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Major imaging biomarkers of Alzheimer’s disease include amyloid
deposition [imaged with [11C]Pittsburgh compound B (PiB) PET],
altered glucose metabolism (imaged with [18F]fluro-deoxyglucose
PET), and structural atrophy (imaged by MRI). Recently we pub-
lished the initial subset of imaging findings for specific regions in
a cohort of individuals with autosomal dominant Alzheimer’s dis-
ease. We now extend this work to include a larger cohort, whole-
brain analyses integrating all three imaging modalities, and longi-
tudinal data to examine regional differences in imaging biomarker
dynamics. The anatomical distribution of imaging biomarkers is
described in relation to estimated years from symptom onset. Au-
tosomal dominant Alzheimer’s disease mutation carrier individuals
have elevated PiB levels in nearly every cortical region 15 y before
the estimated age of onset. Reduced cortical glucose metabolism
and cortical thinning in the medial and lateral parietal lobe
appeared 10 and 5 y, respectively, before estimated age of onset.
Importantly, however, a divergent pattern was observed subcorti-
cally. All subcortical gray-matter regions exhibited elevated PiB
uptake, but despite this, only the hippocampus showed reduced
glucose metabolism. Similarly, atrophy was not observed in the
caudate and pallidum despite marked amyloid accumulation. Fi-
nally, before hypometabolism, a hypermetabolic phase was iden-
tified for some cortical regions, including the precuneus and
posterior cingulate. Additional analyses of individuals in which
longitudinal data were available suggested that an accelerated
appearance of volumetric declines approximately coincides with
the onset of the symptomatic phase of the disease.

neuroimaging | aging | dementia | neurodegeneration | DIAN

The pathological mechanisms underlying nondominantly in-
herited late onset Alzheimer’s disease (LOAD) remain an

active area of investigation (1). According to the amyloid cascade
hypothesis, the precipitating event in LOAD is an alteration of
the balance between production and clearance of the metabo-
lites of amyloid precursor protein (APP) (2). Abnormalities in
APP metabolism then lead to β-amyloid (Aβ) deposition in the
cerebral cortex, the formation of neurofibrillary tangles (NFTs)

containing hyperphosphorylated tau protein, neuronal dysfunc-
tion, cell loss, and, ultimately, dementia. In vivo biomarkers of
LOAD include cerebrospinal fluid (CSF) Aβ42, CSF tau, amyloid
deposition imaged with Pittsburgh compound B PET (PiB PET)
and other amyloid tracers, altered glucose metabolism imaged
with fluro-deoxyglucose PET (FDG PET), and structural atrophy
assessed by volumetric MRI. A theoretical model of biomarker
changes has been proposed by Jack et al. (3) that links these
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biomarkers in relation to the amyloid cascade hypothesis. This
model has two main predictions. First, each biomarker should
exhibit a sigmoidal trajectory characterized by an initial period of
little change, then rapid progression and finally a plateau. Sec-
ond, amyloid markers (CSF Aβ42 and PiB PET) are predicted to
become abnormal first, followed by neurodegenerative markers
such as elevated levels of CSF tau and decreased FDG PET, and
finally concurrently brain atrophy (volumetric MRI). Cognitive
symptoms become evident relatively late in the disease course.
Based on this model, the National Institutes of Health (National
Institute on Aging) and the Alzheimer’s Association have de-
veloped guidelines for incorporation of biomarkers into practice
and research to support the clinical diagnosis of symptomatic
Alzheimer’s disease (AD) (defined here as mild cognitive im-
pairment due to AD and AD dementia).
There has been relatively little in vivo work examining the

temporal order of multiple AD biomarkers within a single cohort
(4–6). Accurate determination of the temporal order of bio-
marker changes in LOAD requires long-term longitudinal stud-
ies with a large cohort of individuals. In the absence of such data,
it is impossible to predict whether an individual will develop symp-
tomatic AD, let alone where they are on a theoretical biomarker
timeline. In contrast, autosomal dominant AD (ADAD) caused
by mutations in the APP (7), presenilin 1 (PSEN1) (8), and pre-
senilin 2 (PSEN2) (9) genes has virtually complete penetrance
with a predictable age of onset (4). Within early-onset ADAD
families, the parental age of onset tends to be conserved between
family members (5, 6, 10). The preserved age of onset within
families is one of the key advantages of studying ADAD, because
it allows approximation of how far from symptom onset an in-
dividual is at the time of study.
The Dominantly Inherited Alzheimer Network (DIAN) has

established a large cohort of individuals from families with
ADADmutations (11). In an initial report from DIAN, Bateman
et al. (12) took advantage of the correlation between the pa-
rental and actual age of onset within the cohort to estimate the
timing and order of all of the major AD biomarkers, including
specific examination of PiB and FDG in the precuneus and
hippocampal volume in the first 128 participants. Overall, the
results are largely consistent with the model proposed by Jack
et al. (3) but were limited to testing specific regions in a smaller
cohort. Now we greatly expand upon the Bateman et al. (12)
report in two distinct ways. First, we examine biomarker trajec-
tories across the entire brain and compare our findings to pro-
posed models of AD. Second, we analyze a subset of participants
with longitudinal imaging to gain insight into intraindividual
biomarker changes. This study directly integrates the spatial
dynamics of all three major imaging biomarkers. To do this, we
used the known age of onset within each DIAN family group to
estimate where and when pathological changes in amyloid ac-
cumulation, glucose metabolism, and atrophy occur across the
whole brain.

Results
Biomarker Changes in the Cerebral Cortex. A sample of 229 par-
ticipants with MRI [noncarriers (NC) = 92, mutation carriers
(MC) = 137, from the fourth DIAN Data Freeze] was analyzed
(Table 1), with a subset having PiB (NC = 86, MC = 121) and
FDG (NC = 84, MC = 116) imaging. For each vertex on the
cortical surface, MCs and NCs were tested for differences in PiB,
FDG, and cortical thickness at 5-y estimated years from symp-
tom onset (EYO) intervals from −25 to +10 y (Methods). Differ-
ences that were P < 0.01 after correction for multiple comparisons
across the brain using a false discovery rate (FDR) (13) of 0.05
were considered statistically significant. The difference in PiB
uptake between MCs and NCs reached statistical significance
at least 15 y before the estimated age of onset (EAO) (Fig. 1A).
At EAO = −15, amyloid deposition was widespread in MCs
throughout the cerebral cortex, with relative initial sparing of
entorhinal, precentral, and postcentral cortices that reached
statistical significance at approximately EYO = −10 y. Movie S1
shows PiB accumulation from EYO = −25 to EYO = 10.
Using FDG PET, differences in regional hypometabolism

between carriers and noncarriers were significant (FDR cor-
rected, P < 0.01) 10 y before the onset of symptoms in the
precuneus/posterior cingulate and lateral parietal cortex (Fig.
1B). By EYO = 5, hypometabolism was significant in the middle
temporal gyrus and the lateral prefrontal cortex as well. Similar
effects appeared in the occipital and medial prefrontal cortices
concurrently with the onset of symptoms (i.e., at EYO = 0).
Unexpectedly, we found that MCs ∼25 y from their EAO had
statistically significantly higher levels of glucose uptake than
NCs. Regional hypermetabolism was found in many of the same
regions (e.g., lateral parietal cortex precuneus/posterior cingu-
late) that were hypometabolic later on in the disease (Fig. S1 and
Movie S2). This finding should be interpreted with caution,
however, because only 11 subjects with EYO values less than or
equal to −25 were analyzed. Furthermore, our analysis assumes
both that the brainstem is a stable reference region and that the
relationship between EYO and glucose metabolism is approxi-
mately linear.
Significant (FDR corrected, P < 0.01) cerebral cortical atro-

phy was not detected until ∼5 y before EAO (Fig. 1C). Although
most extensive in the precuneus, decreased cortical thickness was
also found in entorhinal, lateral temporal, and lateral parietal
cortices. We also found that at EYO = −5, MCs have greater
cortical thickness than NCs in the anterior cingulate cortex
(ACC) (Fig. 1C). Unlike the hypermetabolism found at EYO =
−25, these increases in thickness were not transient (Movie S3).

Biomarker Dissociations in Subcortical Gray Matter.A similar analysis
of each biomarker was also performed within subcortical regions
of interest (ROIs). Owing to the smaller number of subcortical
regions, an FDR corrected P value of 0.05 was considered sig-
nificant for subcortical regional analysis. MCs showed statistically
significant PiB binding in every subcortical region of interest 15 y
before the EAO (Fig. 2A). However, in contrast to cerebral cortex,

Table 1. Demographics for DIAN participants who completed MRI assessments

Demographic NC MC P value

n 92 137 —

Age (SD), y 39.3 (9.46) 38.8 (10.4) 0.718
EYO (SD), y −7.49 (11.8) −7.85 (9.91) 0.807
Education (SD), y 14.6 (2.61) 14.2 (2.6) 0.215
Male (%) 38 (41.3) 56 (40.9) 0.949
CDR >0 (%) 5 (5.43) 54 (39.4) 3.28E-09
APOE4+ 23 (25) 35 (25.5) 0.926
Mutation type (%) — PS1 = 105 (76.6), PS2 = 11 (8.03), APP = 21 (15.3) —
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subcortical gray matter generally did not exhibit decreased glucose
metabolism. Glucose hypometabolism was observed only in the
hippocampus, and then not until EYO = 0 (Fig. 2B). However,
MCs showed volume loss in multiple subcortical structures well
before symptom onset. Atrophy of accumbens, amygdala, hippo-
campus, putamen, and thalamus were all statistically significant
compared with NCs by EYO = −10 (Fig. 2C). However, caudate
and pallidum did not exhibit significant volume loss, despite marked
PiB uptake.

Regional Variability in Cross-Sectional Biomarkers. The results pre-
sented so far concern the cross-sectional sequence of biomarker
changes. We now address regional differences in each biomarker
with respect to EYO. To estimate such differences, a linear mixed
model compared each regional cross-sectional slope against every
other region. Matrices showing FDR corrected P values (thresh-
olded at P < 0.01) for each regional comparison are presented
in Figs. S2–S4. For visualization purposes, first-degree locally
weighted regression method (LOESS) curves were fit to select
cortical and subcortical regions (Fig. 3).
Within ADAD MCs, we observed considerable regional

variability in the cross-sectionally estimated slopes of amyloid
accumulation (Fig. 3A and Fig. S2). Across all ROIs, the largest
PiB slopes were observed in nucleus accumbens, caudate, ros-
tral middle frontal gyrus, and precuneus. The greatest glucose

hypometabolism was found in the inferior parietal and supra-
marginal cortices (Fig. 3C and Fig. S3). Atrophy also was spa-
tially heterogeneous. The greatest cortical thinning was observed
in the precuneus (Fig. 3E and Fig. S4); volume loss in subcortical
gray matter was significantly greater in both the accumbens and
hippocampus in comparison with the thalamus (P < 0.01).

Initial Estimates of Longitudinal Change. Longitudinal imaging
was examined on a subset (MRI = 51, PiB = 31, FDG = 40) of
the sample with the goal of examining intraindividual biomarker
changes (Table S1). For longitudinal analysis participants were
placed into one of three groups: NCs, asymptomatic MCs [clinical
dementia rating (CDR) 0, indicating cognitive normality], and
symptomatic MCs (CDR > 0, indicating cognitive impairment).
Visually, the cross-sectional trajectories seemed to underes-

timate individual changes, particularly after the age of onset
(Fig. 4 B–D). Quantitatively, precuneus PiB binding was not
statistically significant between noncarriers, asymptomatic car-
riers (CDR < 0), and symptomatic carriers (CDR > 0), probably
because of limited statistical power (Table S2). However, we did
find that declines in glucose metabolism in the precuneus, pre-
cuneus thickness, and hippocampal volume were significantly
greater in symptomatic carriers than in noncarriers (P < 0.05,
uncorrected). Using an alpha value of 0.05, no statistically sig-
nificant differences were found between asymptomatic and

Fig. 1. Statistical significance (P value) maps on medial and lateral left cortical gray surface showing differences between carriers and noncarriers in PiB (A),
FDG (B), and cortical thickness (C) at −15, −10, −5, and 0 y before predicted symptom onset. Regions with significant (P < 0.01 after correction for multiple
comparisons) increases are shown in red/yellow and decreases in blue/cyan. The medial wall was not analyzed. Significant increases in amyloid PiB PET were
detected at least 15 y before the estimated age of symptom onset in across the cerebral cortex. Decreased glucose metabolism was detected 10 y before
predicted symptom onset using FDG PET, primarly involving the precuenus, posterior cingulate, and lateral parietal lobes. Cortical thinning on MRI was
detected ∼5 y before the estimated onset of symptoms, initially in the precuneus and posterior cingulate as well as portions of the occipital lobe and anterior
temporal lobe. Results were consistent for both hemispheres for all modalities.
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symptomatic carriers. However, declines in hippocampal volume
and precuneus thickness were statistically greater in symptomatic
carriers than in asymptomatic carriers using a more liberal
threshold of threshold of P < 0.10. This result is consistent with
the acceleration of changes observed in the qualitative longitu-
dinal analysis.

Discussion
Consistent with the amyloid hypothesis predicted for LOAD,
ADADMCs exhibited increased amyloid deposition, followed by

decreased glucose metabolism, and finally atrophy, across many
cortical regions. Furthermore, as predicted by Jack et al. (3), we
found clear regional effects in biomarker trajectories. For ex-
ample, hypometabolism was significant first in the posterior
cingulate/precuneus and lateral parietal regions before pro-
gressing to include the frontal and temporal cortices. This result
suggests that there may be a greater temporal lag between amyloid
accumulation and metabolic decline in frontal/temporal regions
than in parietal regions. It is interesting to note that we found
very few regional differences in the timing of amyloid accumulation
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Fig. 4. Longitudinal data for PiB (A), FDG (B), cortical thickness (C), and hippocampal volume (D). Asymptomatic (CDR 0) participants are shown in blue.
Symptomatic participants (CDR 0.5 or higher) are shown in red. Overlaid on each plot is the LOESS estimated cross-sectional trajectory for carriers with 95%
confidence intervals of the mean in gray. Note the generally steeper longitudinal vs. cross-sectional slope in symptomatic participants. The x axis is unlabeled
and only carriers are shown to protect the mutation status of each participant.
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in this cohort, although total amyloid burden did vary by region.
This is consistent with a recent cross-sectional report in another
large ADAD cohort (14).
One of the surprising results of our previous work was the

finding that volumetric and metabolic changes appeared at ap-
proximately the same time in ADAD mutation carriers (12).
This, along with other work, prompted a recent revision to the
predominant AD biomarker model to propose that FDG PET
and volumetric MRI changes appear concurrently in AD (15).
Critically, our previous study failed to analyze metabolic and
volumetric changes within the same region, as was done here.
When each biomarker was examined within the same region, the
majority of regions followed the predicted path (amyloid accu-
mulation → hypometabolism → atrophy).
Regional exceptions to the general model (amyloid accumu-

lation → hypometabolism → atrophy) were noted, however.
Specifically, in the hippocampus, amyloid accumulation (detec-
ted at EYO = −15) was followed first by volume loss (EYO =
−10) and then hypometabolism (EYO = 0) (Fig. 2). We also
identified regions that seem to skip one or more of the bio-
marker stages. For instance, the palladium and caudate did not
show either metabolic or volumetric declines, despite markedly
elevated PiB uptake (Fig. 2). Similarly, we did not detect de-
creases in the thickness of frontal cortical regions, even though
MCs had significant levels of amyloid accumulation and hypo-
metabolism in these regions compared with NCs (Fig. 1). These
results indicate that the standard biomarker ordering does not
hold in all brain regions. Why some regions with high PiB loads
are resistant to metabolic and volumetric decline is unclear. One
possibility is that the PiB signal in these regions does not rep-
resent plaques with typical neurotoxic effects. For example,
neuropathological examinations of the globus pallidus in ADAD
cases have reported findings consistent with amyloid angiopathy
(16, 17). Correlations between pathology and imaging are needed
to resolve these discrepancies.
The regional variability of biomarker trajectories found in this

report is consistent with previous neuroimaging results that have
identified distinct spatial patterns of amyloid accumulation, hy-
pometabolism, and atrophy (18), where biomarker effects vary
across brain regions (19). As previously reported (18), the most
commonly affected areas across modalities bear a striking re-
semblance to the default mode network (20) Furthermore,
studies in LOAD have found spreading patterns of atrophy
(21, 22), hypometabolism (23), and amyloid deposition (24) as
a correlate of increasing disease severity. Our results are also
consistent with the neuropathological studies that have found
differential temporal ordering of the formation of amyloid pla-
ques and neurofibrillary tangles (25, 26).
Several of our results were unexpected. Our finding of hy-

permetabolism on FDG PET ∼25 y before symptom onset does
not have, to our knowledge, a direct precedent in the neuro-
imaging literature. Previous studies in presymptomatic AD typi-
cally have reported decreased glucose metabolism (27). However,
there have been reports in normal aging (28) and mild cognitive
impairment (29) of an association between early PiB uptake and
hypermetabolism, albeit of variable focality, as determined by
FDG PET. This association has been attributed to compensa-
tion for AD pathology (29). Alternatively, this association has
been understood as reflecting the fact that metabolism and Aβ
deposition both are driven by neuronal activity (30). Our data
are more consistent with the latter hypothesis, because the
hypermetabolic phase occurred before amyloid deposition
or atrophy.
Without further replication, however, this result should be

considered provisional. The small number of participants with
FDG imaging and EYO values less or equal to −25 (n = 11)
prevent drawing strong conclusions. Future study of even youn-
ger individuals with ADAD mutations clearly is needed to de-

termine whether or not this abnormality truly precedes fibrillar
Aβ deposition (31). Furthermore, our decision to use a linear
function to model metabolic change may have also affected our
results. Given the evident scatter in the data, we chose to use
linear models in all our analyses to limit the number of free
parameters, despite recent evidence that biomarker trajectories
are nonlinear with respect to EYO (32–37). Artificial imposition
of linearity could have created the appearance of increased
glucose metabolism 25 y before EYO. If true, this result would
be eliminated by appropriate flattening of the initial portion of
the curve, in accordance with extant biomarker models. It is
theoretically possible to estimate voxelwise nonlinear biomarker
trajectories. However, this would require imposing some form of
spatial regularization and the rules by which this should be done
are presently unclear. Finally it is possible that changes in the
metabolism of our reference region (the brainstem) may be re-
sponsible for the apparent hypermetabolic phase in MCs. To
adequately address this possibility would require fully quan-
titative metabolic data, which would necessitate arterial blood
sampling and estimation of the arterial input function (AIF).
This, however, is an invasive procedure that would be difficult to
implement in a multisite study such as DIAN. We are currently
investigating noninvasive, MRI-based methods of obtaining the
AIF and quantitative PET data (38).
We also cannot currently explain the anomalously high corti-

cal thickness estimates in the anterior cingulate at EYO= 0 (Fig.
1C). Previous studies have reported alterations in image contrast
properties in both aging (39) and AD (40). Decreases in white
matter contrast could create the appearance of an increase in
cortical thickness. However, we found had no detectable differ-
ences between MCs and NCs in gray, white, or gray/white con-
trast in the anterior cingulate. We also visually examined the
structural images and the FreeSurfer segmentations and did not
observe a consistent artifact or segmentation error that could
explain this finding. It should be noted that previous studies in
aging have reported a positive correlation between age and
cortical thickness in the anterior cingulate cortex (41–43). Sim-
ilarly, studies using voxel-based morphometry (44) and manual
segmentation (45) have found a preservation of the anterior
cingulate in normal aging. One intriguing possibility for these
findings is that the ACC is involved in a compensatory response
to AD pathology. In support of this hypothesis, recent studies
using resting-state functional MRI have reported an increase in
functional connectivity between the ACC and other nodes of the
salience network (46, 47). Whether these findings truly represent
a compensatory response or are instead reflective of the instinct
resistance to AD pathology of the cell types within the ACC is
a matter for future work.
Our study has several limitations. First, the majority of our

data are cross-sectional; inferences depend on the assumption
that biomarker trajectories are similar across participants. We
partially compensated for this limitation by including the avail-
able longitudinal data. Additional longitudinal studies are needed
to fully describe intraindividual biomarker change. Second, our
analysis assumes that the parental age of onset is an accurate
estimate of symptomatic onset in the affected offspring. We ob-
served a significant correlation between the actual and parental
age of onset in the symptomatic participants but there were
several outliers. A predictable effect of uncertainty in EYO
would be blunting of features in biomarker trajectory curves, as
suggested by the results shown in Fig. 4. However, the temporal
ordering of biomarker differences is less likely to be affected
by inaccuracies in EYO, because all of the participants used in
this study were drawn from the same cohort. Our results may
also be influenced by the inclusion of multiple mutation sub-
types. This design has the possible advantage of increasing ap-
plicability to ADAD as a whole, but it may well also increase the
heterogeneity of our sample. Additional research is needed to
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assess how biomarker trajectories differ between mutation
subtypes.
The spatial resolution of PET imaging (∼8 mm isotropic in

this study) is an inherent limitation in any study attempting to
characterize regional PiB and FDG changes in AD. One of the
well-known effects of limited spatial resolution is spillover of the
PET signal from nearby tissue types. We chose to use a regional-
spread function (RSF)-based approach to partial volume cor-
rection (PVC) to minimize such effects. Although this method
has been reported to be accurate (48), it is biased from mis-
registrations between the PET and MRI data (49) and by in-
accurate segmentation of the MRI data (50). Although we did
not observe any registration or segmentation errors by visual
inspections, it is possible that some still occurred. Regardless of
inaccuracies in registration and segmentation, PVC also prop-
agates the noise inherent in the PET image (48). Therefore, the
dissociations we report between amyloid deposition, metabolic
dysfunction, and atrophy may be influenced by a PVC-induced
decrease in signal-to-noise ratio. To address this possibility,
we have included uncorrected versions of Figs. 2–4 in Supporting
Information (Figs. S6–S8). The results were largely the same with
and without PVC. The only major difference between two ana-
lyses was the presence of significant metabolic declines in the
thalamus and caudate without PVC. It is unclear whether these
declines are truly biological or are artifacts introduced by partial
volume effects.
In contrast to prior publications (51, 52), we did not detect

caudate atrophy in our ADAD cohort. This discrepancy is pos-
sibly attributable to differences in segmentation technique.
However, FreeSurfer’s segmentation of the caudate has been
shown to have a high correspondence with manual tracing (53),
and studies in ADAD cohorts have found caudate atrophy using
FreeSurfer (51). An alternative possibility is that caudate atro-
phy is not a consistent feature of ADAD, but rather is specific to
mutation subtype.
Finally it is unclear to what extent ADAD and LOAD are

pathologically similar entities. PiB binding in the striatum in
ADAD is notably greater than that typically seen in LOAD (54).
Similarly, our finding of increased PiB in occipital cortex is not
typical of LOAD (17). However, the neuroimaging literature
suggests that otherwise ADAD and LOAD are substantially
similar. ADAD and sAD are both associated with elevated
cortical PiB uptake, especially in the in the precuneus/posterior
cingulate and prefrontal cortex (54–56). Reductions in glucose
metabolism in the temporal and parietal lobes have also been
observed in both diseases (57–60). Finally, both LOAD and
ADAD have been shown to result in cortical (51, 61–65) and hip-
pocampal (63, 65–68) atrophy. Further comparisons of LOAD
and ADAD are ongoing as part of the DIAN study.
Our results still have important implications. Biomarker im-

aging is increasingly important in clinical trials of potential AD
therapeutic agents. These trials will most likely be using imaging
and methodical methods similar to those we have used in this
study. Published trials of antiamyloid treatments have already
used global measures of amyloid deposition as a primary out-
come measure (69). Whereas global measures likely capture
a large portion of intraindividual amyloid change, our results
suggest that there is potentially useful information in local
changes in amyloid deposition. For instance, measuring changes
in already affected regions may be a less important disease
marker than determining whether or not pathology has spread to
later-affected structures. Our results are also consistent with
recent studies reporting that combining multiple biomarkers is
more informative than examining a single biomarker alone (51,
70–73). From a clinical perspective, therapeutically induced
decreases in global amyloid load may mean little if metabolic and
volumetric declines still are occurring. Conversely, monitoring
changes in amyloid PET uptake in regions that do not show any

other signs of pathology, such as the palladium and anterior
cingulate cortex in this study, may be relatively uninformative.
These issues will become increasingly relevant as large-scale,
multimodal studies including longitudinal follow-up become
more common.

Methods
Participants. Individuals from families with known ADAD mutations were
recruited at 11 separate sites as part of the DIAN initiative. All participants
with MRI, genetic, and clinical data that passed quality control procedures
from the fourth semiannual data cutoff were included in the analysis. Of
these participants, 13 with available MRI data were excluded owing to
processing failures (n = 9) or excessive pathology (n = 4). After exclusions,
a total of 92 NCs and 137 MCs were analyzed (Table 1). A subset of these
participants had analyzable PiB (NC = 84, MC = 116) and FDG (NC = 86, MC =
121) scans (13 PiB and 4 FDG scans were excluded for technical failures). A
small number of participants also had serial MRI and PET imaging (Table S1).
The institutional review board atWashingtonUniversity provided supervisory
review and human studies approval for all study procedures. Each partici-
pating institution also obtained local human studies approval. Approvals
were obtained from Brown University, Butler Hospital, Columbia University,
Edith Cowan University, University of Western Australia, Partners Human
Research Committee, Indiana University, University of California Los Angeles,
University of Melbourne, Melbourne Health, University of Pittsburgh, Uni-
versity of New South Wales, Neuroscience Research Australia, and University
College of London. All participants or their caregivers provided written in-
formed consent approved by their local institutional review board.

Clinical Assessment. Each participant underwent an extensive clinical assess-
ment including a medical history, family history of AD, and physical and
neurological examinations. Dementia status was assessed using the CDR (74).
EYO was calculated as the difference between the participant’s age at
evaluation and the age at which parental cognitive decline began (12). For
the symptomatic MCs in this report, the parental and actual age of onsets
were correlated (Pearson correlation coefficient = 0.65, P < 1.4·10−07). The
presence or absence of an ADAD mutation was determined using PCR-based
amplification of the appropriate exon followed by Sanger sequencing (12).
Each participant’s apolipoprotein E4 (APOE4) genotype was determined
using methods described elsewhere (75). Clinical evaluators were blind to
participant mutation status. Unless medically indicated, research data were
not shared with the participants.

MRI. Structural MRI acquisition was performed using the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) protocol (76, 77). All participating sites used
a 3T scanner and were required to pass initial and regular follow-up quality
control assessments to ensure acquisition uniformity. Scans acquired in each
participant included accelerated 3D, sagittal T1-weighted images of the
head (1.1- × 1.1- × 1.2-mm voxels, approximate scan time 5–6 min). These
images were screened for artifacts and protocol compliance by the ADNI
Imaging Core before further analysis.

Volumetric segmentation and cortical surface reconstruction was per-
formed using FreeSurfer 5.1 (78). This procedure automatically segments
subcortical and cortical structures using a probabilistic atlas. Each voxel in
the brain was assigned an anatomical label (53, 79). Segmented volumes
were corrected for intracranial volume using an analysis of covariance ap-
proach (80). For each vertex on the cortical surface, thickness was calculated
as the shortest distance from the gray/white boundary to the gray/CSF
boundary (81). To facilitate group analyses, cortical thickness maps were
registered to an average cortical surface and geodesically smoothed with
a Gaussian 10-mm FWHM kernel. A trained rater visually verified segmen-
tations and surfaces for accuracy. Manual edits were performed when nec-
essary according to the FreeSurfer manual (http://surfer.nmr.mgh.harvard.
edu/fswiki/).

PET. Each site underwent an initial evaluation to ensure compliance with
common PiB and FDG PET ADNI protocols. Amyloid imaging was performed
with a bolus injection of ∼15 mCi of [11C]PiB. Dynamic acquisition consisted
of either a 70-min scan starting at injection or a 30-min scan beginning 40
min postinjection. For analysis, the PiB PET data in the common time frame
between 40–70 min was used. Metabolic imaging with [18F]FDG-PET was
performed with a 30-min 3D dynamic acquisition beginning 30 min after
injection. The last 25 min of each FDG scan was used for analysis purposes.
The ADNI PET Core verified that all PET images were acquired using the
established protocol and substantially free of artifacts.
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Each participant’s PET data were motion-corrected and registered to his
or her MRI (82, 83). Differences owing to image resolution across scanners
were minimized by smoothing PET images to a common resolution of 8 mm
isotropic (84). Using FreeSurfer ROIs, standardized uptake value ratios
(SUVRs) were calculated using the brainstem as a reference region. The
brainstem was used as the reference tissue as histological studies have found
amyloid plaques in the cerebellar cortex of ADAD mutation carriers (85, 86).
The brainstem has been shown to be a reliable reference region for PiB (87)
and FDG PET (88). To minimize the impact of partial volume effects on the
PET signal, an RSF-based approach (48) for partial volume correction was
used for all regional PET measurements. Versions of Figs. 2–4 without PVC
can be found in Supporting Information (Figs. 6S–S8). For vertex-wise group
analyses, uncorrected SUVR images were sampled halfway between the
pial and white surface, transformed to the average cortical surface, and
smoothed with a surfaced-based Gaussian 5-mm FWHM kernel.

Statistical Analysis. Statistical analysis of all cross-sectional ROI and vertex-
wise measures was performed using the nlme package (89) in R (www.
r-project.org) (90). Carriers and noncarriers were tested for differences as
a function of EYO to estimate regional differences in biomarker trajectories
using a general linear mixed effects model. Histograms of the EYO distri-
bution for each marker are shown in Fig. S5. The statistical model included
linear terms for mutation status, EYO, and the interaction between muta-
tion status and EYO. Because some participants were recruited from the
same family, a random effect of family was added to allow for possible
correlations between family members. An analogous model consisting of
fixed effects for region, EYO, and the interaction between EYO and region
was used to estimate carrier differences in cross-sectional rates of change
across brain regions. To account for baseline differences between regions, all
regional values were first divided by the noncarrier mean for that region. A
random effect for participant nested within family affiliation was used to
account for possible correlations within participant as well as within family
group. Both models included covariates for age, sex, education, and the
presence of absence of an APOE4 allele. All analyses were corrected for
multiple comparisons across space using the FDR.

To estimate the trajectory of biomarker changes, curves were fit to the
cross-sectional data using LOESS regression (91). Movies of biomarker change
as a function of EYO were also computed by fitting a LOESS curve for each
vertex on the cortical surface (Movies S1–S3). For all surface-based analyses,

a given participant’s data were included only if they had a defined (nonzero)
value at that vertex. Because there was a small amount of coverage loss
throughout the study, a vertex was never analyzed with less than 96% of the
available participants. The PySurfer library was used for visualization of all
surface-based analyses (http://pysurfer.github.io/) (92). All other visual-
izations were created using the ggplot2 package in R (93).

The quantity of longitudinal data precluded a full analysis across the full
EYO range. Thus, participants were stratified into one of three groups based
on their mutation and cognitive status. Any carrier with a CDR score greater
than 0 at their first longitudinal visit was placed into the mutation pos-
itive, symptomatic group (MC/S). The remaining carriers were classified as
asymptomatic (MC/AS). Finally, all of the noncarriers were grouped together
as a control group (NC). To quantify and statistically evaluate the within
participant imaging biomarker rate of change over time, general linearmixed
models with random intercepts/slopes (94) at the subject level and random
intercepts at the family level were used. All general linear mixed models in
the longitudinal analysis were estimated using restricted maximum likeli-
hood estimation, with the approximate F-test denominator degrees of
freedom based on the method of Kenward and Roger (95). The model in-
cluded fixed effects for group membership, time from baseline assessment,
and the interaction between group and time. In addition, an unstructured
covariance model was used to allow the covariance in each biomarker to
vary between MCs and NCs. All longitudinal analysis was performed using
SAS version 9.3 (SAS Institute, Inc.).
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