of 
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work characterizing VWM capacity limits have focused on 

children and adults, with the change detection task being a 

common approach, shown in Figure 2A. In this task, a small 

number of simple items (e.g., colored squares) is shown 

briefly, followed by a brief blank delay, then a test array in 

which either all of the items remained the same or one has 

changed. Capacity estimates from this task (using a formula 

proposed by Pashler, 1988) have shown a gradual increase 

from early childhood through adolescence (Simmering, 

2016; Simmering & Perone, 2013). Studies with infants, 

however, present seemingly contradictory results, with 

estimates of capacity reaching adult-like levels within the 

first year of life (e.g., Oakes, Ross-Sheehy, & Luck, 2006; 

Ross-Sheehy, Oakes, & Luck, 2003). One way to address this 

apparent discrepancy across tasks and age groups is through 

the dynamic model framework presented here. 

The task used to estimate capacity during infancy, shown 

in Figure 2B, is a variant of VPC called the change preference 

paradigm. Infants are presented with the same number of 

colored squares is presented on each of two displays. The 

squares briefly appear and disappear repeatedly throughout 

each trial; across these presentations, the colors in the “no-

change” display remain the same; on the other “change” 

display, one color changes following each blank delay. 

Infants’ fixation is tabulated over the course of the trial, and 

compared to chance (i.e., equal looking to both displays). 

Capacity is estimated from the highest set size (i.e., number 

of colors per display) at which infants show a reliable 

preference for the “change” display. The rationale behind this 

interpretation is that if infants can remember the colors within 

a display, the “change” display will appear novel and 

therefore support a looking preference. Ross-Sheehy et al. 

(2003) estimated capacity to be only one item at 6 months, 

but three to four items at 10 months. Oakes et al. (2006) then 

showed that the capacity increase from one to three items 

occurred between 6 and 7 months of age.  

How can the change preference task yield a VWM capacity 

of 3-4 items at 10 months but the change preference task only 

yield a capacity of 1-2 items at 3 years? Perone et al. (2011) 

situated the dynamic model in the change preference 

paradigm and showed that the SPH could account for the age-

related changes in capacity estimates during infancy. One 

intriguing finding from these simulations was that a robust 

preference in the model did not depend on holding all of the 

items in memory: that is, a preference for set size three did 

not necessarily reflect that three items could be held in WM. 

Perhaps this means that the items required to be remembered 

to yield different estimates differs across tasks. Simmering 

(2016) probed this possibility by situating the dynamic model 

in both the change preference and change detection task. In 

order for the dynamic model to simulate performance in the 

change detection task, it must be equipped to give the “same” 

or “different” responses required by the task. This type of 

response system can be implemented by building from the 

mechanisms of recognition and familiarity inherent in the 

model’s visual-cognitive system (see Fig.1): peaks in WM 

indicate familiar items whereas peaks in PF indicate novel 

items. Thus, a simple system in which activation from WM 

projects to a “same” decision node, and activation from PF 

projects to a “different” decision node, can use these signals 

to general a discrete response on each trial (see Johnson & 

Simmering, 2015, for further discussion). 

Model simulations revealed that the two tasks used to 

estimate capacity showed different relationships between the 

underlying memory representations and the behavioral 

measures used to estimate it (Simmering, 2016). In particular, 

while simulations of the infant task suggested that behavioral 

estimates may over-estimate the number of items held in 

memory (Perone et al., 2011), simulations of adults’ perfor-

mance in change detection indicated it under-estimated the 

number of items held in memory (Johnson, Simmering, & 

Buss, 2014). Simmering (2016) bridged these results from 

infancy and adulthood by testing young children in both types 

of capacity tasks, then directly comparing performance 

across tasks and simulating results within a unified model. 

Simulations showed that developmental changes in both 

tasks could be accounted for within the same model through 

strengthening connectivity. Furthermore, although the tasks 

yielded different estimates of capacity between 3 and 5 years 

of age – at least six items in the looking task versus only two 

to three items in the change detection task – the common 

underlying processes were evident in correlations across 

tasks. Motivated by the common processes that support the 

detection of novelty across the two tasks in the model, 

Simmering (2016) found that children’s preference scores in 

the looking task were significantly correlated with their hit 

rates (i.e., proportion correct on change trials) in change 

detection. This relationship across tasks was not evident from 

considering only the capacity estimates from each task, but 

rather depended on a systematic understanding of how 

cognition and behavior relate. 

Spatial Cognition and Development 

The preceding sections showcased the use of the same 

model and developmental mechanism to adapt across 

contexts and development for visual (featural) memory 

processes. In this section, we illustrate that the same model 

Figure 2. Sample trials from two tasks used to 

estimate VWM capacity: (A) change detection used 

with children and adults and (B) change-preference 

used with infants. 
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can be adapted to account for performance in four spatial 

cognition tasks– (1) perseverative reaching in the Piagetian 

A-not-B task, (2) A-not-B-type biases in a sandbox task, (3) 

reference-related biases in spatial recall and (4) similar biases 

in position discrimination. Moreover, we show that 

developmental change across all of these domains was 

explained with the SPH.  

A-not-B Tasks 

Beginning with the A-not-B task (cf. Thelen, Schöner, 

Scheier, & Smith, 2001), weaker connectivity to simulate 

early infancy (8-10 months) led to perseverative reaching 

because the peak representing the second (B) location was 

not strong enough to overcome the history of reaches at the 

first location (A). With stronger connectivity to capture 

development, this peak could be maintained accurately 

through the delay to support accurate reaching as seen in 

older infants (10-12 months).A similar interaction between 

memory for the current target and prior reaches can be seen 

in older children’s performance in a sandbox version of the 

A-not-B task (e.g., Schutte, Spencer, & Schöner, 2003; 

Spencer, Smith, & Thelen, 2001). Children between the ages 

of 2 and 6 years show recall responses that are biased toward 

previously-remembered locations, with a developmental 

change in the spatial spread of this influence – younger 

children’s performance is biased over larger separations than 

older children’s (Schutte et al., 2003). This metric change in 

the influence of reaching history in the task has been 

simulated first through changes in the spread of activation 

within the three-layer architecture (Schutte et al., 2003) and 

later through changes in only the strength of connectivity 

(Simmering et al., 2008; see Simmering & Schutte, 2015, for 

further discussion). By showing that the SPH can account for 

changes in infants’ performance in the canonical A-not-B 

task as well as the metric changes during early childhood, this 

model architecture brought together previously disconnected 

age groups and tasks into a unified framework. 

Spatial Recall & Discrimination 

Young children’s performance in spatial recall tasks also 

shows influences of the spatial structure of the space, in 

addition to prior history of reaches. Specifically, young 

children recall locations as closer to the midline symmetry 

axis of the task space, whereas older children and adults recall 

locations further from midline and the edges of the task space 

(see Spencer, Simmering, Schutte, & Schöner, 2007, for re-

view). These effects can be simulated in the same three-layer 

architecture through the coordination between perceptual and 

memory processes in the sandbox or “spaceship” tasks. As 

connectivity strengthens over development, the representa-

tion of information in both perception and memory lead to 

the transition in bias (Schutte & Spencer, 2009, 2010). These 

processes operate continuously through time, and can be 

detected even in the brief delay of position discrimination 

tasks, linking together previously disconnected areas of 

research (Simmering & Spencer, 2008).  

Implications and Future Directions 

We presented a unified theory of working memory 

development that spans an impressive number of domains 

and periods of development. Importantly, this was only 

possible by using a concrete tool – a computational model – 

to tackle the difficult challenge of explaining cognition across 

domains and development. There are a number of 

implications of this work. First, our theory indicates that 

cognitive processes are not domain specific. Instead, the 

same general visual-cognitive system can account for 

multiple neurocognitive processes by organizing itself 

differently in different contexts with different behavioral 

demands. These include infant habituation (looking), visual 

working memory capacity (same/different judgments), and 

spatial recall (position estimation). Second, our theory 

indicates that the developmental mechanisms that drive 

change across domains are not unique. We showed that the 

SPH could account for changes in performance across 

multiple domains and radically different periods of develop-

ment. Last, our account raises the intriguing possibility that 

we can target basic visual-cognitive processes to strengthen 

early in development, which may have an impact across 

many domains and over a long period of time. 

One long-term goal of employing such a computational 

framework is to make further connections across age groups 

and domains, and to provide a mechanistic account of how 

behavior emerges in specific task contexts. Such examples 

can already be found in the domains of executive function 

(e.g., Buss & Spencer, 2014; Perone, Molitar, Buss, Spencer, 

& Samuelson, 2015) and word learning (e.g., Samuelson, 

Schutte, & Horst, 2009; Samuelson, Smith, Perry, & Spencer, 

2011). By connecting the same real-time processes of 

encoding, maintaining, and comparing visual inputs with the 

longer time-scale of learning in contexts that connect to 

verbal labels, we can test how far relatively simple cognitive 

mechanisms can go toward explaining complex behaviors 

(cf. Smith, Jones, & Landau, 1996).  

Acknowledgments 

Both authors contributed equally to this work. Thanks to 

Aaron T. Buss, Christian Faubel, Jeffrey S. Johnson, John 

Lipinski, Yulia Sandamirskaya, Sebastian Schneegans, 

Gregor Schöner, Anne R. Schutte, and John P. Spencer for 

helpful discussion and support during the development of this 

line of research. 

References  

Amari, S. (1977). Dynamics of pattern formation in lateral-

inhibition type neural fields. Biological Cybernetics, 27, 

77–87. 

Buss, A. T., & Spencer, J. P. (2014). The emergent executive: 

A dynamic field theory of the development of executive 

function. Monographs of the Society for Research in Child 

Development, 79, 1–103. 

Cohen, L. B. (1972). A two process model of infant visual 

3178



 

6 

 

attention. Paper presented at the Merrill Palmer Confer-

ence on Research and Teaching of Infancy Development. 

Jankowski, J. J., Rose, S. A., & Feldman, J. F. (2001). 

Modifying the distribution of attention in infants. Child 

Development, 72, 339–351. 

Johnson, J. S., & Simmering, V. R. (2015). Integrating 

perception and working memory in a three-layer dynamic 

field architecture. In G. Schöner, J. P. Spencer, & the DFT 

Research Group (Eds.), Dynamic thinking: A primer on 

dynamic field theory. New York, NY: Oxford University 

Press. 

Johnson, J. S., Simmering, V. R., & Buss, A. T. (2014). 

Beyond slots and resources: Grounding cognitive concepts 

in neural dynamics. Attention, Perception, & 

Psychophysics, 76, 1630–1654.  

Johnson, J. S., Spencer, J. P., Luck, S. J., & Schöner, G. 

(2009). A dynamic neural field model of visual working 

memory and change detection. Psychological Science, 20, 

568–577. 

Luck, S. J. (2008). Visual short-term memory. In Visual 

Memory. New York: Oxford University Press. 

Oakes, L. M., & Ribar, R. J. (2005). A comparison of infants’ 

categorization in paired and successive presentation 

familiarization tasks. Infancy, 7, 85–98. 

Oakes, L. M., Ross-Sheehy, S., & Luck, S. J. (2006). Rapid 

development of feature binding in visual short-term 

memory. Psychological Science, 17, 781–787. 

Pashler, H. (1988). Familiarity and visual change detection. 

Perception and Psychophysics, 44, 369–378. 

Perone, S., Molitar, S., Buss, A. T., Spencer, J. P., & 

Samuelson, L. K. (2015). Enhancing the executive func-

tions of 3-year-old children performing the dimensional 

change card sort task. Child Development, 86(3), 812–827. 

Perone, S., Simmering, V. R., & Spencer, J. P. (2011). 

Stronger neural dynamics capture changes in infants’ 

visual working memory capacity over development. 

Developmental Science, 14, 1379–1392.  

Perone, S., & Spencer, J. P. (2013). Autonomy in action: 

Linking the act of looking to memory formation in infancy 

via dynamic neural fields. Cognitive Science, 37, 1–60. 

Perone, S., & Spencer, J. P. (2014). The co-development of 

looking dynamics and discrimination performance. 

Developmental Psychology, 50, 837–852.  
Rose, S. A., Feldman, J. F., & Jankowski, J. J. (2001). 

Attention and recognition memory in the 1st year of life: A 

longitudinal study of preterm and full-term infants. 

Developmental Psychology, 37, 135–151. 

Ross-Sheehy, S., Oakes, L. M., & Luck, S. J. (2003). The 

development of visual short-term memory capacity in 

infants. Child Development, 74, 1807–1822. 

Samuelson, L. K., Schutte, A. R., & Horst, J. S. (2009). The 

dynamic nature of knowledge: Insights from a dynamic 

field model of children’s novel noun generalization. 

Cognition, 110, 322–345. 

Samuelson, L. K., Smith, L. B., Perry, L. K., & Spencer, J. P. 

(2011). Grounding word learning in space. PLoS One, 

6(12), e28095. 

Schöner, G., Spencer, J. P., & the DFT Research Group. 

(2015). Dynamic thinking: A primer on dynamic field 

theory. New York, NY: Oxford University Press. 

Schutte, A. R., & Spencer, J. P. (2009). Tests of the dynamic 

field theory and the spatial precision hypothesis: capturing 

a qualitative developmental transition in spatial working 

memory. Journal of Experimental Psychology: Human 

Perception and Performance, 35, 1698–1725. 

Schutte, A. R., & Spencer, J. P. (2010). Filling the gap on 

developmental change: Tests of a dynamic field theory of 

spatial cognition. Journal of Cognition and Development, 

11, 328–355.  

Schutte, A. R., Spencer, J. P., & Schöner, G. (2003). Testing 

the dynamic field theory: Working memory for locations 

becomes more spatially precise over development. Child 

Development, 74, 1393–1417. 

Simmering, V. R. (2016). Working memory capacity in 

context: Modeling dynamic processes of behavior, 

memory, and development. Monographs of the Society for 

Research in Child Development, 81, 7–148.  

Simmering, V. R., & Perone, S. (2013). Working memory 

capacity as a dynamic process. Frontiers in Developmental 

Psychology, 3, 567. 

Simmering, V. R., & Schutte, A. R. (2015). Developmental 

dynamics: The spatial precision hypothesis. In G. Schöner, 

J. P. Spencer, & the DFT Research Group (Eds.), Dynamic 

thinking: A primer on dynamic field theory. New York, 

NY: Oxford University Press. 

Simmering, V. R., Schutte, A. R., & Spencer, J. P. (2008). 

Generalizing the dynamic field theory of spatial cognition 

across real and developmental time scales. Brain Research, 

1202, 68–86.  

Simmering, V. R., & Spencer, J. P. (2008). Generality with 

specificity: The dynamic field theory generalizes across 

tasks and time scales. Developmental Science, 11, 541–

555.  

Smith, L. B., Jones, S. S., & Landau, B. (1996). Naming in 

young children: A dumb attentional mechanism?. 

Cognition, 60(2), 143-171. 

Spencer, J. P., Simmering, V. R., Schutte, A. R., & Schöner, 

G. (2007). What does theoretical neuroscience have to 

offer the study of behavioral development? Insights from a 

dynamic field theory of spatial cognition. In J. M. Plumert 

& J. P. Spencer (Eds.), The emerging spatial mind. New 

York, NY: Oxford University Press. 

Spencer, J. P., Smith, L. B., & Thelen, E. (2001). Tests of a 

dynamic systems account of the A-not-B error: The influ-

ence of prior experience on the spatial memory abilities of 

2-year-olds. Child Development, 72, 1327–1346. 

Thelen, E., Schöner, G., Scheier, C., & Smith, L. B. (2001). 

The dynamics of embodiment: A field theory of infant 

perseverative reaching. Behavioral & Brain Sciences, 24, 

1–86. 

Wilson, H. R., & Cowan, J. D. (1972). Excitatory and 

inhibitory interactions in localized populations of model 

neurons. Biophysical Journal, 12, 1–24. 

3179




