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Nonnegative Smooth Interpolation

Abstract

This dissertation presents three peer-reviewed journal articles, published in “Advances in Math-
ematics” and “International Mathematics Research Notices”, on Whitney-type extension and in-
terpolation problems with nonnegative constraint. The mathematical preliminaries and a detailed
summary of results are found in Chapter 2. Information on co-authors and funding acknowledgment

for each journal article are found at the beginning of their corresponding chapters.
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CHAPTER 1

Introduction

At the basic level, Whitney-type extension (for infinite sets) and interpolation (for finite sets)
problems seek efficient ways to estimate global behavior from local data while obeying certain
constraints. This dissertation mainly concerns interpolation that preserves differentiability and
nonnegativity, with some additional discussion on general shape-preserving interpolation. Other
features commonly considered in extension literature include integrability or convexity.

In his seminal works [32, 33, 34|, Whitney posed what we now call the Whitney Extension
Problem, which asks whether a continuous function defined on an arbitrary closed set in R™ can
be extended to a globally defined C™ function. He solved the problem for n = 1 by taking limits
of divided differences, a technique not applicable in higher dimensions due to the lack of natural
ordering. The full solution to the Whitney Extension Problem was only obtained less than two
decades ago by Fefferman [6,8,9], building on the works of Glaeser [17|, Shvartsman [25,26, 28],
Brudnyi-Shvartsman [4, 5], and Bierstone-Milman-Pawlucki [3].

The quantitative (i.e. finite-set) version of the Whitney Extension Problem not only serves
as a crucial ingredient in the full solution to the original problem, but also shines light on the
mathematical aspects of data interpolation. This version of the problem asks for a way to extend
a function defined on a finite set in R™ to a C™ function on R™ with norm having the smallest
possible order of magnitude. This task consists of two components, one is to compute the order of
the magnitude of the norm, and the other is to compute the interpolant with norm achieving such
order of magnitude.

In [4,5,8,25,26,28|, the authors showed that the only obstruction to a global interpolant having
small norm is the existence of some local interpolant having large norm over some set of bounded
cardinality. This is the essence of the Brudnyi-Shvartsman Finiteness Principle (Finiteness Principle
for short), and we will refer to the upper bound on the cardinality as the “finiteness constant”.

Moreover, in [7]|, the author showed that there exists a bounded linear extension operator, such
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that the extension at each point (i.e. the coefficients of the Taylor polynomial) is a sparse linear
combination of the given function values. We call such linear operator to be of “bounded depth”.

Computational advances on the problem were then made by Fefferman-Klartag [10,14,15]. In
particular, the authors improved the Finiteness Principle for more efficient computation of the C™
norm, and showed the existence of what we will refer to as the Fefferman-Klartag interpolation
algorithms. These algorithms can be run on an idealized computer with von Neumann architecture
and likely have the best guaranteed computational complexity possible, using O(N log N) one-time
work and O(N) storage, with N being the size of the given data set and the constants depending
only on m and n.

Nonnegativity arises in numerous physical scenarios, such as modeling temperature or chemical
concentration, and it is also one of the simplest shape-preserving requirement. Some examples
of literature on nonnegative interpolation include [1,22,23,24|. It is then natural to pose the
nonnegative variant of the quantitative Whitney Extension Problem: Given a nonnegative function
on a finite set in R™, how do we find a globally nonnegative C™ function whose norm has the
smallest possible order of magnitude?

The study of the quantitative nonnegative Whitney Extension Problem is pioneered by the works
of Fefferman-Israel-Luli [11,12], in which the authors showed that a similar Finiteness Principle
still holds in this context. However, due to the reliance of a sophisticated induction procedure on
a fairly abstract object called “shape fields”, the construction was not explicit and the finiteness
constants were larger than necessary.

This dissertation presents three journal articles, with [19,20] in Chapter 3 focusing on nonneg-
ative C? interpolation and [21] in Chapter 4 focusing on general shape-preserving C™ interpolation.

In [19], we provided an alternative proof of the Finiteness Principle for nonnegative CZ(R?)
interpolation that yields a greatly improved finiteness constant. The method employed in the proof
also lays the foundation for all subsequent results in [19,20].

In stark contrast with the non-constrained case |7|, we showed the nonexistence of a bounded
linear (with respect to the positive cone) extension operator [19]. On the other hand, we showed
the existence of bounded nonlinear extension operator having a similar property as having bounded

depth [20].



Parallel to the results on extension operators, we also showed the existence of Fefferman-Klartag-
type algorithms for nonnegative C%(R?) interpolation [20] with comparable complexity.

The techniques in [19, 20| can be modified to yield similar results for nonnegative C2(RM)
interpolation.

In [21], we proved a reduction-type result for shape fields introduced by Fefferman-Israel-Luli
[11,12], building on a clustering technique in [2]|. As a consequence, we were able to greatly improve
the finiteness constants for various general shape-preserving interpolation, including nonnegative
C™(R™) interpolation.

The mathematical preliminaries and a detailed description of the these results can be found in

the next chapter.



CHAPTER 2

Summary of Main Results

For m,n € Ny, we use C™(R") to denote the vector space of m-times continuously differentiable
functions whose derivatives up to order m are bounded and continuous, normed by

|Fllcm(gny := max sup [0*F(x]|,
lol<m xeRrn

under which it becomes a Banach space. Here and below, we use the Greek letter o to denote
multi-indices & = (1, -+, ®n) € NF, and we write 0* to denote the differential operator a)‘j; - Ogm
whose order is || := Z}; .

Let A;B > 0. We write A < B if A < CB for some constant C depending only on m and n.
We write A = B if A < B and B < A, and in this case, we say A and B have the “same order of
magnitude”.

For a finite set X C R™, we use #X to denote the cardinality of X.

We state the main problem of this dissertation.

PROBLEM 2.1. Let E C R™ be a finite set and let f: E — [0, 00).

(A) Compute the order of magnitude of
[f]cm gy == inf {IFllcm@n): F=f on E and F >0 on R™.}.

(B) Compute a function F € C™(R") such that F =f on B, F > 0 on R", and ||[F|lcmgn) < [[fllcmg)-

By computing the order of magnitude of M > 0, we mean computing a number M > 0 such
that M &~ M. By “computing a function F” from (E,f), we mean the following: After processing
the input (E, f), we are able to accept a query consisting of a point x € R™, and produce a list of
numbers (fy(x) : |of < m). The algorithm “computes the function F” if for each x € R™, we have

0%F(x) = fx(x) for |of < m.



We also content ourselves with an idealized computer with standard von Neumann architecture
that is able to process exact real numbers. We refer the readers to [15] for discussion on finite-
precision computing.

The study of Problem 2.1(A) is pioneered by Fefferman-Israel-Luli [11,12], in which the authors

proved the following Finiteness Principle.

THEOREM 2.1 ([12]). There exists a number k! depending only on m and n such that for every

finite set E C R™ and f: E — [0, 00),

f ~ ma f .
Iflepe ~ _max_fleps)

The proof of Theorem 2.1 in [12] depends on a sophisticated refinement procedure for a collection
of abstract object called “shape fields” given in [11]. As such, the construction is not very explicit
and the number kf is larger than necessary. For instance, for m = n = 2, [12] gives k# > 5200,
We will omit the definition of a shape field in the introduction due to its technicality, and refer the
interested readers to [11] and Chapter 4 below.

In [19], we provide an alternative proof of Theorem 2.1 that greatly improves the number k.
THEOREM 2.2 ([19]). For m =n = 2, we may take k* = 64 in Theorem 2.1.

Moreover, the proof of Theorem 2.2 in [19] lays the foundation for subsequent results on efficient
computation of the norm and explicit construction of the interpolants. Before we state these results,

we recall some key definitions in [20] which reflect the complexity of a nonlinear map.

DEFINITION 2.1. Let Nog > 1 be an integer. Let B = {&;,--- ,&En,) be a basis of RNo.  Let

Q c RNo be g subset. Let X be a set. Let =: Q — X be a map.

o We say = has depth at most D (with respect to the basis B) if there exists a D-dimensional

subspace V. = span (&, -+, &), &y oy &ip € B, such that for all z1,z2 € Q with

nv(z1) = mv(z2), we have =(z1) = =(z;). Here, vy : RNo — V is the natural projection.

We call the set of indices {i1,--- ,ip} the source of =.
o Suppose = has depth D. Let V =span (&, -+, &i,) and my be as above. By an efficient
representation of =, we mean a specification of the index set {i;,---,ip} C {1,---,No} and
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—

a map = : y(Q) — X with = = Zomy on Q, such that given v € my(Q), Z(v) can be

computed using at most Cp operations. Here, Cp is a constant depending only on D.

REMARK 2.1. Suppose = : RN 5 R is a linear functional. Recall from [15] that a “compact rep-
resentation ” of a linear functional = : RN 5 R consists of a list of indices {i1,--- ,ip} C {1, ‘e ,N}

and a list of coefficients Xi,, - ,Xip, S0 that the action of = is characterized by

D
E:(Eh"' aEN) HZXiA 'aiA'

A=T
Therefore, given v € span(&i,,---, &), we can compute =(v) by the dot product of two vectors
of length D, which requires Cp operations. The present notion of “efficient representation” is a
natural generalization of the “compact representation” in [15] adapted to the nonlinear nature of

constrained interpolation.

Let Ci(E) be the collection of functions f : E — [0,00). We think of Ci(E) = [0, 00)N with
N = #E. We use the standard orthonormal frame of RN as a basis for the purpose of defining finite
depth. We write P to denote the vector space of polynomials on R? with degree no greater than
two, and we write JxF to denote the second-degree Taylor polynomial of F at x.

We now state the main result in [20].

THEOREM 2.3 ([20]). Suppose we are given a finite set E C R? with #(E) = N. Then there
exists a collection of maps {EX IX E Rz}, where Zy : C%r(E) % [0,00) = P for each x € R?, such that
the following hold.

(A) There exists a universal constant D such that for each x € R?, the map Zx(-,-) : Ci(E) X
[0,00) — P is of depth at most D.

(B) Suppose we are given (f,M) € Ci(E) x [0, c0) with ||f||C2+(E) < M. Then there exists a function
Fe Ci(RZ) such that

I F == (f, M) for all x € R?, [Fllc2r2) < CM, and F(x) = f(x) for x € E.

(C) There is an algorithm, that takes the given data set E, performs one-time work, and then

responds to queries.



A query consists of a point x € R%, and the response to the query is the map =, given in

its efficient representation (see Definition 2.1).

The one-time work takes CNlog N operations and CN storage. The work to answer a query

is Clog N.

If we define a map & : C2(E) x [0,00) — C%(IR?) by specifying
gxg(f) M) = Ex(f) M)

with {Ex 1X € Rz} as in Theorem 2.3, we see that Theorem 2.3 implies the existence of an extension

map of bounded depth that preserves nonnegativity.

THEOREM 2.4 ([18,20]). Let E C R? be a finite set. There exist (universal) constants C,D, and
a map & : Ci(E) x [0, 00) — Ci(RZ) such that the following hold.

(A) Let M > 0. Then for all f € CZ(E) with ||f”ci(E) < M, we have E(f,M) = f on E and
1€, M)]lc2(r2) < CM.

(B) For each x € R?, there exists a set S(x) C E with #(S(x)) < D such that for all M > 0 and
f,g € CL(E) with [[fllc2 (g), 9llca ) £ M and fls) = gls(x), we have

0%E(f,M)(x) = 9%E(g, M)(x) for |of < 2.

We note that Theorem 2.4 was independently proven in 18] without the use of Theorem 2.3.
However, we will not include [18] in this dissertation for simplicity of presentation.
To our pleasant surprise, we also proved that the nonlinearity of the operators in Theorems 2.3

and 2.4 is unavoidable in general, which is in sharp contrast with the unconstrained case |7].

THEOREM 2.5 ([19]). For each m > 1, there exists a finite set E C R™ that does not admit a

map € :{f: E — [0,00)} — C2(R™) satisfying both of the following.

(A) For allf:E — [0,00), E(f) =f on E, £(f) > 0 on R™, and ||E()||c2gn) S HfHCi(E)'
(B) For all f,g:E — [0,00), E(f+g) = E(f) + E(9g).
7



Theorems 2.3 and 2.4, together with the Callahan-Kosaraju decomposition (or well separated
pairs decomposition in computer science literature), give rise to the following improved Finite-
ness Principle for efficiently computing the order of magnitude of the norm. Note that a non-
computational version was proved independently in [19] without the use Theorems 2.3, 2.4, or the

Callahan-Kosaraju decomposition.

THEOREM 2.6 ([20]). Let E C R? with #(E) = N < co. Then there exist universal constants

Cq,Cy,C3,Cy,Cs5 and a list of subsets S1,S2,---, St C E satisfying the following.

(A) We can compute the list {Sg: € =1,--- L} from E, using one-time work of at most C;NlogN
operations, and using storage at most CyN.

(B) #(S¢) < C3 for each £ =1,--- L.

(C) L < C4N.

(D) Given any f: E — [0,00), we have

(2.1) EZIHL%%LHﬂki(s@) < fllcz ) < Cs EZH]I%?iLHfHCi(Sz)'

Furthermore, we showed in [20] that computing the order of magnitude of each ”fHCi[Sz) in
(2.1) amounts to solving a convex quadratic optimization problem with affine constraint. Such
minimization problem is readily solvable, for instance, by the method of Lagrange multipliers.

Combining Theorem 2.3 and Theorem 2.6, we can efficiently compute a nonnegative C?(R?)
interpolant with norm having the optimal order of magnitude. The one-time work for pre-processing
the set E (#E = N) uses at most CNlogN operations and CN storage. After that, computing
IIf ”Ci () uses at most CN operations, and answering a query uses at most Clog N operations. The
guaranteed complexity here is also likely the best possible.

The methods employed in [18,19,20] can be adapted to obtain similar efficient results for
nonnegative C2(R") interpolation. These adaptations were also used in [13] to treat C? interpolation
with both upper and lower range restrictions.

The papers [19,20] can be found in Chapter 3.

There are no known efficient solutions (in the sense of Theorems 2.3 and 2.6) to Problem 2.1

for m > 3. However, in [21], we are able to greatly improve the finiteness constant in Theorem 2.1.



THEOREM 2.7. We may take k¥ to be 2 in Theorem 2.1, where A = (mntfﬁ) is the dimension

of vector space of polynomials on R™ with degree no greater than m — 1.

For m = 2, Theorem 2.7 yields k! =4 .21 which is comparable to the optimal 3 - 2"~ shown
in [4,5,26,28] (without constraint). ! For general m > 3 and n > 2, we do not know what the
optimal k! is, even for interpolation without constraint.

Our paper [21] also studies a cousin of Problem 2.1 concerning “smooth selection”, which can

be viewed either as an interpolation problem with error or as a trajectory problem with obstacles.

PROBLEM 2.2. Fiz myn,d € Ny. Let Conv(R%) denote the collection of all convex sets in RY.
Given a finite set E C R™ and a set-valued function K : E — Conv(RY), how do we find a function
F e C™(R"™,RY) such that F(x) € K(x) for each x € E and |[F||cmgn ga) has the smallest possible

order of magnitude?

A special variant of Problem 2.2, where C™-class is replaced by Lipschitz-class and K is a
mapping into hyperplanes, has been extensively studied by Shvartsman [27,29, 31], for which
the author proved various Helly-type results. In [7,8,10,14,15]|, the authors provided efficient
algorithmic solutions to another special variant of Problem 2.2, in which d = 1 and each K(x) is a
compact interval and is allowed to dilate concentrically and uniformly.

The first progress on the study of Problem 2.2 in the present form was made in [11], in which the
authors show the validity of a similar Finiteness Principle. Their result again relies on the refinement
of shape fields and yields an unnecessarily large finiteness constant. The reduction argument for

shape fields in our paper |21] then yields the following.

THEOREM 2.8. Fiz m,n,d € Ny and let k! = d - (m;:*]) Given a finite set E C R™ and a
set-valued function K : E — Conv(RY), we have

inf {||Fucm(Rn’Rd) L F(x) € K(x) Vx € E} ~ e inf {||F\|Cm(Rn)Rd) L F(x) € K(x) Vx € s}.
#S<k

!That is, for each u € No, there exists a finite set E, C R™ and a function f, : E, — R, such that for every S C E,,
with #S < 3.2™" — 1, there exists Ffl € C?(R™) that interpolates (S, f,) with norm 1, but f, fails to extend to a
CZ(R™) function with norm no greater than .



Our reduction argument in [21] is inspired by a clustering technique developed in [2]. See
also |30] for a different reduction argument based on Lipschitz selection, and see [16] for a sharp
finiteness constant for Lipschitz selection.

The paper [21] can be found in Chapter 4.
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CHAPTER 3
Nonnegative C?(R?) interpolation

The first paper “Nonnegative C?(IR?) interpolation” was published in Advances in Mathematics,
Vol. 375 (2020) [19]. The paper is based on joint work with co-author Garving K. Luli at the
Department of Mathematics, University of California - Davis. The authors were supported by
National Science Foundation Grant DMS-1554733 (F.J. and G.K.L.), UC Davis Summer Graduate
Student Researcher Award (F.J.), the Alice Leung Scholarship in Mathematics (F.J.), and the UC
Davis Chancellor’s Fellowship (G.K.L.).

The second paper “Algorithms for nonnegative C?(R?) interpolation” was published in Advances
in Mathematics, Vol. 385 (2021) [20]|. The paper is based on joint work with co-author Garving
K. Luli at the Department of Mathematics, University of California - Davis. The authors were sup-
ported by National Science Foundation Grant DMS-1554733 (F.J. and G.K.L.), UC Davis Summer
Graduate Student Researcher Award (F.J.), the Alice Leung Scholarship in Mathematics (F.J.), and
the UC Davis Chancellor’s Fellowship (G.K.L.).

11



Advances in Mathematics 375 (2020) 107364

Contents lists available at ScienceDirect

MATHEMATICS

Advances in Mathematics

www.elsevier.com/locate/aim

Nonnegative C2(R?) interpolation )

Check for
updates

Fushuai Jiang, Garving K. Luli*

Department of Mathematics, University of California, Davis, One Shields Ave,
Davis, CA 95616, USA

ARTICLE INF O ABSTRACT
Article history: In this paper, we prove two improved versions of the Finiteness
Received 24 June 2020 Principle for nonnegative C2?(R?) interpolation, previously

Received in revised form 20 July
2020

Accepted 4 August 2020
Available online 17 August 2020
Communicated by C. Fefferman

proven by Fefferman, Israel, and Luli. The first version
sharpens the finiteness constant to 64, and the second version
carries better computational practicality. Along the way,
we also provide a detailed construction of nonnegative C2
interpolants in one-dimension, and prove the nonexistence

Keywords: of a bounded linear CZ-extension operator that preserves
Nonnegative interpolant nonnegativity.
Nonnegative interpolation © 2020 Elsevier Inc. All rights reserved.

Constrainted interpolation
Whitney extension problems

1. Introduction

For nonnegative integers m,n, we write C™(R™) to denote the Banach space of m-
times continuously differentiable real-valued functions such that the following norm is
finite

1/2

[Flem@n) = sup [ Y [0%F(x)]

x€ lol<m

* Corresponding author.
E-mail addresses: fsjiang@math.ucdavis.edu (F. Jiang), kluli@math.ucdavis.edu (G.K. Luli).

https://doi.org/10.1016/j.aim.2020.107364
0001-8708/© 2020 Elsevier Inc. All rights reserved.
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2 F. Jiang, G.K. Luli / Advances in Mathematics 375 (2020) 107364

If S is a finite set, we write #(S) to denote the number of elements in S. We use C to
denote constants that depend only on m and n.

Problem 1. Let E C R™ be a finite set. Let f : E — [0,00). Compute the order of
magnitude of

HfHCL’;(E) = inf {”FHCm(Rn) : F‘E =f and F Z 0} . (11)

By “order of magnitude” we mean the following: Two quantities M and M determined
by E, f, m,n are said to have the same order of magnitude provided that C""M < M <

CM, with C depending only on m and n. To compute the order of magnitude of M is
to compute a number M such that M and M have the same order of magnitude.
Problem 1 without the nonnegative constraint has been extensively studied, see [3,5,
7,9,13,14].
We also consider an open problem posed in [9)].

Problem 2. Let E C R™ be a finite set. Let f : E — [0,00). Compute a nonnegative
function F € C™(R™) such that Fle = f and |[F[[cm®n) < C|/fllcm -

We will present a brief history of Problem 1 and an overview of our results on Prob-
lems 1 and 2.

We start with elementary background. Given a subset E C R™ and f: E — R, we
define the trace norm of f as

||fHC7“(F_) = inf {HFHCm(Rn) : F|E = f} ;

we say that F € C™(R™) is an almost optimal C™(R™) interpolant if F € C™(R™),
Fle = f, and ||F||cm@®n) < C(m,n)||f|]|cm (g for some constant C(m,n) depending only

on m,n. For nonnegative interpolants, one can define analogously the trace norm by
requiring the interpolant to be nonnegative, see (1.1).
We recall the basic finiteness principle of [5].

Theorem 0.A (Finiteness Principle). For large enough k¥ and C, both depending only on
m and n, the following holds:

Let f: E — R with E C R™ finite. Suppose that for each S C E with # (S) < kb there
exists FS € C™ (R™) with norm HFSHCm(]Rn) < 1, such that FS = f on S. Then there
exists F € C™ (R™) with norm |[Fl|cmgn) < C, such that F=f on E.

Theorem 0.A and several related results were first conjectured by Y. Brudnyi and
P. Shvartsman [1,2,22]. The first nontrivial case CZ2(R™) was proven by P. Shvartsman
[21,22] with the sharp finiteness constant kf = 3-2™~ 1. Theorem 0.A is further refined to
a Sharp Finiteness Principle in [7], which serves as the backbone for efficient algorithms
for computing trace norms and almost optimal interpolants.

13
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For nonnegative smooth interpolation, in [12], the authors proved the following theo-
rem.

Theorem 0.B (Finiteness Principle for Nonnegative Smooth Interpolation). For large
enough k* and C, both depending only on m and n, the following holds:

Let f: E — [0,00) with E C R™ finite. Suppose that for each S C E with #(S) < kf,
there exists FS € C™(R™) with norm |[FS||cm®n) < 1, such that FS =f on S and FS > 0
on R™. Then there exists F € C™(R™) with norm ||[F||cm®n) < C, such that F=f on E
and F>0 on R™.

The proof of Theorem 0.B given in [12] depends on a refinement procedure for shape
fields proven in [11]. As such, the construction of the interpolant is not very explicit, and
the finiteness constant k! is larger than it is necessary. For example, for m = 2,n = 2,
[12] gives k! > 100 + 5'+1°0 for some 1, > 100.

In this paper, we begin by showing that for m = 2,n = 2, kf = 64 is sufficient (see
Theorem 4). Although not proven sharp here, it is a substantial improvement over the
one given by [12].

For a better finiteness constant than [12] and also ours, see [23] (which gives k* = 8);
however, the method in [23] assumes the validity of the Finiteness Principle and does
not yield a construction for the interpolant.

With a more careful analysis of our proof for the Finiteness Principle, we are able
to prove a Sharp Finiteness Principle analogous to the first one proven in [7] without
the nonnegative constraint; the Sharp Finiteness Principle reads as follows: Given a
finite set E € R? with #(E) = N, we can produce a list of subsets Si,---,S; such
that E = Jy_; Se, #(S¢) < C, and L < CN such that [fl|¢cz (¢ and max ez s
have the same order of magnitude. Thus, computing the order of magnitude of |[f||c2 (g,
amounts to computing each [|f[|cz (s, for ¢ =1, , L. In the forthcoming papers [19,20],
we will use this result to provide efficient algorithms analogous to the Fefferman-Klartag
algorithms [13] for solving nonnegative interpolation problems.

Our two-dimensional results in this paper rely on their one-dimensional counterparts.
We will provide a detailed analysis of the one-dimensional situation in Section 6. Along
the way, we also show the nonexistence of a bounded linear extension operator that
preserves nonnegativity. This is the content of Theorem 3. This is in sharp contrast to
C™(R™) extensions without the nonnegative constraint, for which there exists a bounded
linear extension operator of bounded depth [6].

Our approach is inspired by [6-8,18]. However, we will need new ingredients to apply
the machinery adapted from the aforementioned references.

Lastly, we remark that our approach can be adapted to treat nonnegative C™(R)
(m > 2) extensions for finite sets E, and to prove the Finiteness Principle for nonnegative
CH@(R?) extensions for arbitrary closed sets E.

Next, we sketch the main ideas for our approach, sacrificing accuracy for the ease of
understanding.
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We begin with interpolation in one-dimension. For nonnegative C2(R) interpolation,
we will show that, if one can interpolate three consecutive points, then one can interpolate
any finite set of points by patching consecutive three-point interpolants together.! To
handle nonnegative C2(R?) interpolation, we will reduce local interpolation problems to
the one-dimensional situation.

To illustrate the idea, we assume that E C Qg :=[0,1) x [0,1). For a square Q C R?,
we write 2Q to denote the two times concentric dilation of Q, and 8¢ to denote the
sidelength of Q. We perform a Calderén-Zygmund decomposition to Qq, bisecting Qo
and its children, which we will call Q+, until the following conditions are satisfied: Any
two nearby squares are comparable in size; E N 2Q+ lies on a curve with slope < C
and curvature < Céél; and any two local solutions near Q- are indistinguishable up
to a Taylor error on the order of 6g,. We then solve the local interpolation problem
by straightening E N 2Q+ and treating it as a one-dimensional problem. To ensure two
nearby local solutions are Whitney compatible when patched together by a partition of
unity, we prescribe a collection of Whitney-compatible polynomials, denoted by P+, each
based at a representative point x, near the center of Q, and force the local solution to
take Py as a jet at x..

The two-dimensional Finiteness Principle is then a consequence of its one-dimensional
counterpart and Helly’s Theorem from combinatorial geometry.

In order to prove the Sharp Finiteness Principle, we need to localize the dependence
of the P, ’s on the given data (E,f). This involves a variant of Helly’s Theorem, a careful
analysis when f is locally small (on the order of 25%2)7 and the combinatorial properties
of the Calderén-Zygmund squares.

Here we have given an overly simplified account of our approach. In practice, we have
to control derivatives on small scales and handle subtraction with great care in order to
preserve nonnegativity. The technical matters will be handled in the sections below.

Inspired by [3], we also pose the following question on the best finiteness constant for
nonnegative C2(R?) interpolation, and conjecture the answer to be in the positive.

Problem 3. For nonnegative C2(R?) interpolation, can we take kf = 672

It would be interesting to know more about the connection between the methods
employed in this paper and the method of “Lipschitz selection” presented in [3].

We end the introduction by announcing here our solutions to Problems 1 and 2; the
detail will be presented in the forthcoming papers [19,20]. For a given E C R? with
#(E) = N, we can process E with at most CNlog N operations and CN storage. After
that, we can compute the order of magnitude of ||f|cz (g) for any f: E — [0, 00) using at
most CN operations. After preprocessing E using at most CN log N operations and CN
storage, we are able to receive further inputs, consisting of a function f: E — [0, 00) and

! Here we mention that the finiteness constant k¥ = 3 is sharp for nonnegative C2(R) interpolation. See

[3].
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anumber M > 0. Then, given x € R?, we are able to produce a list (f«(x) : || < 2) using
at most Clog N operations. Suppose an Oracle tells us that HfHCi(E) < M. We can then
guarantee the existence of a nonnegative function F € C?(R?) with ||F||czgz) < CM
and Flg = f, such that 0%F(x) = f4(x) for |of < 2.

To the extend of our knowledge, there has been no previously known result on Prob-
lem 2.

This paper is part of a literature on extension and interpolation, going back to the
seminal works of H. Whitney [15-17]. We refer the interested readers to [1-9,11-14,21,
22,24] and references therein for the history and related problems.

Acknowledgment. We express our gratitude to Charles Fefferman, Kevin O’Neill, and
Pavel Shvartsman for their valuable comments. We also thank all the participants in the
11th Whitney workshop for fruitful discussions, and Trinity College Dublin for hosting
the workshop.

The first author is supported by the UC Davis Summer Graduate Student Researcher
Award and the Alice Leung Scholarship in Mathematics. The second author is supported
by NSF Grant DMS-1554733 and the UC Davis Chancellor’s Fellowship.

2. Statement of results

First we set up notations. Let n = 1,2. We write C2(R™) to denote the collection of
all functions F : R™ — [0, 00) whose derivatives up to the second order are continuous
and bounded. We write 0™ to denote the m-th derivative of a single-variable function.

We begin with our results in one-dimension.

Theorem 1.A (1-D Finiteness Principle). There exists a constant C > 0 such that the
following holds.

Let E = {x1,...,xn} C R be a finite set with x1 < --- <xn and N > 3. Let f: E —
[0, 00). Suppose

(i) For every consecutive three points B5 = {xj,Xj+1,%j+2} (j = 1,...,N—=2) there exists
a function F; € C4(R) such that F; ’E_ =1f; and
)
(i) [[Fillcz®) < M.

Then there exists F € C2(R) with

(A) Fle =1, and
(B) |Fllc2r) < CM.

Remark 2.1. In the present work, we do not pursue the minimal C. See, e.g. [8] for a
discussion on best constants.
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We will also need the following variant of Theorem 1.A in the proof of Lemma 5.4.

Theorem 1.B. There exists a constant C > 0 such that the following holds.
Let E ={x1,...,xn} C R be a finite set with x1 < --- <xn and N > 3. Let f: E — R.
Suppose

(i) For every consecutive three points B = {xj,%j+1,%j42} (G = 1,...,N = 2), there
exists a function F; € C2(R) such that Fle, =1;
(it) 10™F| < A on R for m=0,1,2.

Then there exists F € C*(R) such that

(A) Fle =f;
(B) 0™F < CA;, on R form=0,1,2.

Remark 2.2. The proofs of Theorems 1.A and 1.B will be given in Section 6.

Let n = 1,2. Given a finite set E C R™, we write C?(E) to denote all functions
f: E = R, equipped with the trace norm |[f||c2(g) = inf {||F|c2(rn): Fle = f}. We
write C2(E) to denote all functions f : E — [0, 00), equipped with the “trace norm”
Illc2 (g) = inf {|Fllc2(rn) : Fle = f and F > 0}.

The proofs of Theorems 1.A and 1.B along with an argument involving quadratic
programming immediately give rise to the following results.

Theorem 2.A. Let E C R be a finite set. There exist universal constants C,D and an
operator £ : Ci(E) — Ci(R) such that the following hold.

(A) E(f)| =f for all f € CZ(E).
(B) 1€f)lc2w) < Clifllca (e)-
(C) Moreover, for each x € R, there exists S(x) C E with #(S(x)) < D, such that for
all f,g € C3(E) with fls(x) = gls(x), we have
0™ (E(f))(x) =0™(&(g))(x) form=0,1,2.

Remark 2.3. In general, £ is not additive. See Theorem 3.

Theorem 2.A holds in the absence of the nonnegative constraint. This is the content
of the next theorem.

Theorem 2.B. Let E C R be a finite set. There exist universal constants C, D and a linear
operator £ : C2(E) — C2(R) such that the following hold.

(A) E(f)| = for all f € C*(E).
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(B) € |lc2r) < Cllfllc2(g)-
(C) Moreover, for each x € R, there exists S(x) C E with #(S(x)) < D, such that for
all f,g € C2(E) with fls(x) = gls(x), we have

O™ (E(f))(x) =0™(E(9))(x) for m=0,1,2.

Remark 2.4. The number D in Theorems 2.A and 2.B is called the depth of the operator
&. The proofs of Theorems 2.A and 2.B will be given in Section 6. We also remark that
the set S(x) takes a particularly simple form.

e Suppose #(E) < 3. We take S(x) = E.

e Suppose #(E) > 4. Enumerate E ={x1,--- ,xn} with x; < --- < xn.
— If x < x7 or x > xN, we take S(x) to be the three points in E closest to x.

If x € [x1,x2], we take S(x) = {x1,x2,x3}.

— If x € [xn_1,%XN], we take S(x) = {XN_2,XN_1,XN}-

— Otherwise, we take S(x) = {x},x},x},xj} C E with x] < x5 < x} < x} such that
x € [x5,x5].

It has been shown in [16] the existence of an extension operator satisfying (A,B) of
Theorem 2.B. We thank P. Shvartsman for bringing to our attention that an algorithm
for constructing S(x) in a more general one-dimensional setting (without nonnegativity)
was given in [24], in which the interested readers will also find an informative account
of the one-dimensional extension theory (without nonnegativity).

Theorem 3. There exists a finite set E C R that does not admit a map E : Ci(E) — C%(R)
satisfying both of the following.

(A) For all f € C2(E), we have E(f)(x) = f(x) for all x € E, E(f) > 0 on R, and
[€(F)[c2r) < Cllfllcz (g) for some universal constant C.
(B) E(f+g) = E(f) + E(g) for all f,g € CL(E).

Remark 2.5. By considering finite sets of the form E x {0} x - -- x {0} with E as in The-
|
(n—1) copies
orem 3, we can further conclude that, for C2(R™) with n > 2, there does not exist a
bounded additive extension operator that preserves nonnegativity. See Section 6 for the
proof.

We now turn to our results in two-dimension.

Theorem 4 (2-D Finiteness Principle). There exists a constant C > 0 such that the
following holds.

18
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Let f: E — [0, +00) with E C R? finite. Suppose for each S C E with #(S) < 64, there
exists FS € C2(R?) such that

(Z) HFSHCZ(RZ) S M, and
(ii) F¥|g = 1.

Then there exists F € C2(R?) such that

(A) Flge =1, and
(B) |[Fllc2r2) < CM.

Remark 2.6. The proof of Theorem 4 is given in Section 7.

We also have an improved version of Theorem 4.
Theorem 5 (2-D Sharp Finiteness Principle). Let E ¢ R? with #(E) = N < co. Then
there exist universal constants C,C’, C" and a list of subsets S1,S2,--- ,SL C E satisfying
the following.
(A) #(S¢) < C for each ¢ =1,--- L.

(B) L<C'N.
(C) Given any f: E — [0,00), we have

(A Ifllcz (o) < fllcz ey < C” Ay [fllca s -
Remark 2.7. The proof of Theorem 5 is given in Section 8.
In a forthcoming paper [19], we will prove the following result.

Theorem 6. Let E C R? be a finite set. There exist (universal) constants C,D, and a
map € : C2(E) x [0,00) — C2(R?) such that the following hold.

(A) Let M > 0. Then for all f € C%(E) with [fllcz (g) <M, we have E(f,M) =f on E
and Hg(f)M)HCZ(RZ) < CM.

(B) For each x € R2, there exists a set S(x) C E with #(S(x)) < D such that for all
M >0 and f,g € C3(E) with [[fllc2 (e), 19llc2 £) < M and fls(x) = gls(x), we have

0%E(f,M)(x) = 0%E(g, M) (x) for o] < 2.

We will not use Theorem 6 in this paper.
As a consequence of Theorems 5 and 6, in [20], we will provide the following algorithms.
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Algorithm 1. Nonnegative C2(R?) Interpolation Algorithm - Trace Norm.

DATA: E C R? finite with #(E) = N.

QUERY: f : E — [0, 00).

RESULT: The order of magnitude of ”fHCi(E)' More precisely, the algorithm outputs a number M > 0
such that both of the following hold.

- We guarantee the existence of a function F € C2 (R?) such that Flg = f and ||F||c2(r2) < CM.

— We guarantee there exists no F € Ci(]Rz) with norm at most M satisfying Flg = f.

COMPLEXITY:

— Preprocessing E: at most CN log N operations and CN storage.

— Answer query: at most CN operations.

Algorithm 2. Nonnegative C?(R?) Interpolation Algorithm - Interpolant.

DATA: E C R? finite with #(E) = N. f: E — [0, 00). M > 0.
ORACLE: ||f[|c2 (¢) < M.

RESULT: A query function that accepts x € R? and produces a list of numbers (f«(x) : |a| < 2) that
guarantees the following: There exists a function F € Ci(RZ) with [|Fl[c2(r2y < CM and Flg = f,

such that 9%F(x) = f«(x) for |«| < 2. The function F does not depend on the query point x.
COMPLEXITY:

— Preprocessing (E, f): at most CN log N operations and CN storage.

— Answer query: at most Clog N operations.

We will present the proofs for Theorems 1-5 in the sections below. We will start from
scratch and introduce the relevant terminologies and notations in the next section.

3. Conventions and preliminaries
Constants

We use ¢y, Cy, C,C’ > 0, etc. to denote “controlled” universal constants. They may
be different quantities in different instances. We will label them to avoid confusion when
necessary.

Coordinates and norms

We assume that we are given an ordered orthogonal coordinate system x =
(s,t)standara On R? a priori. We write B(x, 1) to denote the open disc of radius r > 0
centered at x € R2.

We use o, € Né etc. to denote multi-indices. We adopt the partial ordering o« < f3
if and only if oy < 33 for i =1,2.

Let QO C R™ be a set with nonempty interior Q°. For positive integers m,n, we write
C™(Q) to denote the vector space of m-times continuously differentiable real-valued
functions on Q° such that the following norm is finite:

1/2

[Flemi)=sup [ Y [0Fx)I*| . (3.1)

xeQ lol<m
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We write CT*(Q) to denote the collection of functions F € C™(Q) such that F > 0 on Q.
This is not a vector space.
Let E C R™ be finite. We define
C™E):={Flg:Fe C™(R™)}.

C™(E) is a vector space that can be equipped with a seminorm, which we will called the
trace norm of f € C™(E):

Ifllcme) = inf{HFHCm(Rn) :Fe C™(R™) and Flg = f} .
Similarly, we define
CI'E) = {FIE :Fe CT(R“)} .

We will abuse terminology and refer to the following as the (nonnegative) trace norm of
fe CP(E):

”fHC‘J:(E) = inf{HFHCm(Rn) :Fe CT(R“) and Flg = f} .
Jets

We write P to denote the space of degree one polynomials on R2. It is a three-
dimensional vector space.

For xo = (so,t0) € R? and a continuously differentiable function F on R?, the 1-jet of
F at xo € R? is given by

Jxo F(x) :== F(xo) + VF(x0) - (x —x0) .

We use Ry, to denote the vector space of 1-jets at xo € R2. Ry, inherits a norm from
R3 via the identification

Iy, : a(s—so)+b(t—1to) +¢c — (a,b,c). (3.2)
Calderdn-Zygmund squares

A square Q C R? is of the form Q = [so,s0 + 8) X [to,to + &), where & > 0 and
so,to € R.

For a square Q C R2, AQ denotes the concentric dilation of Q by a factor of A > 0.
Let Q* = 2Q. d¢g denotes the side length of Q.

For a square Qo € R?, by a dyadic bisection of Qp, we mean dividing Qo into four
mutually disjoint congruent squares Q1, Q2,Q3,Q4 such that Qo = U?:1 Qi. Qo is

21



F. Jiang, G.K. Luli / Advances in Mathematics 375 (2020) 107364 11

called the dyadic parent of Q1,..., Q4. In this case, we write Qf = Qo fori=1,...,4.
A dyadic parent for a dyadic square is unique if it exists.
Two squares Q and Q' are neighbors if one of the following holds.

+ Q=Q\ior
e closure(Q) Nclosure(Q’) # @, but interior(Q) Ninterior(Q’) = 2.

If Q and Q' are neighbors, we write Q <« Q’.
A collection of mutually disjoint squares A = {Q} is a Calderén-Zygmund (CZ)
covering of R? if R? = Ugen Q, and

if Q — Q,, then %‘SQ < 5Q’ < 45Q . (33)

It is easy to see that (3.3) implies that a CZ covering satisfies the bounded intersection
property: If Q € A, then

#<{Q'eA:§Q’m§Q7A@}> <21. (3.4)

We will only consider nonnegative (smooth) cutoff functions and partition of unity.
A C2-partition of unity {6g} subordinate to a CZ covering A = {Q} of R? is
CZ-compatible with A if

9 ~
0 >0, supp(8q) C 5Q, 10%0¢ < Coo* Vol <2,and Y 0g=1. (3.5)
QeA

Here C is some universal constant. Such partition of unity exists, see e.g. [15].
4. Basic convex sets and Whitney fields

Definition 4.1. Let E € R? be a finite set. Let f : E — [0, +00). For a point x € R?, a
subset S C E, and a real number M > 0, we introduce the following objects:

There exists FS € C2 (R?) such that
I (x,S,M):=<P : + 4.1
o { P Bl < MP| = f, and g P =p (Y
and
There exist FS € C?(R?) such that
o(x,S)=<PeP: 4.2
) { F5g = 0,IIF%[lc2(r2) < 1, and 3xF° =P. (42)

Given an integer k > 0 and a number M > 0, we define
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ri(xa k,M) := ﬂ e (x,S,M), (4.3)
SCE, #(S)<k
and
ot (x, k) := (N ox9). (4.4)
SCE, #(S)<k

Since #(E) < oo, for sufficiently large M > 0 depending on E and f, 'y (x,S,M) # &
for any S C E. As a consequence, for a specific k > 0, Fi(x, k, M) # @ if M is sufficiently
large.

It is easy to see that Iy, FL o, and of are convex and bounded (as subsets of R3 via the
identification (3.2)). We can easily see from (4.2) and (4.4) that o and of are symmetric
about the origin. Since E is finite, for each fixed x € R? and M > 0, there are only
finitely many distinct o(x,S) and I'(x, S, M). Therefore, we may apply the finite version
of Helly’s Theorem (see Section 4.1 for the statement). Both of and ri are monotone
decreasing (with respect to set inclusion C) in k. Furthermore, Fi is monotone increasing
in M.

Since o and of contain the zero polynomial, they are never empty.

Understanding the shapes of Fi and of is the key to proving Theorems 4, 5, and 6.

We will also be working with the following object.

Definition 4.2. Given x € R? and & > 0, we introduce the following object
B(x,8) == {P eP:0%P(x)] < 52*'“‘} . (4.5)
To understand the significance of B(x,8), we point out that Taylor’s theorem can
be reformulated in the following way: Given F € C?(R?) with [|F|c2g2) < M, then
JxF—3yF € CM - B(x,|x —yl) for any x,y € R%.

4.1. Lemmas on conver sets

Lemma 4.1. rﬁ(x, k,M) — ]"i(x, k,M) C 2M - o*(x, k). The minus sign denotes vector
subtraction.

Proof. Let Py,P, € l"fr(x, k,M). For each S C E with #(S) < k, there exist F?,Fg €
CZ(R?) such that for i = 1,2, F{| = f, [[F{[c2rz) < M, and JxF{ = Pi. Then
(F§ — FE‘)\S =0, |[F} — FEHCZ(RZ) < 2M, and g4 F§ — F5 = Py — P,. Since S is arbitrary,
P; — P € of(x,k,2M) = 2M - of(x, k). O

We recall a classical result by Helly, the proof of which can be found in [26].
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Helly’s Theorem. Let F be a finite collection of convex sets in RP. Suppose every sub-
collection of F of cardinality at most (D +1) has nonempty intersection. Then the whole
collection has nonempty intersection.

The following lemma states that we can control polynomials in Fﬁ based at some point
by polynomials that are based at a different point but are “less universal” (in the sense
that it is the jet for an interpolant for fewer points).

Lemma 4.2. There exists a universal constant C such that the following holds. Let x,x’ €
RZ. Let ky > 4ky. Let M > 0. Given P € Fi(x, k1, M), there exists P’ € Fi(x’,kz,M)
such that

(P =PI, 10%(P—P)(x")| < CMpx —x/*710 for o < 1.
Proof. Fix P and M as in the hypothesis of the lemma. For each S C E, we define

ptemp (g . {P/ cp- There exists FS € CZ (R?) such that [|F3||cz g2y < M,} .

FS|g = 1,3xF° =P, and Jx.F° =P’
Then T is a convex and bounded subset of P. Notice that
S C S implies M*™P(S) € T™P(S), (4.6)
It also follows from the definition of Fi(x, ki1, M) that
if #(S) < kq, then T*"™P(S) # &. (4.7)
Let Sq,...,S4 C E be given with #(S;) < k; for each i. Let S = U?:1 Si. Then #(S)

4k < kq. Thanks to (4.7), T™P(S) # @. Since S; C S, (4.6) implies that T*™P(S)
°™P(S;). Therefore,

<
C

4
[ TE™P(S6) D TE™P(S) # 2.
i=1

Since {Si}jj:] are arbitrary, applying Helly’s Theorem to the convex sets T'\"™P(S;) C P
(with dim P = 3), we have

N e +e

SCE,#(S)<k2
Let P’ € N r°™P(S). By definition, P’ € F_’i(x’,kz, M). Setting S = @, we see

SCE,#(S)<k2
that there exists F € C2 (R?) with
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L] HF”CZ[RZ) S T\/l7 and
« JF=Pand g F=P"

By Taylor’s theorem, we have

0%(P = P")(x)| = P*(3xF — 3 F)(x)] < [0%(F — dx P (x)] < CMpx — /1271
The estimate for [0%(P — P’)(x’)| is similar. O
Lemma 4.3. Under the hypothesis of Theorem /, Fi(x, 16, M) # & for all x € R2.

Proof. Recall that 'y (-, -,-) is a convex set in a three-dimensional vector space P. By
Helly’s Theorem, it suffices to show that the intersection of any four-element subfamily
is nonempty. To this end, fix x € R?, let Sy,---,S4 C E with #(S;) < 16, and let
S= U§:1 Si. We have

4
(8, M) € () T4 (%, S5, M). (4.8)

i=1

Since #(S) < 64, the hypothesis of Theorem 4 implies that 'y (x, S, M) # &, and hence,
the intersection on the right hand side of (4.8) is nonempty. This concludes the proof. O

The following variant of Helly’s Theorem can be found in Section 3 of [6].

Lemma 4.4. Let F be a finite collection of compact, convex, and symmetric subsets of RP.
Suppose 0 is an interior point for each K € F. Then there exist K1,--- ,Kpip41) € F
such that

K]ﬂ-'-ﬁKD(D+])CCD- (ﬂ K> .

KeF

Here, Cp is a constant that depends only on D.

Lemma 4.5. There exists a universal constant C such that the following holds. Let x € RZ.
Then given k > 0, there exist S1,---,S12 C E, with #(Si) <k for each i, such that

12
()olx,S)ccC- ([ oxS) | =C-d'(xK).
i=1 SCE,#(S)<k

Proof. Let x € R?. Note that o%(x,k) has nonempty interior (in the relative topology
of the maximal affine space that it spans). We apply Lemma 4.4 (with D < dim P = 3)
to closure(o(x,S)). Thus, there exist Si,---,S12 C E with #(S;) < k for each 1 =
1,---,12, such that
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12
ﬂ o(x,S1) Cc Cp - ﬂ closure (o(x,S))
i=1 SCE,#(S)<k
Therefore,
12
() o(x,S:) € 2Cp - (1 o(xS) | =2Cp-o(x,k). (4.9)
i=1 SCE,#(S)<k

This proves the lemma. 0O
4.2. Whitney fields

In this subsection, we assume n = 1 or 2. We use P to denote the space of polynomials
on R™ with degree no greater than one.

We now recall the notion of a Whitney field.

Let S C R™ be a finite set. We use W2(S) to denote the (finite dimensional) vector
space of sections of S x P. An element Pe W?2(S) is called a Whitney field, and has the

form P = (P¥)xes. W2(S) can be endowed with a norm

1/2 2\ 2
- o xpx 2 |a[x(PX_Py)(X)|
IPllwz(s) = max | 3 RP*(I* |+ max | ) <W

ol <1 x#y  \ll<T

(4.10)
We are interested in jets that can be extended to nonnegative C? functions. For x € R™
and M > 0, we define

C+ (X) M)

1/2

=dPeP:| ) [0*P()P <M, P(x) >0, and |[VP| < /4M - P(x)

lx|<1

(4.11)

The next lemma tells us how to approximate I, .

Lemma 4.6. There exists a universal constant C such that the following holds. Given
M > 0, we have’

I (x,@,C"M) C C(x,M) C T (x,2,CM). (4.12)

2 Here, when n = 1, ', (x, @, M) is defined to be {EXF :Fe C*(R),F>0, and IFllczry < M}, where

J, is the first degree Taylor expansion about the point x for a single-variable function.
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Proof. The statement is clear for M = 0.

Suppose M > 0.

The first inclusion follows immediately from Taylor’s theorem. We prove the second
inclusion.

Without loss of generality, we may assume x = 0.

Pick P € C(0,M). We have

> p*POPF <M?

loe| <1

and
|VP[? < 4M - P(0). (4.13)
Restricting P to each one-dimensional subspace of R™ and using (4.13), we see that
P := M[x|? + P(x) = Mx|* + VP - x + P(0) > 0 for x € R™.
Let B be the unit disc in R™. Let 0 € C2 (R™) be a cutoff function satisfying
supp (0) € B, 6 =1 near 0, [0%0] < C for |« < 2.
We define
F:=0-P=M8x]*+06VP.-x+6P(0).
Immediately, we have JoF = 30]5 =JoP =P and F > 0 on R™. Moreover,
[0%F(x)] < CM for x € B and || < 2. (4.14)

Since 0 is supported in B, we can conclude that, ||F||c2gn) < CM and JoF € T (0,2, A)
for A = CM. This concludes the proof. 0O

Definition 4.3. Recall the definition of C; in (4.11). Given a finite set S C R™, we define

WS = {F = (Phes ewis): IR O EY .
For P € W2 (S), we define
IPllwz (s) = IPllwzs) + M(P), (4.16)
where Hﬁ”WZ(S) is defined in (4.10) and
M(P) := inf{M>0:|VPX\ < /AMPX(x) for cachXES} . (4.17)
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Remark 4.1. The definition of M is motivated by the estimate (4.14).
The following is immediate from Taylor’s theorem and Lemma 4.6.

Lemma 4.7. Let F € C2(R™). Let S C R™ be a finite set. For each x € S, let P* := J4F.
Let P := (P*)xes. Then P € W2(S) with [Pllwz (s) < Cl[Fllcz(rn) for some constant C
depending only on m.

The next lemma follows immediately from Lemma 4.7.

Lemma 4.8. Let S C R™ be a finite set. Given any f € C2(E), there exists Pe W2(S)
such that [[Pllwz (s) < Clfllcz (s) and P*(x) = f(x) for each x € S. The constant C
depends only on n.

Lemma 4.9 (Whitney extension theorem for finite sets). Let S C R™ be a finite set. There
exist a constant C depending only on n, and a map WS : W2 (S) — C2(R™) such that
the following hold.

(A) IWS(P)llczmn) < ClIPllwa s)-
(

(B) 3 WS(P) = P* for each x € S.

Sketch of proof. We begin by assuming S = {y}. We write * instead of {*} in certain
places to avoid cumbersome notation.

Let P=P e W2(y).

Suppose P(y) = 0. Since P € W2 (y), we must have VP = 0. Therefore, we simply set

Conclusions (A) and (B) are satisfied.
Suppose P(y) > 0. By definition,

1/2

VP2
PecC M), where M := max [0%P(y)? y ——
+(y, M), WZ« (v) Y]

Thus, P(x) := P(x) + Mx —y|? > 0 for all x € R™.
Let x be a cutoff function that satisfies x = 1 near y, supp (x) C B(y, 1), and [0%x| < C
for |« < 2. Define
WY (P) :=x-P. (4.18)

It is clear that WY¥(P) > 0 and JyW¥(P) = Hyls = P. Moreover, for x € B(y,1) and
lof <2
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[0*WY(P)| < CM.
Therefore,
[WY(P)|lc2n) < CM < C'[[P[lwa s)- (4.19)

Next, we sketch the proof of the lemma for general S.

Let WC be a Whitney cover of R™ associated with the set S, and let {6g} be a partition
of unity compatible with WC. See [12].

In particular, WC and {6} satisfy the following properties.

« R" = UQEWC Q;
e Q € WC if and only if Q satisfies one of the following:
- 8g=1and SNQ* <1 (recall that Q* =2Q);
-00<1,SNQ* <1,and SN(Q*)* > 1 (recall that Q" is the dyadic parent of Q).
o« If Q,Q’ € WC and Q +» Q' (i.e. the closures of Q and Q' have nonempty intersec-
tion), then C*]ZSQ <8q/ < Cog.
* 2qewcfo =1,
« supp (0g) € Q* for each Q € WC, and
o [0%0q| < C85* for |af < 2 and Q € WC.

For each Q € WC, we consider three different cases.

Case 1 When SN Q* # @, we set WQ := WY where y € SN Q* and WV is defined in
(4.18). We set PQ := PY,

Case 2 When SN Q* = @ and 8g < 1, we may pick y € SN (Q™")*. We set WQ := WV
and set PQ := PY.

Case 3 When SN Q* =& and §g =1, we set WQ =0 and PQ := 0.

Finally, we set

WS(B):= >  0q-WR(PQ).
QewcC

One then verifies that WS (P) > 0 and [WS (P)||c2rn) < C||P|lwz (s via Lemma 4.6 and
a routine argument from the classical Whitney extension theorem. See [25] for details. O

5. Calderdon-Zygmund squares
5.1. Calderdn-Zygmund decomposition of R?

Definition 5.1. Let Cpice > 0 and k > 1. Recall the notation Q* = 2Q. We say a dyadic
square Q is k-nice if for all x € EN Q*,
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diam (0%(x,k)) > Cyicedq- (5.1)
We now describe our decomposition procedure.

CZ Algorithm. Let Q be a square.

. . k
o If Q is k-nice, then return /\Eg) ={Q}k
o otherwise, return

AY = {/\(Qk) - Q’ dyadic and (Q")* = Q} .

Remark 5.1. The algorithm terminates after finitely many steps for each unit square. To
see this, notice that E is finite, and for fixed k and Cpice, (5.1) clearly holds for sufficiently
small squares containing no more than one point. Moreover, since of does not depend
on f, the complexity of our algorithm depends solely on the set E.

Definition 5.2. For a particular choice of Cpice > 0 and k > 1, we use /\Sfc)e = {Qi} to
denote the collection of k-nice squares obtained from applying the algorithm above to
each of the unit squares with their vertices on the integer lattice.

Lemma 5.1. Al¥)

nice

is a CZ covering of R?.

Proof. Since we obtain /\f]fgc by applying the algorithm to each square of the unit grid,
(k)
A

Lo, is indeed a covering of RZ.
Suppose (3.3) fails, i.e., there exist some Q,Q’ € A% with Q < Q' but

5 < 150
Then (Q™)* C (Q’)*. Since QT is not k-nice, there exists X € EN (Q*)* \ Q* such that
diam (0% (X, k)) < 2Cpicedq-
On the other hand,
Cricedq < diam (0%(X,k)) .

A contradiction is reached once we combine all the inequalities above, because Q is
k-nice. O

Our main goal is to construct a local interpolant for each k-nice square and then
to patch these local solutions together. We need several lemmas that guarantee the
consistency of our operation.

The following lemma states that polynomials in Fﬁ with the same base point x control
each other in the Whitney sense after our decomposition.
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Lemma 5.2. Let Cpicsk > 1, Q € A x € ENQ*, and 0 < |of < 1. If PP’ €
™ (x,k, M), then

0%(P —P')(x)| < 14Cy1eMbg . (5.2)

Proof. Note that (5.2) is immediate if 6q =1 or a = (0,0). Therefore, we only need to
consider the case when 6g < 1 and || = 1. The assumption 6g < 1 implies that there
exists y € EN (Q™)* such that diam (0%(y,k)) < 2Cyicedq. Fix such y.

Suppose toward a contradiction, that we can find a point x € EN Q* and P,P’ €
Fi(x, k, M) such that (5.2) is false for some || = 1. Fix such o.

By Lemma 4.1, P — P’ € 2M - o (x, k). By definition, for any S C E with #(S) < k,
there exists FS € C?(R?) such that

. FS}S =0,
o |[F¥]lc2(r2) < 2M, and
e 0%(gxF%) =0%(P —P’).

By assumption, [0*F(x)| > 14CypiceMq. Since, x,y € (Q™)*, we have [x —y| < 63¢.
Therefore,

0%y F* (y)l = [0“F (y) = 0°F (%) — [F*lc2 ) Ix — Yl = 2CuiecMBq.
Since S is arbitrary, we have diam (O‘ﬂ (y, k)) > 2Chicedq- A contradiction. 0O

Lemma 5.3. Let Cpice, k > 1. There exists a universal constant C such that the following
holds. Let Q,Q" € AlX).. Letxq € Q andxq: € Q'. Let M > 0. Let Pg € T (xq, 4k, M)

nice

and Pg € Fi(erAk, M). Then for |&| <1 and x € T00Q U 100Q’,
[0%(Pq — P/ )(x)] < CM - max{jxq — xq-l, 5q,5q/ 1> . (5.3)
Proof. Set
800 i=max{lxqg —xq’l,00,0q}.
By (3.3), we have
Ixq —xl, Ixgr — x|, Ixg —xq/| < Cduo for x € 100Q U 100Q".
By Lemma 4.2, there exists a Pyemp € Fﬁ(er,k, M) with
[0%(Pq — Premp) (xq /)| < CMIxq — xq/[* 71 < CMsZ; ™. (5.4)

Since Pg: € rg_(XQ/,4k,M) C Ffr(er,k,ML Lemma 5.2 applied to Pgs and Piemp
gives
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0%(Pq/ — Premp) (xq /)| < Mg, < CM&Z1! for |of < 1. (5.5)
Combining (5.4) and (5.5), we have
[0%(Pq — Pq/)(xq/)| < CM&Z ™ for |of < 1. (5.6)

Since Pg and Pq- are affine polynomials, (5.3) follows from (5.6) in the case || = 1.
By the fundamental theorem of calculus, we have

(Pq —Pq)(x) = (Pq — Pq/)(xq/) + J V(Pe =Par), (5.7)

seg(x g —x)

where seg(xq+ — x) is the straight line segment from xg+ to x. Note that V(Pq —Pgq-)
is a constant vector since both Pq and Pq: are affine. Taking the absolute value of (5.7)
and applying (5.6) with || = T, we conclude that (5.3) holds for 6| =0. O

5.2. Local geometry

The goal of this section is to show that according to our decomposition, we have
partitioned the data points into clusters whose geometry is essentially one-dimensional.
To proceed, we introduce some notations.

Note that the C? norm we are using in (3.1) is rotationally invariant. Let w €
[—71t/2,7/2]. We associate with w a coordinate system obtained by rotating the plane
counterclockwise about the origin by an angle of w. Thus, for x € R?,

X = (Svt)standard = (X((l];)vxg))wa
where XS] = scosw + tsin w and fo] = —ssinw + tcosw. When the choice of w is

clear, we write 91,0, to denote the partial derivatives with respect to the first, second
variable, respectively. They coincide with the directional derivatives along w and w*, if
we also treat w as a unit vector.

If ¢ : I — R is a function defined on I C R, we denote by Graph(¢;I, w) the graph of
¢ over I (with respect to the standard coordinate system) rotated by the angle w.

Lemma 5.4. Let k > 4 and let Cpice be sufficiently large. Suppose Q € /\nge. Then there

exist w € [—m/2,7/2] and a twice continuously differentiable function ¢ : R — R such
that

e ENQ* C Graph(d; R, w);
o (&[T, and

—1
o [P < 5y -

The constant C depends only on Cpice-
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Proof. If EN Q* = &, there is nothing to prove. From now on, we assume E N Q* # &.
Fix xo € EN Q™. Let 6 = 8qg. Since Q € AY) e have diam (O’ﬂ(Xo,k)) > Chice.

nice’

Since of is symmetric about the origin, there exist P*° € of(x0,k) and w = %
(where Iy, is the identification map in (3.2) and || - || is the Euclidean norm) such that
[02P* (x0)l = Chiced/2 (5.8)

and
1P (x0) = 0. (5.9)

Here, ai = ax(i) fOI‘ i= 1,2

Claim 5.1. Given any €o > 0, we may pick Cpice > 0 large enough such that the following
holds.
For any S C ENQ* containing xo with #(S) <k, there exists 5 € C*(R) such that

(i) S C Graph (%15, w),
(i) | (d)s)/\ <ep on IS, and
(iii) | (6%)"] < eodgy' on IS

Proof of Claim 5.1. Let S C EN Q* be such that xo € S and #(S) < k.
Since P*° € of(xo, k), there exists FS € C2(R?) such that

(i) Pl =0,

(11) ||FS||C2(]R2) < ], and
(ili) Jx, F° = Pxo.
By (5.8), we have

02F° (x0)| = [02P*°| > Chicedqy/2- (5.10)

Now, for all x € Q*, we have [xo —x| < 38g. Hence, for all x € Q*, by (5.9) and property
(ii) of FS, we have

\61F5 (x)| < ||FS||C2(]R2)|X0 —x| < 35Q. (5.11)
From (5.10), we also have, for all x € Q*,
102F5 (%) > [02F° (xo)l — [|F® || c2 (r2) X0 — X| = (Cuice/2 — 3)8g.

Therefore, if Cpjee is sufficiently large, the implicit function theorem yields a function
¢S € C2(I%) for some open interval IS such that S C Graph (q)S;IS, w).
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First we compute the derivatives of ¢5:

/ 0,FS
(%) ) =~ (5.12)
— (925 (x))% 02FS (x) + 201 FS (x)9,F (x)22,FS (x) — (31 F5 (x))* 93FS (x)

(92F8(x))?

(6%)" (x) =
(5.13)

From (5.11) - (5.13), we conclude that, for sufficiently large Cpice,
()| < eoonI® and [($%)"] < eodg' on I°.

This concludes the proof of the claim. O

Next, we define the projections 7; : R> — R by m((xﬁj),xﬁﬁ])) = xgj, fori=1,2. By
Claim 5.1, we know that 7t1|gnqg~ is a one-to-one map. Therefore, EN Q™ lies on a graph
with respect to the xg)—axis.

It remains to see that the graph can be taken to have controlled derivatives.

For simplicity of notation, we suppress w in the subscript.

Let xo = (xé”,x(()z)). We may assume without loss of generality that 711 (E N Q*) =

{xé”,x%”,...,x(L]j]} such that Xé” < xg” < e < X(L]Jl? where L = #(E N Q*). Let
(2)

i

Let B = {x",x{1}, x|}, } forj =1,...,L=3. Let §; = 717" (E5) Ufxo}. By Claim 5.1,

m(ENQ*) = x(()z),xgz),...,x{z_)]}, where x :ﬂzonf‘(xp)) fori=1,...,L—1.

j
we know that there exist ¢p5i € Cz(Ij) and a constant C, depending only on Cpjce, Such

that

. ¢Si|Ej =10 071171’

o (S (xM)] < e for all x(1) € [x§1),x§1+)2], and

o 1(6%)"(xM)] < eodg' for all x(V e [x;")x{ 1)),

Therefore, by Theorem 1.B and the fact that dg < T, we may choose eo sufficiently
small such that there exists ¢ € C2(R) such that

o Glengr =mom !,
o [[¢[[com) <1, and
o 10"lcor) < 85"

This completes the proof of the lemma. 0O

For future reference, we make the following definition.
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Definition 5.3. A pair (k, Cpice) guarantees good geometry if the following hold:

e k>4; and

e Chpice is sufficiently large such that Lemma 5.4 holds.
Lemma 5.5. Let (k, Cpice) guarantee good geometry. Let Q € /\Sf,je. There exist a uni-
versal constant C and a diffeomorphism © = ®q € C2(R?,R?), such that the following
hold.

(A) ®(ENQ*) C R x{0};
(B) [[Vol|, [VO~T|| < 2; and
(C) V2|, V2o~ < Cog'.

Here, || -|| denotes the Euclidean norm.

Proof. We may compose on the right by a rotation w if necessary, and assume w = 0.
Such rotation will not affect the Euclidean norm. Let ¢ be as in Lemma 5.4. Put

D(s,t) == (s,t — P(s)) and @' (5,1) := (5, t + $(8)). (5.14)

They are clearly inverses of each other and are twice continuously differentiable.
Property (A) follows from how we construct ¢ (see Lemma 5.4).
To see (B), we note that

Property (B) then follows from (5.15) and the first derivative estimate of ¢ in Lemma 5.4.

Further differentiating each matrix in (5.15), we see that the only nonzero terms occur
when 95 is applied to the bottom left entries and yields F¢". Conclusion (C) then follows
from the second derivative estimate of ¢ in Lemma 5.4. O

Lemma 5.6. Let (k, Cpice) guarantee good geometry. There exists a universal constant
Crep Such that the following holds. Let Q € AY)  Then there exists qu e Q with

nice
dist (x5, E) = crepdao-

Proof. If EN %Q = @, we may pick x%z to be the center of Q and let cp = 1/4.
Suppose EN %Q 0. FixX€EN %Q There exists a universal constant ¢; > 0 such
that B(X,c18q) C Q, where B(X, c18¢q) is the ball of radius ¢15¢g centered at X. Let @ be
as in Lemma 5.5. (Again, we may assume w = 0.) By (B) of Lemma 5.5, there exists a
constant ¢, > 0, depending only on Chice, such that B(®(X),c20q) C ®(B(X,¢108¢g)). Re-
call that ®(ENQ*) C Rx{0}. Let X%, := ®(X)+(0,c28/2). Then dist (zg, ®(EN Q*)) >
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€200 /2. Let xg =0 (Yg). By (B) of Lemma 5.5 again, dist (XE,E N Q*) c30q for

>
some c3 > 0 depending only on Cyjce. Finally, since xg € Q, dist (xg, EN\ Q*) >0q/2.
This concludes the proof of the lemma. O

Recall Definition 4.2.

(k)

Lemma 5.7. Let (K, Cpice) guarantee good geometry. Let Q € Ay;... Let xg be as in

Lemma 5.6. Then

0% (x%,4k) C C - B(x%,8q)
for some universal constant C.
Proof. If 5o =1, then the lemma follows from the definitions of of and B.

Suppose g < 1. Then Q7 exists and is not k-nice, meaning that there exists X €

EN(Q1)* such that

diam (6%(X, k)) < 2Cpicedq - (5.16)
Fix such X. By our choice of xg (see Lemma 5.6), we have that

[R—xG| < Coq.

Let P € O'u(XuQ,4k). The argument for the proof of Lemma 4.2 applied to of yields
P’ € of(X, k) such that

P—P e C (Bixh,80) NB%,8q)) - (5.17)

Moreover, since P’ € o%(X, k), by the definition of of, we have P/(X) = 0. Thanks to
(5.16), we also have [VP'| < Cdq. Therefore, we can conclude that

P/ e C-B(%5q). (5.18)

Taylor’s theorem, together with (5.17) and (5.18), implies that P € C - B(XE, dq). Since

P is an arbitrary element in O‘ﬁ(XﬁQ,Zﬂ(), the lemma follows. O
6. 1-D results

In this section, we provide the proofs for our one-dimensional results. First, we will
prove Theorem 1.B and indicate how the proof of Theorem 1.A follows. Then, we will

sketch a proof for Theorem 2.A. The proof for Theorem 2.B uses the same idea but with
easier intermediate steps.
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We will use x,y to denote points on R, and 0™ to denote the m-th derivative of a
single-variable function. When m = 1, we simply write O instead of d'. We use P to
denote the vector space of one-variable polynomials with degree no greater than one.

6.1. Finiteness principles for C*(R) and C2(R)
Proof of Theorem 1.B. For N > 3, let I; = (—oo,x3], I = [x2,%x4], ..., In_3 =

[xn—3,xn—1], and In—2 = [xn—2,400). By assumption, for each j, there exists F; €
CZ (R) with Fj|, = f and
)

IFjl < Ao, 0| < Ay, [9°F| < A,. (6.1)
We introduce a partition of unity {6;} that satisfies

i) Z)TI;ZGJ- =1 onR;
(ii) supp (8;) C Ij for each j =1,...,N —2; and
(iii) ® foreach 1<k <2and 1 <j<N-2,

|akej (X)l < {C|Xj+] —Xj|_k if x € [Xj,Xj+]] . (62)

B Clxj12 —%j41 7% ifxe [Xj41,%542]

Notice that the interior of I; N Ij supports at most two partition functions (6; and 85).
Define

N-2
Fx) = > 6;(x)F;(x). (6.3)
j=1
Clearly, Flg = f, F is twice continuously differentiable, and
IFl < 2Ao. (6.4)
Observe that (6.1) and condition (ii) of {8;} imply

[0™F < Am on (—00,%2] U [xn—1,+00). (6.5)

Suppose x € (x2,Xn—1). Let j be the least integer such that x € I;. The only partition
functions possibly nonzero at x are 8; and 0j41. Since 65(x) + 0j41(x) = 1, we have
9%0;(x) = —0%0;.1(x) for k =1,2. Thus,

3 For the existence of such partition function, see e.g. [15].
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Claim 6.1. Let x € Iy N Ij11. Then
[(F5 = Fi1) ()] < 2Aq0x541 — x4l (6.7)
For1=0,1, we also have
[ (Fj — Fyj1) ()| < 2A50x 41 —x1* L. (6.8)
Proof of Claim 6.1. Note that by construction, Ij N Ij41 = [xj41,Xj42].
Observe that (6.7) is an immediate consequence of the mean value theorem.
It remains to show (6.8).
Observe that (F; — Fji1)(xj41) = (Fj — Fj+1)(xj42) = 0. By Rolle’s theorem, there

exists X; € (xj,%j+1) such that d(F; — Fj41)(Xj) = 0. By the fundamental theorem of
calculus and triangle inequality, we have

|a(FJ - F]'+1 )(X)‘ < J |az(F] - F]+1)(y)|dy < 2A2|Xj+2 7Xj+]| for all x € I]' n Ij+1.

Similar calculations yield the case 1 = 0. (6.8) is proven. 0O
Now, (6.2), (6.5), (6.6), and (6.7) imply that
0| < CA;. (6.9)
Likewise, (6.2), (6.5), (6.6), and (6.8) imply that
|0%F| < CA,. (6.10)
In view of (6.4), (6.9), and (6.10), we conclude the proof of the theorem. O
Proof of Theorem 1.A. We simply take A, = 1 for m = 0,1,2 in the above proof of
Theorem 1.B, and note that F(x) defined by (6.3) is nonnegative if all of the F;’s are
nonnegative. 0O

6.2. C*(R) and C%(R) extension operators of bounded depth

Now we explain the proof of Theorem 2.A.

Let E C R be a finite set. We enumerate E = {x7,--- ,xn} with x; < --- < xn. Let
Ei = {xi, Xit1,Xiz2} for i=1,--- /N — 2. Suppose for each i, we are given an extension
operator & : C4 (E;) — C2(R) with 1E(F)]lcz(r) < CHf”Ci(Ei) and (&;(f)) |Ei = f. Let
{I;} and {8;} be as in the proof of Theorem 1.A. We define
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EMR)(x) =) 8:(x) - &(f)(x). (6.11)

Conclusions (A) and (B) of Theorem 2.A follow from the same argument as in the proof
of Theorem 1.A. Moreover, by assumption, &; (f) depends only on {f(x;), f(xir1), f(xi12)}
for each i, and the 0;’s have bounded overlap. Therefore, conclusion (C) and Remark 2.4
follow.

Hence, in order to construct a bounded extension operator with bounded depth in
dimension one, it suffices to construct a bounded extension operator for every consecutive
three points. This is a routine linear algebra problem and is readily solvable via the
nonnegative Whitney extension theorem (see Lemma 4.9). We leave the details to the
interested readers.

For Theorem 2.B, we simply replace each summand on the right-hand side in (6.11)
with 0;-&;, where &; is an extension operator associated with E; without the nonnegative
constraints.

6.3. Non-additivity
In this section, we use the following notations
Il eme) = inf{HFHCm(R) :Fe C™(R) and Fl :f} and
Ifllep ey = inf{HFHCm(R) :FeC™R) and Flg = f} .
Proof of Theorem 3. Let € > 0 be a sufficiently small number. We use C, C’, C, etc. to
denote universal constants.

Consider E = {x1,x2,x3} C R, where x5 = (j — 1)e for j = 1,2,3. Suppose toward a
contradiction, that £ : C4(E) — CZ(R) is a bounded extension map that is additive.
That is, E(f+ g) = E(f) + E(g) for all f, g € Ci(E), and

CIEM N2y < Ifllcz ey < CIEM)c2(r) -
For j =1,2,3, we define
f(x;):=0G—1)e and g(x5):=1—1(x;).
Then f,g € C2(E), and f+ g = 1. It is easy to see that
If+gllcze)=1.

In fact,

If+glleme) =0 form=1,2.
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Since £ is bounded, we have
T<[E(f+9g)llczr) <C. (6.12)
We analyze the derivatives of £(f) and £(g).
We begin with £(f). By calculating the divided difference using (x1,f(x1)) and
(x2,f(x2)), we see that

[0E(f)(Xo)| > 1 for some X € (0, €).

Since £ preserves nonnegativity and f(0) = 0, £(f) must have a local minimum at 0.
Therefore,

9E(f)(0) =0.
By calculating the divided difference, using (0, 9&(f)(0)) and (Xo, 0E(f)(Xo)), we see that
192£f(xo)l > Coe ™! (6.13)
for some x¢ € (0, €). Fix such xo.
Now we turn to £(g).

Let U be a cutoff function such that 1 = 1 in a neighborhood of [0, 2€], supp () C
[—1,1], and [0™x| < C for m = 0,1, 2. Consider the function g defined by

g(x) ==(x) - (1 —x)

It is clear that § € C2 (R) with §lg = g. Moreover,

9llc2w) < C.
Therefore,

lgllcz ey = C.
Since £ is bounded, we know that, for xo as in (6.13),

02£(g)(x0)l < C1 . (6.14)
Therefore, we have, with Co and C; as in (6.13) and in (6.14),
9%(Ef + Eg)(x0)| > Coe ' —Cy > Ce .

For sufficiently small €, this would contradict (6.12). O
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7. 2-D finiteness principle
7.1. Statement of the main local lemma

The goal of this section is to prove a local version of the finiteness principle, which
produces a nonnegative local interpolant taking a jet in some prescribed ri (see (4.3))
at a point sufficiently far away from the data. We will use these jets as transitions in our
estimates.

Recall Definition 5.3. Also recall that Lemma 5.6 produces a point qu € Q such that

dist (xﬁQ,E) > Crepdo (7.1)

for each Q € AlK) given that (k, Cpice) guarantees good geometry. We fix the number

nice

Crep-

Lemma 7.1. Let E C R? be finite, and let f : E — [0,00). Let (K, Cnice) guaran-
gfc)e Let xg € Q satisfy (7.1). Let kioe > 3. Sup-
pose Fi(xg,kloc,l\/l) # @&. Then there exist a universal constant C and a function
FﬁQ € C2(100Q) such that the following hold.

tee good geometry and Q € A

(A) FQ|EﬂQ* = f;
(B) [[Fqllc2(100q) < CM, and
(C) 3. Fa € T (X, Kiae, CM).

Note that if #(E N Q*) < Kjoc, the conclusion follows immediately.

Hereafter, we assume #(E N Q*) > kjoe > 3.

The main idea of the proof is to treat the local interpolation problem differently
depending on whether the local data is big or small. For big local data, we solve the
problem as if there were no nonnegative constraints. For small local data, we simply
prescribe a zero jet.

Below we give a more detailed overview of our strategy, still without dwelling into the
technicalities.

Our approach relies on three crucial lemmas. The first one (Lemma 7.2) describes the
relationships among the value, gradient, and zero set of a jet generated by a nonnegative
function. The second one (Lemma 7.3) is a perturbation lemma, which specifies the con-
ditions under which we are allowed to modify an element in Fi (x%, - + ). We emphasize
the importance of the choice of base point xjéy which is far away enough from all the data
points (on the order of 8g) so that we have room to modify the interpolants’ behavior
near xg. The third one (Lemma 7.5) tells us that the local data is either uniformly big
or uniformly small (on the order of EZQ)
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We begin the proof of Lemma 7.1 by first tackling a one-dimensional interpolation
problem. Recall that, thanks to Lemma 5.4, the data points locally lie on a curve. The
interpolation problem along this curve is essentially one-dimensional and readily solved,
thanks to Theorems 1.A, 1.B, and Lemma 5.5.

We then solve the local problem when the local data is uniformly large, namely,
minyeeng- f(x) > Béé for some universal B > 0 to be determined. We replace the local
data fleng- by g(x) = f(x) — Pi(x) for x € E N Q*, where P* is a suitable element in
ri(x%,kloc,C) such that g achieves two zeros and that P¥ > B’ZS%2 on 100Q for some
B’ > 0 depending only on B. Thanks to Rolle’s theorem, the resulting one-dimensional
g-interpolant, although not necessarily nonnegative, will be uniformly small on the order
of 66, and in particular, bounded from below by fcéé‘ Now, we are in the suitable order
of magnitude to force a zero jet at xg. To do this, we simply extend the one-dimensional
interpolant in the normal direction by constant, and use a bump function to damp out
the function at xg, If we choose B such that B’ is bigger than ¢, we may add P* back to
the zero-jet interpolant while preserving nonnegativity of the sum on 100Q, and solve
the local problem.

Next, we solve the local problem when the data is not uniformly big. Thanks to
Lemma 7.5, the local data has to be uniformly small, i.e., maxycgng- f(x) < B”ézQ for
some B” > 0 depending only on B. Therefore, we are in the correct order of magnitude to
force a zero jet as in the previous step. Thanks to the perturbation lemma (Lemma 7.3),
the zero jet in this case is indeed a kjoc-point jet, and the problem is solved.

Sections 7.2 and 7.3 will be devoted to the proof of Lemma 7.1.

7.2. Key lemmas

In this section, we use Cartesian coordinates x = (s,t) on R2. We also write xg =
(o 4
Xq = (sQ,tQ).
Lemma 7.2. There ezist universal constants C,C’,C" such that the following hold. Sup-
pose P € Ty (x,d,M). Then

P(y) + CMJy —x|* > 0 for ally € R?, (7.2)
[VP| < C'v/MP(x) and (7.3)
dist (x,{P =0}) > C"M"2,/P(x). (7.4)

Proof. Inequality (7.2) is a direct consequence of Taylor’s Theorem.

To see (7.3), we simply compute the discriminants of the left hand side of (7.2) re-
stricted to the s and t-directions.

Now we prove (7.4). If P(x) = 0 or P is a constant polynomial, the inequality is
obvious. Assume that P(x) > 0 and P is nonconstant.

Since P is an affine function and the gradient points toward the direction of maximal
increase, we have
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P(x)

IVPI= Gt (,{P=0})"

From (7.3) and (7.5), we have the desired estimate (7.4). O

Lemma 7.3. Let M > 0. Let (k, Cpice) guarantee good geometry (see Definition 5.3), let
k' >1, and let Q € /\gfc)e. Let xﬁQ be as in Lemma 5.6. Suppose E N Q* # &. Suppose
M (x, kM) # 2.

(A) There exists a number B > 0 exceeding a large universal constant such that the
following holds. Suppose f(x) > BM(S%2 for each x e ENQ*. Then

M (xh, k', M) + M - B(xhy, 8q) C TE(xG, k', CM).
(B) Let A > 0. Suppose f(x) < AM&ZQ for some x € ENQ*. Then
0 €T (xh, K, A'M).
The number A’ depends only on A.

Proof. We prove (A) first.
Let B > 0 be sufficiently large.

Claim 7.1. Under the hypothesis of (A). Given any P € rﬁ(xﬁQ,k', M), we have
P(xf)) > BoMbg
where we can take By = C(vVB — 1/2)2.
Proof of Claim 7.1. We repeat proof of Claim 7.4 with more control on the parameters.

Let x € ENQ*. Since P € Fi(xg,k’, M), by definition, there exists F € C2 (R?) with
HFHCZ(RZ) S 7\/[7 3)(;22]: = P7 and

F(x) = f(x) > BM&5 . (7.6)

Suppose toward a contradiction, that F(XE) < BoMéé. We see from (7.3) that
IVF(xﬁQ)I < Cy/BoMdq. By the fundamental theorem of calculus, we have

| .
V(6 < IVFg)I + ClFlcaqaeydo < € (VB + 3 ) Mg on Q.
By the fundamental theorem of calculus again, we have
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F(x) < F(xg) + Cog - sup [VF(x)|
xeQ*

b
Q
1
<c’ <Bo +vBo+ Z) Mo
1\ 2
=C’ <\/Bo + E) M55 on Q*. (7.7)
If we pick By in (7.7) to be so small that /By < %, we will contradict (7.6). This
proves the claim. O

Pick P € Fi(xg,k’, M). By the claim, we know that P(xg) > BoMézQ.
Let Pe M- B(xg, 8q). By definition, we have

0%P(xh)| < Mg ™ for |of < 2.

Let S C E with #(S) < k/. We want to show that there exists F € C2(R?) with
[Fllc2r2) < CM, F(x) = f(x) for each x € S, and 3X,1QF =P+P.

We enumerate S ={x1,--- ,xy:}. We let S ={x0,%1 sty X} with xg := XE.

By the definition of I“i, there exists

FS € C1(R?) with ||F®||c2rz) <M, F¥|g =f, and gx.iQFS =P. (7.8)
Fori=1,---,k/, we set
PXt =gy 5.
We also set
PXo ;=P 4+ P. (7.9)

We put
o= (P, e W2(S).
Thanks to Lemma 4.7 and Lemma 4.9, it suffices to show that P e Wi(g) and
[Pllwz (s) < CM.
Thanks to (7.8), we have
P* € Cy(xi,CM) foralli=1,--- ,k’, (7.10)

and

P —PY € CM - B(xi, [xq 7Xj|) for all i,j =1,--- ,k/. (711)
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On the other hand, thanks to Claim 7.1, we have
P (x0) = P(x0) 4+ P(x0) = (Bo — 1)M&g > 0,
and
[VPX| < [VP|+ VP < C\/MP(x§) + Mg < C'y/M(P + P)(xf,) .
This, combined with (7.8), shows that

PXe € C. (x0, CM). (7.12)

It remains to estimate ||]3Hw2(§)~
By Taylor’s theorem, we have

P*t —P € CM - (B(x4, Ixi —x0l) N CM - B(xg, [xi —x0l)) . (7.13)
By Lemma 5.6, we have
dist (xg,E) > Cog .

This, together with Taylor’s theorem and the fact that P € MB(xo, 8q), implies

PeCM-B(xi,lxi —xol) foralli=1,--- ,k’. (7.14)
Therefore,
PXi —PXo =PXi _P_P (by (7.9)
€ (—=P) + CM - (B(xi,0q) N B(xo,8q)) (by (7.13)) (7.15)
cC'M- (B(Xi,6Q)ﬂB(Xo,5Q)) (by (7.14)).

From (7.10)-(7.15), we can conclude that ”ﬁ”Wi(S) < CM. This concludes the proof of
(A).

Now we turn to the proof of (B).

Claim 7.2. Assume the hypothesis of (B). Let P € Fﬁ(xg,k’, M). Then P(xg) < C(VA+
1)2M&%,.
Q

Proof of Claim 7.2. Fix X € E N Q* such that f(X) < BM&g. Since k' > 1, by the
definition of I"L there exists a function F € C2Z(R?) with F(x) = f(X) < AM(S%Q,
[IFllc2(r2) £ M, and HXEF = P. By Lemma 7.2, we have

IVF(R)] = Vd:Fl < VAMSq .
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By Taylor’s theorem, we see that
IVF(x)] < C(VA +1)MSq for x € Q*.
By the fundamental theorem of calculus, we see that
P(xhy) = F(xf) < CA+ VA +1)M8G < C'(VA+1)°Ms} .
This finishes the proof of Claim 7.2. O

It remains to show that 0 € F+(X’1Q,S,A'M) for each S C E with #(S) <k'.

We use Ap, A1, etc. to denotes quantities that depend only on A.

Fix P € Fi(xﬁQ,k’,M). Let S C E satisfy #(S) < k’. By definition, there exists
FS € C2(R?), such that FSIS =1, |[FS|lc2rz) <1, and H%FS = P. By Claim 7.2, we see

that P(qu) < AoMéé and by (7.3) that [VP| < A1M&q. In other words,
FS(x4) < AoM&% and [VFS(x4)| < A;M$
Q) = AoMog Q)l = A1Moq.

The fundamental theorem of calculus then implies

IVFS(x)| < A28q and F°(x) < A,8% forall x € B(xg, C”;ng ). (7.16)

Let Y € Ci(RZ) be a cutoff function such that

Cropd _
0<VYP <1,y =1 near qu , supp (P) C B(x%, 1}())OQ ), [0%P] < CéQ“X‘ for |of < 2.
(7.17)
Let

FS = (1—)F°.
We have the following.

e By (7.1) and the fact that supp () C B(qu, %)Lwe have f:s|s =f.
e By (7.17) and the assumption that FS > 0, we have FS > 0 on R2.
Thanks to (7.16) and (7.17), ||FS|c2(r2) < A2M.

e Since P = 1 near xg, we have 3% FS=0.

Since S is arbitrary, we have 0 € Fi(xg,k’,AzM)‘ This completes the proof of (B) and
the proof of the lemma. 0O

Lemma 7.4. There exists a universal constant B > 0 such that the following holds. Let
M > 0. Let (k,Cpice) guarantee good geometry (see Definition 5.3). Let Q € /\gfge. Let
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xg be as in Lemma 5.6. Suppose EN Q* # & and f(x) > B]Vlé%2 for allx e ENQ*. Let
k’ > 0. Then

M (xG, K/, M) + M - 0 (xfy,4k) € T2 (xGy, K/, CM).
Proof. This is a direct consequence of Lemma 5.7 and Lemma 7.3. O

Lemma 7.5. For each B, > 0, we can find Bunax, depending only on By, such that the
following holds.

Let E C R? be a finite set. Let f: E — [0,00). Let k' > 2. Suppose Fﬁ(x,k’, M) £ @
for all x € R?. Let (k, Cpice) guarantee good geometry. Let Q € /\Sfc)e. Then at least one
of the following holds.

(A) f(x) < B,mxi\/léfQ forallx e ENQ*.
(B) f(x) > BminMéé for allx e ENQ*.

Proof. Fix B, > 0. We use B, B’, etc. to denote quantities that depend only on Byiy.
Without loss of generality, we may assume M = 1.

If Xergimlé* f(x) > Bminéé, there is nothing to prove.

Suppose there exists xo € EN Q* such that f(xo) < BmmézQ‘ Fix such xo.

Let S C EN Q* satisfy xo € S and #(S) < k’. Since Fi(x,k’,]) + @& for each x € R?,
there exists FS € C2(R?) such that FS‘S =fand |[F¥|c2rz) < 1.

Since F5(xq) < Bmméé, (7.3) implies there exists B > 0 such that

IVE (x0)| = [Vdx, F*| < Bdq.
Therefore, since ||[FS||c2gz) < 1, we have [VFS(x)| < B’8q for all x € Q*. By the
fundamental theorem of calculus, since FS(x¢) < BmmBZQ, we must have [FS(x)| < B“ézQ
for all x € Q*. In particular,

[F3(x)| < B"8% forall x €S.

Let Bax := B”. Since S is arbitrary and is allowed to contain more than one point, we
may conclude the proof of the lemma once we let S range over all k’-point subsets of
EN Q" containing xo. O

7.8. Solving the local problem

In this subsection, we prove Lemma 7.1. We fix the local data structure for the rest
of the section.

Local Data Structure (LDS)
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e A lengthscale 6 < 1.

o A square Q C R? with g = 5.

o A representative point x* € Q such that dist (xﬁ,E) > Crepd.

o A function ¢ € CZ(R) that satisfies |¢p(¥)] < &'k for k =1, 2.

o A diffeomorphism @ : R? — R? given by ®(s,t) = (s,t — ¢p(s)).
e Ejoc = ENQ* such that Ejpe C {(s,P(s)) :s € R}

Any Q € /\ch)e with (k, Cphice) guaranteeing good geometry admits the local data
structure, thanks to Lemmas 5.4, 5.5, and 5.6.

We have shown in Lemma 7.5 that each local interpolation problem belongs to at least
one of the two categories: The function’s local values are uniformly big (minyeg,,, f(x) >
Bminéz), or are uniformly small (maxxeg,,. f(x) < Bmaxéz). The next lemma solves the

former case.

Lemma 7.6. There ezists a sufficiently large Byin > 0 such that the following holds.
Let LDS be given. Let Kioc > 3. Suppose Fi(xﬁ,kloc,M) %+ @, and f > Bpind? on
Eioc. Then there exists F € Ci(RZ) with F‘El = f, HFHCZ(]OOQ] < CM, and J,+F €

rgr (Xn) k'loca CM) .

Proof. Without loss of generality, we may assume M = 1.

We will use b, B, B/, etc. to denote quantities that depend only on By, and ¢, C, C’,
etc. to denote universal constants.

Let P € FEF (x%, Kioe, 1). Pick distinct x1,%2 € Fioe. Let P! be the unique affine poly-
nomial that passes through (xi,f(x1)), (x2,f(x2)), and (x¥, P(x*)). We first prove two
claims about P*.

Claim 7.3. We have
IV (P — P*)| < Cdiam (Triangle(x1,x2,x%)) < C8. (7.18)
As a consequence, Pt € ri(xﬁ,kloc, Q).

Proof of Claim 7.3. For convenience of notation, we temporarily label x¢ := x£.

Let S = {x1,x2}. Since P € T (x0, Kioe, 1) With kjoe > 3, there exists FS € C2 (R2)
with F3|g
i=0,1,2.

Let Lij be the (open) segment connecting x; and x;. The Li’s are the sides of

Triangle(xo, x1,%2). Let wu; Xj_x:‘I. Rolle’s theorem implies that there exist &;5 € Ly
such that

=1, |F¥||c2(r2) < 1, and Jx,F® = P. In particular, FS agrees with P¥ at x; for

i = il

Since [|[FS||c2(rz) < 1 and P? is an affine polynomial, we have
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IV (FS — P%)(xo) -uyj| < Cdiam (Triangle(xo,x1,%2)) . (7.19)
Since dist (xo, E) > crepd and Ejoc lies on the graph of ¢ with [¢p’] < 1, we have
Angle (um ,U.]z) 2 Y (720)

for some v > 0 depending only on Cyep.
Let w be any unit vector. (7.20) implies that we can write

w = Ry, 1u01 + Ry 2u12, |Rw,i| <Cfori=1,2. (7.21)
Here, C is a constant depending only on y. (7.21) implies that
IV(FS — P¥)(x0) - w| < Cdiam (Triangle(xo,x71,%2)) < C5.

We conclude (7.18) by letting w range over all unit vectors. Thanks to Lemma 7.3,
Pt ¢ l"fr (x%, Kioe, C). This proves the claim. O

Claim 7.4. Suppose Bunin is sufficiently large. Then
P¥(x*) > CBpind>. (7.22)
Proof of Claim 7.4. The proof is identical to the proof of Claim 7.1. O

Recall from LDS that Ej.. lies on the graph of a C? function ¢. Therefore, we may
write Ejoe = {zi = (si, d(si)) : 1 <1< N} with sy <sjyq foralli=1,--- ,N—1.

Fori=1,---,N—=2 let S; = {zi,2i41,2i+2}. By Claim 7.3, P¥ € T* (x, ke, C).
By definition, there exists FS¢ € C2 (R?) such that FS: s, =1 [Ft|lc2r2) < C, and
J:FS = Ph.

Define g : Ejoc — R by

g:=f— (Pﬁ|EM) .

Note that g is not necessarily nonnegative.
Define G5 : R = R by

GS :=F% —Ph,

Then immediately, we have
GS: s, =9 and (7.23)
7G5 =0. (7.24)
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Since P¥ € Fﬁ(xﬁ,kloc,C), we have HPﬁHCZ(lOOQ) < C. From this, together with the
condition |[FSt|cz2(rz) < C, we learn that

G|l c2(100q) < C. (7.25)
Thanks to (7.24), (7.25), and the fundamental theorem of calculus, we have
[VGSi(s,t)] < C& for all (s,t) € 100Q. (7.26)

Let Iy = (—o0,s3), 12 = [s2,84],- -+, IN—3 = [sn—3,sn-1], and In—2 = [sn—2,+00).
Let {éi ‘R — R} be a partition of unity subordinate to {I;} such that

—k .
supp (0;) C I; and [950;(s)| < {CSiH s B %f s €[5, sl for 1 <k <2.
Clsiyz —sip|™  if s € [sip1,8i42]
(7.27)
Note that the interior (in the topology of R) of I; N I;j supports at most two partition
functions.
Let

0i(s,t) :==0i(s) fori=1,--- ,N =2,

It follows immediately that the interior of (I; x R) N (I; x R) supports at most two
partition functions. It is also clear that

00 =0fori=1,--- ,N—2. (7.28)

Recall @ as in LDS. Define

N-2
-ei) o® =3 [G%oy|-[6:00],
0 i=1

G:= (NZ_Z (GS o)

i=1 t=
where y(s) := (s, d(s)) is a parametrization of the graph of ¢.
Claim 7.5. The function G satisfies G|El =g and |G| c2(1000) < C.

Proof of Claim 7.5. Tt is clear from (7.23) that G|Eloc =g.

Now we estimate ||Gl[c2(1000)-

Thanks to (7.28), supp (0; o @) C I; x R. Hence, the support of the 0; o @’s have
bounded overlap. Since 0 < 0; o @ < 1, (7.25) implies that

|G| < C on 100Q. (7.29)
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Now we compute the derivatives of G. Thanks to (7.28), we have
3G =0for k=1,2; and 32,G =0. (7.30)

Therefore, it remains to estimate the pure s-derivatives of G.
First of all, thanks to (7.28), we have

05(0; 0o @) = 0%0; 0 ® = 3¥0; for k=1,2.
It follows from (7.27) that

Clsiy1 —sil™F  if (s,t iy Si R
(00 D)5, < 4 S T T UESu sl xR gy,
Clsiy2 —sip1l™° if (s,t) € [siy1,s142] X R

(7.31)
Now we compute the s-derivatives of G5t oy(s).
2:(G% 0y) =0,G% oy + $'0.G% oy,
03(G% 0y) =0:G% oy + ()27 G% 0y + 2005, G oy + $ "0 G o .

Recall that [p*)| < 8% for k = 1,2. Applying (7.26) to the last term of the second
identity and (7.25) to the rest of the terms, we conclude that

IG%* o ¥llc2 (50,50 < C- (7.32)

Since G(s,t) = G3' oy(s) or G(s,t) = GSN-2 oy(s) outside of the strip [s2, sn_1] xR,
(7.25) implies

[0G(s,t)] < C for (s,t) & [s2,sn_1) xR, k=1,2. (7.33)
Suppose (s,t) € [s2,sn—1] X R. Let j be the least integer such that s € I;. Then

dKG = (35(G%1 0y)) - (850 @) + (3X(G*" 0)) - (0541 0 @)
LSl _ _ B (7.34)
+y (1> (35(G> oy =G>+ 0y)) - (351050 D).

1=

By an argument similar to the proof of Claim 6.1, combined with estimate (7.32), we
have, for s € Ij N Ij41,

(GS oy — G5+ o) (s)] < Clsjs1 — 55| and

(7.35)
|a£ (st oy— G+ °y) (3)} < Clsjtr —Sj|271 for l=0,1.
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To estimate (7.34), we apply (7.32) to the first two terms (note that 0 < 850 d < 1),
and apply (7.31) and (7.35) to the last term. Hence,

|6‘S‘G(s,t)| < C for (s,t) € [sz,sn_1] xR, k=1,2. (7.36)
The claim follows from (7.29), (7.30), (7.33), and (7.36). O

Recall that, by construction, g(x;) = g(x2) = 0. Since G is constant in the t-direction,
Rolle’s theorem implies that

[0%G| < Cpd? % on 100Q for |af < 2. (7.37)
In particular,
G > —Cpd? on 100Q. (7.38)
Let ¥ € Ci(]RZ) be a cutoff function that satisfies the following.

e 0<UP <1onR?% P =1 near xt, supp (P) C B(xt, C{'B‘B‘S); and
o [0%Y] < C8* 1 for |af < 2.

Define G := R2 — R by

Then we have the following.
e Thanks to Claim 7.5, (7.37), and the second property of \, we have
HG”CZUOOQ) <C. (7.39)

o Glg,,, =g, since dist (Xﬁ, E) > Crepd and supp (P) C B(x4, C{"&é ).
e J:G =0, since P = 1 near xt.

e Moreover, since 0 < < 1, (7.38) implies
G > —C,5% on 100Q. (7.40)
Finally, define F: R? — R by
F:=G+P".

Then the following are immediate.
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« Flo =g+ (Pﬁ\EM) —f, and
° 3xﬁF = Hxﬁé +3xﬁpu = Pﬁ S ri(xu»klocy C)

It remains to show that |[F||c2(100q) is universally bounded and that F is nonnegative
on 100Q.

Recall that P € Fi(xﬁ,kl(,c, C), so we have ||Pﬁ||C2(]00Q) < C. It follows from (7.39)
that

IFllc2(1000) < C.

It remains to show that F is nonnegative on 100Q.
To this end, observe that (7.3) and (7.22) imply

dist (x*, {P* = 0}) > C/P#(x*) = C/Byuin - . (7.41)
Therefore, for sufficiently large Byin, (7.22) and (7.41) yield
P* > Cy,6% on 100Q. (7.42)
Therefore, (7.40) and (7.42) imply that
F >0 on 100Q.
This concludes the proof of Lemma 7.6. O
Fix Bupin as in Lemma 7.6. The following lemma complements Lemma 7.6.

Lemma 7.7. Let LDS be given. Let Ko > 3. Suppose ri(xﬁ,kloc, M) # @, and that there
exists x € Eioc such that f(x) < BminMd%. Then there exists F € Ci(]OOQ) such that
F|El =f, [Flc2(1000) < BM, and 3T € Fi(xﬁ,kloc,BM). The number B depends only
on Bmin.

Proof. Without loss of generality, we may assume M = 1.
We write By, B, etc. to denote quantities depending only on Bip-
By Lemma 7.5, there exists Bynax > 0, depending only on B, such that

f(x) < Bmaxd? for all x € Ejge.
By Lemma 7.3, we have
0 e T (x*, Kioe, B1). (7.43)

Recall that Ejo. lies on the graph of a C? function ¢. Write Ejoc = {zi = (si, d(s1)) :
1 <1< N}with si <sjpq foralli=1,--- ,N—1.
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Fori=1,--- ,N—2 let S; = {zi,zi11,zi4+2}. By (7.43), there exists FSi € C2(R?)
such that FS+ s, = b [Ft||c2(r2) < Ba, and J,:Ft = 0.

Let Iy = (—oo,s3l, 12 = [s2,84],- -+, In—3 = [sn-3y8n-1), and In—2 = [sn-2,+00).
Let {61} be a partition of unity subordinate to {I;} such that

_ _ Clsiptr —sil ™% if s € [sy, S
supp (61) C I; and \algei(sn < Isi1 il ! [sis si41] for1<k<2.
Clsiz2 —sieq™% if s € [siy1,5i42]

Put
Bi(s,t) :=0i(s) fori=1,--- ,N—=2.

Recall the diffeomorphism @ in LDS. Define F: R? — R by

-0; ] 0.
t=0

It is clear that F > 0. By the same argument as in the proof of Claim 7.5, we have

Fi= <NZZ (Fiod™)

i=1
Fle,,. = f and H?HCZHOOQ) < Bz-f
Since f < Bpax0? on Ejoe and F is constant in the t-direction, we also have

[F| < CBumaxd? on [—50,50).

Let P € CZ(R?) be a cutoff function such that

e 0<P <1onR2 =1 near x#, supp () C B(x!, C{B%é); and
o [9%p] < C&21 for |af < 2.

Define F: R? — R by

F:=(1—1)F.
The following hold.

e« F>0,since F>0and 0 <y < 1.

. F‘Eloc = f, thanks to (7.1) and the fact that supp () C B(x*, C{g"oé ).

e JuF=0¢ Fﬁ(xﬁ,kloc,&;), since P = 1 near xF.

e [[Fllc2(100q) < Bs. To see this, we note that since F > 0 on R?, ||F||c2(100q) < B2,
and |F| < CBpaxd? on 100Q, (7.3) implies that [VF| < B4 on 100Q. Thanks to the
second condition on 1, the conclusion follows.

This proves the lemma. O
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Proof of Lemma 7.1. Fix B,,;, as in Lemma 7.6. The lemma follows from Lemma 7.6
and Lemma 7.7. O

7.4. Proof of Theorem /

Before proceeding to the proof of Theorem 4, we make a brief comment on the finite-

ness constant 64. Lemma 4.2 and Lemma 5.3 state that jets of 4k-point interpolants
(k)
nice
Lemma 5.4 states that the geometry of data points in each square of A

are compatible in the Whitney sense (see (5.3));
(%)

nice

based in neighboring squares from A
is sufficiently
nice when k > 4; Lemma 7.1 states that in such case, a local version of the extension
problem is readily solved. Hence, if we pick k =4, we may use the jets of 4-4 = 16-point
interpolants (if they exist) to guarantee compatibility of nearby local extensions. By
Lemma 4.3, such jets exist.

Now, we examine compatibility of the local interpolants constructed in Lemma 7.1.

Proof of Theorem 4. Without loss of generality, we may assume M = 1.
Set k = 4. Pick Cpjce 80 that (4, Cphice) guarantees good geometry.
By Lemma 5.1 AW i a Cz covering of R?.

By Lemma 4.3, l)ur(x, 16,1) # @ for any x € R2.
(k)

nice*

We distinguish three types of squares in A

Type 1. Suppose ENQ* # @. Let Fg = Fq, where Fq is as in Lemma 7.1 with ki, = 16.
Let P}, := ) Fo,. We have P§, € T (x, 16, C).

Type 2. Suppose EN Q* = @ but g < 1. Pick Pg € Fﬁ(XgJG,]L and set Fg =
W{XE}(Pg), where W) is as in Lemma 4.9 with § = {xg}

Type 3. Suppose ENQ* = & and 6g = 1. Set Fg =0.

By Lemma 7.1 and Lemma 4.9, F{, € C2(100Q), FﬁQ|EnQ* =1, and

IFS ez (100q) < C. (7.44)
Claim 7.6. If Q <> Q’, then for each x € 3Q U $Q’ and 0 < |of <1,
0%(Ff, — Fh ) ()| < Cog, ™. (7.45)
The constant C is universal.
Proof of Claim 7.6. Temporarily fix x € 3Q U §Q’ for Q «» Q'
Assume that either Q or Q' is of Type 3, then (7.45) follows from (3.3) and (7.44).

Suppose neither Q nor Q’ is of Type 3. Thanks to (3.3) and our choice of X% and qu,
in Lemma 5.6, we have \xﬁQ — x|, ng, — x|, ng fxg,l < Cdgq.
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Recall from Lemma 7.1 and Lemma 4.9 that
3%% =P}, €T (xh,16,C) and 7, 3 Fh, =Ph, e TH(x,,16,C).
By Taylor’s theorem,
% (FﬁQ _ P“Q) (x)| < Cog '*! and [0 (Fg, _ Pg,) (0l < €85 < cog ™. (7.46)
By Lemma 5.3,
0%(Ph — P& (%) < Cog, ™. (7.47)
Now, (7.45) follows from (7.46) and (7.47). O

Let {0g} be a partition of unity that is CZ-compatible with AW Define

> 0o(x)-Fh(x)

4)
Qe/\x(lice

n1ce

It is clear that F > 0, Flg = f, and F is twice continuously differentiable. For |&| < 2 and

xeQ,

S 0tFy () -0+ Y Y ()a"‘ P(Fy — Fo )(x) - 070 (x).

Qenti. Q'=Qo<pzn
(7.48)
Applying (3.4), (3.5), (7.44), and (7.45) to (7.48), we can conclude that

”FHCZ(]RZ) < C. O
8. Sharp finiteness principle

In this section, we give the proof of Theorem 5. Here we remind the readers the
statement of the theorem.

Theorem 5 (2-D Sharp Finiteness Principle). Let E C R? with #(E) = N < oco. Then
there exist universal constants C,C’, C"” and a list of subsets S1,S2,-+-,SL C E satisfying
the following.

(A) #(S¢) < C for each t=1,--- L
(B) L< C'N.
(C) Given any f:E — [0,00), we have

pax Ifllcz sy < Ifllcz gy < C” Jmax lfllez s, -
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Before we proceed to the proof, we briefly explain the clusters S¢’s in the statement.
For each square Q € /\I(]]fc)e, we associate to it a basic cluster S(qu) (see Definition 8.2)
that guarantees internal Whitney compatibility.

The clusters in Theorem 5 can be classified into three types.

o The first type is the union of a “consecutive” three-point cluster (since E locally lies
on a curve with controlled geometry), nearby basic clusters, and nearby “keystone”
clusters (see next bullet point). This is the “largest” type of clusters, since it plays
the key role of relaying information about E to various lengthscales.

o The second type is the basic cluster for each “keystone square” (see Definition 8.1).
Keystone squares are locally the smallest squares and they play an important role
in relaying information to nearby small squares containing no data point.

o The third type is the union of keystone square clusters (see the second bullet point
above) that are associated with each “special square” (see Lemma 8.2). This type
of clusters is used to eliminate the ambiguity in how these special squares receive
information from E.

We now give the full account.
8.1. CZ squares and clusters

Let (k, Cpice) guarantee good geometry (Definition 5.3). We fix such (k, Cpjce) for the
rest of the section. We may assume, for instance,

k =4 and Cpice = 1000.
Definition 8.1. We define the following objects.
o We set
Ao == A¥) (see Definition 5.2). (8.1)
o We also set
A ={Qe A :ENQ* £} . (8.2)
Note that A¥ coincides with Type 1 squares in the proof of Theorem 4 (Section 7.4).
o Wesay Q € A is a keystone square if 5o < T and for any Q" € Ao with Q’N100Q #

@, we have 8o/ > 8. The collection of keystone squares is denoted by Axs.

Keystone squares first appear in the work of Sobolev extension [18]. See also [10] for
a more thorough discussion.
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Lemma 8.1. Let Aks be as in Definition 8.1. Then

#(Aks) < C-#(E).

The proof of Lemma 8.1 can be found in Section 4 of [18] and Section 7 of [10].
Next, we define the basic cluster associated with each square in Ag.

Definition 8.2. Let Q € Ay and let xg be as in Lemma 5.6. (Note that xg is a repre-
sentative point “far” from the data on the lengthscale 8g.) Let Sy,---,S12 C E be as in
Lemma 4.5 (with x = xﬁQ and 4k in place of k). We define

12
Sxg) = St (8.3)
i=1
Since #(S;) < Cfori=1,---,12 (see Lemma 4.5), we have
#(S(xh)) < C (8.4)
By Lemma 4.5, we have
o(xhy, S(xG)) € C- o (x§,4Kk) . (8.5)

Next, we state a key lemma that allows us to relay information from keystone squares
to small squares in Ao whose neighborhood contains no points from E. The latter requires
separate attention for the following reason: Suppose Q € A with g < Tand ENQ* = @.
Then (Q*)* may intersect an uncontrolled number of squares in Af. Keystone squares
are designed partially to deal with such situations. See [10,18] for further discussion.

Lemma 8.2. Let Ao, Aks be as in Definition 8.1. We can find a subset Aspeciar C Ao
and a map w: Ao — Aks such that the following holds for some universal constant C.

(A) #(Aspeciul) < C- #(E)
(B) w(Q) € Aks, where Aks is as in Definition 8.1. Moreover, dist (Q, n(Q)) < Cdgq.
(C) Suppose Qa QI € /\0 \Aspecial and Q A Ql? then H(Q) = H(Q/)~

The proof of Lemma 8.2 can be found in Section 6 of [10].

Definition 8.3. Recall Ay, Af, Akg as in Definition 8.1. Recall the representative point
xﬁQ as in Lemma 5.6. Let Q € Aks. We define

Sks(Q) = S(xy), (8.6)
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where S(xg) is as in (8.3). Recall Aspecial, 1t as in Lemma 8.2. Let Q € Aspecial- We
define

sspecial(Q) = U S(Xi(Q’))’ (87)
Q'&=Q,Q’eNo

where xLQ,) is as in Lemma 5.6 and S(xi(Q,)) is as in (8.3).

Recall from Lemma 5.1 that A is a CZ covering of R?. In particular, Ay enjoys
the bounded intersection property (3.4). Together with (8.4) and the definitions of
SKS) Sspecial i1 (8.6), (8.7), we see that

#(Sks(Q)) < C for each Q € Aks, and (8.8)
#(Sspecial(Q)) < C for each Q € Aspeciul- (8'9)

Now we turn our attention to clusters associated with Af.
For convenience, we set, for each Q € Af,

N(Q):=#(ENQ").

Thanks to Lemma 5.4, we know that for each Q € AF, up to a rotation, E N Q* C
{(sy d(s)) : s € R}, where ¢ is as in Lemma 5.4. We enumerate

ENQ* ={(si,p(si)):i=1,---,N(Q)} such that s; <--- <sn(Q)- (8.10)
Let @ be as in Lemma 5.5. We also set
I := ®(100Q) |g ;o) - (8.11)

For the rest of this section, whenever we consider Q € Af, we always assume that Q has
been rotated so that enumeration of the form (8.10) holds.

The next three definitions describe the objects of interest in this section. Definitions 8.4
and 8.5 concern the clusters, and Definition 8.6 concerns the main polynomial convex
sets.

Definition 8.4. Let Q € A". Let E N Q* be enumerated as in (8.10).
e In the case 1 < N(Q) < 2, we set
S(Q,1):=ENQ* and v(Q):=1. (8.12)
e Suppose N(Q) > 3, we set

g(Qa V) = {(svy ®(sv)), (svr1, P(svi1))y (svi2, Plsvi2))}, (8'13)
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forv=1,---,v(Q), where v(Q) :== N(Q) — 2.
By the bounded intersection property of Ay (see (3.4)), we have

# {g(Q)V) : Q € Aﬁyv € {]) o )V(Q)}} < c- #(E) . (814)

Definition 8.5. Let Q € A Let S(Q,v) be as in Definition 8.4. Let qu be as in
Lemma 5.6. Let p be the map in Lemma 8.2. Let S(-) be as in (8.3). For each
v=1,---,v(Q), we set

SQV)=SQVU |J (SkhIusi ) (8.15)

Q'=Q
Ao

Q
m

Remark 8.1. The cluster S(Q,v) associated with each Q € A? is the “largest” among
all three types of clusters (the other two being Sks(Q) in (8.6) and Sspecial(Q) in (8.7)).
This is expected, since each Q € Af satisfies EN Q* # @, and must relay information to
neighboring squares and their keystone representatives.

Thanks to (8.4), the fact that #(S(Q,v)) < 3, and the bounded intersection property
of Ao (see (3.4)), we have

#(S(Q,v)) < Cforeach v=1,---,v(Q). (8.16)

Thanks to (8.14), we have
#{S(Q,v): Qe A" v efl,---,v(Q)}} < C-#(E). (8.17)
To distinguish the roles of the clusters related to A, we make the following definition.

Definition 8.6. Let Q € A and M > 0. Let xﬁQ be as in Lemma 5.6. Let S(Q, V) be as in
Definition 8.5. We define

K(Q,v, M) := Ty (x5, S(Q,v), M). (8.18)
8.2. Whitney compatibility
The next lemma is similar to Lemma 5.3.

Lemma 8.3. There exists a universal constant C such that the following holds. Let Q,Q’ €
Ao. Let xg,qu, be as in Lemma 5.6. Let S(xg] be as in (8.3). Let S,S’ C E. Suppose

S(x,) C (SNS’). (8.19)
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Then given P € IZJXE,S,M) and P’ € F+(xg,,5',M), we have

2—|

|
[0%(P—P) ()l < CM (8q + Iy —xby 1) forla <2, (8.20)

Proof. Fix P and P’ as in the hypothesis. By definition, there exist F,F’ € Ci(Rz) such
that the following hold.

e Fls=fand F'|s; =f.
. HF”CZ[RZ] < M and HF/HCZ(RZ) < M.
o HXuQF:Pand d, F =P

o/

Thanks to (8.19), we see that
I i
F—F =0on S(xQ).
By the definition of o in Section 4, we see that
8z (F=F) =P =34 F' € 2M - 0(xGy, S(x{)-
By Lemma 5.7 and the definition of S(XE) in (8.3), we see that
[0%(P — 8,5 F)(xg)l < CMsg . (8.21)
By the triangle inequality, we have

0% (P =P (xQ)I < 10%(P =3y FIXG)| +10% (3, F' =y FIG)1

Using (8.21) to estimate the first term, and using Taylor’s theorem to estimate the
second, we see that (8.20) holds. O

Remark 8.2. We note that Lemma 8.3 is a one-sided estimate, in the sense that the right
hand side of (8.20) does not contain the lengthscale 5g/. However, this is remedied once
we know that Q <> Q’. This is further examined in the next corollary, which states that
suitable choices of clusters give rise to Whitney compatible jets.

Corollary 8.1. There exists a universal constant C such that the following holds. Let
Ao, AL Aks be as in Definition 8.1. Let Aspecial and W be as in Lemma 8.2. For Q € Ay,
let xﬁQ be as in Lemma 5.0, and let S(xﬁQ) be as in (8.3). Suppose Q,Q’ € Ao with Q & Q'
and PP’ € P satisfy one of the following conditions.

(A) Suppose Q,Q' € A*. Let v=1,---,v(Q) and v/ =1,--- ,v(Q') (Definition 8.5).
Let K(+,-,+) be as in Definition 8.6. Suppose P € K(Q,v,M) and P’ € K(Q’,v',M).
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(B) Suppose Q € A} and Q' € Ao \ (AFU Aspeciat). Suppose P € K(Q,v,M)
(Definition 8.6) for some v € {1,---,v(Q)} (Definition 8.5). Suppose P’ &
Py (g Sks (K(Q), M), with Sks(1(Q")) as in (8.6),

(C) Suppose Q € Af and Q' € Agpeciat \ A*. Suppose P € K(Q,v,M) (Defini-
tion 8.6) for some v € {1,---,v(Q)} (Definition 8.5). Suppose P’ € F+(x§2,,
Sspecial(Q')y M), with Sepecial(Q') as in (8.7).

(D) Suppose Q,Q" € Ao \ (AU Agpeciar). Suppose P € T (xf, ), Sks(1(Q)),M) and

suppose P! € Ty (x4 ), Scs(1(Q')), M), with Sks(1(Q) and Sks(1(Q")) as in
(E) Suppose Q € Ao \ (A* U Aspecial) and Q' € Agpecial \ AL Suppose P €
F+(x’il(Q),SKs(u(Q)),M), with Sks(w(Q)) as in (8.6). Suppose P’ € T.(xf,,
Sspecial(Q'), M), with Sspecial(Q’) as in (8.7).
(F) Suppose Q,Q" € Agpeciar \ A*. Suppose P € r+(xgysspecial(Q)yM) and P’ €

I (X 1y Sepecial(Q), M), with Sepecial(Q) and Sepeciat(Q) as in. (8.7).
Then
0%(P —P")(x§)l, [0%(P —P)(x§y, ) < CMEG '™ for Jof < 2.
Proof. Thanks to Lemma 5.1 and Lemma 8.2, we know that

Ixté2 fxg,l, ng —xﬁ(Q)l, |Xi(Q) *Xi(Q/ﬂ < Cbq for Q,Q" € Ap with Q «» Q’

Therefore, by Lemma 8.3 and Taylor’s theorem, it suffices to show that in (A)-(F), the
sets S,S” in T (x4, S, M) 2 P, FAXE,,S’,M) 3 P’ satisfy

S(x¥) c SN'S’, for some xt € {xg,xg,,xﬁ(Q),th,)}. (8.22)

We analyze each scenario.

(A) Recall from (8.18) that K(Q,v,M) = F+(xﬁQ,S(Q,V),M) and K£(Q',v/,M) =
FAX%,,S(Q’,V’),M). In this scenario, S = S(Q,v) and S’ = S(Q’,v’). We let

We see from (8.15) that S(xg) C S(Q,v) and S(xﬁQ) C S(Q’,v’), since Q « Q.
Therefore, S(xg) C S(Q,v)NS(Q’,v'). (8.22) follows.

(B) Recall from (8.18) that £(Q,v,M) = F+(XE,S(Q,V),M). In this scenario, S =
S(Q,v) and S’ = Sks(k(Q")). We let xi =, .-
We see from (8.15) that S(xﬁ(Q,)) C S(Q, V), since Q « Q’. Recall from (8.6) that
Sks((Q)) = S(xf, o)) (8.22) follows.

(C) Recall from (8.18) that £(Q,v,M) = r+(X§2,S(Q,V),M). Thus, in this scenario,
S=5(Q,v) and S" = Sepecial(Q’). We let x% = xi(Q)‘
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We see from (8.15) that S(x ﬁ ) C
from (8.7) that S(x ﬂ Q) ¢ Sspeclal(Q

(D) In the current scenarlo S =Sks(n(Q
By Lemma 8.2, we have n(Q) = pn(Q
from (8.6) that S(x':L ) =5NS" (8.22) follows.

(E) In the current scenario, S = Skg(p(Q)) and S’ = Sspecial(Q'). Let xh =X Q)"
Recall from (8.6) that S(Xﬁ(Q]) = Sks(K(Q)). From (8.7), we see that S(x ﬁ(Q)) @
Sspecial(Q'), since Q’ « Q. (8.22) follows.

(F) In this scenario, S = Sspecial(Q) and S’ = Special(Q'). We let x% = fo(Q).

By (8.7), S(xﬁ(Q)) C Sspecial(Q), since Q « Q by definition. By (8.7) again,

S(xi(Q)) C Sspecial(Q'), since Q" +» Q. (8.22) follows.

S(Q,v), since Q + Q by definition. We see
) since Q «» Q. (8.22) follows.
) and S" = Sks(n(Q")). u
/
).

Hence, S = S’. Taking xh = X, (qQ)» We see

We have exhausted all the cases. This concludes the proof of the corollary. 0O
8.3. Local extension problem

The next lemma states that on the correct local scale, the two-dimensional trace norm
behaves in a similar way as the one-dimensional trace norm.

Lemma 8.4. Let Q € A and let & be as in Lemma 5./. Let S C EN Q*. Recall the
definition of Iq in (8.11). There exists a universal constant C such that the following
hold.

(A) Let f:S — [0,00). Suppose there exists F € Ci(]OOQ) withF=7f on'S, and |0%F| <
Méf{w on 100Q fozIocI < 2. Then there exists Fy, € Ci(IQ) with Fy (s) = f(s, d(s))
for each (s, d(s)) €S, and |9¥F,| < CMéé*k on lg fork < 2.

(B) Let g:S — R. Suppose there evists G € C2(100Q) with G = g on S, and [3*G| <
Mé%{w on 100Q for |«| < 2. Then there exists G € CZ(IQ) with G(s) = g(s, $(s))
for each (s, d(s)) €S, and [9KG| < CMéf{‘“l on lg fork <2.

Proof. We only prove (A) here. The proof for (B) is identical.
Let @ be as in Lemma 5.5, and let ¥ = (W7, ¥,) := ®~'. Let F be as in the hypothesis.
Consider the function

F(s) :=FoW¥(s,0).

Since F > 0, we have F > 0. By Lemma 5.5, we have F(s) = f(s, d(s)) for each (s, d(s)) €
S. It remains to estimate the derivatives for F. Setting 07 = 95 and 9, = J, we have
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2
(FoV) Z Wy - 0FoV, and

2 2
dij(Fo¥) Z CradiWic - Wi+ duF oW+ ) 9yWi - dcFo V.
1=1 k=1

Therefore, thanks to Lemma 5.5 and the hypothesis [0%F| < Méz o , we can conclude

that |akF| < CME2 * on Io for k < 2. This concludes the proof of the lemma. 0O

We can think of the next lemma as a re-scaled local finiteness principle (without a
prescribed jet). It is essentially a consequence of Theorem 1.A.

Lemma 8.5. Let Q € AY. For each v=1,---,v(Q), let S(Q,v) be as in Definition 8.4.

(A) Let f: ENQ* — [0,00). Suppose for each v, there exists F,, € C2(100Q) such that
Fv=f on g(Q,‘V), and |[0%F, | < Méfolod. Then there exist a universal constant C
and a function fQ € Ci(Rz) such that

(i) FQ’EOQ* =T, and
(ii) 10%Fq| < CMsg '™ on 100Q, |of < 2.

(B) Let g : ENQ* — R. Suppose for each v, there exists Gy € C2(100Q) such that
Gy = g on S(Q,V), and [0%G,| < Mééfw. Then there exist a universal constant

C and a function GQ € C?(R?) such that

(i) GQ|EmQ* =g, and
i) 10%Gol < CM&E ™ 0n 100Q, |of < 2.
Q Q

Proof. We only prove (A) here. The proof for (B) is identical.

If #(ENQ*) < 3, then v(Q) = 1 and S(Q,v(Q)) = ENQ*, and the conclusions follow
directly from the definition of [|f|[c2 (5(q,v(q)))- For the rest of the proof, we assume

#(ENQ*) > 3.

Up to a rotation, we know that ENQ* C {(s, d(s)) : s € R}, where ¢ is as in Lemma 5.4.
Enumerate EN Q* as in (8.10). For v=1,--- /N(Q) — 2, we set

Iy :=[sv, Svi2]. (8.23)
We also set
Io = (—00,52] and IN(Q)—I = [SN(Q)_],OO) . (824)
= (N(Q)-1 . . . N(Q)-1
Let {GV}V:] be a partition of unity subordinate to the cover {I},_7" °, such
that
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_ Clsy —sv_1|7% ifs € [sy_
1048, (s)] < 4 CIv TSl e vl v 0,2. (3.25)
Clsvi1 —svl™ if s €[Sy, Svy1]

Here it is convenient to use so := —00, sNn(Q)+1 = 00, and 00® = 1. We set
0.(s,t):=0,(s) forv=0,1,--- ,N(Q)—1. (8.26)

Let F, be as in Lemma 8.4 with S = S(Q,v) for v = 1,--- ,N(Q) — 2. By Rolle’s
Theorem, we have

05 (Fy — Fy 1)l < CMEE Msyi1 — syl " (8.27)

fOI"V:],"’ ,N(Q)*27 S € IVQIV+17 andk‘gz
We also set Fy := F; and ?N(Q)A = FN(Q)fZ‘
Define

Fy(s,t) :=F,(s) forv=0,1,---,N(Q)—1.

Finally, we set

It is clear that ?Q > 0 on R? and ?Q =f on EN Q*. By construction, 946y = 0:F, =0
for each v=0,--- ,N(Q) — 1. Then, using estimates (8.25) and (8.27), we can conclude
that [05Fo| < CM&g ' on 100Q for [of <2. O

Repeating the proof of Lemma 7.5 and using Lemma 8.5 (A), we have the following
result tailored for the matter at hand.

Lemma 8.6. For each By > 0 sufficiently large, we can find Bunax, depending only on
Buin, such that the following holds. Let Q € Af, and let K(Q,v,M) be as in Defini-
tion 8.6. Suppose for each v =1,--- ,v(Q), K(Q,v,M) # &. Then at least one of the
following holds.

(A) f(x) > BminMéé for allx e ENQ*.
(B) f(x) < BmaxM&% for allx € ENQ*.

Proof. Suppose (A) holds. There is nothing to prove.

Suppose (A) fails. We write Bg = By and we fix the number By throughout.

By assumption, there exists X € E N Q* with f(X) < Bminéé. There exists v €
{1,--- ,N(Q) — 2} such that X € S(Q,¥) C S(Q, V). By assumption, K(Q,v,M) # &, so
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there exists F € C2 (R?) with F = f on S(Q, V), [[F|lc2(r2) < M, and 3%? € K(Q,¥,M).
By Lemma 7.2, we have

IVF(R)| < CYMF(R) < CMy/Bodg -

Then Taylor’s theorem implies
Fix%) < CM (Boég +v/Bo I, —%Q) < CM(v/Bo +1)%8% .

Let xo € EN Q*. Then there exists v(xo) € {1,--- N(Q)} such that x" € S(Q,v(xp)).
By assumption, (Q,v(xo), M) # @. Pick P € £(Q, v(xo), M). By Corollary 8.1, we
see that

18,5 F—P(xG)l < CM&G .

Therefore, we have P(xﬂQ) < CM(+v/Bo + 1)256. By the definition of K(Q,v(xo), M),
there exists F € C2 (R?) with F(xo) = f(xo) and HX%F = P. In particular, by Lemma 7.2
and Taylor’s Theorem, we have

IVF(x)| < CM(y/Bo + 1)8q for all x € Q*.
By Taylor’s theorem again, we have

F(xo) < CM(v/Bo +1)8 -
Since xp € EN Q* was chosen arbitrarily, (B) follows. O

The next lemma mirrors Lemma 7.3. It says the following. When the local data is big,
K can be viewed as a translate of of. When the local data is small, K contains not much
more information than the zero jet.

Lemma 8.7. Let Q € A%, Let KC(Q, v, M) be as in Definition 8.6. Suppose K(Q,v, M) # @
for eachv=T1,--- ;v(Q).

(A) There exists a number B > 0 exceeding a universal constant such that the following
holds. Suppose f(x) > B]\/léf2 forallx € ENQ*. Then K(Q, v, M)+M-Gﬁ(xg,4k) C
K(Q,v,CM) for each v=1,---,v(Q). Here, C is a universal constant.

(B) Let A > 0. Suppose f(x) < AM&%2 for allx € ENQ*. Then 0 € K(Q,v,A’'M) for
each v €{1,--- ,v(Q)}. Here the number A’ depends only on A.

Proof. We adapt the proof of Lemma 7.3 with IC in place of ri, and use the fact that

S(Q,v) contains S(Q,v) € EN Q* (see Definition 8.5). We include the relevant steps
here for completeness.
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Fix ve{l,---,v(Q)}

We begin with (A). Let B > 0 be a sufficiently large number.

By (8.3), we have S(Q,v(Q)) C S(Q,V). Let P € K(Q, v, M). Repeating the proof of
Claim 7.1 in Lemma 7.3, we see that P(xg) > C(vB — I/Z)ZMéé.

By (4.1), Lemma 4.8, and Definition 8.6, there exists a Whitney field

P = (P, (P¥)xes(q) € W2 US(Q,v))

such that P* = f(x) for all x € S(Q,v), and Hﬁ”wi({xg}US(Q,v]J < CM.

Let P € M- o (xf,,4k). By Lemma 5.7, P € CM - B(x,8¢).
Consider the Whitney field

P'i= (P+P, (P)xesqv) -
By the same argument as in the proof of Lemma 7.3, we can verify that

Pre WH(Ix}US(Q,v)) and [[P']ly2 < CM.

HIUS(Q,v)) =

Part (A) then follows from Lemma 4.9.

Now we turn to (B).

Let P € £(Q, v, M). Repeating the argument for Claim 7.2, we have P(XE) < C(VA+
1)2M52Q. By the definitions of I'; and K (see (4.1) and (8.18)), there exists F € C2 (R?)
with F(x) = f(x) for all x € S$(Q,V), ||[F[[cz r2) < CM, and 3"’12]: = P. By Lemma 7.2
and Taylor’s theorem, we have

[0%F(x)| < CA"M&% ™! for all x € Q* and |of < 2. 8.28
Q

Here, A" depends only on A.
Let Y € Ci(]RZ) be a cutoff function such that {p = 1 near XE, P = 0 outside of

B(xfy, <2552, and [0%p] < C55 ™.

We set

Fi=(1-1)-F.

It is clear that F > 0 on R?, F = f on S(Q, V), and ngf: = 0. Using (8.28), we see that
[Fllc2(r2) < A’M. This proves part (B) and concludes the proof of Lemma 8.7. O

The next lemma mirrors Lemma 7.1. It solves the local interpolation with a prescribed
jet in IC, so that they can be patched together by a partition of unity.

Lemma 8.8. Let Q € A, Let K(Q,v, M) be as in Definition 8.6. Suppose K(Q,v, M) #
& for each v = 1,--- ,v(Q). Then there exist a universal constant C and a function
Fo € C2(100Q) such that
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(A) FQ|EQQ* =T,
(B) [[FQllc2(r2) < CM, and
(€) 3, Fa € K(Q,v(Q),CM).

Proof. We adapt the proof of Lemma 7.1 with the following modifications:

e We use Lemma 8.7 in place of Lemma 7.3.

e We use Lemma 8.6 in place of Lemme 7.5.

e We use K in place of Fi, and the condition ri(xg,4k, M) # & is replaced by
K(Q,v,M) # @ for each v =1,--- ,v(Q). See Lemma 8.5 and Lemma 8.8.

Here we present the relevant steps for completeness.

Fix Q € Af.

Suppose #(E N Q*) < 3. Recall Definitions 4.1, 8.4, 8.5, and 8.6. By assumption,
K(Q,v(Q),M) =T (xh,S(Q,¥(Q)), M) # @. Pick P € T, (x§,,S(Q,v(Q)),M). By the
definition of I'y, there exists Fq € C% (R?) such that FQ‘S(Q,V(Q)) =1, [Follc2rz) £ M,
and 3X§2FQ S r.,.(X%,S(Q,V(Q)),M). Since $(Q,v) D S(Q,v(Q)) and S(Q,v(Q)) =
S(Q,1) = ENQ* in this case, the conclusions follow.

From now on, we assume #(ENQ*) > 3.

Let Buin > 0 be sufficiently large, and in particular, By, > B, where B is as in
Lemma 8.7. Let Byax be given as in Lemma 7.5 with such B,

Thanks to Lemma 8.6, cach Q € Af falls into at least one of the following cases.

(i) f(x) > BminM&g for all x € EN Q™.
(i) f(x) < BmaXMézQ for all x e EN Q*.

We treat (i) first.
Since #(E N Q*) > 3, we may select distinct xj,x2 € EN S(Q,v(Q)) N Q*. Pick
P € K(Q,v(Q),M). Let P be the unique affine polynomial that interpolates the points

(x1,f(x1)), (x2,f(x2)), and (xﬁQ, P(x’g)). We may repeat the argument for Claim 7.3 and
use Lemma 8.7 to show that

PP e K(Q,v(Q),CM) and PHxfy) > CBuinM8} -
This, together with Lemma 7.2, implies that
dist (xg, (Pt = o}) > Cy/Brmbo -

Therefore, we have
P#(x) > CBpinM8g for all x € 100Q. (8.29)
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Let g(x) := f(x)—P¥(x) for each x € ENQ*. Note that g is not necessarily nonnegative.
Since P* € K(Q,v(Q),CM), there exists a function F € C2 (R?) such that Flso,v) =T,
[IFllc2(r2) < CM, and SXEF = P. This, together with the assumption K(Q,v,M) # &

and Rolle’s theorem, implies that for each v € 1,---,v(Q), there exists G, € C2(R?)
such that

Gy =gonS(Q,v) and [d*G(x)| < CMsg '™ for all x € 100Q, af <2.  (8.30)
By Lemma 8.5(B), there exists G € C?(100Q) such that
Gleng- =g and [0%G(x)| < CM&g ™ for all x € 100Q, |o < 2. (8.31)
Let P € C2(R?) be a cutoff function such that

CrepéQ
100

P =1 near an, 1 = 0 outside of B(qu, ), and [0%] < Céf{w. (8.32)

Consider the function
FQ =P +(1-¥) G.

« By (8.29) and (8.31), we have Fg > 0 on 100Q.

« Since supp (V) is disjoint from ENQ*, we have Fg(x) = P¥(x) 4+ g(x) = f(x) for each
x € ENQ*. (A) is satisfied.

« Since P! € £(Q,v(Q),CM), we have

IP*llc2(100q) < CM.
By (8.31) and (8.32), we have

[(T =) Gllcz(100q) < CM.

Conclusion (B) then follows from the triangle inequality.
« Since P = T near xf,, we have 3y Fa =3y, P!+ 0 =Pt e £(Q,v(Q),CM). (C) is
satisfied.

This proves case (i).

Now we turn to case (ii).

Recall the hypothesis [/fl|c2 5(q,)) < M for each v. By definition, for each v
1,--+,N(Q), there exists F, € C%(R?) such that Fy, = f on S(Q,v) and ||Fy|c2(r2)
CM. Since f(x) < Bmaxéé for all x € EN Q*, by Lemma 7.2, we have

IN

0°Fy (x)] < CM&g, 1! for all x € 100Q .
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Therefore, the hypotheses of Lemma 8.5(A) are satisfied, and there exists F € C2 (R?)
such that Flgng~ = f and

0%F(x)| < CM&g, ! for all x € 100Q. (8.33)
Let 1 satisfy (8.32). Consider the function
Foi=(1—1)F.

e Since F>0and 0 <1 <1, we have Fo > 0 on 100Q.

Since supp (V) is away from E N Q*, we have Fg =f on EN Q*. (A) is satisfied.
Thanks to (8.32) and (8.33), we have ||[Fqllc2(100q) £ CM. (B) is satisfied.

e Since P = 1 near Xg, we have HX:Q Fo =0€ K(Q,v(Q),CM), thanks to Lemma 8.7.

(C) is satisfied.

This concludes the treatment for case (ii) and the proof of Lemma 8.8. O
8.4. Proof of Theorem 5
Now we define the S¢’s in the statement of Theorem 5.

Definition 8.7. Recall the definitions of AO,Au)AKS)AspeCial in Definition 8.1 and
Lemma 8.2. We set

St=stusiuss, (8.34)
where

o SE={S(Q,1),--,S(Q,v(Q)) : Q€ A"} with S(Q,v) as in (8.15),
o 88:={Sks(Q): Q € Axs) with Sks(Q) as in (8.6), and
L] Sg = {Sspecial(Q) : Q S Aspecial} with Sspecial(Q) as in (87)

Proof of Theorem 5. Let S* be as in (8.34). We enumerate

Sti=1{Sg:t=1,--- ,L}.

We claim that the list Sy,- -+, Sp satisfies the conclusions of Theorem 5.
We examine (A):

e Thanks to (8.16), we have #(S¢) < C for S; € S?.

o Thanks to (8.8), we have #(S¢) < C for S; € Sg.
e Thanks to (8.9), we have #(S¢) < C for S; € Sg.
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Therefore, conclusion (A) holds.
Now we examine (B):

o Thanks to (8.17), #(S ) C - #(E).
e Thanks to Lemma 8.1, #( g) < C-#(E).
« Thanks to Lemma 8.2, #(8%) < C - #(E).

Therefore, conclusion (B) holds.
We now turn to conclusion (C). Set

M= max |[flcz s,

=T,

It suffices to show that there exists F € C2 (R?) such that Flg = f and IFllcz(r2) < CM.
By the definition of M, we have ||f|cz 5,) <M for all € =1,--- L. This implies the

following.

 Recall Definitions 8.4, 8.5, and 8.6. For each Q € A!, we have

K(Q,v,CM) # @ and Hf”CiG(Q,v)) <Mforv=1,---,

This follows from the fact that S(Q,v) € S$ c Stforv =1,

v(Q).

,v(Q) and

K(Q,v,CM) = I"Ax%,S(Q,V),CM) (see Definition 8.6). Therefore, the hypothe-

ses of Lemma 8.8 are satisfied.

e For Q € Akg and xﬁQ as in Lemma 5.6, FAXE,SKS(Q), CM) # @. This follows from

the fact that Sks(Q) € Sg C S for Q € Axs (see Definition 8.7).

e For Q € Agpeciar and x% as in Lemma 5.6, lﬂr(xﬁQ, Sepecial(Q), CM) # @. This follows
from the fact that Sgpecial(Q) € Sg CcStforQe Aspeciat (see Definition 8.7).

We distinguish three types of squares Q € Ay.

Type 1 Suppose E N Q* # @, that is, Q € At We set F% = Fq, where Fg is as in

Lemma 8.8. In particular, we have

Ph = 3%% € K(Q,v(Q), CM) =T, (x§,8(Q,v(Q)), CM),

with XQ as in Lemma 5.6 and S(Q,v(Q)) as in (8.15).

(8.35)

Type 2 Suppose EN Q* = @ but g < 1. Let Agpecial, 4 be as in Lemma, 8.2.

o Suppose Q € Agpeciar- Pick
PE € T (xE o)) Sks((Q)), M),
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with xﬁ(Q) as in Lemma 5.6 and Sks(p(Q)) as in (8.6). We set Fg =

¢ t
Wrn(Q) (PﬁQ)7 where W*r(Q) is as in Lemma 4.9.
e Suppose Q € Aspecial- Pick

P € Ty (xby, Sepecial(Q), CM), (8.37)

with xQ as in Lemma 5.6 and Sgpecial(Q) as in (8.7). We set Fg — WX (PuQ)7
where WXQ is as in Lemma 4.9.
Type 3 Suppose ENQ* = @ and dg = 1. We set Fg =0.

To wit, we associate Type 1 squares with clusters in S’]j, Type 2 non-special squares
with clusters in Sg, and Type 2 special squares with clusters in Sg.

Let {8 : Q € Ao} be a C? partition of unity that is CZ compatible with Ag.

We set

= ) 0o(x) - FhHx).

Q€ENo

By construction, F’i > 0 on 100Q and FQ’EHQ* = f for each Q € Ap. Therefore,
F(x )EOandefonE

Now we estimate the derivatives of F.
Let x € R%. Then there exists Q € Ay such that Q > x. We have

O%F(x) = Y 9%Ff,,(x) - 0g/(x)
/HQ

+ ) > ([3)6“ B(Fy —Fo)(x) - 9P0g/(x). (8.38)

Q'—Q0<p<«
Claim 8.1. Fiz x € R%. Let Q 3 x, and let Q' € Ay with Q' > Q. Then
0% (Ffy — F&y ) ()| < CMg, ™ for | < 2. (8.39)

Suppose the claim is true. Then applying Lemma 4.9, Lemma 8.8, and (8.39) to
estimate (8.38), we can conclude that ||F||czg2) < CM.
Therefore, it suffices to prove Claim 8.1.

Proof of Claim 8.1. By the triangle inequality, we can write

0% (F = Fg )00l < R (F — 8,8, F) (X)| + 0% (Fy, — 8,z Fio ) ()
+10%(d,, Fo — sz, Fp ) () (8.40)

=11 +1M2 +nas.
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By Lemma 4.9, Lemma 8.8, and Taylor’s theorem, we have
M 412 < CMsg, . (8.41)
We want to show that
2—
ns =10%(d,¢ Fh —3X2/Fg,)(x)| = [0%(P{, — P, )(x)| < Mg, ™. (8.42)
We consider the following cases.

Case 1 Suppose either Q or Q' is of Type 3. Then (8.42) follows from Lemma 4.9,
Lemma 8.8, and Taylor’s theorem.

Case 2 Suppose both Q and Q' are of Type 1, that is, Q, Q" € Af. Then (8.42) follows
from (8.35), scenario (A) of Corollary 8.1, and Taylor’s theorem.

Case 3 Suppose one of Q, Q' is of Type 1 and the other is of Type 2. Without loss of gen-
erality, we may assume Q € A and Q' € Ag. Recall Agpecial from Lemma 8.2.

Case 3-a Suppose Q' & Agpecial- Then (8.42) follows from (8.35), (8.36), sce-
nario (B) of Corollary 8.1, and Taylor’s theorem.

Case 3-b Suppose Q' € Agpeciat- Then (8.42) follows from (8.35), (8.37), sce-
nario (C) of Corollary 8.1, and Taylor’s theorem.

Case 4 Suppose both Q,Q’ are of Type 2.

Case 4-a Suppose Q,Q’ & Aspeciar- Then (8.42) follows from (8.36), scenario
(D) of Corollary 8.1, and Taylor’s theorem.

Case 4-b Suppose Q € Aspecial and Q' ¢ Agpeciar. Then (8.42) follows from
(8.36), (8.37), scenario (E) of Corollary 8.1, and Taylor’s theorem.

Case 4-c Suppose Q,Q’ € Aspecial- Then (8.42) follows from (8.37), scenario
(F) of Corollary 8.1, and Taylor’s theorem.

This proves Claim 8.1. O

The proof of Theorem 5 is now complete. 0O
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In this paper, we provide algorithmic solutions to the following problems for m =n =
2. These algorithms were announced in [12,13].

Problem 1. Let E C R™ be a finite set. Let f : E — [0,00). Compute the order of
magnitude of

HfHCT(E) = inf{“FHCm(Rn) . F‘E = f and F 2 O} . (1.1)

Problem 2. Let E C R™ be a finite set. Let f : E — [0,00). Compute a nonnegative
function F € C™(R™) such that Fle = f and |[F[[cm®n) < C|/fllcm (-

By “order of magnitude” we mean the following: Two quantities M and M determined
by E,f, m,n are said to have the same order of magnitude provided that C~"M < M <

CM, with C depending only on m and n. To compute the order of magnitude of M is
to compute a number M such that M and M have the same order of magnitude.

By “computing a function F” from (E, f), we mean the following: After processing the
input (E, f), we are able to accept queries consisting of a point x € R™, and produce a
list of numbers (fy(x) : || < m). The algorithm “computes the function F” if for each
x € R™, we have 0%F(x) = fy(x) for |o < m.

Problem 2 is an open problem posed in [7], and Problem 1 is closely related to Prob-
lem 2. The theoretical aspects of the problems for m = n = 2 were addressed in [12,13].
We refer the readers to [11-13] for a more thorough discussion on the problems.

In this paper, we content ourselves with an idealized computer with standard von
Neumann architecture that is able to process exact real numbers. We refer the readers
to [10] for discussion on finite-precision computing.

In [12], we proved the following.

Theorem 1. Let E C R? be a finite set. There exist (universal) constants C,D, and a
map & : Ci(E) x [0, 00) — Ci(Rz) such that the following hold.

(A) Let M > 0. Then for all f € C2(E) with [fllcz e) <M, we have E(f,M) =f on E
and [|E(f, M) c2rz2) < CM.

(B) For each x € R2, there exists a set S(x) C E with #(S(x)) < D such that for all
M >0 and f,g € C2 (E) with Ifllcz ey llgllcz (£) £ M and fls(x) = gls(x). we have

0%E(f,M)(x) = 0%*E(g, M)(x) for o] < 2.
A few remarks on Theorem 1 are in order. First of all, in [13], we showed that the

extension operator £ cannot be linear in general. The constant D appearing in Theorem 1
is called the depth of the extension operator £. This generalizes the notion of the depth of

a linear extension operator first studied by C. Fefferman in [4,5] (for further discussion
on the depth of linear extension operators see also G.K. Luli [14]). The depth of an
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extension operator (both linear and nonlinear) measures the computational complexity
of the extension. The existence of a linear extension operator of bounded depth is one of
the main ingredients for the Fefferman-Klartag [9,10] and Fefferman [6] algorithms for
solving the interpolation problems without the nonnegative constraints; the algorithms
in [6,9,10] are likely essentially the best possible.

In this paper, we will provide another proof of Theorem 1 but with algorithmic com-
plexity in mind. This is the content of Theorem 2.

We start with a definition.

Deﬁnitipn 1.1. Let N > 1 be an integer. Let B = {&1,---,&x]} be a basis of RN, Let
Q C RN be a subset. Let X be a set. Let =: Q — X be a map.

e We say = has depth D, if there exists a D-dimensional subspace V = span(&;,,- -,
&in)s &y ooy &ip € B, such that for all 21,2z, € Q with my(z1) = 7y (z2), we have
=(z1) = =(z,). Here, my : RN — V is the natural projection.

e Suppose Z has depth D. Let V = span(&i,,---,&,) be as above. By an
efficient representation of =, we mean a specification of the index set {i1,---,ip} C
{1,- o ,N} and an algorithm to compute a map =: Q NV — X in Cp operations,

i.e., given an input w € Q NV, we can compute =(w) in Cp operations. Here, the
map = agrees with = on Q NV, and Cp is a constant depending only on D.

Note that in general, the set QO may have complicated geometry. For the purpose of
this paper, we will only be considering when Q is some Euclidean space or the first
quadrant of some Euclidean space.

Remark 1.1. Suppose = : RN — R is a linear functional. Recall from [10] that a “com-
pact representation” of a linear functional = : RN — R consists of a list of indices
{ir, - ,iptc {1, ,N} and a list of coefficients Xi,, - ,Xip, 50 that the action of =
is characterized by

D
Zi(Eny oy ER) ) Xia - ias
A=

Therefore, given v € span(&i,,---,&i,), we can compute =(v) by computing the dot
product of two vectors of length D, which requires Cp operations. The present notion of
“efficient representation” is a natural generalization adapted to the nonlinear nature of
nonnegative interpolation (see [12,13]). Since a nonlinear map in general does not admit
a simple representation, we emphasize the complexity of an extension operator rather
than its structure.

We think of C2 (E) = [0, 00)N. We use the standard orthonormal frame RN as a basis
for the purpose of defining finite depth. We write Pt to denote the vector space of poly-
nomials with degree no greater than two, and we write J7F to denote the two-jet of F at x.
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The main theorem of the paper is the following.

Theorem 2. Suppose we are given a finite set E C R? with #(E) = N. Then there exists
a collection of maps {EX IXE ]Rz}, where Zx : C2(E) x [0,00) — PT for each x € R?,
such that the following hold.

(A) There exists a universal constant D such that for each x € R?, the map = (-,-) :
C2(E) x [0,00) — P+ is of depth D.

(B) Suppose we are given (f,M) € C2 (E) x [0, 00) with [fllcz (e) < M. Then there exists
a function F € Ci(RZ) such that

JTF=Z(f,M) for all x € R?, IFllczrz) < CM, and F(x) = f(x) for x € E.

(C) There is an algorithm, that takes the given data set E, performs one-time work, and
then responds to queries.
A query consists of a point x € R?, and the response to the query is the depth-D
map Zx, given in its efficient representation (see Definition 1.1).
The one-time work takes CNlog N operations and CN storage. The work to an-
swer a query is ClogN.

Remark 1.2. Theorem 2(C) implies that for each x € R?, there exists a set S(x) C E with
#(S(x)) < D such that for all (f, M), (g, M) € C3.(E) x[0, 00) with [[f][c2 ¢), gllcz (¢) <
M and fls(x) = gls(x), we have =, (f, M) = =« (g, M). Moreover, after one-time work using
at most CNlog N operations and CN storage, we can perform the following task: Given
x € R?, we can produce the set S(x) using no more than Clog N operations.

Using Theorem 2, we obtain an algorithmic version of the Sharp Finiteness Principle
(see Theorem 5 in [13]):

Theorem 3 (Algorithmic Sharp Finiteness Principle). Let E C R? with #(E) =
N < oo. Then there exist universal constants Cy,Cz,C3,Cq,Cs and a list of subsets
S$1,S2,-++,SL C E satisfying the following.

(A) We can compute the list {Sg: € =1,--- L} from E, using one-time work of at most
C1NlogN operations, and using storage at most C2N.
(B) #(S¢) < C3 for each t=1,--- L.
(C) L < C4N.
(D) Given any f: E — [0,00), we have
2:1111;-1-)-(& Ifllcz (s < lIfllcz ) < Cs e:H]l;f)_{L Ifllcz (s, -

Theorem 3 without condition (A) is the same as Theorem 5 in [13].
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In this paper, we will prove Theorem 3 via Theorem 2. Our approach yields an al-
ternate proof of Theorem 5 in [13]. The list of subsets {Sy : € =1,--- L} that arises in
this paper may be different from that in Theorem 5 of [13]. It will be interesting to
understand the relationship between them.

Using Theorem 3, we can produce Algorithm 1, solving Problem 1.

Algorithm 1 Nonnegative C?(R?) Interpolation Algorithm - Trace Norm.
DATA: E C R? finite with #(E) = N.
QUERY: f: E — [0, 00).
RESULT: The order of magnitude of [[f[[¢c2 (¢). More precisely, the algorithm outputs
a number M > 0 such that both of the following hold.

— We guarantee the existence of a function F € Ci(RZ) such that Flg = f and
IFllcz(r2) < CM.

— We guarantee there exists no F € C2 (R?) with norm at most M satisfying Fl¢ = f.

COMPLEXITY:

— Preprocessing E: at most CN log N operations and CN storage.

— Answer query: at most CN operations.

Using Theorem 2, we can produce Algorithm 2, solving Problem 2.

Algorithm 2 Nonnegative C2(R?) Interpolation Algorithm - Interpolant.
DATA: E C R? finite with #(E) =N. f: E — [0,00). M > 0.
ORACLE: Hf”Ci(E) <M.

RESULT: A query function that accepts a point x € R? and produces a list of
numbers (fo(x) : |af < 2) that guarantees the following: There exists a function
Fe Ci(RZ) with ||F||c2r2) £ CM and Flg = f, such that 0*F(x) = f(x) for [«] < 2.
The function F is independent of the query point x, and is uniquely determined by
(E, f,M).

COMPLEXITY:

— Preprocessing E: at most CN log N operations and CN storage.

— Answer query: at most Clog N operations.

Theorem 2 also yields Algorithm 3 for computing the representative sets S¢ in Theo-

rem 3.
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Algorithm 3 Nonnegative C?(R?) Interpolation Algorithm - Representative Sets.
DATA: E C R? finite with #(E) = N.
RESULT: A query (set-valued) function that accepts a point x € R? and produces
a subset S(x) C E, where S(x) agrees with that in Remark 1.2.
COMPLEXITY:

— Preprocessing E: at most CNlog N operations and CN storage.
— Answer query: at most Clog N operations.

To see how to produce Algorithm 3 from Theorem 2, we simply note that each map
Zy in Theorem 2 is stored in its efficient representation (see Definition 1.1). Thus, the
set S(x) is given by the corresponding set of indices in the efficient representation of =,.

Acknowledgment. We are indebted to Jesis A. De Loera, Charles Fefferman, Kevin
O’Neill, Naoki Saito, and Pavel Shvartsman, for their valuable comments. We also thank
all the participants in the 11th Whitney workshop for fruitful discussions, and Trinity
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This project is supported by NSF Grant DMS-1554733. The first author is supported
by the UC Davis Summer Graduate Student Researcher Award and the Alice Leung
Scholarship in Mathematics. The second author is supported by the UC Davis Chancel-
lor’s Fellowship.

2. Preliminaries

We use ¢y, Cy, C’, etc., to denote universal constants. They may be different quantities
in different occurrences. We will label them to avoid confusion when necessary.

We assume that we are given an ordered orthogonal coordinate system on R?, specified
by a pair of unit vectors [e7, e2]. We use |- | to denote Euclidean distance. We use B(x, 1)
to denote the disk of radius T centered at x. For X,Y C R?, we write dist (X,Y) :=
infxex,er [x — yl-

We use o = (a1, x2), B = (B1,B2) € N3, etc., to denote multi-indices. We write 3% to
denote 9g] 0¢2. We adopt the partial ordering o« < f3 if and only if oy < B¢ for i =1,2.

By a square, we mean a set of the form Q = [a,a+ 8) x [b,b + §) for some a,b € R
and 6 > 0. If Q is a square, we write g to denote the sidelength of the square. For
A > 0, we use AQ to denote the square whose center is that of Q and whose sidelength
is Adq. Given two squares Q, Q’, we write Q < Q' if closure(Q) N closure(Q’) # @.

A dyadic square is a square of the form Q = [2¥-1,2%. (i + 1)) x [2%-§,2%- G+ 1))
for some 1i,j,k € Z. Each dyadic square Q is contained in a unique dyadic square with
sidelength 28¢, denoted by Q.

Let QO C R™ be a set with nonempty interior Qg such that Q C Qg. For nonnegative
integers m, n, we use C™(Q) to denote the vector space of m-times continuously differ-
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entiable real-valued functions up to the closure of Q, whose derivatives up to order m
are bounded. For F € C™(Q), we define

up max [0%F(x)|.

HFHCm(Q) =S5
x€Q, laf<m

We write CT*(Q) to denote the collection of functions F € C™(Q) such that F > 0 on Q.
Let E C R™ be finite. We define the following.

C™(E):={f:E = R}=R#® and |[[f|cme):=inf {|[F]|cm®gn): Fle = f};
CIE):=={f:E—[0,00)} = [0, 00)#F) and
Hf”C'T‘(E) = inf {HFHCm(Rn) : F|E =fandF 2 O} .

2.1. Polynomials and Whitney fields

We write P to denote the vector space of affine polynomials on R2. It is a three-
dimensional vector space. We use P+ to denote the vector space of polynomials in R?
with degree no greater than two. It is a six-dimensional vector space.

For x € R? and a function F twice continuously differentiable at x, we write JyF,
JFF to denote the one-jet, two-jet of F at x, respectively, which we identify with the
degree-one, degree-two Taylor polynomials, respectively,

IxFly) = Z 07F(x) (y—x)%, and

|
o<1

By = Y Ty e,

lx|<2

(2.1)

We use Ry, Ry to denote the rings of one-jets, two-jets at x, respectively. The multipli-
cations on Ry and R} are defined in the following way:

P ®x R:=Jx(PR) and P" ©f Rt := g7 (PTRT),

for P,R € Ry and PT,Rt € R}.
Let S C R™ be a nonempty finite set. A Whitney field on S is an array of polynomials

P.= (P*)xes, where P* € R, for eachx €S.
Given P = (P*)xes, we sometimes use the notation
(ﬁ,x) =P* for xe€8S.

We write W2(S) to denote the vector space of all Whitney fields on S. For P= (PX)ses €
W?2(S), we define
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p d%(P* — PV
[Pllwz(s) == max [0°P*(x)|+ max M
x€S,lai< xyeS Ay, lal<l [ —y[2 1%

We note that [|-|lyz2(s) is a norm on W?(S).

We write W2 (S) to denote a subcollection of W2(S), such that Pe W2 (S) if and only
if for each x € S, there exists some My > 0 such that

(P,x)(y) + My ly — x> > 0 for all y € R?. (2.2)
For P € W2 (S), we define

IPllwz (s) = [IPllwzs)

. (D _ 2 . 2
+1§1€a§<(mf{szo.(P,x)(y)+Mx\y X2 >0 forally € R })

The next lemma is a Taylor-Whitney correspondence for C2 (R?). (A) is simply Tay-
lor’s theorem. See [8,13] for a proof of (B).

Lemma 2.1. There exists a universal constant C., such that the following holds.
Let E C R? be a finite set.

(A) Let F € C3(R?). Let P = (JxFlxce. Then P € W2(E) and [[P|lwa ) <
CwllFllc2(r2).-

(B) There exists a map TS, : W2 (E) — CZ(R?) such that || T5(P)| c2(r2) < CwllPllwz (&)
and 3, TE(P) = (P,x) for each x € E.

2.2. Trace norm on small subsets

Let S C R? be a finite set. We define the following two functions.

Q= Qs : W(S) — [0,00)

5 0 (P — PY)(x)
P=(Pes Y P+ Y ———— (2.3)
x€S X,y€ES |X 7y|
[ <1 XAy
lx|<1
and
M= Ms : W3(S) — [0, c0]
- > ‘]Yxp(ll)z if P¥(x) > 0 for each x € S (2.4)
P = (P¥)ues i § 4e8 :
0 if there exists x € S such that P*(x) <0
In (2.4), we use the conventions that $ =0 and ¢ = co for a > 0.
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Lemma 2.2. Let S C R? be a finite set with #(S) < N for some universal constant Ng.
Let Q and M be as in (2.3) and (2.4). Then there exists a universal constant C such

that
CIPllwa s) < (Q+M)(P) < ClIP|lw2 (s for all P € WA(S).
Moreover, Pe W2(S) \Wi(S) if and only ifM(ﬁ) = 0.

Proof. We write C, C’, etc., to denote universal constants.
Fix P = (P*)xes € W2(S).

—

Suppose (Q + M)(P) < M. We want to show that

IPllwz (s) < CM.

Since each summand in the definition of Q in (2.3) is nonnegative, we have

[9%(P* — PY) (x|

max [0°P*(x)] < CM, and P

x€S,|x|<1 x‘yesffiﬁ,lcxlg Ix —y|
Since M(P) < M, we have
IVPX[? < MPX(x) for x € S.
Therefore, we have
P*(y) + % ly —x[* >0 for ally e R%,x €S.

By the definition of [|[\y2 (s, we see that (2.6) follows from (2.7) and (2.9).
Suppose \|13||Wz+(s) < M. We want to show that

(Q+ M)(P) < CM.

By the definition of -[lyyz2 (s, we know that

max [0%P*(x)| < M, max
x€S,||<1 X,YES,x#£Y,|x|<1 Ix —yl*
PX(y) + My —x|* > 0 for all y € R?,x € S.

It follows from (2.11) that

Q(P) < CM2.
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For each x € S, restricting P* to each line in R? passing through x and computing the
discriminant, we can conclude from (2.12) that

IVPX[* < CMPX(x) for x € S. (2.14)
It follows from (2.14) that
M(P) < CM. (2.15)

(Recall that we use the convention § = 0). (2.10) then follows from (2.13) and (2.15).
This proves (2.5).
Now we turn to the second statement.
Suppose P € W2(S) is such that M(P) = co. Then at least one of the following holds:

e P¥(x) < 0 for some x € S, in which case condition (2.2) fails for such P*, so P ¢
W2 (S).

o There exists x € S such that P*(x) = 0 but VP* # 0, in which case condition (2.2)
fails for such PX, so P ¢ W2(S).

In conclusion, we have P ¢ W2(S).

Conversely, suppose P ¢ Wﬁ(S). Then there exists x € S such that condition (2.2)
fails for P*. This means that either P*(x) < 0, or P*(x) = 0 but VP* # 0. In either case,
we have M(ﬁ) = 0.

Lemma 2.2 is proved. O

For the rest of the subsection, we fix a finite set S C R? with #(S) < Ny, where Ny is
a universal constant. We also fix a function f: S — [0, 00). We explain how to compute
the order of magnitude of [[f[/cz (s).

We adopt the following notation: For A;B > 0, we write A ~ B if there exists a
universal constant C such that C"'A < B < CA.

We define an affine subspace Ay € W2(S) by

A= {* — (P¥)xes € W2(S) : PX(x) = f(x) and f(x) =0 = VP* =0 for x € s}

_ {13 = (P¥)xes € W2(S) : PX(x) = f(x) for x € s}.

Note that A has dimension 2 - (#(S) — #(f~1(0)).
Let Q and M be as in (2.3) and (2.4). By Lemma 2.1 and Lemma 2.2,

Iflcas) ~ inf {(Q+ M)(P): P € A} (2.16)
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Let d := dim W2(S) = #(S) - dim P = 3#(S). We identify W2(S) = R9 via (P¥)yxes —
(P*(x), 0¢, P*,0¢,P¥) We define the €' and (Z-norms, respectively, on R by the
formulae

X€ES"

d d 1/2
Vle =) il and [[v]lez = <Z |v12> for v=(vi,---,vq) € R

i=1 i=1

Consider the following objects.

e Let Ly, : W2(S) — RY be a linear isomorphism that maps P € W2(S) to the vector
in R4 with components

0%(PY —P*)(y)

2 |« y oxpxs (XS) y |OC| < 1
ly —z|

for suitable xs,y,z € S in some order, so that
ILw (Pl mas) = Q(F)  for P e WA(S) (2.17)

The construction of such L,, is based on the technique of “clustering” introduced in
[1]. See Remark 3.3 of [1]. Since #(S) is universally bounded, we can compute L,,
from S using at most C operations.

o Let V& C W2(S) be a subspace defined by

Vi o= {(P¥)xes : PX(x) =0 for x € S\ f'(0) and P* =0 for x € f 1(0)}.
Let TT¢ = (TT¥)xes : W2(S) — V¢ be the natural projection defined by
TT§ (P*) = (0, 0¢, P*, 0¢, P¥).
Let ﬁf € W2(S) denote the vector
Pr = (f(x),0,0), s -

It is clear that A = lsf + Vs.
o Let Ly = (L¥)xes : W2(S) — W2(S) be a linear endomorphism defined by L¥(PX) =

px -1 x — —1
mforxeS\f (0) and L¥ =0 for x € f~'(0).

We see that
M(P) ~ |LeTT¢(P)||f2 ga) for P € Ay (2.18)
Combining (2.17) and (2.18), we see that

(Q+ M)(P) ~ ||Lf”f(ﬁ)|\fZ(Rd) + |Lw(P) |1 (ray  for P € Ap=Pr+ Ve (2.19)
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Let B := Ly (P) and A := (L¢TT¢) T(L¢TT¢). We see from (2.16) and (2.19) that comput-
ing the order of magnitude of [|f[|cz (s) amounts to solving the following optimization
problem:

Minimize B*AB + [|B[|¢1(ra)  subject to L.)'B € Pr+ V. (2.20)

We note that (2.20) is a convex quadratic programming problem with affine constraint.
We can find the exact solution to (2.20) by solving for the associated Karush-Kuhn-
Tucker conditions, which consist of a bounded system of linear equalities and inequali-
ties [2]. Thus, we can compute the order of magnitude of ||f[cz (s) in C operations. See
Appendix A for details

2.3. Essential convex sets
Definition 2.1. Let E € R? be a finite set.

e Forx € R?, S CE, and k > 0, we define

G(X>S) = {gx(P HIORS CZ(R2)> Qls = 0, and H(PHCZ(RZ) < 1}» and

of(x, k) == ﬂ o(x,S). (2.:21)
SCE,#(S)<k

o Let f: E — [0,00) be given. For x € R?, S C E, k> 0, and M > 0, we define

(xS, M, f) := {dxF : F € CZ(R?), Fls =1, and ||F||c2(r2) < M}, and

2.22
MM =[] TS M. (2:22)
SCE#(5)<k

Adapting the proof of the Finiteness Principle for nonnegative C2(R?) interpolation
(Theorem 4 of [13]), we have the following.

Lemma 2.3. There exists a universal constant C such that the following holds. Let E C R?
be a finite set. Let o and of be as in Definition 2.1. Then for any x € R2,

C'.0%(x,16) C o(x,E) C C- 0(x, 16).
2.4. Callahan-Kosaraju decomposition
We will use the data structure introduced by Callahan and Kosaraju [3].
Lemma 2.4 (Callahan-Kosaraju decomposition). Let E C R™ with #(E) = N < oco. Let

k > 0. We can partition E x E\ diagonal(E) into subsets Ej x EY,--- ,E{ X E{ satisfying
the following.
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(A) L < C(k,n)N.
(B) For each £ =1,--- L, we have

diam Ej,diam E; < « - dist (Eg, Ef) .

(C) Moreover, we may pick x; € By and x;' € B} for each ¢ =1,--- L, such that the
xgyxg for ¢=1,--- L can all be computed using at most C(k,n)NlogN operations
and C(k,n)N storage.

Here, C(k,n) is a constant that depends only on k and n.
3. Algorithm 1: Estimation of trace norm
3.1. Proof of Theorem 3

In this section, we prove Theorem 3 by assuming Theorem 2, whose proof will appear
in Section 5.7.

With a slight tweak, the argument in the proof of Lemma 3.1 in [6] yields the following.
Lemma 3.1. Let E C R? be a finite set. Let ko > 0 be a constant that is sufficiently small.
Let E, B} be as in Lemma 2./ with k = Ko. Suppose P = (P*)xcg € W2 (E) satisfies the

following.

(A) P* e Ty (x,d, M, f) for each x € E, with T as in (2.22).
(B) [0 (P — P (x| < Mixg —x{ P for lad <1, 0=1,-- L.

Then ||P|lwz ) < CM.
Recall Lemma 3.2 of [6].

Lemma 3.2. Let E C R? be a finite set. Let E) and E]' be as in Lemma 2./ with { =
1,---,L. Then every x € E arises as an x; for some L € {1,--- L}

We now have all the ingredients for the proof of Theorem 3.

Proof of Theorem 3 Assuming Theorem 2. Let E C R? be a finite set. Let {Ex,x € Rz}
be as in Theorem 2. For each x € E, let S(x) be as in Remark 1.2.

Let ko be as in Lemma 3.1. Let (x5, xy) € ExXE, £ =1,--- L, be as in Lemma 2.4
with kK = kp.
We set
Se:={xg,xTUSx)US(x/) , ¢=1,---,L. (3.1)
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Conclusion (A) follows from Theorem 2(C),

Conclusion (B) follows from Theorem 2(C) and Remark 1.2.
Conclusion (C) follows from Lemma 2.4(C).

Now we verify conclusion (D). We modify the argument in [6].
Fix f: E — [0,00). Set

M= max (fllczs,)-

Remark 1.2, and Lemma 2.4.

(3.2)

Thanks to (3.2), we see that |[f|cz2(s,) < M for £ = 1,---,L. Thus, for each £ =

1,--+, L, there exists F € C2 (R?) such that

[IFellcz(r2) < 2M and Fe(x) = f(x) for x € Sq.

Fix such Fg. For £ =1,--- | L, we define

fo:E — [0,00) by fe(x) := Fe(x) for x € E.

From (3.3) and (3.4), we see that

[fellcz gy <2M for £=1,---,L.
For each £ =1,---,L, we define

Pé = err (Exe’ (f[,ZM)) and PZN = gxér (Ex,g’(ffZ)ZM)) .

(3.3)

(3.4)

(3.6)

We will show that the assignment (3.6) unambiguously defines a Whitney field over E.

Claim 3.1. Let {3, €{1,---,L}.

(a) Suppose xy, =xy,. Then Py =Py .
(b) Suppose xi, =xy,. Then Py =P .
(c) Suppose xy, =xy,. Then Py =P .

Proof of Claim 3.1. We prove (a). The proofs for (b) and (c) are similar.
Suppose x;, = X;, =: Xo. Let S(xo) be as in Remark 1.2. By (3.1), we see that

S(xo) C Sh N Sez.

Therefore, we have

fe, (x) = fg, (x) for x € S(xo).

Thanks to Theorem 2(A), Remark 1.2, and (3.5), we see that
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EXO (ffl )ZM) = EXo (fEZ Y ZM)
By (3.6), we see that Py, = Pg,. This proves (a). O
By Lemma 3.2, there exists a pair of maps:

A surjection 7t: {1,---,L} — E such that w({) =x; for £=1,---,L, and (3.7)
An injection p: E — {1,--- ,L} such that x;(x) =x for x € E, i.e., mop =1idg. .

The surjection 7t is determined by the Callahan-Kosaraju decomposition (Lemma 2.4),
but the choice of p is not necessarily unique.

Thanks to Claim 3.1 and the fact that E; x E C E x E\ diagonal(E), assignment
(3.6) produces for each x € E a uniquely defined polynomial

P* = gx (Ex(fp(x))ZMD ) (38)

with = as in Theorem 2 and p(x) as in (3.7). Note that, as shown in Claim 3.1, the
polynomial P* in (3.8) is independent of the choice of p as a right-inverse of 7t in (3.7).

Thanks to Theorem 2(B) and (3.5)—(3.8), for each £ = 1,- -, L, there exists a function
F¢ € C2(R2) such that

[Fellc2(r2) < CM and F¢ > 0 on R?; (3.9)
Fo = fo(x) = f(x) for x € Sg; and (3.10)
3xé}~:€ = Pxé = 3xé (Exé (fZ,ZM)) y and gxé/f:e = PX(/’ = 3)‘({/ (Exé’ (f@,ZM)) . (311)

Thanks to (3.9) and (3.10), we have
PXt € Ty (x§,{x{}, CM, f) for €=1,--- L. (3.12)
Thanks to (3.9) and (3.11), we have

ax(Pxt — PX)(xy)| < CMIx{ —xJ/17™ for o <1,8=1,--- L. (3.13)

Therefore, by Lemma 3.1, (3.12), and (3.13), the Whitney field P = (P*)yek, with P*
as in (3.8), satisfies

P € W2 (E),P¥(x) = f(x) for x € E, and [|P||ly2 ) < CM.

By Lemma 2.1(B), there exists a function F € C% (R?) such that |[F||c2(g2) < CM and
JdxF = P* for each x € E. In particular, F(x) = P*(x) = f(x) for each x € E. Thus,
[fllc2 (g) < CM. This proves conclusion (D).

Theorem 3 is proved. O
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3.2. Explanation of Algorithm 1

Below are the steps of Algorithm 1.

Step 1. Compute Sy,---,St from E as in Theorem 3.
Step 2. Read f: E — [0, 00).
Step 3. For £ = 1,--- L, compute a number My such that M, has the same order of

magnitude as [|f|cz (s,)-
Step 4. Return M :=max{M¢:¢=1,---,L}L

The number M produced in Step 4 has the same order of magnitude as ||f|cz (g).
thanks to Theorem 3 and Lemma 2.1. Therefore, Algorithm 1 accomplishes what we
claim to do.

We now analyze the complexity of Algorithm 1.

By Theorem 3, Step 1 requires no more than CN log N operations and CN storage.

Step 3 requires no more than CN operations. Indeed, on one hand, computing each
M, requires no more than C operations, thanks to the discussion in Section 2.2; on the
other hand, we need to carry out L computations, with L < CN.

Finally, Step 4 requires no more than CN operations.

This concludes our discussion of Algorithm 1.

4. Approximation of o

This and the next sections will be devoted to the proof of Theorem 2. To prepare
the way, in this section, we introduce the relevant objects and show how they can be
computed efficiently.

We begin by reviewing some key objects introduced in [9,10], which we will use to
effectively approximate the shapes of of(x,16) for x € E.

We will be working with C?(R?) functions instead of C2 (R?) functions.

4.1. Parameterized approximate linear algebra problems (PALP)

Let N > 1. Let {&;,-- y &5 ) be the standard basis for RN, We recall the following
definition in Section 6 of [10].

Definition 4.1. A parameterized approximate linear algebra problem (PALP for short)

is an object of the form:

A=A, A

= —lmax

))(h]a"' )b

—lmax

),(61,-" )eimax)] ) (4'1)

where

o Each A, is a linear functional on P, which we will refer to as a “linear functional”;
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« Each b; is a linear functional on C2(E), which we will refer to as a “target functional”;
and
e Each e; € [0,00), which we will refer to as a “tolerance”.

Given a PALP A in the form (4.1), we introduce the following terminologies:

o We call i,,2x the length of A,
o We say A has depth D if each of the linear functionals b; on RN has depth D with
respect to the basis {&1,- -, &g} (see Definition 1.1).

Recall Definition 1.1. We assume that every PALP is “efficiently stored”, namely,
each of the target functionals are stored in its efficient representation. In particular,
given a PALP A of the form (4.1) and a target b; of A, we have access to a set of

indices {i1,---,ip} C{1,---, N}, such that b; is completely determined by its action on
{&iyy oy &ip C{E1y -+, END Here ip = depth(b;). We define
S(by) :={xi,, %} CE. (4.2)

Given a PALP of the form (4.1), we define

with S(b;) as in (4.2).
4.2. Blobs and PALPs

Definition 4.2. A blob in P is a family K = (Km)m>o of (possibly empty) convex subsets
Km C V parameterized by M € [0, 00), such that M < M’ implies Knp C K- We say
two blobs K = (Km)m>o0 and K= (K )m>o are C-equivalent if Kc—1pm C Ky € Kem
for each M € [0, 00).

Let A be a PALP of the form (4.1). For each @ € C?(E) = R#(®), we have a blob
defined by

(A) = (IC(p(A) M))MZO’ where

Co (4.4)
Ko(AM):={PeP:A(P)—bi(@)l <Me; for i=T,-- i) C V. '

In this paper, we will be mostly interested in the centrally symmetric (called “homoge-
neous” in [10]) polytope defined by setting ¢ = 0:

0(A) == Ko(A,1). (4.5)
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Note that o(A) is never empty, since it contains the zero polynomial.
4.8. Essential PALPs and blobs

Let E ¢ R? be a finite set with #(E) = N. We assume that E is labeled: E =
{x1,- ,xn}. We identify C2(E) = RN with respect to the standard basis {&1,- -, En}
for RN,

Definition 4.3. For each x € R? and ¢ € C?(E), we define a blob

Zo(x) = (Zo (%, M) g5, where

There exists G € C?(R?) with } (4.6)

Lo(x,M) = {P eP: IGllc2(r2) < M, Gle = @, and 3,G = P.

It is clear from the definition of ¢ in (2.21) that
o(x,E) = Zo(x,1).
Therefore, thanks to Lemma 2.3, we have
C7'.0%(x,16) C Zo(x,1) € C-o*(x,16), x € E (4.7)

for some universal constant C.
We summarize some relevant results from [10].

Lemma 4.1. Let E C R? be finite. Using at most CNlog N operations and CN storage,
we can compute a list of PALPs {A(x) : x € E} such that the following hold.

(A) There exists a universal constant Do such that for each x € £, A(x) has length no
greater than 3 = dim P and has depth Dy.

(B) For each given x € R? and @ € C?(E), the blobs I@,(A(X)) as in (4.4) and )f(p(x)
as in (4.6) are C-equivalent.

See Section 11 of [10] for Lemma 4.1(A), and Sections 10, 11, and Lemma 34.3 of [10]
for Lemma 4.1(B).

The main lemma of this section is the following.
Lemma 4.2. Let E C R? be given. Let {A(x):x € E} be as in Lemma 4.1. Recall the

definitions of 0 and S(A(x)) as in (2.21) and (4.3). Then there exists a universal constant
C such that, for each x € E,

C"-ox,S(A(X))) C 0*(x,16) C C- 0(x, S(A(X))).
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Proof. For centrally symmetric 0,0’ C P, we write 0 & ¢’ if there exists a universal
constant C such that C™'- o C o/ € C- 0. Thus, we need to show o(x, A(x)) =~ o#(x, 16)
for x € E.

Thanks to Lemma 2.3, Lemma 4.1(B) (applied to ¢ =0), (4.5), and (4.7), we have

o¥(x,16) ~ of(x, E) & Ko(A(x), 1) = o(A(x)) for x € E. (4.8)
Therefore, it suffices to show that
o(x,S(A(x))) = o(A(x)) for x € E.
From (4.8) and the definition of o in (2.21), we see that
o(A(x)) € C-o(x,E) € C-a(x,S(Ax))).
It remains to show that
o(x,S(A(x))) € C- o(Ax)).

Let x € E and let P € o(x,S(A(x))). Then there exists ¢ € C2(R?) such that
lellczrzy < 1, @(x) = 0 for all x € S(A(x)), and Jx(¢) = P. Note that @|e € C2(E).
We abuse notation and write @ in place of @|g when there is no possibility of confusion.

It is clear from the definition of X, (x, M) in (4.6) that

PeZy(x1).
By Lemma 4.1(B), we have
P e Ky(Alx),C)
with K (A(x), C) as in (4.4). In particular, we have
A;(P) —Dbi(@)l < Cei for i=1,---,L =length(A(x)). (4.9)

Here, the A;,--- ,A;, by,---,by, and ey, -+, €1, respectively, are the linear functionals,
target functionals, and the thresholds of A(x). However, by the definition of S(A(x)) in
(4.3) and the fact that @ =0 on S(A(x)), we see that (4.9) simplifies to

A;(P)| < Ceq for i=1,---,L =length(A(x)).
This is equivalent to the statement
P € Ko(A(x),C) =C-a(Alx)).

Lemma 4.2 is proved. O
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5. Algorithm 2: Computing a C-optimal interpolant

Let E C R? be a finite set. We fix E throughout the rest of the paper.
5.1. Calderdon-Zygmund squares

Let & C R? be a symmetric convex set. We define

diamc:=2- sup psu), (5.1)
ueR? Jul=1

where ps(u) is a gauge function given by
ps(u) :=sup{r>0:rucC G}. (5.2)

Let {A(x) : x € E} be as in Lemma 4.1, and let o(A(x)) C P be as in (4.5). Note that
for each x € E, 0(A(x)) C P two-dimensional. Indeed, thanks to Lemma 4.1(B) (with
@ = 0), any P € o(A(x)), x € E, must have P(x) = 0. Thus, for each x € E, we can
identify o(A(x)) as a subset of R? via the map

0(A(x)) 2P (VP-e1,VP-e3), (5.3)

where {e7, e2} is the chosen orthonormal system.
Let A1,A2 > 0 be sufficiently large dyadic numbers. Let {A(x):x € E} be as in
Lemma 4.1. We say a dyadic square Q is OK if the following hold.

o Either #(EN5Q) < 1, or diam o(A(x)) > A18q for all x € EN5Q. Here and below,
the diam (o(A(x))) is defined using the formula (5.1) via the identification (5.3).
. 5Q < A;1 .

Definition 5.1. We write Ay to denote the collection of dyadic squares Q such that both
of the following hold.

(A) Q is OK (see above).
(B) Suppose 5g < Ay, then Q" is not OK.

Remark 5.1. Note that there are two differences in the definition of Ay than those in
[12,13].

e We use 5Q in the definition of Ay instead of using 2Q. This has the advantage that

5Q* ¢ 52Q = 25Q.
o We do not require diam o(A(x)) > A18¢g for x € EN5Q when #(EN5Q) =1.
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We will provide explanation when these differences change the structure of the analysis.
Otherwise, we will simply add the word “variant” to our reference to results in [12,13].

Lemma 5.1. Ay enjoys the following properties.
(A) Ao forms a cover of R? with good geometry:

(A1) R? = UQe/\o Q;
(A2) If Q,Q’ € Ay with (1 +2cg)QN (14 2cc)Q’ # @, then

C715Q < 6Q’ < C5Q;
and as a consequence, for each Q € Ao,
#{Q ' eNo:(1+cg)Q' N(1T+cg)Q#@}<C.

Here, C,C’ are universal constants, and cg 1is a sufficiently small constant,

say 1/32.
(B) Let Q € Ay. Then there exists @ € C2(R) such that

p(EN5Q) c{(t,@(t)) : t € R}, (5.4)

where p is some rotation about the origin depending only on Q. Moreover, @ satisfies
the estimates

m
’i—m@(t)l < CATISG™ for m=1,2, (5.5)

with Ay as in Definition 5.1. Furthermore, suppose for some xo € EN5Q and a
unit vector Wy, we have

diam 6(A(%0)) = Po(a(xe)) (o)

with diam o(A(xo)) and pe(a(x,)) (Uo) as in (5.1) and (5.2). Then we can take @
to satisfy the following property:

(B1) We can take p in (5.4) to be the rotation specified by wo — €z;
(B2) We can take xo = (0, ¢(0)).

As a consequence, there exists a C2-diffeomorphism @ : R? — R? defined by
Do p(ty,t2) = (t1,t2 — @(t1)) where p is the rotation as in (5.4),
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such that ®(EN5Q) C R x {t; =0} and [V™®|, |[V™O | < CA;‘SE{’“ for m =
1,2, with A1 as in Definition 5.1.

Remark 5.2. Lemma 5.1(A) can be found in Section 21 of [10]. See also Lemma 5.1 of [13].
Lemma 5.1(B) follows from the proofs of Lemma 5.4 and 5.5 with a minor modification:
For Q € Ay with #(EN5Q) < 1, we can simply take @ to be a suitable constant function
on R.

We recall the following results from [10].

Lemma 5.2. After one-time work using at most CNlog N operations and CN storage, we
can perform each of the following tasks using at most Clog N operations.

(A) (Section 26 of [10]) Given a point x € R?, we compute a list A(x) = {Q € Ao :
(T+cc)Q > x}.

(B) (Section 27 of [10]) Given a dyadic square Q C R?, we can compute Empty(Q),
with Empty(Q) = True if EN25Q = &, and Empty(Q) = False if EN25Q # @.

(C) (Section 27 of [10]) Given a dyadic square Q C R? with E N 25Q # @, we can
compute Rep(Q) € EN25Q, with the property that Rep(Q) € EN5Q f EN5Q # @.

Definition 5.2. We define the following subcollections of Ag:

(5.6) A#:={Qe AN :EN(14+cc)Q#a};

(5.7) A':={Q € Ao : EN5Q # @}

(5.8) Acmpty == {Q € Ao\ A¥:8q < A;'} with A; as in Definition 5.1.

We can think of A# as the collection of squares with the most “concentrated” infor-
mation, A! as the largest collection of squares that contain information while still having
good local geometry, and Aempty as the collection of squares that do not contain informa-
tion in their five-time dilation, but are sufficiently small to detect nearby accumulation
of points in E.

We begin with the analysis of Aempty and AL,

Lemma 5.3. After one-time work using at most CNlog N operations and CN storage, we
can perform the following task using at most Clog N operations: Given Q € Ay, we can
decide if Q € A*, Q € Aempty, o7 Q € Ao \ (A* U Acmpty -

Proof. This is a direct application of Lemma 5.2(B,C) to Q. O

The next lemma tells us how to relay information to squares in Aempty-
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Lemma 5.4. We can compute a map
Bt Aempty — AF (5.9)
that satisfies

(1T+cc)(Q)N25Q # @ for Q € Aempty - (5.10)

The one-time work uses at most CNlogN operations and CN storage. After that, we
can answer queries using at most Clog N operations. A query consists of a square Q €
Aempty, and the response to the query is another square W(Q) that satisfies (5.10).

Proof. Suppose Q € Aempty. Then we have EN5Q™ # &. By the geometry of Ag, we
have 5Q C 25Q. Hence, E N 25Q # @. Therefore, the map Rep in Lemma 5.2(C) is
defined for Q.

We set

x :=Rep(Q) C EN25Q, (5.11)

with Rep as in Lemma 5.2. Note that x ¢ 5Q, since Q € Aempty-
Let A(x) C Ap be as in Lemma 5.2(A). Let Q' € A(x). By the defining property of
A(x) and the fact that x € E, we have Q' € A, Set

n(Q) = Q' € A%

By the previous comment, we have

(T+ce)n(Q) 2 x. (5.12)

Combining (5.11) and (5.12), we see that (1+ cg)p(Q) N25Q # @. (5.10) is satisfied.
By Lemma 5.2(A,C), the tasks A(-) and Rep(-) require at most ClogN operations,
after one-time work using at most CNlogN operations and CN storage. Therefore,
computing p(Q) requires at most Clog N operations, after one-time work using at most
CNlog N operations and CN storage.
This proves Lemma 5.4. O

Lemma 5.5. After one-time work using at most CNlog N operations and CN storage, we
can perform the following task using at most Clog N operations: Given Q € A", compute

a pair of unit vectors uQ,uJQ € R?, such that the following hold.

(A) uq is orthogonal to uJQ‘, and the orthogonal system [uJQ‘,uQ] has the same orienta-
tion as [e1, e2].
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(B) Let p be the rotation about the origin specified by wg +— ez, then there exists a
function @ € C?(R) that satisfies (5.4) and (5.5) with this particular p.

Proof. Fix Q € Af. This means that E N5Q # @. In particular, Rep(Q) is defined, and
by Lemma 5.2(C),

xo = Rep(Q) € EN5Q.

Computing xo requires at most Clog N operations, after one-time work using at most
CNlog N operations and CN storage.

Let A(xo) be as in Lemma 4.1, and let o(A(xo)) be as in (4.5). By Lemma 4.1(B)
(with @ = 0), any P € 0(A(xo)) must satisfy P(xo) = 0. by Lemma 4.1(A) and definitions
(4.4), (4.5) of o(A(xo0)), we see that o(A(xo)) is a two-dimensional parallelogram in P
centered at the zero polynomial. Therefore, we have

diam o(A(xo)) = length(Ap),

where diam is defied in (5.1) and Ag is the longer diagonal of o(A(xo)).

Set ug to be a unit vector parallel to Ap. Lemma 5.5(B) then follows from
Lemma 5.1(B).

We compute another vector U.JQ such that {uQ,uJQ} satisfies Lemma 5.5(A). Com-
puting {uQ,uJQ} from o(A(xo)) uses elementary linear algebra, and requires at most C
operations.

Lemma 5.5 is proved. 0O

Lemma 5.6. After one-time work using at most CNlog N operations and CN storage, we
can perform the following task using at most Clog N operations: Given Q € Ao, we can
compute a point x% € Q such that

dist (xﬁQ,E) > codg (5.13)
for some universal constant co > 0.

Proof. Let Q € Ap be given.
Suppose Empty(Q) = True, with Empty(-) as in Lemma 5.2(B). We set

xg = center(Q).
It is clear that x’g € Q and (5.13) holds.
Suppose Empty(Q) = False. Let xo := Rep(Q) € EN 25Q.
Suppose xp ¢ 5Q, then EN5Q = & by Lemma 5.2(C). Again, we set

x% = center(Q).
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It is clear that xg € Q and (5.13) holds.

Suppose xo € 5Q. This means that Q € A*F with A* as in (5.7). Let ug be as in
Lemma 5.5.

By Lemma 5.1(B), we have EN5Q C {(t,9(t)) :t € R} up to the rotation ug —
ez, and the function @ satisfies “ft—:(p(t)‘ < CATUSE” for m = 1,2, with A; as in
Definition 5.1. Therefore, by the defining property of uqg in Lemma 5.5, we have

EN5Q C {y eR?:|(y—xo0) “uql < CA?1 ly fxol} =: Z(xo).

Suppose dist (center(Q), Z(xo)) > 8g/1024. We set

xg = center(Q).
In this case, it is clear that xg € Q and (5.13) holds.
Suppose dist (center(Q), Z(xo)) < 5q/1024. We set

5
xg = center(Q) + TQ “uQ.

It is clear that xﬁQ € Q. For sufficiently large A, we also have dist (XﬁQ, Z(xo)) > cdg
for some constant ¢ depending only on A;. Thus, (5.13) holds.

After one-time work using at most CN log N operations and CN storage, the procedure
Empty(Q) requires at most Clog N operations by Lemma 5.2(B); the procedure Rep(Q)
requires at most Clog N operations by Lemma 5.2(C); computing the vector uq requires
at most Clog N operations; and computing the distance between center(Q) and Z(xo)
is a routine linear algebra problem, and requires at most C operations.

Lemma 5.6 is proved. 0O

We now turn our attention to A* as in (5.6).

Lemma 5.7. Using at most CNlog N operations and CN storage, we can compute the list
A s in (5.6).

Proof. This is a direct application of Lemma 5.2(A) to each x € E. O

The next lemma states that we can efficiently sort the data contained in squares in
A

Lemma 5.8. Using at most CNlog N operations and CN storage, we can compute the
following.

For each Q € A% with A¥ as in (5.6), we can compute a sorted list of numbers

Projs (EN (1+¢6)Q — Rep(Q)) C R,
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where uJQ is as in Lemma 5.5, Proj L is the orthogonal projection onto RuJQ‘, and
Rep(Q) 4s as in Lemma 5.2(C).

Proof. By the bounded intersection property in Lemma 5.1(A), we have
#(AH) < CN. (5.14)

From the definitions of A* and Af in (5.6) and (5.7), we see that A™ C AF. Therefore,
we can compute Rep(Q) and uJQ for each Q € AP using at most Clog N operations, by
Lemma 5.2(B) and Lemma 5.5.

Recall from Lemma 5.7 that we can compute the list A# by computing each A(x)
for x € E, with A(x) as in Lemma 5.2(A). During this procedure, we can store the
information (14 ¢g)Q 2 x for Q € A(x).

By the bounded intersection property in Lemma 5.1(A), we have

Y #(En(1+c6)Q) < CN. (5.15)

QeAst

By Lemma 5.2(A) and (5.15), we can compute the list

{EN(1+cc)Q: Qe ¥}

using at most CN log N operations and CN storage. Then, by Lemma 5.2(C), Lemma 5.5,
and (5.14), we can compute the unsorted list

Proj,s (EN (1+¢g)Q — Rep(Q)) (5.16)

for each Q € A using at most CNlog N operations and CN storage.

For each Q € A we can sort the list Projué(E N (14 ¢cc)Q — Rep(Q)) using at
most CNq log Ng operations, where Ng := #(EN (1 +¢g)Q). By (5.15), we can sort
the all the lists of the form (5.16) associated with each Q € A% using at most CNlogN
operations.

Lemma 5.8 is proved. 0O

5.2. Local clusters
f

The next lemma shows how to relay local information to the point Xq-

Lemma 5.9. Let Q € AF. Let xﬁQ be as in Lemma 5.6. Let x € EN5Q. Let A(x) be as in
Lemma 4.1. Let S(A(x)) be as in (4.3). Then

o(xhy, S(A(X))) € C- o*(x), 16). (5.17)
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Proof. Fix x as in the hypothesis. By our choice of xg in Lemma 5.6, we have
’xg —x‘ > Cso. (5.18)

Let Py € O'(X%,S(A(X )). By the definition of o, there exists ¢ € C?(R?) with
lellczrzy < T, @ls(ax)) =0, and 3,(132(9 = Po. Set P :=Jx¢. Then

P € o(x, S(A(x))).
Since x € E, by Lemma 4.2, we have
P € of(x, 16).

Let S C E with #(S) < 16. By the definition of of in (2.21) and Taylor’s theorem,
there exists a Whitney field P=(P, (PY)yes) € W2(SU{x}), with HﬁHWZ(SU{x}) < Cand
PY(y) =0foryeS.

Consider another Whitney field Py = (Po, (PY Jyes) € W2(S U{X%}) defined by replac-

ing P by Py in P. By the classical Whitney Extension Theorem for finite sets, it suffices
to show that ﬁo satisfies

P¥(y) =0 for y €, and (5.19)
||P0HW2(5U{X122}) <C. (5.20)
Note that (5.19) is obvious by construction.

We turn to (5.20).
Since Py = ng @ and P = Jy @, Taylor’s theorem implies

2—|«f
0%(P — Po) ()| ,[0%(P = Po)(X)| < C[x = xby | for [ad <1, (5.21)
Since the Whitney field P = (P, (PY)yes) satisfies Hﬁ”wZ(SU{X}) < C, we have
[(P¥)yesllwz(sy < C, (5.22)
and
0%(P —PY)(x)],[0%(P = PY)(y)| < Clx —yl* '™ for |al <2,y €S. (5.23)
Applying the triangle inequality to (5.21) and (5.23), and using (5.18), we see that
2—|«f
0%(Po — P¥) (x|, 0%(Po = P < Clhy —y[  for <1 (5.24)
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Moreover, since Py € G(xﬁQ, S(A(x))), we have

]a“PO(XﬂQ). <1 for | < 1. (5.25)

Then, (5.20) follows from (5.22), (5.24), and (5.25).
Lemma 5.9 is proved. O

Let Q € A" with A as in (5.7). Let A(x),x € E be as in Lemma 4.1. Let S(A(x)) be
as in (4.3). Let Rep(Q) be as in Lemma 5.2(C). Let xg be as in Lemma 5.6. We set

S*(Q) := S(A(Rep(Q))) U{Rep(Q)}U{XuQ}- (5.26)
Note that xg is not a point in E.
5.3. Transition jets

In this section, we want construct a map Tg : C2(E) x [0,00) — P of bounded
depth, such that To(f,M) € T (x{,,16,CM,f) for all (f,M) € C%(E) x [0,00) with
[fllcz ey < M. We will explain the importance of Fi(x%,]G,CM, f) in Remark 5.5
towards the end of the section.

Let S C E. As in (2.3) and (2.4), we consider the following functions, depending on
the choice of S:

Q% : W2(S) — [0,00)

. 9% (PX — PY)(x
e (Prhes o Y poprp+ Yy (PP (5.27)
xes wyesiq) Xl
x7#y
la|<1
and
M W2 (S) — [0, 00]
> % if PX(x) > 0 for each x € S (5.28)
(PXJXES — Q x€S .
0 if there exists x € S*(Q) such that P¥(x) < 0

We adopt the conventions that % =0and § = oo for a > 0.

For the rest of the section, we fix Q € A with A! as in (5.7). Let xg be as in
Lemma 5.6. Let S¥(Q) be as in (5.26). Recall from (5.26) that Rep(Q) € S*(Q), with
Rep as in Lemma 5.2(C).
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Let f € C2(E) be given. We define

o )5 ow2ician. DX
Af = {PEW+(S Q) ,x)(x) = f(x) for XGSﬁ(QmE},aHd (5.29)

—

Al = {13 € W2(S(Q) NE): (B,x)(x) = f(x) for x € S4(Q) mE} .

We note that A2 and A} are affine subspaces of W2(S%(Q)) and W2(S#(Q) NE), respec-
tively. They depend only on fls:(q)nE-
Consider the following minimization problems.

(MO0) Let S = S*(Q) in (5.27) and (5.28). Minimize Qf + M* over A?.
(M1) Let S =S*(Q) NE in (5.27) and (5.28). Minimize Q* + M* over A}.

For x = 0,1, we say a Whitney field Pe A% is an approximate minimizer of (Mx) if

.« (OF+ Mﬁ)(ﬁ) < C-inf {(Qﬁ + Mﬂ)(ﬁ') P e A]’Z} for some universal constant C.

Remark 5.3. Recall from Section 2.2 that both (MO0) and (M1) can be reformulated
as convex quadratic programming problems with affine constraint, and are efficiently
solvable [2]. Thus, we can solve for an approximate minimizer of (Mx), x = 0,1, using
at most C operations, since #(S*(Q)) is universally bounded. We call the approximate
minimizers for (M0) and (M1) obtained this way ﬁg and ﬁtli Note that ﬁg and 133,
respectively, are uniquely determined by A? and A]l‘

Lemma 5.10. Let Q € Af. Let xg be as in Lemma 5.6. Let (f,M) € C%(E) x [0, 00) with
[fllcz (g) < M. Let P= (PX)xest(Q)ne be an approzimate minimizer of (M1) above. Let
PReP(Q) be the polynomial associated with the point Rep(Q), i.e., PReP(Q) = (P, Rep(Q)),
with Rep as in Lemma 5.2(C). Let Tvlf,ep(Q) be the Whitney extension operator associated
with the singleton {Rep(Q)} as in Lemma 2.1(B). Then

d.s, o TREP(Q(PRePQ)) T, (xh,, $7(Q) N E, CM, f).

Proof. Let P be as in the hypothesis. Let Pq := 3x”Q o Tv]f,ep(Q)(PRep(Q)). We adjoin P4

to P to form

Py = (P1, (P¥)xess(q)ne) € WA(SH(Q)).

Thanks to Lemma 2.1, it suffices to show that Py € W2 (S%(Q)) and ||l31 w2 (st(q)) <
CM.

By Lemma 2.1(B), we see that Tﬁep(Q)(PRep(Q)) € C2(R?) with norm
HTVEQP(Q)(PRQP(Q])HCz(Rz] < CM. Therefore,
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’a“Pl(xg)‘ < CM for [of < 1, and [VPy] < /CMPy (). (5.30)

Thus, P1 € W2 (S4(Q)).
Since P is an approximate minimizer of (M1) and |[f|[cz (g) < M, we have

IPllwz (st (q)ne) < CM. (5.31)

For x € $%(Q) N E, we have

[0%(P* — P1)(x)] < [0 (P — PReP(Q)) (x)

+ ‘aoc(PREP(Q) — 3% o T‘EE‘P(Q)(pReP(Q)))(X)’ .

Using (5.31) to estimate the first term and Taylor’s theorem to estimate the second, we
have

—lf

0% (P — P1) ()l < M (Ix — Rep(Q)l + vy~ Rep(@)|)” " < cM|x—xty [ .

(5.32)

For the last inequality, we use the fact that dist (XE, E) > ¢dq, thanks to Lemma 5.6.
Applying Taylor’s theorem to (5.32), we have

2|«
0 (P~ Pr)(xh)| < M —xh [ (5.33)

Combining (5.30)—(5.33), we see that ||]31ng(sn(Q)) < CM. Lemma 5.10 is
proved. O

Definition 5.3. Let Q € A", Let qu be as in Lemma 5.6. We define
To : C2(E) x [0,00) = P

by the following rule. Let (f,M) € C2(E) x [0, 00) be given, and let (M0) and (ML) be
as above. Let ﬁg and 132 be as in Remark 5.3.

(TQ-0) Suppose ﬁg satisfies (Qf + Mﬁ)(ﬁg) < CtM, for some large universal constant
Ct. Then we set Tg(f,M) = 0.

- therwise, we set R =4 ol 1). Here, Py is the polynomia

TQ-1) Otherwi To(f,M) =44 TReP(Q) (P} Here, Py is the pol ial

in 133 associated with the point Rep(Q), i.e., Py := (ﬁg,Rep(Q)); and Tvliep(Q)
is the Whitney extension operator associated with the singleton {Rep(Q)} as in
Lemma 2.1(B).

It is clear that Tg has bounded depth, since ﬁg and ﬁﬁ depend only on fls(q)nE-
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Remark 5.4. Given Q € A! with A* as in (5.7), xg as in Lemma 5.6, S¥(Q) as in
(5.26), and (f,M) € C2(E) x [0, 00) with [Ifllcz ey < M, computing Tq (f, M) from the
data above amounts to solving for approximate minimizers of (M0) and (M1). Thus, by
Remark 5.3, we can compute Tg (f, M) from the data above using at most C operations.

Recall the following perturbation lemma from [13].

Lemma 5.11 (variant of Lemmas 5.7 and 7.3 of [13]). Let E C R? be finite. Let Q € A*.
Let x% be as in Lemma 5.6. Let f € C2(E) be given. Suppose ri(xﬁQ, 16, M, f) # @. The
following are true.

(A) There exists a number Bog > 0 exceeding a large universal constant such that the
following holds. Suppose f(x) > BOME%2 for each x € EN5Q. Then

M (xG, 16,M, ) + M - o (x§,, 16) C T (xF,, 16, CM, ),

for some universal constant C.
(B) Let A > 0. Suppose f(x) < AMEZQ for some x € EN5Q. Then

0 €T (xh, 16,A'M, f).
Here, A’ depends only on A.
The main lemma of this section is the following.

Lemma 5.12. Let Q € AF with A¥ as in (5.7). Let XﬁQ be as in Lemma 5.6. Let Tg be as
in Definition 5.3. Let (f,M) € C2(E) x [0, 00) with ||fHCi(E] < M. Then

To(f,M) € T (xh, 16,CM, f).

Proof. Since ||f[¢2 (g) < M, we have I"Jﬁr(xﬁQ, 16, CM, f) # @. Therefore, the hypotheses
of Lemma 5.11 are satisfied.

Recall Definition 5.3.

Suppose Tg (f, M) is defined in terms of (TQ-0).

By Lemma 2.1, there exists F € C% (R?) with [|F||czrz) < CM, Fls:(Q)ne = f, and
.+ F=0. Recall from Lemma 5.2(C) and (5.26) that Rep(Q) € $*(Q) N 5Q. Therefore,
byQTaylor’s theorem, we have

f(Rep(Q)) = F(Rep(Q)) < CM5}.

By Lemma 5.11(B), we have Tg(f,M) = 0 € T} (x{,, 16, CM, ).
Suppose Tq (f, M) is defined in terms of (TQ-1).
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For sufficiently large Ct, Taylor’s theorem implies, with By as in Lemma 5.11,
f(x) > BoM5g, for x € EN5Q.

Thus, the hypothesis of Lemma 5.11(A) is satisfied.
Since |[f[c2 (g) < M, there exists

F e C2(R?) with ||F||c2r2) < CM, Flg =, and 3%? €T (xG, E,CM, f).
By Lemma 5.10, we have
To(f,M) € Ty (x4, $*(Q) N E,CM, f).

Therefore, by Lemma 5.9, the definition of S#(Q) in (5.26), and the definition of ¢ in
(2.21), we have

3%?— To(f,M) € CM - o(x%,, S*(Q) NE) € C'M - 0%(x,, 16).

Thus, by Lemma 5.11(A) and the trivial inclusion 'y (x§,, E, M, ) C T (x}, 16, M, ),
we have

To(f,M) € 3,5 F+ CM.- 0*(xy, 16)
C T (x4, 16,CM, f) + CMa* (x},, 16)
C T (x%),16,C'M, ).

Lemma 5.12 is proved. O

Remark 5.5. We will not use Lemma 5.12 explicitly in this paper. However, jets in
Fi(x%, 16, M, f) are crucial for the following reason:

(5.34) (Lemma 5.3 of [13]) Suppose Q,Q’ € Ay, xg and xg, as in Lemma 5.6, P €
M (xh, 16,M, f) and P’ € T (x§,,, 16, M, f), then

,[9%(P =P ()

0% (P—P') ()

s [\
< CM (8q +8q + ¥y —xhy[) T for <.

We can then use (5.34) to control the derivatives when we patch together local extensions.
See the proof of Theorem 1 in [12].

106



F. Jiang, G.K. Luli / Advances in Mathematics 385 (2021) 107756 33
5.4. One-dimensional algorithms

We write P, f+, respectively, to denote the collections of single-variable polynomials
of degree no greater than one, two. We write Et,ﬁj, respectively, to denote the one-jet,
two-jet, of a single variable function at t € R.

We recall the following results proven in [13].

Theorem 4.A. Let Eg C R be a finite set with #(Eo) = No. We think of C2(Eo) =~
[0,00)Ne. Then there exists a collection of maps {éj ite ]R}, where E: : Ci(E) — 5+
for each t € R, such that the following hold.

(A) There exists a universal constant Do such that for each t € R, the map =
Ci(ﬁo) — 5_+ is of depth Dy.
(B) Let f € Ci(Eo) be given. Then there exists a function F € Ci(R) such that

=t
JoF=Z,(f) forallt € R, |[Fllczr) < C||f\|cz+(go), and F(t) =f(t) for t € E.

(C) There is an algorithm, that takes the given data, performs one-time work, and then
responds to queries.
A query consists of a point t € R, and the response to the query is the depth-Dg
map Eﬁr, given in its efficient representation.
The one-time work takes CNlogN operations and CN storage. The time to an-
swer a query is Clog N.

Theorem 4.B. Let Ey C R be a finite set with #(Eo) = No. We think of C*(Ep) ~ RNe.
Then there exists a collection of maps {éjc ite R}, where Eti 1 C2(E) — 2N for each
t € R, such that the following hold.

(A) There exists a universal constant Do such that for each t € R, the map = :
C2(Ep) — P is linear and of depth Doy.
(B) Let f € C2(Ey) be given. Then there exists a function F € C2(R) such that

B F=ZL(F) for allt € R, [[Flczr) < Cliflcae,), and Ft) = f(t) for t € E.

(C) There is an algorithm, that takes the given data, performs one-time work, and then
responds to queries.
A query consists of a point t € R, and the response to the query is the depth-Do
map El, given its efficient representation.
The one-time work takes CNlogN operations and CN storage. The time to an-
swer a query is Clog N.
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The explanation for Theorems 4.A and 4.B without the complexity statements was
given in [13]. We repeat the explanations for completeness, and further elaborate on the
complexity.

Using at most CNg log Ny operations and CNy storage, we can sort

Bo={tr, - ,tn,} With t; <--- < tn,-

Let us begin with Theorem 4.A.

Suppose #(Ep) < 3. Let @ and M be as in (2.3) and (2.4), but with P instead
of P. Let f: Eg — [0,00). Let ﬁo be a section of Fp x P (i.e., a Whitney field in
one-dimension) that minimizes (Q + M) subject to the constraint (ﬁo,t)(t) = f(t) for
t € Eo (see Section 2.2). Let Ty be the one-dimensional counterpart of the operator
in Lemma 2.1(B). Then F := Tw(ﬁo) € C?(R) with F(t) = f(t) and F(t) > 0 on R,
thanks to Lemma 2.1(B). By the one-dimensional counterpart of Lemma 2.2, we have
[Fllcz®) < C|\1_‘\|Cz+(go]. Thus, we have constructed a bounded nonnegative extension
operator £ : C2(Eg) — CZ(R) if #(Eo) < 3. We can simply take the map Z((-) in
Theorem 4.A(B) to be Ef 0 &(4).

We have shown in Theorem 2.A of [13] that there exists a bounded nonnegative
extension operator & : Ci (Ep) — Ci(]R) of bounded-depth in the form

No—2

M) =) 0:(t) EuN(b), (5.35)
i=1

where

=(1)

o BEo ={ti,tip 1, tigah

¢« £(): Ci(fél)) — C%(R) is the bounded nonnegative extension operator constructed
in the previous step, and

e 01,02, --,0n, 3,0Nn, 2 form a nonnegative C? partition of unity subordinate to
the cover (—OO, tS)) (tZ)t4)7 B (tN073)tN071 )) (tNofzv OO), such that
am . Cltiyr —til ™ ift e (ty, ty )
—mei(t) < ‘1—0—1 1| o A(L) 1+1) , f0r1=1,--~,N0—2.
dt Cltiy2a —tial ™ ift e (tiyr, tiv2)
Givent € R and i € {1,--- ,No — 2}, we can compute 5391 using at most Clog Ny
operations.
Let t € R be given. Note that t is supported by at most two of the 0;’s. In ClogNg
operations, we can find all i/,i” € {1,---,No — 2} (possibly i’ = i”) such that t €

supp (0i/) Usupp (0;~). It is a standard search algorithm and requires at most Clog Ng
operations, since Ey has been sorted. Finally, we simply set
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Z() = ﬁf o Z ;- Ei(")

ie{i’,i”}

It is clear from construction that =% (-) depends only on fls(y), where

Eo if #(Eo) <3

three closest points in Eq closest to t if #(Ep) >3 and t ¢ [t1,tn,]
S(t) =< {tq,t2, t3} if t € [ty,t,]

{tno—2y tNg—1y tNG ) if t € [tng—1,tN,]

{t],th,t5,th} C Eo with t] <t <t<t, <t, otherwise
(5.36)

Theorem 4.A(A) then follows.

Theorem 4.A(B) follows from the fact that the operator £ in (5.35) is a bounded
nonnegative extension operator on C2 (Eo).

Theorem 4.A(C) follows from the discussions above on complexity.

We have finished explaining Theorem 4.A.

The explanation for Theorem 4.B is almost identical with some simplification, which
we explain below.

When constructing a bounded extension operator for C2(Ey) with #(Ey) < 3, we use

o the natural quadratic form associated with W2 (E,) instead of (Q + M); and
o the classical Whitney extension operator instead of T, in Lemma 2.1(B).

See [4,9,10] for details and further discussion on linear extension operators without the
nonnegative constraint.
This concludes the explanation for Theorem 4.B.

5.5. Local extension problem
The main lemma of the section is the following.
Lemma 5.13. Let Q € A with A™ as in (5.6). There exists a collection of maps

{Zx,0 :x € (1+¢g)Q} where Zy,q : CA(E) x [0,00) — P+ for each x € (14 ¢g)Q,
such that the following hold.

(A) There exists a universal constant D such that for each x € (1 4+ ¢cg)Q, the map
=x,ql+,): C2(E) = P is of depth D.

(B) Suppose we are given (f,M) € C2 (E) x [0, 00) with Hf”Ci(E] < M. Then there exists
a function Fg € Ci(ﬂ +¢g)Q) such that
(B1) 35Fq =Zxq(f,M) for allx € (1+¢c)Q;
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(B2) [Fqllc2((14ce)) < CM;
(B3) Fo(x) =f(x) for x e EN(1+c¢g)Q; and
(B4) Q%FQ € Fﬁ(xg, 16,CM, f), with X% as in Lemma 5.6 and Fﬁ as in (2.22).

(C) There is an algorithm, that takes (E, T, M, Q) as input, performs one-time work, and
then responds to queries.
A query consists of a point x € (14 ¢cg)Q, and the response to the query is the
depth-D map =y q, given its efficient representation.
The one-time work takes CNlog N operations and CN storage. The time to an-
swer a query is Clog N.

Proof. Repeating the argument of Lemma 3.8 of [12], we can show that there exists a
map

Eq: CL(E) x [0,00) = C2((1+¢6)Q)
such that the following hold.
(5.37) Given (f,M) € CZ(E) x [0,00) with |[f][c2 () <M, we have

) €q(fy,M) >0 on (1+¢g)Q;
) Eo(f,M)(x) =f(x) for x e EN (1 4+¢cg)Q;
() [I€q(f,M)llc2((14cq)Q) < CM; and
) Eo(f,M) = Tq(f, M), with xg as in Lemma 5.6, Tg as in Definition 5.3.

5.38) For each x € (14 cg)Q, there exists a set Sg(x) C E with #(So(x)) < Dy for
Q Q
some universal constant Dy, such that the following holds: Given (f, M), (g, M) €
C2(E) x [0,00) with Ifllcz ey llgllcz 6y < M and flsg(x) = glsg(x), We have
IiEQ(f,M) =3 Eq(g,M).

To prove Lemma 5.13, we need to dissect the operator £g and analyze its complexity.
As in Lemma 3.8 of [12], the operator £q takes the following form:

EQ(fy,M) :=To(f,M) + (1 =) - Eo(f,M), where

vertical extension

Eq(fyM) = (Vo {(ASMgi‘F (1= A2WE) ((F = Taf, M) oqr‘|RX{o})] ) o,

straightening local data

one-dimensional extension

(5.39)

Here, in the order of appearance in (5.39),
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e Tq is as in Definition 5.3;

o P € C3(R?) with{ =1 near qu (see Lemma 5.6), supp () C B(X%, S8q) with co
as in Lemma 5.6, and [0%| < Céa‘“l;

e V is the vertical extension map V(g)(t1,t2) := g(t1), for g defined on a subset of R;

o ASM is an indicator function defined by

ASM =

?

{1 if Tq(f, M) is not the zero polynomial

0 otherwise

o & and &4, respectively, are the one-dimensional extension operators associated with
Theorem 4.A and Theorem 4.B (see also Theorems 2.A and 2.B of [13]);
e @ is the diffeomorphisms in Lemma 5.1(B).

We bring ourselves back to the setting of Lemma 5.13. Recall the definition of J7 as
n (2.1). We want to define the maps {=x,qg : x € (1 +¢cg)Q} by

Zx,Q =05 0&q for x € (1+¢6)Q. (5.40)

Lemma 5.13(A) follows from (5.38). Lemma 5.13(B) follows from (5.37).

It remains to examine Lemma 5.13(C). Suppose we have performed the necessary
one-time work using at most CNlog N operations and CN storage.

Let x € (14 ¢g)Q be given.

Step 1. We compute
ty = Projué (x —Rep(Q)).

Here,
o Projué denotes orthogonal projection onto ]Rué;
e the pair {uQ,uJQ} is as in Lemma 5.5; and
o Rep(Q) is as in Lemma 5.2(C).
All the procedures involved in this step require at most ClogN operations,
thanks to Lemma 5.2(B) and Lemma 5.5.
Step 2. Let p be the rotation about the origin specified by e; +— ug. We can compute
AR
Step 3. Let ué and Projué be as in Step 1. We set

Eq = Proj,s (EN (14 ¢c)Q —Rep(Q)) C R.

Recall from Lemma 5.8 that we can compute the sorted list Eq for each Q € A#
using at most CN log N operations and CN storage.
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Let Ci(EQ) and CZ(EQ) be the one-dimensional trace spaces. Note that we

have sorted EQ. Let Etf and Er, respectively be the maps associated with
Ci(EQ) and CZ(EQ), as in Theorems 4.A and 4.B.

Step 4. Recall from Lemma 5.1(B) that the diffeomorphism @ is defined in terms of
a function @, satisfying (5.4) and (5.5). We compute gz:(p, where ij is the
single-variable two-jet at ty. We can accomplish this by simply setting Ett @ =

=tx

=4 ((p\EQ), wit E:r as in Theorem 4.B. Since we have already sorted the set
Eq in Step 3, computing Er ((pIgQ) requires at most Clog N operations.

Step 5. Similar to Step 4, the query time for 5; o&()! and 5; 0&4+(+) is Clog N, since
set Eq has been sorted in Step 3.

Step 6. By Lemma 5.1(B), the diffeomorphism ® = (®,®;) and its inverse @' =
(Y1,¥,) are given by

®op(ty,t2) = (t1,t2 — @(t1)), and
p o @ (17, t5) = (t1,t5 + @(t])).

Therefore, we can compute J7 ®@; and JFV¥;, 1 = 1,2, from the (single-variable)
two-jet of @.

Step 7. We compute Tq(f, M), as in Definition 5.3. Computing S*(Q) as in (5.26) re-
quires at most Clog N operations, by Lemma 5.2(C) and Lemma 5.6. After that,
we can compute Tg(f, M) in C operations. See Remark 5.4.

Combining all the steps above, we see that we can compute the map =y ¢ in (5.40) via
formula (5.39) using at most C log N operations. After that, given (f, M) € C2(E)x[0, c0),
we can compute = g (f, M) in C operations.

This proves Lemma 5.13. O

5.60. Partitions of unity

Recall the definition of J} as in (2.1).
We can construct a partition of unity {8g : Q € Ao} that satisfies the following prop-
erties:

e 02>0;
L4 ZQE/\OGQE];

« supp (0g) C (14+¢cg/2)Q for each Q € Ao;
« For each Q € Ao, [0%0q| < Co5, ' for |of < 2;

! Note that &(-) is only defined for f : ﬁQ — [0, 00).

112



F. Jiang, G.K. Luli / Advances in Mathematics 385 (2021) 107756 39

e After one-time work using at most CNlogN operations and CN storage, we can
answer queries as follows: Given x € R? and Q € A, we return J; 0q. The time to

answer query is Clog N.

See Section 28 of [10] for details.
5.7. Proof of Theorem 2

Proof of Theorem 2. Slightly modifying the proof of Theorem 1 of [12], we can show
that there exists a map

£:CL(E) x [0,00) — C2(R?) (5.41)

such that the following hold.
(5.42) Given (f,M) € C%(E) x [0,00) with [[f]|c2 (¢) < M, we have

(a‘) 8( )M) >OOHR2
(b) E(f,M)(x) = f(x) for x € E; and
(c) [IE(fyM)][c2(r2) < CM.

(5.43) For each x € R?, there exists a set S(x) C E with #(S(x)) < D for some
universal constant D, such that the following holds: Given (f,M),(g,M) €
C2(E) x [0,00) with [fllcz ey lgllcz 6y < M and fls(x) = gls(x), we have

Moreover, £ takes the form of

= ) 0Q()-EHEMIX) = Y 0q(x) - EG(F,M)(x), (5.44)

Qe QeA(x)
where

o {8g : Q € Ay} is the partition of unity constructed in Section 5.6;
e A(x) is the set in Lemma 5.2(A); and
. Eg is defined by the following rule.
— Suppose Q € Aft. Then SﬁQ(f, M) := Eq(f, M) with £q as in Lemma 5.13;

§
— Suppose Q € A\ A#. Then Sg = T&,Q o Tg, with Tg as in Definition 5.3, XE as

1
in Lemma 5.6, and T2 as in Lemma 2.1(B) (associated with the singleton {xg}).
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1
— Suppose Q € Aempty- Then EuQ =T o Tu(Q), with p as in Lemma 5.4, x’fl(Q)
!
as in Lemma 5.6, T,(q) as in Definition 5.3, and TW*® as in Lemma 2.1(B)
(associated with the singleton {Xi(Q)})'
— Suppose Q € Ao \ (A* U Acmpty). Then Sé =0.

We set

M) =37 0 E(F,M) = Y 370q OF 87 0 £ (f,M) for x € R (5.45)
QEA(x)

Theorem 2(A) follows from (5.42) and Theorem 2(B) follows from (5.43).

We now turn to Theorem 2(C). Suppose we have performed the necessary one-time
work using at most CN log N operations and CN storage.

By Lemma 5.2(A) and Section 5.6, we can compute A(x) and {5 0q : Q € A(x)} using
at most Clog N operations.

By Lemma 5.13, we can compute

{35 0&q(f,M): Q e A NA(X)}

using at most Clog N operations, after computing A(x).
By Lemma 5.6 and Remark 5.12, we can compute

{g; o Tv’:“Q oTo(f,M): Q € A(x) N (A* \/\W)}

using at most Clog N operations, after computing A(x).
By Lemma 5.4, Lemma 5.6 and Remark 5.4, we can compute

Xu
{31 o Tw*'¥ 0 Tu(q)(f,M) : Q € Actupty N /\(x)}

using at most Clog N operations, after computing A(x).

Therefore, we can compute Z, in (5.45) using at most ClogN operations. Given
(f,M) € C%(E) x [0,00), we can compute Zy(f,M) in C operations. Theorem 2(C)
follows.

This proves Theorem 2. 0O

Appendix A. Convex quadratic programming problem with affine constraint

Let d > 0 be an integer bounded by a universal constant. We use the standard dot
product on R4 and R%9. We use bold-faced letters to denote given quantities.
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We consider a general form of the minimization problem (2.20):

d
Minimize B'AB + ) |B'| subject to BB =b. (A1)
i=1
Here, p = (B',---, B4 € R4 is the optimization variable, A € Mgy 4 is a given positive

semidefinite, and B is a given matrix of full rank, and b is a given vector.

We will solve (A.1) by first augmenting the system (A.1) to remove the absolute values
in the objective function. For the augmented system, which is still convex, the solution
can be found by solving for a system of linear equalities and inequalities arising from its
associated Karush-Kuhn-Tucker (KKT) conditions [2].

We begin with the augmentation. Decomposing 3 into its positive and negative parts,
B=PB+—B_,ie, Bl = 17([51 +|BY) and Bl := BL — B, we arrive at the system:

Minimize (Ef) (_AA _AA> (Ef) + (124)" <Et)

Subject to (B —B) <(§f) =Db, and (Ef) > 024.

Note that in order for (A.1) and (A.2) to be equivalent, we have to include in (A.2)
the additional sign constraint

BlBi:Ofori:L---,d; (A.3)
or equivalently, for some I C {1,---,d},
efy=0for kclandetp_ =0 for ke {l,---,d}\ L (A.4)

Here, {ex : k =1,---,d} is the standard basis for R4.
For convenience, set

B,
B= (Et),f&:: <7AA 7AA>, and B:=(B —B)= :
B;,...
Let {& :i=1,---,2d} be the standard basis for R24.

The KKT conditions for (A.2) coupled with (A.4) for a fized I C {1,---,d} are given
by
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2d Jmax
2;&@ — i€ + Z Ajﬁjt + Z Vi€ + Z Vi€kia = 024,
i=1 =1 kel ke(1,,dN\I
/B > 02d>
ﬁé —-b= ijax)
éiA =0 for kel (A.5)

8L, 4B =0 for ke {l,---,d\],
u >0 for i=1,---,2d.
2d
D wileip) =o.
i=1

In the above, Wy, -+, t2g, A1, -+, A Vi,--+,Vq are multipliers, and ﬁ is the primal

optimization variable.

Jmax

Since the matrix A is positive semidefinite, the primal problem in (A.2) is convex.
The KKT conditions are necessary and sufficient for the solutions to be primal and dual
optimal [2]. Hence, solving (A.2) coupled with (A.4) for a fixed I C {1, -+, d} amounts
to solving a bounded system (A.5) of linear inequalities. The latter can be achieved, for
instance by the simplex method or elimination [2]. The number of operations involved is
at most (doubly) exponential in system size, which is universally bounded. Therefore, we
can solve (A.2) coupled with (A.4) for a fixed I C {1,---, d} using at most C operations.

Finally, we can solve (A.1) using at most C operations by solving (A.2) coupled with
(A.4) for every I C {1,---,d} and compare the minimizers.

It is very likely that one can solve (A.1) more efficiently with advanced techniques.
Here we content ourselves with the elementary exposition above. We refer the readers to
[2] for a more detailed discussion on convex optimization.
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On the shape fields Finiteness Principle
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In this paper, we improve the finiteness constant for the finiteness principles for
C™(R",RP) and ™ 11(R"?,RP) selection proven in [19] and extend the more general

shape fields finiteness principle to the vector-valued case.

1 Introduction

Suppose we are given integers m > 0, n > 1, D > 1. We write C™ (R", R?) to denote the
space of all functions F:R" — RP whose derivatives up to order m are continuous and

bounded on R", equipped with the norm

I1Fllomzen o) = mazx sup [13°F () o = max sup |3 F(x)l.

la|<m yeRn la|=m yeRn
1<j<D
Here and below, we view a“?(x) = (3“F;(x), -+ ,0“Fp(x)) as a vector in RD,

We write C"™(R",RP) to denote the vector space of m-times continuously
differentiable RP-valued functions whose m-th order derivatives are bounded, equipped

with the seminorm

IFllgm gn gpy = max sup [|0“F(x)]| -
le|=m xecRrn
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2 F. Jianget al.

We write ¢! (R",RP) to denote the space of all F : R® — RP whose
derivatives up to order m — 1 are bounded and Lipschitz on R”. When D = 1, we write
C™ (R") and ™11 (R") in place of €™ (R",RP) and c™~ 11 (R", RP).

We write P to denote the vector space EB]'D:1 P, where P is the space of

n+m—1)'

polynomials on R"™ with degree no greater than m — 1. Note that dimP = D- ( B

We write EJX? to denote the D-tuple of component-wise Taylor polynomials of Fatxof
degree m — 1.

Quantities ¢ (m,n), C(m,n), k(m,n), etc., denote constants depending only on
m, n; these expressions may denote different constants in different occurrences. Similar
conventions apply to constants denoted by C (m, n, D), k (m, n, D), etc.

If S is any finite set, then |S| denotes the number of elements in S.

Let E C R™ be given. Suppose at each x € E, we are given a convex set K(x) C RP.
A selection of (K(x)),.x is a map F:R" — RD such that 1:"(X) € K(x)forallx € E.

We are interested in the following selection problem.

Problem 1.1. Let E C R™. For each x € E, suppose we are given a convex K(x) C RP.
Given a number M > 0, how can one decide if there exists a selection F € ™11 (R"?, RD)
or F € C™(R", RP) with ||ﬁ‘”cm(Rn']RD) < C*M or ”ﬁvllcm—l,l(Rn,RD) < C*M, where C* depends

only on m, n,D?
In [19], the authors addressed Problem 1.1 by proving the following

Theorem 1.2 (Finiteness Principle for Smooth Selection [19]). For large enough
k* = k (m,n,D) and C* = C (m, n, D), the following hold.
(A) C™ FLAVOR Let E C R”™ be finite. For each x € E, let K(x) ¢ RP be convex.
Suppose that for each S C E with |S| < k?, there exists S e
c™ (R, RP) with norm ”ﬁS'lcm(Rn,RD) < 1, such that FS (x) € K (x)
for all x € S. Then there exists F € C™ (R",RP) with norm
||13"||Cm(RnIRD) < C*, such that F (x) € K (x) forall x € E.
(B) ™11 FLAVOR Let E C R"™ be arbitrary. For each x € R", let K (x) C R” be a closed
convex set. Suppose that for each S C E with |S| < kf, there exists
FS e cm-11 (R",RP) with norm ||1'_;:S”Cm—l,l(Rn,]RD) < 1, such that
FS(x) € K(x) for all x € S. Then there exists F € ¢™m~1.1 (R",RP)
with norm ||13||Cm,1,1(Rn,RD) < C%, such that F(x) € K (x) for all

x e R",
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Therefore, Theorem 1.2 tells us when there exists a €™ 1! selection F of
(K(x))xcg for the case of infinite E and provides estimates for the C™-norm of a selection
for finite E.

Theorem 1.2 for the case D = 1 and K(x) being a singleton for each x € E was
conjectured by Y. Brudnyi and P. Shvartsman in [6].

The number k* in Theorem 1.2 is called the finiteness number. The k* obtained
in [19]is k¥ = 100 + (D + 2)»*1%°, where I, = ("}").

Here, we give a sharper bound on k*. Our first result is the following.

Theorem 1.3. The k? found in Theorem 1.2 may be taken to be k¥ = 2dim75, where
dimP =D ("I™).

A few remarks on Theorem 1.3 are in order. Independently, E. Bierstone and P.
Milman [1] and P. Shvartsman [28] proved Theorem 1.3 for the case D = 1 and each K(x)
is a singleton, that is, K(x) = {f(x)} for some real-valued f : E — R. This corresponds
to the finiteness principle proved by C. Fefferman in [12]. In addition, P. Shvartsman
proved a weaker version of Theorem 1.3 where each K(x) C RP is centrally symmetric
and we are allowed to dilate K(x). Our present approach is inspired by [1].

In the case D = 1, m = 2, and each K(x) being a singleton, Theorem 1.3 gives
k* = 4.2""1 This is comparable to the finiteness constant 3 - 2"! given by Shvartsman
[26], which he shows to be optimal. See also [9].

To prove Theorem 1.3, we will need the following result.

Theorem 1.4. The following holds for X = C™(R",RP) and X = C™(R", RP).

Let S C R” be a finite set of diameter at most 1. For each x € S, let é(x) C P be
convex. Suppose that for every subset S C S with |S| < Zdimﬁ, there exists FS' € X such
that [|[FS |y <1 and §,FS € G(x) forallx € S

Then, there exists F € X such that ||13'||X <y and Hxﬁ' € é(X) forall x € S.

Here, y depends only on m, n, D, and |S|.

Because the constant y depends on the number of points in S, following [28], we
will refer to Theorem 1.4 as a “weak finiteness principle.”

To conclude the introduction, we give an overview of how we prove Theorems 1.3
and 1.4. The proof of Theorem 1.2 given in [19] is via a more general finiteness principle
for shape fields, see Theorem 2.4 below. Using Theorem 1.4, we will show an improved

bound for k* in the finiteness principle for shape fields (i.e., Theorem 2.4); we can then
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4 F. Jiang et al.

deduce the bound for k% in Theorem 1.2, obtaining the bound asserted in Theorem 1.3.
The heart of the matter therefore lies in Theorem 1.4. To put things in perspective, we
would like to point out that one can't directly apply the techniques from [1] because
of the nonlinear structure in the selection problem and that the result in [28] is for
scalar-valued functions. To prove our main theorem (Theorem 1.4), we will adapt the
strategy from [1] with some new ingredients: instead of linear structure, we will handle
general convex structure using the duality theorem of linear programming to describe
the relevant convex sets.

This paper is part of a literature on extension, interpolation, and selection of
functions, going back to H. Whitney's seminal work [30-32], and including fundamental
contributions by G. Glaeser [23], Y. Brudnyi and P. Shvartsman [4-9, 26, 27, 29],
E. Bierstone, P. Milman, and W. Pawtlucki [1-3], and C. Fefferman [10-18, 21, 22].

2 Background and Main Results
2.1 Polynomial and Whitney fields

We write P to denote the vector space of polynomials on R with degree no greater than
m—1.

For x € R", let F be (m — 1)-times differentiable at x. We identify the (m — 1)-jet
of F at x with the (m — 1)5t-degree Taylor polynomial of F at x:

0°F
b= Y Ty e

le|<m—1

For P,Q € P and x € R"?, we define
PO, Q:=J,(PQ).

The operation ©, turns P into a ring, which we denote by R,.
We define

P=Pd - &P.
—_—

Dcopies

Thus, everyl_f’ € P has the form P = (Py,- -+, Pp), with Pj ePforj=1,---,D.
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On the Shape Fields Finiteness Principle 5
Let F = (Fy, -+ ,Fp) be a RP-valued function (m — 1)-times differentiable at
x € R™. We define
9. F = (3, F), - ,3,Fp) €P.
We will also use the R,-module structure on P, whose multiplication is given by

RO,P:=(RO,P,, - RO,P)eP,

forx e R", P = (Py,--- Pp) € P,and R € Ry

Let S C R” be a finite set. A Whitney field is an array (P¥)
points in S, where PX € P for x € S. We write W™(S) to denote the space of Whitney
fields on S.

Given (P¥),_g € W™(S), we define

<cs Parameterized by

8% (PX — PY) (%)l

PX = max [|0°P*(x max 2.1
1P xesllwms) na I ) oo +X,yeS,X;ﬁy X —yml (2.1)
la|<m—1 la|<m—1
Note that [|-|ljym s, is @ norm on W™(S).
We will also be using the seminorm
. 19 (P* = PV)(x)l|

1P xesllipms) :=  max o (2.2)

X,y€S, x4y |x —yl o

la|<m—1

We use P* to denote the dual of P. We use W™(S)* to denote the dual of W™(S).
An element £ € W™(S)* has the form & = (§,),g, so that

£ [(Pxes| = D 6x(PY) for ()5 € W (S).

xeS

Thanks to the classical Whitney Extension Theorem for finite sets (see e.g., [24]),

we can rephrase Theorem 1.4 in terms of Whitney fields.

Theorem 2.1. The following holds for X = W™ and X = W™.

Let S C R" be a finite set of diameter at most 1. For each x € S, let 5(}() cP
be convex. Suppose that for every subset S’ C S with |S| < Zdimﬁ, there exists (ﬁx)xesr €
X(S) such that ||(13X)X€S,||X(S) <land PXe @(X) forallx € S'.
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6 F. Jiang et al.
Then, there exists (f’X)XEs € X(S) such that ||(13X)X€S||X(S) <vy and PX e f;(x) for all

x € S. Here, y depends only on m, n, D, and |S]|.

For the rest of the paper, we will be working with Whitney fields instead of C™

functions.

2.2 Shape fields

In this section, we generalize a key object introduced in [19].

Definition 2.2. Let S C R" be finite. Foreachx € S,0 < M < oo, let l:(X,M) CcPbhea
(possibly empty) convex set. We say that (I'(x, M))ycsm-0 18 a vector-valued shape field
if forallx e Sand 0 < M’ < M < oo, we have f‘(X,M/) - f‘(X,M).

When D = 1, we write I'(x, M) instead of f(x, M), and we omit the adjective

“vector-valued.”

Definition 2.3. Let C,,, 8 .x
shape field (I'(x, M) yes -0 15 (Cyrr Simax
Let0 <8 <60, X€S,0<M < o0, 131,132 IS 73, Q,,Q, € P. Assume that

be positive real numbers. We say that a vector-valued

)-convex if the following condition holds:

(1) P,,P, € I'(x,M);
(2) 1194y — Py)(®)|lo < M8™ 1! for | < m — 1;
(3) |0*Q;(x)| <571 for jo| <m —1andi=1,2;
(4 Q,0,Q,+0,0,0Q,=1.

Then
(5) P:=32 ,(Q; 0, Q) Oy B; € T(x, Cy,)M).

2.3 Main technical results

The main technical results are the following two theorems. The first is the Finiteness
Principle for vector-valued shape fields, and the second improves the finiteness

constant.

Theorem 2.4. There exists k% = k¥(m, n, D) such that the following holds.
Let E C R™ be a finite set and let (I'(x, M) ycg m-0 D€ a (Cyy, 8pay)-cONVEX Vector-

valued shape field. Let Q, C R" be a cube of side length §, < §,,,, and x, € EN5Q, and

max

M, > 0 be given.
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On the Shape Fields Finiteness Principle 7
Suppose that for each S C E with |S| < k¥, there exists a Whitney field (132)265
such that
||(Pz)zesl|wm(s) <M, (2.3)
and

P? e '(z,M,) forall z € S. (2.4)

Then, there exist P° € T'(x,, M) and Fe C™(Qq, RP) such that

° Jzﬁ’ € f‘(z, CM) for all z € EN5Q,.
o I0%(F — B0, < CMysy, ' forall x € Q, o] < m.

e In particular, ||8"‘1_5’(X)||oo < CM, forall x € Qg |x| = m.

The case of scalar-valued shape fields (D = 1) was proved in [19]. In this paper,
we will use the D = 1 case to prove the more general Theorem 2.4 stated above using a

gradient trick, inspired by [19, 20].
Theorem 2.5. One may take k? = 2dimP i Theorem 2.4.

Proof of Theorem 2.5 via Theorem 1.4. Take as given the hypotheses for Theorem 2.4,
but with k? = 24mP This means that for each S’ C E with |S| = 24P there exists
(132)265, such that

1(P?) e llm sy < My (2.5)
and
P% € T'(z, My). (2.6)
Recall that in the definition of shape field, we require I''(x, M) be convex for all
xeSand M > 0.
Let S C E with |S| < kf, where k¥ is as initially stated in Theorem 2.4 (and coming

from [19] and our gradient trick for D > 2). Then, the above holds for all S’ ¢ S with

IS'| = 24mP 5o by the homogeneous version of Theorem 1.4, there exists Fe C™(R™, RD)
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8 F. Jianget al.

such that
IEllgm e oy < ¥ M (2.7)
and
JXf' eI'(x,M,) forallx € S. (2.8)
By (2.7), we have
T F) gesllim sy < Cy M. (2.9)

Thus, the hypotheses for Theorem 2.4 with the k* from the initial statement are
satisfied. |

At this point, we have shown that the shape fields finiteness principle holds
with an improved value of k% (Theorem 2.5); the next step is to show that the selection

problem of Theorems 1.3 and 1.4 may be described through shape fields.

Proof of Theorem 1.3 via Theorem 2.5. Let
T'(x, M) = [13 e P 19°P(x)||,, <M for|a| <m — 1 and P(x) K(X)} . (2.10)

It suffices to observe that (f‘(X,M))XeE’M>0 is a (C, 1)-convex shape field when K(x) is
convex for each x € E.
Let§ € (0,1], x € E, M € (0,00), 131,132 € 73, and Q;,Q, € P be given, such that

(C1) P, P, € I'(x, M) with '(x, M) as in (2.10);

(C2) [0y — Py ()l < M&™ 1! for |af < m — 1;

(€3) |0*Q;x)| <871 for jo| <m —1,i=1,2; and

(C4) Q,0,0,+0,06,0,=1.
We set

ﬁ:: z OlQXQLGXﬁl
i=1,2

We want to show that P € f‘(x, CM) for some C = C(m, n, D).
It is clear from (2.10), (C1), and (C4) that 13(X) € K(x). It remains to show that
10%P(x)|l, < CM.
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On the Shape Fields Finiteness Principle 9

By the definition of I in (2.10), we have
10%P,(x)|lo, <M forla| <m—1,i=1,2. (2.11)
Using the product rule and (C4), we have, for |¢| <m —1,

PE-PNE) = D DD Cpp, 07 Qux) - 0PV Qu(x) - 9 H(B; — P ().

i=1,2f<ay=p

It follows from (C2) and (C3) that
19%(P = P)(®)lloe < CM. (2.12)

Finally, we see from (2.11), (2.12), and the triangle inequality that ||8°'1:-’(X)||0<J < CM for
| <m —1. |

Thus, it remains to establish Theorem 1.4. This will be done in Section 4

3 Whitney Norm and Dual Norm on Clusters

In this section, we review the data structure in [1] and prove a series of results that
allows us to reduce the size of supports for linear functionals on W™ (S)*.

We write |S| to denote the cardinality of a finite set S ¢ R".

If X, Y c R", we define

diam(X) :

max |x — x| and
x,x'eX

dist(X,Y) := XEI)x;i}gy x—vyl.

A rooted tree (“tree” for short) is an undirected graph with a distinct node (i.e.,
the root) in which any two nodes are connected by exactly one path. A leaf of a tree is
any non-root node of degree one.

Let S C R" be a finite set. We consider trees 7, each node of which corresponds

to a subset of S, that satisfy the following properties.

(T1) The root of T, R(T) =S.
(T2) If Vis a node, then V corresponds to a subset of S. The children of any node

V form a partition of V (unless V is a leaf).
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10 F. Jiang et al.

(T3) The nodes of any given level correspond to a partition of S. The leaves of T
are the singletons {x}, with x € S.
(T4) The number of nodes oflevel ¢ =0,1,--- , height(T)—1 is a strictly increasing

function of ¢. Here, the height of a tree is the number of levels.

A collection of points
x={x, €S:VeT\leaves(T)}

is called a set of reference points for 7 if, for each V, x|, € V and x|, = xy;, for some child
WofV.

We adopt the convention x,, := x in the last level.

Let x be a set of reference points of 7. For each V € T\ leaves(7), define
V(x) := {xy : Wis a child of V} .

Suppose x € S\ {xg}. Then there is a unique node V of highest level such that
x € V\ {xy}. We set

ref (x) := xy. (3.1)
We also set
U(x) := the node U at the lowest level such that x = xy;. (3.2)

A trunk T of T denotes a directed path from the root S to the second to second-
to-last level. In particular, a trunk includes no leaf. Let T be a trunk of 7. We define the
set of branch nodes B(T) as the set of nodes of T that are adjacent to T.

We define the notion of “clustering” as follows.

Definition 3.1. Let S C R" be finite. Let T be a tree of subsets of S that satisfies (T1)
to (T4). We say that T is a clustering of S if T has a set of reference points x = {x,} such
that for each £ =0, 1, .- , height(7) — 1, the set

I :={V(x) : level(V) = ¢}
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On the Shape Fields Finiteness Principle 11

forms a partition of
{xy : level(W) = ¢ + 1}
satisfying

|x —yl > c, - diam(S) foreach S e Il, x # y in S, and
- (3.3)
dist(S, S') > ¢, - diam(S) for all §,5" e I1,S # S

Here, 0 < ¢, <1 is called the clustering constant.

We write C = C(7, x) to denote a clustering 7 of S together with a set of reference
points x.

The following lemma is a quick adaptation of Lemma 2.4 of [1].

Lemma 3.2. Given a finite set S C R", we can always find a clustering 7 of S such that
for any set of reference points x for 7, condition (3.3) of Definition 3.1 is satisfied with

some0 <c, <1, where Cx depends only on n and |S]|.

Definition 3.3. Let C = C(7,x) be a clustering of S with a set of reference points x. We

define the C™-clustering norm |-|| on W™(S) to be

1) eslic = max {11 xeslllc + 1Pl ) o

where

18 (B* — PY) (%)l o

P|||- := max and |P*S|,.:= max [[0°P*(x .
[1P|ll¢c xg2X x—y|m el 1275 g oRax, I x9) o
y=ref (x)
Je]<m—1

Lemma 3.4 (Proposition 3.2 of [1]). Let S C R™ be a finite set, and let C = C(7,x) be a

clustering of S with a set of reference points x and clustering constant c,. Then
1P gesllwmes) < CIP)yesllc- (3.4)
Here, C = C(cy, m, n,|S|, B), where B is an upper bound on diam(S).

Next we characterize linear functionals on clusters.
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12 F. Jiang et al.

Let S C R" be finite, and let £ = (§,) 5 € W(S)*.
Let C(T,x) be a clustering of S. For each node V € T, we define &, € P by the

formula

Epi= D &. (3.5)
xeV
Lemma 3.5 (Lemma 5.1 of [1]). Let S C R"™ be a finite set, and let C = C(7,x) be a
clustering of S with a set of reference points x and clustering constant ¢,. Let ref (x) and
U(x) be as in (3.1) and (3.2), respectively. The action of & € W™ (S)* has the form:

ElP)yesl = D £y B —PI®) 4 £4(PS). (3.6)

xeS\({xs}

As in Remark 5.2 of [1], we can compute the cluster dual norm using the

following formula:

IElle- = D Ix—refo)|™

R o
éU(x) (0, .. 0, %) ,0,...,0)‘

a!
xeS\(xs)
la|=m—1
15=D (3.7)
('_Xs)a
+ > gs(o,...,o,T,o,...,o .
lal<m—1
1<j<D

In the above, the nontrivial expression in the arguments of &5 and &y, are in the

Jj-th coordinates.

Lemma 3.6. Let S C R" be a finite set, and let ® : S x P* — R be a function that
is positively homogeneous with degree one on the fibers and vanishes along the zero
section. We write ®,(-) for ®(x,-). Let T be a clustering of of S. Let £ € W™ (S)*. For each
V € T, define & as in (3.5). Define

D(Ey) 1= D Du(E,),

xeV

and set év = &y, PEp)) € P* @ R. Let T be a trunk of T, and let E(T) denote the linear
span of {§,: V € B(T)} in P* @ R. Assume

dim E(T) < # (B(T)).
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On the Shape Fields Finiteness Principle 13

Then there exists n € W™ (S)* such that the following hold.

(1) Forall Ve T\ T, ny =0y, for some 0 <6, < 2.
(2) For some V € B(T), n, =0forallx e V.

(3) D xeséx = D xeslx as elements of P*.

(@) 2 yes Px(Ex) = 2xes Px(1y)-

Moreover, for such n, we have

Inllex < 20§ llc- (3.8)

Proof. We modify the proof of Lemma 6.1 of [1].
Since dim E(T) < # (B(T)), {éy, W € B(T)} is not linearly independent, so we may
find V € B(T) such that

Ey= D yw &y whereall [Ayy|<1.
WeB(T)\V

For each x € S, we set 5, := 6, - £,, where

0 ifxeV.
Oy :=11+Aryy ifxeWandWeB(T)\V.

1 otherwise.

Conclusions (1) and (2) then follow by construction.
Now we prove (3) and (4). First we make the following crucial observation.

Thanks to our assumption on ® and the conditions on the Ayy;'s, we see that

@, ((1 + )‘VW)gx) = Oy (&) + Ay Px(8x)- (3.9)

Therefore,

ZﬁX=Z§X_Z§X+ Z ’\VWZ"EX

x€eS x€eS xeV WeB(T)\V xeW
= ZEX —|év— Z Aywéw
xeS WeB(T)\V
=2 b
xeS

131

220z Atenuep 9z uo 3senb Aq | 88G9€9/Z¥Zdeul/uIW/SE0 L0 L/I0P/8|o1lB-80UBAPER/UIWI/WO0D dNO"olWepEI.//:sdiy WOoJ) papeojumoqd



14 F. Jiang et al.

We see that (3) and (4) follow.
Lastly, (3.8) follows from (3.7) and conclusions (1) and (3). |

Let S € R™ and let T be a clustering of S. For any subset S’ C S, T determines a
clustering I’ of S’ by restriction.

The main result of the section is the following.

Lemma 3.7. Let k > 2. Under the hypotheses of Lemma 3.6, if |S| < k, then there exists
S’ C S satisfying the following.
(1) Let 7”7 be the clustering of S’ determined by 7. For every trunk T’ of 77, let
E(T") denote the linear span of {&, : V € B(T")} in P* @ R. Then we have

# (B(T")) < dim E(T").

(2) There exists n € W™(S)* such that the following hold.

(@) n, is a multiple of &, for eachx € S, and n, =0forx e S\ S'.
®) lnllwmys < Cliéllwms)x, where C = C(m,n, k,B) with B being an upper
bound for diam(S).

(€ Xxesbx = 2xesx
(d) D yes PxE) =D ves Px(ny), with &, as in Lemma 3.6.

Proof. Suppose S itself does not satisfy both of the conclusions. Taking n = &, we see
that S satisfies (2). Therefore, S does not satisfy (1). Using conclusion (2) of Lemma 3.6,
we may shrink S by one point at a time until conclusions (1), (2a), (2¢), and (2d) hold.
Meanwhile, (2b) holds, thanks to Lemma 3.2, Lemma 3.4, and (3.8). [ |

We will couple Lemma 3.7 with the following result to prove Theorem 1.4.

Lemma 3.8 (Lemma 6.4 of [1]). Let S C R” be finite with #(S) > 2. Let 7 be a clustering
of S. Suppose that for every trunk T of 7, |(B(T))| < N for some N € N. Then |S| < 2VN—1,

4 Proof of the Main Theorem

We begin the proof of Theorem 1.4 by showing that one can approximate the convex sets
I' arbitrarily well by polytopes, which will allow us to use linear programming. While

finer levels of approximation to these convex sets will generally require an arbitrarily
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On the Shape Fields Finiteness Principle 15

increasing number of linear constraints to describe, the constants arising in our proof
will be independent of this number.

By a polytope in a finite-dimensional normed vector space V, we mean the finite
intersection of half-spaces of the form {v € V : £(v) < ¢}, where & € V* and c € R.

Let v, w be two Euclidean vectors. We write v > w if each of the entries of v —w

is nonnegative.

Lemma 4.1. Let V be a finite-dimensional normed vector space with norm || - ||,, and
let K C V be convex. Given § > 0, there exists a convex polytope K; such that K C K5 C
Bg(K), where B;(K) is the §-neighborhood of K under the metric determined by || - ||;,.

Proof. We first address the case where V = R9, where the norm is the £*° norm given

by I(xy, ... xg) Il = max, ;g |x;].
Let O be the set of cubes of the form

Q =k 8, (ky + 1)8] x ... x [ky8, (kg + 1),

where ky, ..., k4 € Z. Define

K = U Q,
QeQ

€
QNK#£9

and let K” = Conv(K’), where Conv(-) is used to denote the convex hull of a set. Thus, K”
is a convex polytope. By definition, K C K'.

Let x € K”. Then, there exist y’,z’ € K’ such that x is on the line segment from y’
to Z'. Since y’,z' € K, there exist y,z € K such that |y — y/||, ||z — Z/|| <.

Consider the function f(t) = ||t(y’ — y) + (1 — t)(Z' — 2)||. Then f(0),f(1) < § and
f is a convex, nonnegative function, so f(t) < § for all ¢t € [0, 1]. Pick ¢, € [0, 1] such that
x =tyy'+ (1 —ty)Z. Then, f(ty) < 8§ means that ||x—[ty+ (1 —?)y’l| < é. Since K is convex,
ty + (1 — t)y’ € K, so x is within distance § of K. Thus, K’ C B;(K), completing the proof
in the case V = R4,

Now suppose that V is an arbitrary d-dimensional, normed space. Since any
two norms on a finite-dimensional space are equivalent, there exists M < oo such that
M vlly < IT W)l gwo@ay < MVIy.

Let T : R — V be a linear isomorphism and let K c R" be a polytope
satisfying T"1(K) ¢ K C B.(T~!(K)), where € > 0 is to be determined. It follows that
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16 F. Jiang et al.

KCTEK) C By (K) and that T(K) is a polytope in V. (To see the latter, observe that for
linear functionals £ on R%, £(v) < cif and only if £ o T"1(T(v)) < cand £ o T~ € V*.)

Thus, choosing € = §/M, we see that T(K) is the desired polytope. |

4.1 Theorem 1.4 with X = C™(R",RD)

Proof of Theorem 1.4 with X = C™(R",RP). Given E ¢ R" and K(x) C P for each

x € E, we define
1K) epllwm ) = DI gegllym e, : P* € K(x) for all x € EJ. (4.1)

While not strictly a norm, the above notation allows for a concise description of
a quantity which is the main focus of the proof.

Our goal is to show there exists C = C(m, n, D, B) such that for any finite S ¢ R"”
satisfying |S| < B, there exists S’ C S with |S'| < odim P such that

CTH(G@E)) xes lwm(sy < 1(GE@)xesllwms) < CIGE)) xes lwms)-
If so, it follows that
1(GE)) yes lwm(s, < 1 forall S’ C S satisfying |§'| = 27
implies
(G yesllwms) < €

for all S C E satisfying |S| = kF.

We now make the following reduction: it suffices to prove Theorem 1.4 in the
case that each G(x) is a polytope.

If not, replace each G(x) with G(x); for sufficiently small § > 0, where G(x); is the
polytope guaranteed by Lemma 4.1. By taking § > 0 small enough, one may approximate
both 1(Gx))xesllwms) and (G xes lwm s within a factor of 2, as these norms are
continuous with respect to the relevant metrics.

To this end, we replace each G(x) with G(x);, which will now be denoted K,, as
8 is fixed. For each x, we write K, = (P: SZXI3 < ¢, ) for some linear map €, : P — R™x,
where m, € N. We will occasionally write Q@ : W™(S) — [[, R™ to denote the mapping

which sends (f’X)XEs to (QXI_sX)

XxeS*
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On the Shape Fields Finiteness Principle 17

We begin by writing (K xesllwms) as the solution to a linear programming

problem:
1K) xesllwms) = ainf ||(ﬁx)xgs||wm(5) (4.2)
(QxP¥<Cx)xes
=  inf sup (£ xes(P¥) ges]. (4.3)

(QXPXSEX)XES IEx)xes |l wm(s)* <1

By Lemma 4.1, the unit ball in W™(S)* may be approximated within a factor
of 2 by a polytope, written as {(&,),cs : L(§y)xes < 13} for some k € N and linear map
L: WM (S)* — R¥. Thus, we may rewrite (4.2) as

(K )xesllwmes) ~ _inf SUP  (£)xesl(P)xes] (4.4)

(Qxﬁxfax)xes L(§x)xes<1k

for some linear map L : W™(S)* — R* and some k € N.
The advantage of this formulation is that it becomes possible to apply the LP

Duality Theorem (Lemma A.2 in Appendix) to the supremum above, giving us

(QXPXSEX)XES YZ})
LTy=(F")xes

= _inf 1,y

(QxP¥<Cx)xes

y=0

LTy=(P")xes
= inf ]'k -y

—QLTy>—c

y=0

Note the referenced linear programming problem is feasible, as its solution corresponds
to finding the smallest norm of a vector in a closed set.

Applying the Duality Theorem again, one obtains

” (KX)XES”Wm(S) ~ sup Z _EX . ZX (45)
(zx>0)xes ~x
L(-QT)z<1j
= sup sup Z —Cy - Zy (4.6)
L(éx)xes<1lk (Zx>0)xes x
(Exe(— QDR ) xes (L zx=Ex)xes
~ sup ZXeSfX@X) , (4.7)

(Eve(—QDR™ ) s | E)xeslwm(s)s
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18 F. Jiang et al.

z>0
—Qlz=¢t,

where FuE) = sup Z %,z
X
Fix (&;)4cs such that &, € (—QDRT™ for all x € S. We see that f satisfies the
hypotheses of Lemmas 3.6 and 3.7. By Lemma 3.8, we may apply Lemma 3.7 repeatedly
until the S’ in the conclusion satisfies |S/| < 2dmP,
Let (ny)xes be as guaranteed in the conclusion of Lemma 3.7 and recall
S ={x e S:n, #0}. Thus,

”(nx)xeS”W’"(S’)* = ”(nx)xeS”W’"(S)* S ||(§X)X€s||wm(s)*

and |S'| < 2dimP Note that each 1, is obtained by multiplying some &, by a nonnegative
scalar; thus, n, € (—QI)RT™ forallx € S.

By this reasoning and (4.5) applied both as written above and with S’ in

place of S,
S
”(KX)XES”W'"(S) a2 sup M
(fXEQ};RTX)Xes ”(sX)XGS”Wm(S)*
< sup M

(ﬂx€Q£RTX )xes’ ” (nx)xes ” wm(S')*

~ 1K) xes llwm sy

4.2 Theorem 1.4 with X = C™(R", RD)

In this section, we point out the modifications needed in order to prove Theorem 1.4 for
the case X = C™(R", RD).

Let S C R” be a finite set. Recall the definition of I ljym s) in (2.2). We define
o

H(S) := span [3;‘ yizj YIZES Z2#Y, |a|§m—1,1§j§D},

where each €ayzj € W™(S)* is characterized by the action

0% (P — PA)(y)

ly — z| mlel

by 2/ lP ) yes] =
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Then the norm lIllirm sy can be computed via the formula

1P eslims) = sup  E[F) sl
E€H

& Iwm gy <1

Mirroring (4.1), we define the selection “seminorm” to be
(K xesllims) == inf{||(PX)X€S||Wm(S) :P* e K(x)forall x e S}.

We repeat proof of Theorem 1.4 with X = C™(R", RP) in the previous section, but with

the following modifications.

o We use [llyms in place of ||-|lym, (both the Whitney seminorm and the
selection “seminorm”).

o All the linear functionals will be chosen from H(S) C W™ (S)*.

e The map L in (4.4) will be replaced by a suitable linear map L : H(S) — RF for

some k € N.

This concludes all the necessary modifications for the proof of Theorem 1.4 with
X = C™(R",RP).

The proof of Theorem 1.4 is complete.

5 Vector-Valued Shape Fields Finiteness Principle

In this section we use what is colloquially known as the “gradient trick” to prove
Theorem 2.4 using the D = 1 case proven in [19]. (See [19, 20].)

The following proof will require working in both R” and R**?, so we provide a
brief introduction to some of the notation.

The variable for R" will be x, while R*™? will be viewed as {z = (x,&) : x €
R", £ € RP}. The appropriate level of regularity for R**P will be C™*!, so let P* denote
the vector space of R-valued, m-degree polynomials over R**P. (Recall that P is the

vector space of RP-valued, (m — 1)-degree polynomials over R".)

Proof of Theorem 2.4. LetE,Q, C R", (f‘(x, M) xcg =0 Cuwr 0 < 3g, < Smax: Xo € EN5Qq
as in the hypotheses of Theorem 2.4 be given.
Let EY = {(x,0) : x € E} C R"P. For (x,,0) € E*, define
I'((%,0), M) = (P € P* : P(x,0) = 0, V. P(x,0) € I'(xy, M)}. (5.1)
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We now show that (I'(z, M)), g+ satisfies the hypotheses of the D = 1 case of
Theorem 2.4.

Let ST C ET with |S*| < k. By definition, ST is of the form {(x,0) : x € S} for
some S C E with |S| < kF.

By hypothesis of Theorem 2.4, there exist (f’X)XEs such that

1P xesllims) < Mo. (5.2)
and
PXe f‘(X,MO) forall x € S. (5.3)

For z = (x,,0) € ET, define

D
P(x,§) = P00 (x,8) 1= D &P;(x). (5.4)

j=1

Clearly, P*09 (x,,0) = 0 and VgP(XO'O) — PX0, 50 P? € T'(z, M,) forall z € ET.
Let (xg,0), (¥,,0) € E*. Then,

32P%00 (x,0) = 0 and 839 P*? (x,0) = 0 for |B| > 2 (5.5)

by definition, and for 1 <j <D,

o0, (P00 — PIO0) (x5, 0)| = |3 (B — PL*)(x0, 0) (5.6)
< Clxg — yo™ (5.7)
= C|(xg, 0) — (yp, 0)| ™MD~ lel+D), (5.8)

Thus, (P?),.s+ satisfy (2.3).
To demonstrate (C,,, 8 ,,)-convexity, let 0<8§ <8, x€St, M <o0,P;,P,,Q;,Q,¢
P* be as in Definition 2.2. If P := Q; Oy, 0y Q1 O(xy,0) P1 + Q2 O(xy,0) Q2 O(xy,0) Par then

P(x3,0) =0 and
VEP(X, 0) = [01 ®(X0,0) Ql Q(XOIO) VSPI](X' 0) + [02 ®(X0,0) 02 Q(XO,O) Vg-Pz](X, 0), (5.9)

which lies in I'(x, C,,,M) by the (C )-convexity of the f(X, M.

w! 8max
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Let Q' be the unit cube in RP. By the D = 1 case of Theorem 2.4 applied
to ET C Rn+D,(F(Z,M))Z€E+'M>O,(XO,O),QO x Q', we have the following. There exist
F e C™*1(R"D, R) and P° € I'((x4, 0), CM,) such that

Jx0F € T((x,0),CM) for all (x,0) € ET; (5.10)
18997 (F — P°)(x,£)| < CM, for all (x,£) € Qg x Q' o] + |B| < m + 1; (5.11)

and
In particular, |920/ F(x, )| < CM, for |a| + |B| = m + 1. (5.12)

Define G(x) := V,F(x,0) and Q°(x) = V,P°(x,0). We claim G € C™(R",R”) and
Qo e f‘(X, CM) are the desired function and jet, respectively, found in the conclusion of
Theorem 2.4.

First, by (5.10),

J,G(y) = VT, 0)F(x,0) € I'(x, CM) (5.13)

because Jy0Fx,0) € f‘((X, 0),CM).

Next, for any |¢| <mand 1 <j <D,

195(G; — QD X)| = 95 (9, F — 9, P) (x, 0)| (5.14)
< CMpsgr V0D = engpofle! (5.15)

by (5.11).
Lastly, for |¢| = m,

105 G;(x)| = 1959, F| < CMy (5.16)

via (5.12). |
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A Linear Programming and Duality

Lemma A.1 (LP Duality Theorem). Let p,q be positive integers. Let ¢ € RP and b € RY.

Let A : RP — RY be a linear map. Consider the following two optimization problems.

T

Maximize ¢ - x subject to Ax <b. (A.1)

Minimize bT - y subject to ATy =candy > 0. (A.2)

Suppose one of (A.1) or (A.2) has a feasible solution, then both have feasible and
optimal solutions. Moreover, if x, optimizes (A.1) and y, optimizes (A.2), then c¢” - x, =
bT - y,, that is, the maximum of (A.1) equals the minimum of (A.2).

The same conclusion holds if we replace “Ax < b” by “Ax < b and x > 0" in (A.1)
and “ATy = ¢" by “ATy > ¢" in (A.2).

See [25] for a proof.

We generalize the theorem above to finite dimensional normed spaces.

Lemma A.2. Let V be a finite-dimensional normed vector space with norm ||-||,, and
dual V*. Let L : V* — R? be a linear map and let L* : R? — V be the dual operator of
L defined by

xT . L(¢) = (¢, L*x) for all x € R? and ¢ € V*.

(Here we identify the dual of any Euclidean space with itself via the dot product.)
Let b € R4. Suppose there exists ¢, € V* such that L(¢,) < b. Then

sup (¢,v) = inf b -y. (A.3)
L(g)=<b y=0

L*;:v
Proof. Let p = dimV < oo. There exists a linear isomorphism J : V — RP. Let
J* : RP — V* denote its dual. Note that J* is also a linear isomorphism. We have the

following diagram.
RP —— v A R4

| |

R L pr Ly Ra
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For each v € V and ¢ € V*, there exist unique ¢,x € RP such that J !(p) = v and
J*(x) = ¢. Thus, thanks to LP Duality Theorem (Lemma A.1), we have

sup (¢,v) = sup (J*x),J'(c))
L(¢)<b LoJ*(x)<b
= sup cf-x
LoJ*(x)<b

= inf bT.y.
(LoJ*)Ty=c
y=0

Notice that (LoJ*)T = JoL*. Moreover, since J is an isomorphism, the equality JoL*y = ¢

is equivalent to L*y = J~1(c) = v. (A.3) follows. [ ]
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