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Analytical model for flow duration curves in seasonally
dry climates
Marc F. M€uller1, David N. Dralle1, and Sally E. Thompson1

1Department of Civil and Environmental Engineering, University of California, Berkeley, California, USA

Abstract Flow duration curves (FDC) display streamflow values against their relative exceedance time.
They provide critical information for watershed management by representing the variation in the availability
and reliability of surface water to supply ecosystem services and satisfy anthropogenic needs. FDCs are par-
ticularly revealing in seasonally dry climates, where surface water supplies are highly variable. While useful,
the empirical computation of FDCs is data intensive and challenging in sparsely gauged regions, meaning
that there is a need for robust, predictive models to evaluate FDCs with simple parameterization. Here, we
derive a process-based analytical expression for FDCs in seasonally dry climates. During the wet season,
streamflow is modeled as a stochastic variable driven by rainfall, following the stochastic analytical model
of Botter et al. (2007a). During the dry season, streamflow is modeled as a deterministic recession with a sto-
chastic initial condition that accounts for the carryover of catchment storage across seasons. The resulting
FDC model is applied to 38 catchments in Nepal, coastal California, and Western Australia, where FDCs are
successfully modeled using five physically meaningful parameters with minimal calibration. A Monte Carlo
analysis revealed that the model is robust to deviations from its assumptions of Poissonian rainfall, expo-
nentially distributed response times and constant seasonal timing. The approach successfully models
period-of-record FDCs and allows interannual and intra-annual sources of variations in dry season stream-
flow to be separated. The resulting median annual FDCs and confidence intervals allow the simulation of
the consequences of interannual flow variations for infrastructure projects. We present an example using
run-of-river hydropower in Nepal as a case study.

1. Introduction

In 2010, about 30% of the world’s population lived in areas that experience Mediterranean, Monsoonal, or
Savanna climates [CIESIN, 2012], which are characterized by strong seasonality in rainfall. In these climates,
annual precipitation is concentrated within one or two wet seasons, followed by extended dry periods. The
availability of surface water for ecosystem services (e.g., ecology, domestic supply, irrigation, power genera-
tion, or sediment transport) during the dry season is strongly dependent on the precipitation volume during
the previous wet season and its subsequent discharge from watersheds [Jothityangkoon and Sivapalan, 2001;
Samuel et al., 2008; Andermann et al., 2012]. For instance, in the central Himalayas, up to 80% of the annual
rainfall occurs during the 3 month long Indian Summer Monsoon (ISM) season. Transient storage of water in
fractured bedrock during the rising ISM, and its post-ISM release form the dominant source of dry season
streamflow [Andermann et al., 2012], dwarfing the effect of other drivers like evapotranspiration and snow/gla-
cial melt. Because the timing and intensity of precipitation in seasonally dry climates exhibits large interannual
variation [Fatichi et al., 2012] that will likely be amplified by climate change [e.g., Dominguez et al., 2012;
Garc�ıa-Ruiz et al., 2011], both wet season input and dry season water availability are also strongly variable.

In this context, the equitable allocation of seasonally scarce water resources and the design of water-
dependent infrastructure are strongly dependent on the reliable prediction of surface water availability and
reliability. A key tool used to represent this information is the flow duration curve (FDC): a graphical repre-
sentation of the probability that a specific magnitude of streamflow is equaled or exceeded [Castellarin
et al., 2013]. Mathematically, the FDC can be computed as the complement of the cumulative density func-
tion (CDF) of daily streamflow. A FDC provides a frequency-domain representation of the daily runoff time
series, providing a compact signature of streamflow variability, and its underlying drivers. FDCs are com-
monly used to estimate water availability for hydropower [e.g., Basso and Botter, 2012], water supply and irri-
gation [e.g., Chow, 1964], waste load allocation [e.g., Searcy, 1959], reservoir management [e.g., Alaouze,
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1989], and environmental health [e.g., Acreman and Dunbar, 1999]. A comprehensive review of practical
FDC applications is presented in Vogel and Fennessey [1995].

Despite the utility of FDCs, they are also data intensive, requiring long-term, on-site daily runoff measure-
ments for their computation [Vogel and Fennessey, 1994]. In many parts of the world such data are only
sparsely available. The development of techniques to regionalize FDCs to ungauged basins therefore remains
an active area of research, especially in arid areas, where the performance of existing methods decreases sig-
nificantly [Castellarin et al., 2013]. Regionalization commonly employs data-intensive statistical approaches,
and the calibration of these methods also relies on the availability of long streamflow time series from a large
number of representative and well-characterized catchments [e.g., Cheng et al., 2012; Coopersmith et al.,
2012]. Thus, traditional regionalization of FDCs remains challenging in truly data-scarce regions. Furthermore,
statistical approaches are not able to distinguish the effects of nonstationary climates from those of changing
landscape properties, making their application for future flow predictions challenging.

Simple but process-based models of the FDC have the potential to circumvent both of these issues [e.g.,
Botter et al., 2007a; Ye et al., 2012]. Such models can be developed by extending existing analytical solutions
for the probability density function (PDF) of streamflow. In particular Botter et al. [2007a] analyzed the effect
of rainfall forcing on soil moisture and water table recharge. Under the assumption that rainfall occurs as a
Poisson Process and that the response time distribution in the water table is exponential, base flow contri-
bution to streamflow follows a gamma distribution. The resulting streamflow PDF depends on a limited
number of physically meaningful parameters related to the stochastic structure of rainfall, and to the soil,
vegetation, and geomorphologic properties of the catchment. The inherently process-based nature of the
approach reduces calibration requirements, allows the effects of changes in climate or the landscape to be
independently modeled, and in principle could be driven by remote-sensing observations of rainfall and cli-
mate, even where ground-based measurements are sparse [M€uller and Thompson, 2013].

This probabilistic approach has been successfully used to model streamflow PDFs in catchments in the United
States, Italy, and Switzerland [Botter et al., 2007b; Ceola et al., 2010; Schaefli et al., 2013; Botter et al., 2013]. Two
issues, however, need to be addressed before extending the approach to seasonally dry climates. The first issue
is general: if these approaches are to be pragmatically used for flow forecasting in multiple basins, then it is
likely that the rainfall distribution in at least some of these basins will not be well described by a Poisson pro-
cess [Katz and Parlange, 1996; M€uller and Thompson, 2013]. Similarily, deviations from an exponential travel
time distribution within the water table are likely in some basins. Although streamflow PDFs for basins with
some nonexponential travel time distributions can be determined analytically [Botter et al., 2009], they are
more complex and less analytically tractable than the gamma distribution form. It is therefore valuable to deter-
mine how robust the model predictions to deviations from idealized rainfall and catchment properties, and
when the simplest PDF description remains valid. The second issue recognizes that previous PDF forecasting
with these techniques addressed only seasonal subsets of streamflow time series, where there is an interplay
between stochastic water inputs through rainfall, and recessions, through which the excess water is released as
streamflow. Yet in seasonally dry climates, where the flow regime during an entire season can be driven by the
release of water stored in the catchment prior to the considered season (e.g., Andermann et al. [2012] in Nepal),
the simple analytical model fails because the system does not experience a stochastic Poisson forcing.

In this paper, we extend Botter et al. [2007a] to link wet and dry season flow generation mechanism and
predict annual streamflow distributions in seasonally dry climates. The research is aimed at investigating
the following two hypotheses:

H1: Within identifiable limits, the streamflow distribution model described in [Botter et al., 2007a] is robust to
deviations from Poissonian precipitation inputs and exponential travel time distributions in the water table.

H2: Streamflow probability distributions during the dry season can be constructed from a deterministic
recession relationship with a stochastic initial condition that captures interannual variability in wet season
characteristics.

We derive analytical expressions for FDCs for seasonally dry watersheds from the superposition of wet sea-
son (Hypothesis 1) and dry season (Hypothesis 2) distributions, and evaluate these hypotheses in three dif-
ferent locations with markedly different geologic contexts and distinct climatologies (Figure 1): (a) Nepalese
Himalayas (topographically complex, deep and shallow soils, Monsoonal), (b) Coastal California
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(topographically complex, shallow soils, Mediterranean), and (c) Western Australia (flat, deep soils, Mediter-
ranean). We illustrate the practical relevance of the derived analytical method by forecasting the electricity
production of two run-of-river hydropower plants in Nepal.

2. Methods

2.1. Theory
This section describes the derivation of an analytical expression for FDCs in seasonally dry climates. Unless
otherwise specified, upper case characters denote random variables and corresponding lower case charac-
ters denote realizations of these random variables. The PDF and CDF of a random variable X taken at x are,
respectively, written pXðxÞ and PXðxÞ. Complete, upper incomplete and lower incomplete gamma functions
are noted Cð�Þ, CUð�; �Þ and CLð�; �Þ, respectively.

The derivation is based on the following key assumptions. Several of these assumptions are necessary for
the wet season flow model and reflect those made by Botter et al. [2007a] in its original derivation. The
remaining assumptions pertain to the current extension to seasonally dry systems:

1. The watersheds are small enough so that rainfall, soil, and vegetation properties can be treated as being
spatially homogenous [Botter et al., 2007a].

2. The contribution of glacier or snowmelt is negligible, so that rainfall is the dominant stochastic driver of
streamflow [Botter et al., 2007a]. This assumption allows the effects of stochasticity in temperature and solar
irradiation to be neglected as drivers of flow variability. While the model does not apply to watersheds,
where glacial or snowmelt discharge is dominant, it can be adapted for snow-fed basins without seasonal
snowpack accumulation [Schaefli et al., 2013].

3. There are two distinct precipitation seasons (wet and dry) characterized by a statistically significant differ-
ence in mean seasonal streamflow. The duration of the seasons is assumed to be near-constant from year
to year, so that the effects of interannual variations in the timing of the seasons have minimal impact on
the stochasticity of flow.

4. During the rainy season, rainfall is assumed to follow a marked Poisson process with exponentially distrib-
uted rainfall intensities. When infiltrated rainfall causes soil moisture to exceed the field capacity of the vadose
zone, excess water recharges the water table and is available to generate runoff [Botter et al., 2007a].

Figure 1. Respective locations of the 17, 8 and 6 Discharge gauges and corresponding rainfall gauges in (a) Nepal, (b) California, and (c)
Western Australia. Parameters have been estimated using rainfall on the Modi Kohla (M) and Khimti Kohla (K) catchments in Nepal and
Ellenbrook (E) in Western Australia because of their small surface area and proximity to a rain gauge. Photo credits: (a) Marc M€uller, (b)
Gopal Penny, (c) Artemis Kitsios.
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5. The response time distribution during the wet season is treated as exponential [Botter et al., 2007a].

6. During the dry season, the (minimal) rainfall is assumed to be completely consumed by evapotranspira-
tion in the vadose zone. Thus, this simple model assumes that there is no water transfer between the
vadose zone and the water table in the dry season, and only water stored during the previous rainy season
drains and feeds the base flow of the stream.

We assess the sensitivity of the model to violations in three key dynamic assumptions—binary seasonality,
the Poissonian character of rainfall in the wet season, and the constant length of each season—through
numerical simulations and via case study on watersheds in Nepal, Coastal California, and Western Australia.

2.1.1. Steady State Rainy-Season Streamflow Distribution
Under these assumptions, the vadose zone censors the frequency of rainfall. If the incoming rainfall is a
marked Poisson process, wet-season runoff increments also follow a marked Poisson process [Botter et al.,
2007a]. The censored runoff frequency k is related to rainfall frequency kP by [Rodr�ıguez Iturbe and Porpor-
ato, 2004; Botter et al., 2007a]:

k5g
expð2cÞc

kP
g

CL kP=g; cð Þ; (1)

where g5ET=ðnZrðs12swÞÞ is the maximum evapotranspiration rate normalized by the root zone storage
capacity, and c5cPnZrðs12swÞ is the ratio between the soil storage capacity and the mean rainfall depth
1=cP . Zr, n, s1 and sw are parameters, respectively, representing the depth, porosity, field capacity, and wilt-
ing point of the root zone and are defined by vegetation and soil type.

Assuming an exponential distribution of travel time in the water table, the steady state distribution of rainy-
season streamflow Qw follows a gamma distribution [Botter et al., 2007a]:

pQw ðqwÞ5
cm

Q

CðmÞ q m21ð Þ
w exp 2cQqw

� �
; (2)

PQw ðqwÞ5
CLðm; cQqwÞ

CðmÞ (3)

with Q 2 R�0. The parameter m5k=k describes the ratio between the mean response time (1=k) and mean
interarrival time (1=k) of recharge events to the aquifer. The inverse of the mean recharge volume is given by

cQ5
cP

Ak
; (4)

with cP the mean inverse rainfall intensity and A the contributing area of the watershed. Equations (2) and
(3) assume small (i.e., smaller than rainfall spatial correlation lengthscale) and homogenous basins, with
flow and rainfall measured on time scales larger than the characteristic duration of single rainfall events
(e.g., daily streamflow). It does not account for lateral subsurface flow in the vadose zone, losses to deep
percolation or overland flow.

2.1.2. Peak Flow Distribution of the Last Rainy Season Storm
Typically, the time scale of the exponential correlation function of the Poisson rainfall process is short enough
that streamflow rapidly reaches a steady state following the onset of the wet season. This steady state stream-
flow can thus be modeled by a random variable Qw with a PDF given by equation (2). The dry season reces-
sion begins at the realization of Qw on the last day of the wet season (i.e., at t5Tw ), which is defined here as
occurring at the peak of the last storm of the wet season. The flow Q0 that represents the initial condition at
the beginning of the dry season is thus the sum of two stochastic processes: the flow Qw discharged before
the last wet season storm and the flow increment D generated by the precipitation during that storm:

Q05Qw1D

With the assumptions above [Botter et al., 2007a], flow increments are independent and exponentially dis-
tributed with mean 1=cQ.
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pDðqwÞ5cQexpð2cQqwÞ (5)

with q 2 R�0. Because the distribution of the sum of two independent random variables is given by the
convolution of the distributions of the individual random variables, the PDF and CDF of the streamflow at
the end of the wet season can be expressed by convolving pD and pQw .

pQ0ðq0Þ5
ðq0

0
pQw ðqwÞpDðq02qwÞdqw

5
c11m

Q

C m11ð Þ expð2cQq0Þqm
0

(6)

PQ0ðq0Þ5
CL 11m; cQq0
� �
C m11ð Þ ; (7)

The integration in equation (6) is bounded by q0 because the domain of pDðqwÞ (equation (5)) is nonnega-
tive. Q0 follows a gamma distribution with rate cQ identical to the rate of Qw and D and with a shape param-
eter m 1 1. The expectation of Q0 can be expressed as:

E Q0½ �5
m11
cQ

(8)

Q0 is thus an annual stochastic variable representing the interannual variability of the intensity of the rainy
season (Figure 2c).

2.1.3. Modeling Recession Relations
Following Andermann et al. [2012], we hypothesize that dry season streamflow is driven by the release of
water stored in the water table during the previous rainy season. We neglect the contribution of snow and
glacial melt and of dry season precipitation. During the rainy season, frequent recharge events minimize
variations of the water table level. Under these circumstances, the Boussinesq equation, which governs
water table discharge to the channel, is well approximated by its linearized solution, which is characterized
by an exponential travel time distribution [Brutsaert and Nieber, 1977] and an exponential recession of base
flow in the absence of recharge.

QwðtÞ5qwoe2kt (9)

where parameter k is the linear recession constant and qwo the peak flow at the beginning of the
recession.

Figure 2. (a) Estimation of the seasonality parameter at Khimti Kohla. The first vertical segment of the step function represents the median starting day of the wet-season flow regime.
The length of the following segment represents the median time until the last wet-season discharge peak. (b) Seasonal recession estimation at Khimti Kohla. Dark lines are fitted reces-
sions for a 5 0.00089 and b 5 2.09 given the observed initial streamflow. (c) Empirical histogram of the Khimti Kohla discharge at the end of the wet season for N 5 30 years. The histo-
gram is overlaid by the analytical PDF computed from equation (6). (d) Scatterplot of empirical a parameters estimated on the 31 considered catchments against corresponding values
obtained from equation (23). The solid line represents aEmp5aðk; bÞ, R250:98.
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Once frequent recharge ceases during the dry season, however, the water table undergoes a large transient
drawdown, corresponding to nonlinear discharge behavior and a power-law response time distribution
[Brutsaert and Nieber, 1977]:

dQ
dt

52aQb (10)

Here parameters a and b are assumed stationary and are related to aquifer characteristics (depth, surface
area, hydraulic conductivity, porosity, and drainage density), and to the boundary and initial conditions for
the water table. Integrating equation (10) provides the temporal evolution of the dry-season flow Qd given
an initial discharge q0 [Brutsaert and Nieber, 1977]

QdðtÞ5ðqr
02artÞ

1
r (11)

where r512b. Equation (11) provides a reasonable description of observed seasonal recessions, as qualita-
tively shown in Figure 2b.

2.1.4. Dry-Season Streamflow Distribution
Inverting equation (11) allows the time t� needed for the recession flow to reach the condition QdðtÞ � Q to
be computed. Then, knowing that QdðtÞ is decreasing, streamflow always meets the condition Qd � Q dur-
ing the period between t� and the end of the dry season. This allows the CDF of Qd conditional on the initial
flow Q0 to be found as (see Appendix A):

PQd jQ05q0
ðqd; q0Þ 5PfQd � qdjQ05q0g

5
jft 2 ½0; Td�jQdðtÞ � qdgj

Td

5

1; if qd > q0

0; if qd < ðK2arTdÞ
1
r

12
1

Td

qr
02qr

d

ar
; otherwise

8>>>>>><
>>>>>>:

(12)

where parameter Td is the duration of the dry season and where K5qr
0 if r> 0 and K 5 0 if r< 0 (implying

that 0 < b < 1).

Knowing the distribution of Q0 (equation (6)), we obtain the unconditional cumulative density function of
dry season flow by applying the law of total probabilities [Sornette, 2004]:

PQd ðqdÞ5
ð

Q0

PQd jQ0
ðqd;q0ÞpQ0ðq0Þdq0

5

11
qr

dC12c2r
Q C2

arTdCðm11Þ; if

qd>2ðarTdÞ
1
r

andr<0

11
qr

dC12c2r
Q C2

arTdCðm11Þ1
c2r

Q C41 qr
d2arTd

� �
C3

arTdCðm11Þ ;otherwise

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(13)
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with

C1 5CUðm11; cQqdÞ

C2 5CU r1m11; cQqd
� �

C3 5CU m11; cQðqr
d1arTdÞ

1
r

� �

C4 5CU r1m11; cQðqr
d1arTdÞ

1
r

� �

Full derivations of equations (12) and (13) are provided in Appendix A.

2.1.5. Period-of-Record Flow Duration Curve
Thanks to the memoryless property of the exponentially distributed runoff increments D1Qstorm, the flow
Q0 representing the initial condition at the beginning of the dry season can reasonably be assumed inde-
pendent from wet-season daily streamflow Qw. Daily discharge during the wet and daily discharge during
the dry season are therefore two independent random variables and the CDF of streamflow (unconditional
on the season) can be expressed as a weighted average of the underlying seasonal CDFs (equations (3) and
(13)) [Botter et al., 2008]:

PQðqÞ5 12
Td

365

� �
� PQw ðqÞ1

Td

365
� PQd ðqÞ (14)

The period-of-record flow duration curve (PoRFDC) is computed by inserting the unconditional CDFs of wet
and dry season streamflow (equations (3) and (13)) and plotting the streamflow quantiles q against
12PQðqÞ, the complement of the assembled streamflow CDF.

2.1.6. Annual Flow Duration Curves
While the PoRFDC lumps the intra and interannual character of streamflow variations, variability on these
two time scales can be separated using annual flow duration curves (AFDC). Empirical ADFCs are con-
structed for each year using the streamflow records for that year only. The quantile-by-quantile median of
the exceedance probabilities from all available AFDCs and their related confidence intervals describe the
flow regime of a typical (though hypothetical) year and its interannual variation [Vogel and Fennessey, 1994].
Both of these can be quite different from the PoRFDC. The information provided by AFDCs is of particular
relevance in water resource management applications, where costs and benefits are calculated on a yearly
basis, and where the high degree of interannual variability characteristic of seasonally dry climates has
direct implication for infrastructure design.

In the proposed model, dry season base flow is driven by an annual stochastic process—the streamflow Q0

generated following the last wet season storm, and a deterministic intra-annual recession. These features
mean that intra and interannual streamflow variation can be readily disentangled. During the wet season,
we model daily streamflow Qw as the product of two independent random variables: an annual stochastic
index flow QAF;w and a dimensionless daily streamflow Q0w . This stochastic index flow approach has been
successfully applied to predict both PoRFDCs and AFDCs in ungauged basins [Castellarin et al., 2007] and
was recently adapted for intermittent streams [Rianna et al., 2013]. Here, we consider mean runoff as the
stochastic index flow for the wet season:

QAF;w5
1

Tw

XTw

t51

Qw;t; (15)

where Tw53652Td is the (assumed constant) duration of the wet season. Because all daily realizations Qw;t

of wet season base flow follow an identical gamma distribution, the CDF of QAF;w is a linear transformation
of the Tw-fold convolution of the CDF of Qw given in equation (3):
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PQAF;w ðqAF;wÞ5PTw�
Qw
ðTw � qAFÞ5

CLðTw �m; Tw � cQqAF;wÞ
CðTw �mÞ ; (16)

where PTw�
Qw

denotes the Tw-fold convolution of the CDF of Qw. The dimensionless daily streamflow Q0w dur-
ing the wet season is obtained by dividing Qw by its expectation. Its CDF can be expressed as:

PQ0w ðq
0
wÞ5PQw ðlQw

� q0wÞ5
CLðm;m � q0wÞ

CðmÞ ; (17)

where lQw
5 m

cQ
is the expectation of Qw.

The CDF of annual quantile n (e.g., n 2 f0:5; 0:05; 0:95g provides the median AFDC and the bounds of its
90% confidence interval) can be expressed as:

PQjnðqÞ5 12
Td

365

� �
� PQ0w

q

QðnÞAF;w

 !
1

Td

365
� PQd jQ05q0

ðq;QðnÞ0 Þ; (18)

where QðnÞAF;w and QðnÞ0 are the n-quantile realizations of QAF;w and Q0, that is the inverse function (taken at
quantile n) of the CDFs of equations (16) and (7). PQ0w and PQd jQ05q0

are the CDFs representing the intra-
annual streamflow variations in the wet (equation (17)) and dry (equation (12)) seasons. Since the function
QdðtÞ is monotonic in Q0 (equation (11)), larger realizations of Q0 lead to larger values of Q(t) everywhere. As
a result QðnÞ0 , the n-quantile realization of Q0, corresponds to the n-quantile realization of QdðtÞ for all t.
Therefore, inserting the resulting QðnÞ0 into the conditional dry-season CDF (equation (12)) allows analytical
expressions for the median AFDC and the considered confidence interval to be derived during the dry sea-
son despite Q0 and Qd being correlated.

2.2. Parameter Estimation
The derived model has six parameters (Td, k, cQ, a, b, k) related to rainfall and catchment properties. These
parameters can be estimated from streamflow or rainfall time series as described below. Summary statistics
of the parameters estimated for the case studies are given in Table 1.

2.2.1. Rainfall Parameters
The frequency k and mean intensity 1=cQ of wet-season runoff events and the duration Td of the dry season
are all driven by the stochastic structure of rainfall, though k and cQ are also affected by the soil, vegetation,
and geomorphology of the catchment. These parameters can alternatively be estimated from streamflow or
rainfall time series.

Using streamflow, the duration of the rainy season is estimated each year by fitting a step function to the
streamflow time series (Figure 2a). Td is then obtained by subtracting the median duration of the rainy sea-
son from 365. k and 1=cQ are estimated by considering the subset S of rainy season days with a positive dis-
charge slope (i.e., day t is selected if Qt21 < Qt11) during the rainy season. We then have

k5
NS

Td
; (19)

1=cQ5
1

2NS

X
t2S

Qt112Qt21 (20)

where NS is the length of S.

Using rainfall, kP can be estimated based on the frequency of rainy season precipitation, and then k com-
puted via equation (1), drawing on estimated evaporation potential and soil textural properties. The param-
eter cQ can be calculated from the mean intensity of rainfall events (equation (4)), combined with the
catchment area and the estimated wet-season recession constant, k. Td can be approximated by fitting a
step function to rainfall time series instead of daily streamflow. The resulting dry season duration Td;rain

slightly underestimates Td (Table 1) as groundwater recharge causes a time lag between the onset of wet
season rainfall and the associated flow response. In the catchments considered in our case study, this lag is
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correlated at the 99% confidence level to both aquifer storage characteristics (parameter a) and the dura-
tion Td;rain of the dry season. Thus we estimate Td from rainfall time series empirically by regressing linearly
the lags Td2Td;rain against Td;rain and a, which estimation method is provided below.

Td5Td;rain1h01hTd;rain Td;rain1haa (21)

where h052129:13, hTd;rain 520:47, and ha5146:49 are the ordinary least squares coefficients of the regres-
sion (R250:53).

2.3. Recession Parameters
Due to the multiplicity of flow generation processes concurrently represented in a hydrograph, the empiri-
cal determination of recession parameters from streamflow time series is a significant challenge and an
active field of research [see e.g., Tallaksen, 1995; Nathan and McMahon, 1990; Stoelzle et al., 2013].

Here, we estimate the wet-season recession constant k by (i) identifying all recessions (consecutive days of
decreasing streamflow) longer than 4 days during the rainy season and (ii) estimating the parameters of
equation (9) by regressing the logarithm of the discharge against time for each recession segment [Tallak-
sen, 1995]. The recession constant is then obtained by taking the median value of the recorded slope coeffi-
cients of the regression.

Dry-season recession constants a and b are calibrated stochastically based on equation (11). The initial con-
dition Q0 is estimated each year as the streamflow value at the last peak before the end of the wet season

Table 1. Descriptive Statistics of Catchments by Regiona

W. Australia Nepal California

N 5 6 N 5 24 N 5 8

Catchments
Number of years 26 (15, 35) 19 (17, 22) 50 (33, 61)
Area (km2) 306 (22, 802) 813 (512, 2380) 126 (110, 218)
Altitude range (m) 186 (179, 223) 4380 (3120, 6190) 921 (792, 1150)
Max snow cover (% area) 0 (0, 0) 16 (8, 32) 0 (0, 0)
Glaciated watershed 0% (0) 29% (5) 0% (0)
Intermittent flow 100% (6) 6% (1) 50% (4)
Model Parameters
a ððm3=sÞ1-b d2-b Þ 0.13 (0.12, 0.20) 33 (4.8, 9.5) ð1024Þ 0.036 (0.011, 0.052)
b 1.60 (1.44, 1.76) 2.40 (2.11, 2.51) 1.86 (1.81, 1.91)
k (d21) 0.26 (0.19, 0.30) 0.16 (0.12, 0.19) 0.25 (0.19, 0.26)
k ðd21Þ 0.33 (0.32, 0.34) 0.42 (0.40, 0.44) 0.24 (0.23, 0.25)
1=cQðmm Þ 1.17 (0.64, 2.16) 28.7 (18.5, 60.2) 5.64 (3.48, 15.09)
Td (d) 299 (295, 299) 280 (273, 286) 306 (305, 306)
Gauged Rainfall
Annual Rain (mm) 821(719, 925) 2170 (1630, 3230) 616 (479, 769)
kp (d21) 0.52 (0.48, 0.55) 0.66 (0.62, 0.83) 0.48 (0.47, 0.49)
1=cp (mm) 10.30 (9.63, 10.56) 22.26 (16.87, 27.49) 10.35 (7.42, 13.04)
AR 0.34 (0.33, 0.36) 0.23 (0.17, 0.40) 0.40 (0.36, 0.44)
GS 0.86 (0.78, 0.96) 1.01(0.86, 1.53) 0.74 (0.72, 0.75)
Td;rainðdÞ 262 (255, 269) 279 (266, 286) 286 (281, 292)
CVTw 0.25 (0.19,0.28) 0.20 (0.17,0.23) 0.29 (0.27,0.32)
Model Performance (Estimated Based on Streamflow Input)
Nash-Sutcliffe Coefficient of Log-Transformed Streamflow Quantiles
Period of Record
Whole year 0.67b (0.60,b 0.77b) 0.90 (0.84, 0.92) 0.97b (0.91,b 0.98b)
Dry season 0.89 (0.86, 0.94) 0.15 (20.50, 0.60) 0.65 (0.64, 0.73)
Wet season 0.43b(0.22,b 0.60b) 0.78 (0.61, 0.83) 0.95b(0.84,b 0.96b)
AFDC
Median 0.65b (0.58,b 0.77b) 0.91 (0.84, 0.94) 0.94b(0.92,b 0.96b)
Upper CI90 0.23b (0.18,b 0.62b) 0.73 (0.67, 0.80) 0.60 (0.45, 0.65)
Lower CI90 0.77b (0.76,b 0.88b) 0.90 (0.85, 0.94) 20.42b (25.15,b 0.40b)

aIn this table, Qm ðQ25;Q75Þ represent the lower quartile Q25, the median Qm, and the upper quartile Q75 for continuous variables. N is
the number of nonmissing values. Numbers after percents indicate the number of catchments. Model parameters are estimated from
the observed hydrographs. Nash Sutcliffe coefficients are computed on flow quantiles 1/365 to 364/365.

bIntermittant flow at one or more gauges: nonpositive flow quantiles are omitted.

Water Resources Research 10.1002/2014WR015301

M€ULLER ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 5518



identified by the fitted step function. The estimates of a and b that minimize the sum of squared errors
between the modeled (equation (11)) and observed dry season base flow across all years are determined
numerically through simulated annealing [B�elisle, 1992]. Due to the low frequency of rainfall and over-
whelming dominance of base flow in the dry season, the estimation of a and b through this method
appears to be robust to the choice of base flow separation method—here the Lyne Hollick algorithm
[Nathan and McMahon, 1990]. The more direct method of regressing the log-transformed rate of change of
discharge against the log-transformed base flow [e.g., Brutsaert and Nieber, 1977; Ceola et al., 2010] resulted
in biased estimates of a and b in our case study because the discharge rate is not detectable on a daily scale
on a substantial part of the recession.

Alternatively, because the wet-season recession constant k and the dry-season recession parameters a and
b describe the same watershed, they must be related. For consistency between long and short recession
behavior, we require that the power-law recession (left-hand side of equation (22)) be approximated by an
exponential recession (right-hand side of equation (22)) for sufficiently short recession times t:

ðqr
02artÞ

1
r 5q0e2kt (22)

Substituting q05E½Q0� (equation (8)), the expected value of flow peaks, and t51=k, the mean duration of
recessions during the wet season into equation (22), we solve for a:

a5
k

2r
e

2r
m 21

� � m11
cQ

� �r

(23)

In the analysis, k is estimated independently from a and b using equations (9) and (10). However, we test
the ability of equation (23) to reproduce the obtained estimate of a in section 3.1.

2.4. Evaluation Metric
Following Castellarin et al. [2004b], we compare analytical and empirical FDCs using the Nash-Sutcliffe Coef-
ficient (NSC) applied to the flow quantiles:

NSC512

X350

j51

q̂j2qj
� �2

XN

j51

qj2
1
N

X350

j51

qj

 !2 (24)

where q̂j and qj are the empirical and analytical daily streamflows associated with quantile j.

Castellarin et al. [2004b] use NSC intervals (½0:75; 1�: good, ½0:5; 0:75�: fair, ½21; 0:5�: poor) to evaluate FDC
regionalization methods at ungauged sites. Although this study does not consider ungauged catchments,
we use the above intervals as benchmarks to quantify the performance of the model. In order to mitigate
the outlier effect of large floods, we take the logarithm of the flow quantiles before computing the NSC.
Note that although representative of the overall modeling performance, the NSCs are not necessarily repre-
sentative of the model’s utility in the context of a specific application, which hinges on its ability to predict
the duration of particular flows that are exogenously determined by design constraints (e.g., the design
flow Qd in the case of run-of-river hydropower). Therefore, we use error-duration curves [Pugliese et al.,
2013] to assess the repartition of the errors across flow quantiles. The curves represent the median 40% and
80% empirical confidence interval of the relative residuals of streamflow values against their duration.

2.5. Numerical Analysis
Rainfall in several seasonally dry climates does not always follow a Poisson process [Katz and Parlange,
1996; M€uller and Thompson, 2013]. Similarly, many watersheds exhibit nonlinear recession behavior, which
indicates a nonexponential travel time distribution. We evaluate the robustness of the FDC model to the
violation of these two assumptions through a numerical analysis, in which we generate streamflow data by
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routing non-Poissonian synthetic rainfall through a nonlinear water table and compare the resulting FDCs
to those obtained using equation (3).

To generate synthetic streamflow, we first generate synthetic rainfall time series in which rainfall occurrence
is more or less autocorrelated, and in which rainfall intensities follow a gamma distribution [M€uller and
Thompson, 2013]. By forcing the first-order autocorrelation parameter (AR) to 0, and the shape parameter of
the gamma distribution (GS) to 1, these assumptions can replicate a Poisson Process. The synthetic rainfall
forces a vadose zone soil moisture balance model with linear losses to evapotranspiration [Botter et al.,
2007a; Porporato et al., 2004]. The resulting water table recharge R replenishes a nonlinear water table yield-
ing a runoff Q described by Kirchner [2009]

dðlnðQÞÞ
dt

5aQb22 R
Q

21

� �
; (25)

where a and b are nonlinear recession parameters (equation (10)). This initial value problem was solved
numerically with the lsodes solver [Soetaert et al., 2010].

We test the model’s robustness to non-Poissonian rainfall and nonexponentially distributed response
times (Hypothesis H1) by (i) generating a 10,000 day long synthetic streamflow record, (ii) estimating the
parameters k, k, and cQ from the synthetic time series, (iii) constructing the empirical FDC from synthetic
streamflow, and (iv) comparing it to the analytical FDC (equation (3)) computed from the estimated
parameters. The Poissonian character of rainfall was progressively eroded by altering the first-order auto-
correlation coefficient on rainfall occurrence (AR) away from 0 within the [–0.3,0.7] range. The exponential
character of the rainfall intensity distribution was progressively eroded by altering the shape parameter
(GS) away from 1 within the [0.02, 2] interval. Nonlinearity was investigated by increasing the exponent b
of the recession relation from 1 (i.e., the linear case of exponential distributed travel times) to a maximum
value of 3. The effects of both non-Poissonian rainfall and nonlinear water table recessions on the stream-
flow FDC are expected to decrease with increasing rainfall frequency, and kP was therefore varied in the
range [0.2, 0.8].

We also assessed the robustness of the model to random interannual variations in Tw, the duration of the
wet season, by simulating 30 years of streamflow over 1000 Monte Carlo runs. At each run, 30 instances of
Tw are drawn from a gamma distribution with a given mean (lTw

) and coefficient of variation (CVTw ). Wet-
season streamflow time series of length Tw are then generated for each year as described above, and a non-
linear recession of length 3652Tw is finally appended to each year’s simulated wet season. Modeling per-
formance is evaluated by computing the NSC of the modeled PoRFDC, median AFDC and 5th percentile
AFDC (which all assume a constant Tw) against corresponding simulated streamflow distributions. We inves-
tigate the effects of fluctuations in the mean and variability of Tw by varying lTw

in the [40,120] interval and
CVTw in the [0,4] interval—the further CVTw is from 0, the larger the random interannual variations in the
duration of the wet season.

2.6. Case Studies
We rely on observed streamflow data to evaluate whether dry-season streamflow PDF can be constructed
from a deterministic recession relationship with a stochastic initial condition (Hypothesis H2). We used daily
streamflow observations from 24 catchments in Nepal (Nep) [HKH-FRIEND, 2011; Department of Hydrology
and Meteorology, 2011], 8 in Coastal California (CA) [United States Geological Survey, 2013], and 6 in Western
Australia (WA) [Department of Water, 2013] with between 11 and 76 (mean: 18) years of daily streamflow
records. The location of the gauges is shown in Figure 1, and Table 1 provides a summary of the relevant
catchment characteristics and rainfall statistics from daily rainfall time series recorded by precipitation
gauges [HKH-FRIEND, 2004; Department of Hydrology and Meteorology, 2011; California Irrigation Manage-
ment Information System, 2013; Bureau of Meteorology, 2013] closest to the catchment centroids. Nepalese
watersheds are subject to the seasonality of the Indian Summer Monsoon and to the complex topography
and variable soil depths of the Central Himalayas. Californian and Southwestern Australian watersheds are
subject to a highly seasonal Mediterranean climate with significant winter precipitation. While Californian
watersheds are characterized by shallow soils and complex topography, Australian catchment are flat with
deep soils.
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The modeling approach is tested by comparing empirical PoRFDCs and the median and 90% empirical con-
fidence interval on AFDCs generated from dry season streamflow to their analytical counterparts. Because
the main stochastic driver of dry season streamflow (Q0) is an annual random process, the evaluation of
AFDCs is done on the gauges with more than 20 years of available data. Empirical PoRFDCs (using both wet
and dry season streamflows) are finally compared to their analytical counterparts.

The predictive ability of the method is assessed by reproducing the above analyses using rainfall (instead of
streamflow) data to estimate k and cQ. In order to limit the effect of spatial rainfall heterogeneities, which
can be significant in the Himalayas [M€uller and Thompson, 2013], the rainfall-based parameters are com-
puted for a subset of three catchments (two in Nepal and one in Western Australia) that are small and
where the catchment centroid is close (<20 km ) to a rainfall gauge (Table 2).

2.7. Application: Estimation of Electricity Production Using Flow Duration Curves
One final analysis was conducted to illustrate the potential value of the modeling approach for infrastruc-
ture design, including an analysis of error not only in the FDC itself, but in the propagation of any such
errors into infrastructure design criteria. Flow durations have a direct impact on energy production from
run-of-river hydropower facilities. The energy produced by a hydropower plant in a period T is the time inte-
gral of instantaneous power generated from the available discharge:

Table 2. Rainfall-Estimated Catchmentsa

Khimti Kohla (K) Modi Kohla (M) Ellenbrook (E)

Catchments
Location Nepal Nepal W. Australia
Nyr 30 21 38
Area ðkm 2Þ 310 142 581ð90Þ
ZRge ðkm Þ 3.8 4.5 0.2
Snow (%) 12.1 6.5 0.0
AI 1.92 2.87 0.34
Interm. ðd=yr Þ 0 0 142
Pyr ðmm=yr Þ 2230 3350 653
kPðd21Þ 0.90 0.91 0.49
c21

P ðmm Þ 18.8 28.9 8.3
AR 0.23 0.51 0.33
GS 1.09 1.23 0.76
Td;rainðdÞ 277 286 252
CVTw 0.19 0.19 0.24
Model Parameters
a ððm3=sÞ1-b d2-b Þ 0.00089 0.0015 0.129
b 2.09 2.14 1.78
k ðd21Þ 0.11 0.18 0.30
k ðd21Þ 0.44 0.44 0.34
c21

Q ðmm Þ 18.9 14.1 2.3
Td (d) 276 285 300
Model Performance (Estimated Based on Precipitation Input)
Nash-Sutcliffe Coefficient of Log-Transformed Streamflow Quantiles
Period of Record
Whole year 0.97 0.95 0.69b

Dry season 0.92 0.85 0.22b

Dry season base flow 0.97 0.93 0.77b

Wet season 0.83 0.93 0.82
AFDC
Median 0.98 0.96 0.70b

CI90 (top) 0.75 0.76 0.05b

CI90 (bottom) 0.96 0.99 0.72b

aIn this table, Nyr is the number of complete years with available observations, ZRge the altitude range of the catchment, DRnGge the
distance between the catchment centroid and the nearest rain gauge, Snow the maximum snow covered area ratio, AI is the aridity
index P/PET, Interm the average number of days per year without flow and Pyr is the mean yearly rainfall, kP is the rainfall frequency dur-
ing the wet season and cP the inverse of mean rainfall intensity. AR is the first-order autocorrelation coefficient of rainfall occurrence, GS
is the shape parameter of a gamma distribution fitted on rainfall intensity, Td;rain the median dry season duration estimated from precip-
itation time series, and SDðTd;rainÞ its standard deviation. Model parameters are estimated based on gauged rainfall, assuming actual
evapotranspiration values of 2:1mmd 21 (Nepal) and 1.6 mmd 21 (W. Australia), and soil moisture capacities of 16 mm (Nepal) and
150 mm (W. Australia). The approximate catchment area effectively contributing to the Ellenbrook streamflow is given in parenthesis.
Nash Sutcliffe coefficients are computed on flow quantiles 1/365 to 365/365. The model performance reported for Ellenbrook is based
on the 90km 2 of catchment contributing to streamflow, not the 581km 2 topographic watershed.

bIntermittant flow: nonpositive flow quantiles are omitted.
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E5qgH
ðT

0
gðQ�ÞQ�ðDÞdD (26)

where q is the density of water and g the acceleration due to gravity. H is the (assumed constant) net
hydraulic head drop across the turbine. Q�ðDÞ is the average discharge passing through the turbines on day
D and is related to the FDC Q(D), the design capacity QDC and the minimal flow discharge prescription MDF
[Basso and Botter, 2012].

Q�ðDÞ5
QðDÞ2MDF; if QðDÞ2MFD < QDC

QDC ; otherwise

(
(27)

The streamflow effectively used to generate electricity is thus bounded by the design capacity of the tur-
bine. Predicting electricity production therefore requires correctly estimating by the duration of the lower
quantiles (i.e., QðDÞ < QDC) of the FDC. Turbine efficiency gðQ�Þ may be modeled as a step function with
constant value of gT above a discharge threshold aT Qd , below which no electricity is produced. If N such tur-
bines are combined, the plant will have an overall design flow of N � QDC and will function with an efficiency
of gT for flows above aT � QDC .

Table 3 displays the design parameters of two hydropower plants located directly downstream of the Nepa-
lese streamflow gauges included in the analysis in Table 2. The practical relevance of the FDC model
derived here is tested by propagating the modeling errors from FDCs to electricity production estimates.
First, the long-term annual electricity production is evaluated based on the period-of-record analytical FDC
determined from rainfall parameters, and compared to production estimates based on empirical FDC. The
(rainfall estimated) median AFDC and the lower bound of the 90% CI are then used to estimate the electric-
ity production in a typical and particularly dry year.

3. Results

3.1. H1: Numerical Analysis
Results from the Monte Carlo analysis are presented in Figure 3, showing the outcomes of the three numeri-
cal experiments described in section 2.5.

With Nash Sutcliffe coefficients (NSC) above 0.97 within the range of parameters encountered in our case
studies (i.e., kP > 0:4, GS> 0.7, AR 2 ½0; 0:5�), the first experiment showed that non-Poissonian rainfall has a
negligible effect on the model’s ability to reproduce wet season streamflow (Figures 3a and 3d). With
effects on the NSC below 0.1, autocorrelated rainfall occurrence has little effect on model performance,
especially for high rainfall frequencies. Gamma distributed (rather than exponentially distributed) rainfall
intensities significantly affect the model performance for shape factors< 0.5, as NSC tends toward 21
when GS tends toward 0.

In line with Ceola et al. [2010], the second experiment (Figure 3b and e) showed that nonexponentially dis-
tributed water table travel times have a significant effect on the model performance. The effect was espe-
cially visible when the power coefficient b was above 2, denoting a hyperbolic storage-discharge relation
[Kirchner, 2009]. However, as hypothesized in section 2.1.3, the effect of nonlinearities decreased with
increasing rainfall frequency. Although most catchments are characterized by b> 2 (Table 1), the high fre-
quency of rainfall allowed modeling the catchments as linear reservoirs during the rainy season, resulting in
a good match (R250:92) between the nonlinear recession parameters a obtained from equation (23) and
the corresponding empirically estimated values of a (Figure 2d).

The third experiment showed that within the range of seasonality parameters encountered in our case
studies (i.e., CVTw < 0:5 and lTw

2 ½60; 100�), stochastic variations in the duration of wet seasons do not
have a significant impact on the performance of the any of the FDC models. The lower-quantile-AFDC
(filled symbols in Figure 3f) appears more sensitive to random variations in Tw which affect modeling per-
formance for CVTw values as low as 0.5 at a mean Tw of 40 days. In all the other considered cases (median
AFDC, PoRFDC), variations in Tw only seem to have a significant effect on the modeling accuracy for CVTW

values above 1.
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3.2. H2: Case Studies
3.2.1. Hydrograph-Based Analysis
Nash-Sutcliffe coefficients for FDCs from the 38 catchments are presented in Table 1, using direct
hydrograph observations to estimate the model parameters k and cQ, and thus excluding errors introduced
by precipitation observation and the vadose zone model parameterization. The corresponding error-
duration curves, which display the repartition of the relative errors across flow durations, are presented in
Figure 4.

Table 3. Design Parameters and Electricity Production Estimates of Two Nepalese Run-of-River Hydropower Plantsa

P (MW) QDC (m3s21) H (m) Turbine

Observed (GWhy21) Modeled (GWhy21)

PoR.

AFDC

PoR

AFDC

Median 5th% Median 5th%

Khimti 1 60 5xPelton :

gT 50:82

aT 50:24

409 409 338 391 393 379

Modi 13 26 67 2xFrancis :

gT 50:75

aT 50:05

53.8 53.5 45.9 46.0 47.0 41.0

aThe observed production is computed from observed streamflow records. The modeled production is estimated using the analytical flow duration curve models based on rainfall
records. The long term, median, and 5th percentile annual productions are calculated based on the PoRFDC, and median and 5th percentile AFDC, respectively. The assumed mini-
mum flow discharged (MFD) is 0.5 m3s21.
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Figure 3. Results of Monte Carlo analyses showing the (a and d) effects of non-Poissonian rainfall and (b and e) nonexponentially distrib-
uted water table response times on the model performance (as measured by the NSC) for wet season streamflow. The effect on model per-
formance for a (c) stochastic wet season duration on PoRFDCs, median (f) AFDC (white symbols) and 5th percentile AFDC (Figure 3f, black
symbols). Default parameters: A56500km2, ETP53:5mm � d21, nZrðs12swÞ5180mm , cP50:06mm21, kP50:73d21, k50:6d21, b 5 1,
AR 5 0, GS 5 1.

Water Resources Research 10.1002/2014WR015301

M€ULLER ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 5523



Most period-of-record FDCs are well reproduced by the model with median logNSC above 0.65. With a
median logNSC of 0.43, the wet season in Nepal is a notable exception. There the fit is significantly better
on high flow (nonlog transformed NSC 5 0.79). The observed underestimation of low flows (Figure 4a) can
be attributed to a strong deviation from the exponential response time assumption in Nepalese basins
(median b 5 2.40). Yet the errors generally do not propagate to nonseasonal FDCs because dry season
streamflow is driven by the last wet season peak, which appears to be well estimated, as seen on Figure 4b
at duration 0. A second exception to the generally good PoRFDC estimates arises for the dry-season FDC in
WA (median logNSC 5 0.15). With a median (nonlog transformed) dry-season NSC of 0.70, the poor perform-
ance in WA is explained by the intermittent nature of the streams and the exaggerated impact of very low
flows on the logNSC.

Predictions of the median dry-season AFDC overall were good with median logNSC above 0.64. With a
median logNSCs of 0.75, the lower bound of the 90% CI was well reproduced in Nepal and WA, but not CA,
where flow quantiles were overestimated (and caused the large spread of error observed in Figure 4e). The
model reproduced the upper bound of the 90% CI with median logNSC> 0.6 in Nepal and California and a
median logNSC dropping to 0.23 in WA.

3.2.2. Rain-Based Analysis
The FDCs related to Khimti (Nepal) and Ellenbrook (WA), the two catchments selected for the rain-based
analysis are presented in Figure 5. Unlike the results summarized in Table 1, the parameters Td, k, and cQ

of the analytical FDCs were calculated from the seasonality, frequency and intensity of gauged rainfall,
taking locally reported values for actual evapotranspiration and available soil moisture capacity (Table 2).
The examples in Figure 5 were selected to illustrate model performance for a subset of catchments deviat-
ing from standard model assumptions: (1) FDC estimation in a nonhomogeneous, arid catchment; (2)
Effects of poorly marked seasonality with significant dry season rainfall, and (3) Spatially heterogenous
rainfall. We explore the consequences of these deviations and some opportunities to adapt the simple
model.

Example 1 concerns FDC estimation in arid catchments, as exemplified by Ellenbrook (WA) (Figures 5e–5h).
There, the overestimation of wet season streamflow (Figure 5e, dotted line) is likely attributable to
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Figure 4. Error-duration curves. The thick line represents the median of the relative error for a given streamflow duration across all sites.
The dark and light gray nested bands contain 40% and 80% of the relative errors, respectively. The hashed line is the median FDC normal-
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geological heterogeneities in a catchment where a significant proportion of the catchment area recharges
groundwater rather than contributing to surface flow [Barron et al., 2009]. Reducing the modeled catchment
area to the 20% of the catchment thought to supply the majority of base flow [Barron et al., 2009] increased
the model performance dramatically (solid line).

Example 2 concerns the assumptions that no runoff occurs during the dry season. This leads to an underes-
timation of the duration of high flows during the dry season in locations poorly marked rainfall seasonality.
This effect is particularly visible in Ellenbrook (WA) (Figure 5f), where the underestimation of dry season
streamflow propagates to the PoRFDC. However, if the model output is compared to base flow (gray dia-
monds) rather than total flow (black dots) then the performance metrics drastically improve in both catch-
ments (Figures 5b and 5f). This assumption may also explain the underestimation of the higher bound of
the 90%CI of the AFDCs (Figures 5e and 5h): dry season precipitation is likely to occur in particularly wet
years. Conversely, dry season precipitation is less likely to occur in particularly dry years, leading to the
improved fits for the lower-quantile-AFDC.

The final example relates to the misestimation of parameters in areas with spatially heterogeneous rainfall,
which likely explains the underestimation of wet season flows in Khimti by rainfall-estimated parameters
(Figure 5a). While the model performs well for streamflow-derived statistics, estimating catchment-
averaged rainfall parameters from rain gauge observation is challenging because of the complex topogra-
phy [M€uller and Thompson, 2013].

Despite these limitations, the analytical FDCs derived from rainfall-estimated parameters reproduced their
empirical counterparts well, with most logNSCs above 0.75 (Table 2). In particular, while neglecting snow-
melt contribution, the model performed well for all the FDC types at Khimti (logNSC> 0.75) despite signifi-
cant snow/ice cover (12%). The model was also able to reproduce specific hydrologically significant
quantiles like the change in streamflow regime, visible at a duration of 0.3 on the PoRFDC and median
AFDC in Khimti (Figures 5c and 5d), and the duration of the absence of flow during the dry season in Ellen-
brook (Figure 5f). Finally, the estimation method (hydrograph or rainfall) had little overall impact on the
good performance of the model.
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3.3. Application: Estimation of Electricity Production Using Flow Duration Curves
Electricity production estimates for the two Nepalese hydropower plants are presented in Table 3. The
long-term average, median, and 5th quantile of the annual power production are estimated using empirical
FDCs (Observed Prod.). These empirical results are then compared to the corresponding values obtained
from the analytical FDCs (Modeled Prod.) based on parameters estimated using rainfall time series. Electricity
production is generally underestimated for the catchments (particularly at Modi Kohla). This is related to
the underestimation of the duration of high flows (Figure 5a) caused by the lower seasonality of the region,
which experiences pre and post-Monsoon storms. Conversely, electricity production is overestimated on
dry years (5th percentile) at Khimti Kohla because from the inability of the model to reproduce the low flow
conditions of the stream in dry years, when low discharge prevents generation for 2 weeks. This error
source is amplified when considering production variability, that is the difference in production between a
typical (i.e., median) and dry (i.e., 5th percentile) year. The error on production variability reaches 80% in
Khimti and 30% at Modi. Overall, however, the predictions of annual power production were excellent, with
errors below 15% for long-term average production and below 12% for annual production quantiles.

4. Discussion

4.1. H1: The Wet-Season FDC Model Is Robust to Deviations From Key Underlying Assumptions
Although the derivation of the original model relies on exponentially distributed response times, rainfall
intensities and rainfall interarrival times, our results show that predictions of wet-season streamflow PDFs
are relatively robust to small deviations from these assumptions. Yet the combination of hyperbolic
storage-discharge relationships and low rainfall frequency reduced the model predictive ability. This situa-
tion arises in the strongly nonlinear recessions in Nepal, where the model overestimates the flashiness of
wet season recession. There, this effect was nonetheless mitigated by the high rainfall frequency occurring
during the ISM and had little effect on modeling accuracy beyond the wet season.

The assumption of a spatially heterogeneous watershed was violated in Ellenbrook (WA) in which regions
with a sandy geology do not generate streamflow. With known geology, these effects could be satisfactorily
corrected by adjusting the contributing area of the watershed.

Finally, the challenges associated with estimating catchment-scale effective rainfall statistics is illustrated by
the case of Khimti (Nep), in which the model performs well for streamflow-derived statistics, but cannot
reproduce these statistics based on the single rain gauge measurement in the topographically complex
Himalayan catchment.

Thus, the modeling approach performs well in gauged basins, and holds promise for future application to
ungauged basins.

4.2. H2: The Dry-Season FDC Can be Modeled as a Deterministic Recession Relationship With a
Stochastic Initial Condition
We modeled dry season streamflow as an annual stochastic process driven by the intensity of the previous
wet season and subject to a deterministic recession. Empirical dry-season FDCs in our case studies suggest
that this simple model captures key flow behavior in seasonally dry regions. The high rainfall seasonality
characteristic of these regions is a key prerequisite for the model to be applicable, as evidenced by its
poorer performance during the dry season at Ellenbrook (WA). There, a 48 day lag has been observed
between the beginning of wet season precipitation and a persistent streamflow rise. Runoff increments dur-
ing that time lead to the underestimation of high flows during the dry season.

While numerical simulations have shown that the model is robust to fluctuations in the timing and duration
of the wet season, unaccounted fluctuations in the frequency and intensity of dry season storms affects
modeling performance in watersheds with weaker rainfall seasonality. This, along with the likelihood that
during extreme rainfall events flow generation processes bypass the water table, also explain the model’s
poor prediction of the higher CI bound on the AFDCs.

Generally, qualitative results (Figure 2) and the overall good modeling performance on long term and
annual FDCs support the utility of the proposed model and point toward water table discharge as the main
mechanism for dry-season flow production in the considered catchments. Intra-annual flow variations are
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deterministically driven by the water table, while interannual variations are stochastically forced by wet sea-
son rainfall. In the Nepalese context, this supports previous findings [Andermann et al., 2012] pointing
toward the storage in the fractured bedrock and subsequent release of large volumes of water from the
previous monsoon as a key flow generation mechanism. Unlike existing models for seasonally dry climates
[e.g., Rianna et al., 2013; Pumo et al., 2013], where an atom of probability associated to zero flow is assigned
to the entire dry season, our approach allows accounting for that important mechanism. In Nepal, integrat-
ing such a seasonal recession in our model improved the median NSC on period-of-record FDCs by 0.18,
compared to an alternate model where a constant dry season flow of zero was assumed. Our results also
support the conclusion that the contribution of snow and glacial melt to streamflow variability is small in
the Central Himalayas—up to 10% of the streamflow volume according to Chalise et al. [2003].

Although the method allowed FDCs to be modeled in relatively dry areas like California, modeling discharge
in arid climates remains a significant challenge [Castellarin et al., 2013]. Under such conditions, temporal
shifts and/or spatial heterogeneities can have a very significant effect on streamflow. Thus the Ellenbrook
catchment (WA), where local geological conditions affect the ability of the hillslope to generate streamflow
[Barron et al., 2009] and where a 20% decline in rainfall since 1970 has led to a 65% decline in average
streamflow [Thompson et al., 2013a], likely represents a limiting case with respect to the applicability of the
proposed model in arid catchments. Nonetheless, period-of-record FDCs were successfully modeled at all
locations with most median NSC coefficients above 0.75—the good fit benchmark of 0.75 in Castellarin et al.
[2004].

4.3. Practical Relevance
Being able to estimate the inter and intra-annual variation of streamflow has considerable practical impor-
tance, notably to inform water resources and ecosystem management policies [Richter et al., 1997, 2003]
and hydropower operations. This was particularly evident in the run-of-river power generation case study,
where electricity production can decrease by up to 20% in dry years, potentially affecting the short term
financial sustainability of the infrastructure. Our analysis of two Nepalese run-of-river power plants has
shown that a significant fraction of the interannual variation of electricity production can be reproduced
using rainfall statistics and recession constants to model the interannual variability of wet season stream-
flow. The model allows the ensuing cash-flow variability to be accounted for during the design phase of the
infrastructure, which is currently typically based on period-of-record FDCs and assumes constant annual rev-
enues [e.g., Hosseini et al., 2005; Santolin et al., 2011; Basso and Botter, 2012].

A further advantage offered by the process-based nature of the model lies in its ability to disentangle the
effects of changes in climate and landscape on streamflow dynamics. The proposed approach offers an
appealing alternative to extend to seasonally dry climates existing models relating catchment storage
dynamics to nutrient transport [e.g., Basu et al., 2011], landscape characteristics (riparian width) [e.g., Munee-
peerakul et al., 2007] or ecological dynamics (plant pathogen risks) [Thompson et al., 2013b].

Finally, although not explicitly addressed in this study, the model offers a promising approach to the region-
alization of FDCs to ungauged catchments because it relies on a limited number of physically observable
parameters. Many of these parameters (e.g., catchment areas, rainfall, evapotranspiration, soil type) are
directly and globally available as gridded data sets. However, the study also showed that the model is sensi-
tive to spatial heterogeneities in catchment characteristics and to the accurate computation of catchment-
scale rainfall statistics. These effects, in addition to the propagation of errors from gridded data sets, on the
model’s performance in ungauged catchments are yet to be assessed. Nonetheless, as indicated by the
excellent estimation of run-of-river hydroelectricity production, the modeling approach is apparently well
suited to support large-scale site suitability analysis for water infrastructure development [e.g., Yi et al.,
2010; Kusre et al., 2010; Larentis et al., 2010; Lee et al., 2008].

5. Conclusion

In this study, we derived an analytical expression for the FDC of streams in seasonally dry climates.
The approach can be successfully applied in a wide range of conditions that are observed in season-
ally dry climates and is relatively robust to deviations from the assumptions utilized in the develop-
ment of the model theory. The process-based nature of the proposed model offers numerous
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advantages, including small data and calibration requirements and the ability to incorporate changes
in climate and landscape properties into the predictive framework. These advantages, along with the
ability to disentangle interannual and intra-annual variations of low flows offer considerable scope to
use this low dimensional modeling approach to inform infrastructure design and water resources
policies.

Appendix A: Derivation of the Dry-Season Streamflow CDF
The CDF of dry-season streamflow Qd is derived using the law of total probabilities

PQd ðqdÞ5PfQd � qdg5
ð

Q0

PQd jQ0
ðqd; q0ÞpQ0ðq0Þdq0 (A1)

where Q0 is the random variable representing streamflow at the beginning of the dry season.

Streamflow in any given dry season is bounded by its value at the start and at the end of the season
because the receding streamflow is a decreasing function of time. The conditional CDF PQd jQ0

is therefore a
piece-wise function taking the value of one for flows greater than Q0 and of zero for flows below QdðTd; q0Þ.
We first provide a detailed analysis of the bounds of the domain of PQd jQ0

ðqdÞ in the case of a power-law
recession and then describe the integration of equation (A1) to obtain the unconditional CDF of dry season
streamflow.

A1. Bounds of the Conditional Streamflow CDF
We examine the conditional streamflow CDF PQd jQ0

ðqdÞ, that is the probability that the discharge governed
by the deterministic recession:

QdðtÞ5ðqr
02artÞ

1
r (A2)

falls below an arbitrary threshold qd during a recession period Td. Three regions of q0 are immediately appa-
rent (Figure A1) and result in the three pieces of the conditional CDF.

1. In the first region all streamflow values during the dry season (t 2 ½0; Td�) lie below qd for a given initial
flow q0, therefore

PQd jQ0
ðqd; q0Þ51: (A3)

This situation arises if

q0 < qd (A4)

because QdðtÞ is strictly decreasing.

2. In the second region all streamflow values during the dry season lie above qd for a given initial flow q0,
therefore

PQd jQ0ðqd; q0Þ50: (A5)

Again, because QdðtÞ is strictly decreasing, this situation arises for

q0 � qr
d1arTd

� �1=r
(A6)

However, if r< 0 then the values taken by streamflow at the end of the dry season must lie beneath an
upper bound:

max
q0

QdðTdÞ5 lim
q0!1

QdðTdÞ5ð2arTdÞ1=r (A7)

Therefore, this second region does not exist (for any value of q0) if qd > ð2arTdÞ1=r and r< 0.
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3. In the third region streamflow takes the
value of qd at some point during the dry
season. This case occurs for all values of q0

that are excluded from the two other
regions. The related conditional probability
can be obtained by inverting equation (A2):

PQd jQ0
ðqd; q0Þ512

qr
02qr

d

arTd
(A8)

The boundaries of these three regions are
combined for r> 0 and r< 0 to obtain the
CDF of dry season streamflow conditional
on Q0 described in equation (12).

A2. Integration of the Unconditional
Streamflow CDF
Knowing the distribution of Q0, we apply
the law of total probabilities to derive the
unconditional streamflow CDF. In order to
do so, we integrate equation (A1) within

the bounds of the 3 regions described above. If r< 0 and qd > ð2arTdÞ1=r , the second region does not exist
and equation (A1) integrates as:

PQd ðqdÞ 5PfQd � qdg5
ð1

0
PQd jQ0

ðqd; q0ÞpQ0ðq0Þdq0

5

ðqd

0
1 � pQ0ðq0Þdq01

ð1
qd

� 12
qr

02qr
d

arTd

� �
pQ0ðq0Þdq0

(A9)

Inserting pQ0ðq0Þ5
c11m

Q

C m11ð Þ expð2cQq0Þqm
0 , we have:

PQd ðqdÞ 511
qr

d

arTd

CUðm11; cQqdÞ
Cðm11Þ

2
c2r

Q

arTd

CU r1m11; cQqd
� �

Cðm11Þ

(A10)

However, if r> 0 or qd � ð2arTdÞ1=r , all three regions exist and equation (A1) integrates as:

PQd ðqdÞ 5PfQd � qdg5
ð1

0
PQd jQ0

ðqd; q0ÞpQ0ðq0Þdq0

5

ðqd

0
1 � pQ0ðq0Þdq01

ð1
q0;Td

0 � pQ0ðq0Þdq0

1

ðq0;Td

qd

� 12
qr

02qr
d

arTd

� �
pQ0ðq0Þdq0

(A11)

The bound q0;Td is obtained by solving equation (A2) for q0 at t5Td :

q0;Td 5 qr
d1arTd

� �1=r
(A12)

Inserting pQ0ðq0Þ5
c11m

Q

C m11ð Þ expð2cQq0Þqm
0 we have:
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PQd ðqdÞ 511
qr

d

arTd

CUðm11; cQqdÞ
Cðm11Þ

2 11
qr

d

arTd

� �
CUðm11; cQ qr

d1arTd
� �1=rÞ

Cðm11Þ

1
c2r

Q

arTd

CUðr1m11; cQ qr
d1arTd

� �1=rÞ
Cðm11Þ

2
c2r

Q

arTd

CUðr1m11; cQqdÞ
Cðm11Þ

(A13)

Combining equations (A10) and (A13) and their respective domains, we finally obtain the expression for the
CDF of dry season streamflow described in equation (13).
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