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Abstract 
Attention-based models of categorization and associative 
learning have received considerable support from human 
learning phenomena in which multiple predictive cues compete 
for association with outcomes. Among these, several 
phenomena (e.g. the highlighting effect and inverse base-rate 
effect) lend strong support to models that propose attention is 
driven by the experience of prediction error, and is distributed 
strategically to minimize prediction error during current and 
future learning. Here we explore the possibility that attention 
is determined instead by a relatively simple combination of 
stimulus novelty and association strength. We apply the model 
to several key findings in the literature on the inverse base-rate 
effect and related phenomena. Overall, the model provides a 
surprisingly good account of complex behavioral biases.  

Keywords: learning, attention, categorization, prediction 
error, inverse base-rate effect, novelty 

Prediction error and attention 
Extracting relevant predictive information from our 
surroundings is a fundamental cognitive competency. It 
allows us to draw inferences about cause and effect from a 
rich and complex environment and to prioritise the 
processing of the signals that are most likely to aid us in 
achieving our goals. Several influential models of category 
learning (Kruschke, 2001) and associative learning 
(Mackintosh, 1975) have proposed that we shift the balance 
of our attention to competing cues in our environment when 
we encounter prediction error, that is, the discrepancy 
between predicted and observed events. Put simply, these 
models suggest that we direct attention away from sources of 
large prediction errors (e.g. cues that are associated with an 
outcome that doesn’t occur, or features that predict an 
incorrect category label) and towards signals that minimize 
prediction error (e.g. cues that are associated with the 
outcome that eventuates, or features that predict the correct 
category label). This prioritisation of attention could serve an 
important adaptive function, allowing us to learn predictive 
relationships faster and devote more resources to the features 
of our environment that are actually useful. Under certain 
circumstances, it also leads to some surprising predictions 
about the decisions a learner will make when faced with 

conflicting or ambiguous predictive information. Evidence in 
the form of behavioral results that support these predictions 
is thus important for our theoretical understanding of 
attention and its role in learning.  

The inverse base-rate effect 
The inverse base-rate effect (IBRE) is one such example in 
human learning, where learners exhibit a bias toward 
predicting the lower frequency of two predicted outcomes 
when faced with conflicting information. A typical IBRE 
design is depicted in Table 1, and is usually presented within 
an explicit predictive learning task, for instance where the 
participant must diagnose patient illnesses (outcomes o1-o4) 
on the basis of presented symptoms (cues A-L) (e.g. see 
Medin & Edelson, 1988). Note that these tasks usually use 
duplicates of a simple design—the first two rows of Table 
1—with three potentially predictive cues (thus we will refer 
only to cues A, B, and C, as one instance of this design).  

 
Table 1: An example design of an IBRE experiment. 

Training Test Trials Typical finding 
3× AB–o1 A; ABC o1 > o2 
1× AC–o2 BC o2 > o1 
3× DE–o1 D; DEF o1 > o2 
1× DF–o2 EF o2 > o1 
3× GH–o3 G; GHI o3 > o4 
1× GI–o4 HI o4 > o3 
3× JK–o3 J; JKL o3 > o4 
1× JL–o4 KL o4 > o3 

Note: Letters A-L refer to predictive cues or diagnostic 
features, o1-o4 refer to outcomes or category labels that 
the participant is typically asked to predict and learn 
about through trial and error. Only the critical test trials 
are shown. The typical IBRE result for conflicting test 
trials is highlighted in bold. 

 
Learners are exposed to two types of trials (common and 

rare) during training, with common trial types occurring more 
frequently (e.g. three times as often) than the rare trial type. 
On each common trial, a predictive cue B combined with a 
less predictive cue A always leads to a disease outcome (o1). 
On each rare trial, another predictive cue C combined with 



the same less predictive cue A consistently causes a second 
disease outcome (o2). Since A is associated with both o1 and 
o2, it is an imperfect predictor of the outcome in comparison 
to the perfect predictors B and C that accompany it. 

At test, learners are asked to predict the outcome arising 
from the simultaneous presentation of the two distinctive 
cues B and C. The conflict lies in the different outcome that 
B and C respectively elicits, each usually with close-to-
ceiling accuracy during training. The conditional 
probabilities of the outcomes—p(o1|B) and p(o2|C)—are 
equivalent and effectively cancel each other out. However, it 
seems reasonable to assume that learners should favor the 
common outcome o1 as the more likely event for its more 
frequent overall occurrence (e.g. more patients are observed 
to suffer from disease o1 than o2), and indeed given a 
summary of the statistics of the task, people tend to do just 
this (Don, Worth & Livesey, 2021). However, when 
presenting the cue-outcome relationships in sequential 
fashion in a predictive learning task, researchers have 
repeatedly found an overprediction for the infrequent o2 on 
the conflicting test trial, which has been referred to as the 
IBRE (see Don et al., 2021 for a review). 

This rare choice bias is specific to the BC conflicting trials. 
Other ambiguous test trial types such as presenting the 
imperfect predictor A by itself or presenting a combined test 
trial with all three cues ABC tend to elicit more common 
outcome predictions. Not only does the rare outcome bias on 
BC trials go against the normative use of statistical 
regularities, it is also challenging to traditional learning 
models such as the influential Rescorla-Wagner model 
(1972; see Markman, 1989).  

Similar rare choice bias has been revealed in a 
complementary phenomenon called highlighting (Kruschke, 
1996). In a typical highlighting design, learners first observe 
that a pair of cues (AB) lead to an outcome (o1), and 
subsequently observe that one of the cues in the compound 
(A), combined with another cue (C), leads to a different 
outcome (o2). As a result, the association between the 
distinctive cue C and later-learned o2 is usually augmented 
or highlighted, biasing learners to the rare outcome in the face 
of ambiguous BC test compound. Highlighting and the IBRE 
are assumed to be the result of the same learning and decision 
processes, and both are well accounted for by theories that 
assume changes in attention are governed by the experience 
of prediction error (Don et al., 2021). 

Attention-based models of learning 
While many associative models fall short in explaining the 
IBRE, this effect can be accommodated by attentional 
learning theories that conceive of learning as being 
determined by learned attention to cues possessing better 
predictive value as well as learned inattention to cues with 
poor predictive utility. It is widely assumed by this class of 
models that learners selectively attend to cues that are better 
predictors of the outcome relative to other concomitant cues 
and the key determinant of these changes is prediction error 
(Mackintosh, 1975).  

Perhaps the most widely and successfully applied 
explanation for the IBRE is provided by the EXIT model, 
which is a key example of the application of prediction error 
as a driver of attentional change (Kruschke, 2001a; Kruschke, 
2001b). EXIT is a connectionist model where each 
constituent cue of a compound is represented by an input 
node and each outcome is represented as an output node. 
Learning of a cue-outcome relationship is expressed as 
building associative connections between the relevant input 
and output nodes. EXIT also assumes that learning is 
modulated by the amount of attentional resources devoted to 
a cue. EXIT makes the further assumption that attention 
increases to good predictors at a cost to attention paid to poor 
predictors due to the limited total attention capacity. In the 
network representation, each cue node is connected to an 
exemplar node which is activated to the extent that the cue is 
similar to the exemplar cue combination. The exemplar node 
is connected to the gain node where attention is normalised 
to determine the final attention value. The gain node then 
spreads activation to the outcome node to make a prediction 
based on the activation of the outcome.  

Importantly, the model recruits error-driven attention 
shifting as the major mechanism for cue competition effects. 
In the context of the IBRE, attention rapidly shifts to the more 
predictive cues B and C and away from the less predictive 
shared cue A after experiencing error on each trial. As there 
are more frequent encounters with AB trials, A becomes 
more predictive of o1 than o2. Attending to A on AC trials 
elicits the prediction of o1 which is discrepant with the 
observed o2, attention therefore shifts away from the error-
causing A toward the perfectly predictive C in response to 
this large error, leading to a particularly strong C-o2 
association. The learned attentional shift to C is then also 
transferred to the BC test trial further tipping choices towards 
a preference for the outcome associated with C (i.e. o2). It 
should be noted here that the rare attentional bias may be 
captured by a simpler account offered by Le Pelley et al. 
(2016) where the amount of attention allocated to a cue is 
assumed to be directly proportional to its associative strength. 
If C accrues greater associative strength than B and the 
context (and their combination), then more attention will be 
attracted to C on the BC test trial.  

Evidence for prediction error driven attention 
Attentional bias driven by prediction error has been 
considered a likely source of the IBRE due to several findings 
that seem particularly consistent with this explanation. For 
instance, the presence of the shared cue A has been shown to 
be a critical condition for the observation of the rare choice 
bias. This imperfect predictor allows re-direction of attention 
towards the more predictive component of the rare compound 
thereby creating more opportunities for the rare predictor to 
be learned (Wills et al., 2014). 

Recent empirical evidence has provided direct support for 
EXIT’s prediction of the rare attentional bias. Don et al. 
(2019) found that attention as indicated by overt eye gaze on 
the rare predictor relative to the imperfect predictor was 



considerably longer than on the common predictor relative to 
the imperfect predictor during both the prediction phase and 
the feedback phase (see Kruschke et al., 2005 for a similar 
result for highlighting). Further tests of associability 
difference in subsequent learning revealed a persistent 
attention benefit for the rare predictor (Don & Livesey, 
2021). A simplified version of the design presented by Don 
& Livesey (2021) is shown in Table 2. The logic of this 
design rests on the assumption that cues which have gained 
attention during stage 1 of training will carry over some of 
that attentional advantage to stage 2 and will thus be learned 
about faster. To test this, cues that were initially trained as 
common predictors and rare predictors of o1 and o2 in stage 
1 were then rearranged to predict two new outcomes in stage 
2. The cues were combined so that a previous common 
predictor was always competing for attention with a previous 
rare predictor. 

Two types of test trial then followed. On summation test 
trials, two cues with the same stage 1 role and predicting the 
same stage 2 outcome (e.g. in BI, B and I were both common 
predictors in stage 1 and both predicted o3 in stage 2) were 
combined. The key summation result was that accuracy for 
correct stage 2 outcomes was higher for stage 1 rare 
predictors than for stage 1 common predictors.  

On negation test trials, a common predictor from stage 1 
predicting one outcome in stage 2 was always combined with 
a rare predictor from stage 1 predicting the other outcome in 
stage 2 (e.g. in BC, B was a common predictor in stage 1 and 
predicted o3 in stage 2, whereas C was a rare predictor in 
stage 1 and predicted o4 in stage 2). The key negation result 
was that participants tended to choose whichever stage 2 
outcome was predicted by the stage 1 rare predictor (e.g. 
choosing o4 over o3 when presented with BC).  
 

Table 2: An example design for cue attention transfer 
following IBRE training 

 
Training 1 Training 2 Test  Finding 
3× AB–o1 BI–o3 BE  Summation 
1× AC–o2 CH–o4 HK % o3: IL > BE 
3× DE–o1 EL–o3 CF % o4: CF > HK 
1× DF–o2 FK–o4 IL Negation 
3× GH–o1  BC o4 > o3 
 1× GI–o2  EF o4 > o3 
3× JK–o1  HI o3 > o4 
1× JL–o2  LK o3 > o4 

Note: Letters A-L refer to predictive cues or diagnostic 
features, o1-o4 refer to outcomes or category labels. 

 
Both of these results suggest that more was learned about 

the stage 1 rare predictors in stage 2, despite the fact that all 
cues serve the same objective relationship with the respective 
outcomes in stage 2 and occurred an equal number of times 
in stage 2. The summation and negation effects can only be 
achieved by virtue of the roles that the cues played in stage 1 
and strongly suggests greater attention paid to rare predictors. 

The result was particularly strong after relatively brief stage 
1 training (see Don & Livesey, 2021).  

One of the major criticisms of the EXIT model is its 
relative complexity compared to other models of learning 
based on similar principles (e.g. see Paskewitz & Jones, 
2020). It characterizes attention shifting as a strategic and 
highly dynamic process that occurs immediately on 
encountering prediction error. Although strong evidence 
exists that attention is correlated with the predictiveness of 
cues, there are simpler ways in which learning about a 
predictive relationship might guide attention. For instance, 
Le Pelley et al. (2016) suggested that attention paid to a cue 
may simply be proportional to the strength of the associations 
that the cue has developed with task relevant outcomes. 
However, it has been suggested that one of the features of the 
IBRE may provide evidence in favor of relatively complex 
mechanisms proposed in the EXIT model.  

Paradoxically, when each cue is tested by itself, accuracy 
for B has been reported in several papers to be higher than 
accuracy for C (e.g. Wills et al., 2014; Inkster et al., 2022b). 
This difference is suggestive of a stronger association 
between the common predictor and the common outcome 
than between the rare predictor and the rare outcome, which 
is at odds with the rare bias observed on the BC test trial. This 
is difficult to reconcile with simpler models of attention and 
suggests that attention to the rare predictor may be a specific 
consequence of experiencing strong prediction error on those 
trials, rather than simply a product of the associative strength 
of the rare predictor itself. 

Prediction error or novelty? 
These findings have been plausibly explained by appealing to 
attention being driven by the larger prediction error 
encountered on rare trials. However, as the rare predictor is 
experienced less often than the common predictor, the rarity 
inherent in its infrequent presentation may suffice to attract 
more attention than does the common predictor when the two 
are encountered during IBRE training and also when 
presented together during subsequent transfer tests. While the 
larger prediction error on rare trials than on common trials 
appears to be the most plausible and widely accepted 
explanation for the IBRE (Don & Livesey, 2021), an 
alternative explanation in terms of the inherent novelty of the 
rare predictor remains unexplored.  

Novelty and prediction error are two closely connected yet 
distinct concepts in psychology (Barto et al., 2013). An 
experience is usually considered novel if it is new and has the 
quality of not being encountered before. Prediction error on 
the other hand refers to the mismatch between prediction and 
actuality, which requires a comparison to be made between 
the expectation evoked prior to the occurrence of an event 
and the actual event observed or experienced. Here we use 
the term novelty to refer to the extent to which an event is 
unexpected. We rely on the assumption that, within the 
context of the experiment, cues that occur more often also 
come to be expected more strongly on future trials as a 
consequence of learning the base-rates of their occurrence. 



We operationalise this conception of cue novelty by 
assuming that an association forms between the context and 
each cue, such that cues come to be predicted by the 
experimental context and the strength of that prediction 
downweights attentional gain to that cue. This conception of 
novelty is a convenience and we acknowledge that other non-
associative mechanisms could be used to govern changes in 
cue familiarity. Changes in context-cue associations are 
largely independent of the formation of cue-outcome 
associations on which the simulated response probabilities 
are based, except that attention to the cues is weighted based 
on their novelty and the context itself enters into associations 
with both the cues and the outcomes. 

The rare predictor is present on fewer occasions than the 
common predictor and this relative rarity has the potential to 
attract more attentional resources to it when later combined 
with the common predictor, leading to the same prediction of 
the rare outcome on the conflicting test trial as the error-
driven account. Novelty-attracted attention has long been 
reported in developmental literature as preferential looking 
and longer fixation time for novel stimuli compared to old or 
repeated ones in human infants (e.g. Franz, 1964; Cohen & 
Gelber, 1975). Likewise, the phenomenon of latent 
inhibition, extensively studied in classical conditioning 
(Lubow & Moore, 1959; see Holmes & Harris, 2010 for a 
review) and in a range of human learning paradigms (e.g. 
Forrest, Mather & Harris, 2018; Quinn, Livesey & Colagiuri, 
2017), suggests that passive pre-exposure to a cue in the 
absence of reinforcement could hinder its ability to later enter 
into meaningful associations by reducing its ability to capture 
attention. It is worth-noting that novelty alone does not 
suffice as a satisfactory account for the IBRE (Wills et al., 
2014; Don & Livesey, 2017), yet novelty, which we define 
as how strongly a cue is predicted by the context, combined 
with the associative strength of a cue, may still provide a 
relatively simple alternative explanation for some aspects of 
the IBRE including the rare attentional advantage and the 
necessity of the shared cue. 

Attention as a function of novelty and association. 
Here we describe the development of a model in which the 
allocation of attention is determined by a combination of 
stimulus novelty (how unexpected the cue is in the context of 
the experiment) and maximal prior learning about the cue (the 
strength of the strongest association that the cue holds with 
any of the relevant outcomes). 

The model uses several of the equations defined by 
Kruschke (2001b) in developing and implementing the EXIT 
model. For instance, we use the same algorithm to generate 
associative predictions for each outcome based on attention-
weighted associations between cues and outcomes (equation 
1 in Kruschke, 2001b), we use the softmax rule to compute 
prediction probabilities (equation 2 in Krushcke, 2001b), and 
we use the same delta rule algorithm to update cue-outcome 
weights (equation 8 in Krushcke, 2001b). However here the 
attention to each cue i is determined by a combination of 1) 
cue novelty (novi), and 2) the maximum association strength 

linking the cue with an outcome (maxWi). To determine novi 

associative weights are allowed to develop between the 
context (originally represented in EXIT as an additional 
“bias” cue node) and each of the cues. The weight linking the 
context to cue i—wctxt,i —starts at zero and is updated at the 
end of each trial via a simple delta algorithm, as follows: 

 
∆w#$%$,' = 	𝑆(𝑜𝑏𝑠/ − w#$%$,') 

 
Where S is a learning rate parameter and obsi is a teaching 
signal that simply takes a value of 1 if the cue is present and 
0 if the cue is absent. The value of wctxt,i causes an exponential 
decrease in the gain for the cue. That is, as the learner 
develops an expectation of seeing the cue in the context of 
the learning experiment, its ability to capture attention begins 
to reduce. This is achieved via the following:  
 

𝑛𝑜𝑣/ = 	𝐶𝑒6789:;:,< 
 
Here, C is a parameter affecting the rate of this decline and 
the relative salience of surprising cues (high values lead to 
greater initial salience and a faster decline). 

The second component determining gain is the absolute 
magnitude of the strongest association cue i holds with one 
of the task-relevant outcomes j—maxjwij —which contributes 
positively to the gain score according to the following: 

 
𝑚𝑎𝑥/ = 	1 + 𝐷	maxF	w/F  

 
Here, D is a scaling parameter, while the addition of 1 merely 
ensures that novel cues which have no existing association 
are never impossible to attend to or learn about (following the 
assumption that novelty carries attentional biases most 
strongly in early stages of learning). These two determinants 
of gain are then simply multiplied: 

 
𝑔𝑎𝑖𝑛/ = 𝑛𝑜𝑣/𝑚𝑎𝑥/ 

 
Finally, we apply the same limited capacity attention 

algorithm to transform these gain values into an attention 
score for each cue, dependent on which cues are present on 
each trial (equation 5 in Kruschke, 2001b). 

Simulations of key IBRE results 
As an initial test of the capabilities of the model we ran 
simulations of the designs shown in tables 1 and 2, as well as 
the effect of the common and rare training trials sharing an 
imperfect predictor (i.e., shared cue condition: AB-o1 / AC-
o2 versus unique cue condition: AB-o1 / XC-o2). The aim 
was to demonstrate 1) that the model can reproduce the well-
replicated pattern of choice data observed for critical 
ambiguous trial types associated with the IBRE, 2) that the 
model also anticipates higher accuracy for common 
predictors than rare predictors when they are presented 
individually, 3) that it predicts that the IBRE will be 
dependent on the shared imperfect predictor (A) across 
common and rare training trials, and 4) that the model 



anticipates attentional transfer that favors rare predictors over 
common predictors. 

For each of the experimental designs, we generated 100 
unique trial sequences using randomization of trial order in 
individual blocks of trials as shown in the table. We ran 1000 
simulated participants using these sequences, choosing 
parameter values from a uniform distribution within 
parameter bounds described in Table 3.  

 
Table 3: List of free parameters used in simulations. 

parameter description range  
L Cue-outcome learning rate .01–1.0 
S Context-cue learning rate .01–1.0 
B Salience of context (bias) .05–1.0 
P Attention capacity 1.0–20 
T Choice decisiveness 1.0–20 
C Cue novelty scaling 10.0–20.0 
D Cue association scaling 0.1–2.0 

 
The results of each of these simulations is illustrated across 

figures 1-4. In each figure, rare choice proportion reflects the 
probability of choosing the relevant rare outcome divided by 
the sum of the choice probabilities for the relevant common 
outcome and relevant rare outcome. For a BC trial this would 
be p(o2) / [p(o1)+p(o2)]. For trials where the associated 
outcome should be unambiguous, accuracy refers to the 
probability of choosing the outcome that was previously 
associated with the cue or cues presented.  

 
Figure 1: Results of 1000 simulated participants run 

through the design shown in Table 1 (IBRE). 
 

Figure 1 presents the critical ambiguous test trials typically 
reported in IBRE research. With randomly chosen parameter 
values, the model successfully replicates the predominant 
common-outcome choice for the imperfect predictor A, and 
a consistent rare choice bias for conflicting BC trials. This 
result replicates the IBRE, though with randomly chosen 
parameters the effect is fairly modest, with the predicted 
proportion rare choice often between 0.5 and 0.7. Predictions 
for combined ABC trials are less consistent, though this 
reflects similar inconsistencies in empirical findings (see Don 
et al., 2021). 

The model is thus able to reproduce both the ordinal pattern 
of choice preferences typically observed for the key 
ambiguous test trials used in the IBRE, as well as the IBRE 
itself (that is, higher proportion of rare outcome than common 
outcome choice on conflicting trials). It should be noted that 
a similar pattern is observed when simulating a highlighting 
design in which rare (i.e., late) training trials are only 
introduced after an initial phase comprising only common 
(i.e., early) trials.  

As is illustrated in Figure 2, the model makes these 
predictions while also yielding higher choice accuracy for 
common predictors tested alone than for rare predictors tested 
alone. The model achieves this because the context generally 
accrues stronger associations with the common outcome than 
the rare outcome, and therefore the high accuracy for the 
common predictor is partly a reflection of a context-driven 
bias towards choosing the common outcome. This 
explanation is consistent with a possibility raised previously 
by Le Pelley et al. (2016). Some recent evidence (Inkster et 
al., 2022b) found that attempts to change the context after 
initial training have no effect on the IBRE or the higher 
accuracy for B than C and thus this explanation is one that 
needs further empirical attention. 

 
Figure 2: Simulated results comparing accuracy for 

common and rare predictors when presented in isolation, 
using the training design outlined in Table 1. 

 
Figure 3 shows the effect of replacing the shared imperfect 

predictor with cues unique to common and rare training trials. 
For simulation of the importance of the shared cue, we 
retained the regular design in Table 1 for two of the sets of 
overlapping contingencies (e.g. AB-o1/AC-o2, DE-o1/DF-
o2) but replaced the shared cue with two unique cues for the 
other two sets (e.g. GH-o3/MI-o4, NK-o3/JL-o4).  

Even though attention is not driven by prediction error in 
the model, the fact learning of the cue-outcome associations 
is based on a simple prediction error algorithm means that 
cues compete for association (they “overshadow” each other) 
and a bias in attention towards a cue leads to a greater share 
of the learning being attributed to that cue. Since relatively 
novel cues gain more attention, more is learned about C than 
A on AC-o2 trials and this bias is stronger than learning for 
B versus A on AB-o1 trials. In contrast, when there is no 



shared cue, C and X are equally novel and have the same 
objective relationship with o2, meaning they develop 
associations of comparable strength. In the absence of a 
strong association between the rare predictor and the rare 
outcome, choice tends to favor the common outcome or no 
preference for either common or rare outcome. The presence 
of the common cue is thus still critical for generating strong 
learning to the rare predictor C.  

Figure 3: Simulated results comparing conflicting trials 
when the common and rare predictors were trained with a 

common versus unique added cue.  
 

Finally, Figure 4 shows the effect of initial IBRE training 
on later learning about novel outcomes. Here, attentional 
biases towards the rare predictors, initially because they are 
more novel and then in addition because they carry a stronger 
association strength with the rare outcome, transfer to stage 2 
learning. This means that the model predicts more accurate 
responses to summation test trials comprising stage 1 rare 
predictors compared to those comprising stage 1 common 
predictors, and for negation trials, predicts that the outcome 
associated with the stage 1 rare predictors is more likely to be 
chosen. 

Figure 4: Simulated results for accuracy on summation 
test trials and rare choice proportion on negation test trials 

 

Discussion 
Although there is clear evidence that attention changes as a 
consequence of learning predictive relationships, debate 
continues about the factors that determine how and when 
these changes occur. Attention shifts in response to 
encountering prediction error is a popular mechanism 
advocated to explain a range of effects related to human 
associative learning and categorization. However, the models 
that have been most successful in implementing this idea are 
complex, and debate about their relevance has been hampered 
by a lack of credible alternative explanations.  

Here we explored the possibility that at least some of these 
phenomena may be explained by differences in cue novelty 
rather than the prediction error encountered in the presence 
of those cues. There is strong evidence from multiple lines of 
research that indicates processing (including attentional 
selection) changes as stimuli become more familiar. To the 
extent that a simple factor like cue novelty can explain a 
widely replicated learning phenomenon like the IBRE, that 
explanation should be taken seriously.  

Here we applied a basic prediction error learning algorithm 
in which the learning rate for a particular cue was determined 
by two factors, 1) the extent to which that cue was predicted 
by the context, and 2) the strength of the maximal association 
between that cue and any task relevant outcome. The model 
provides a surprisingly good fit to data that have been held 
up as clear evidence for attention shifting models. By 
including the strength of the maximal association as a 
determinant of attention, the model should in principle be 
able to account for other attention-based biases in learning 
(e.g. Don & Livesey, 2015; Le Pelley & McLaren, 2003; 
Livesey & McLaren, 2007) but future work will be needed to 
determine the limits of its capabilities in these and other 
domains. It should be noted that the model in its current form 
relies heavily on context associations. The possible roles of 
context learning in the IBRE are a matter of ongoing debate 
(e.g. Don & Livesey, 2017; Don et al., 2019; Inkster et al., 
2022b), and more research is needed to test whether this 
component of our explanation is plausible. 

Some findings in the IBRE literature are clearly beyond the 
scope of category learning models of this variety, regardless 
of whether attention is driven by prediction error or other 
factors, including several that provide tentative support for 
inferential reasoning accounts (see Don et al., 2021). There is 
also neural evidence from imaging studies consistent with 
conflicting explanations for the choice of the rare outcome 
(Inkster et al., 2022a; O’Bryan et al., 2018).  However, the 
evidence that attention biases are involved in the effect is now 
fairly compelling. Further research is required to ascertain the 
source of those attention biases and the role they play in 
producing choices that seem to defy normative reasoning 
based on the frequency of events.  
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