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Abstract 

Solving problems with others not only reduces the time 
required to complete a challenge but may also enable the 
discovery of novel strategies that qualitatively change how a 
problem is approached. At the dyadic level, the laboratory-
based ‘shepherding task’ demonstrated that, when tasked to 
contain evasive agents to a centralized location, some 
participants discover a non-obvious but optimal strategy to 
solve the task. This paper quantified the interactions between 
participants engaged in the task using Multidimensional Cross-
Recurrence Quantification Analysis (MdCRQA), applied to 
each participant’s gaze and hand movements. The results 
demonstrated that strategy discoverers exhibited greater 
amounts of incidental coupling than non-discoverers prior to 
discovery. Once discovered, the strategy reduced the strength 
of coupling between participants, indicating that the strategy 
also reduced coordination demands. Future work will 
investigate whether differences in problem-solving can be 
attributable to differences in the perceptual features 
participants use which scaffold the discovery of task-optimal 
solutions. 

Keywords: interpersonal coordination; joint action; 
collaborative problem-solving; perceptual-motor behaviors; 
virtual reality 

Introduction 

Working with others not only reduces the amount of time or 

effort needed to complete a task but can also enable the 

discovery and exploitation of unique strategies. A simple 

example is the formation of a bucket brigade to efficiently 

transport objects – the formation of which necessitates the 

coordination of actions with others. However, variation in 

group composition and skill results in variation in the level of 

performance teams can reach. This paper reports results 

pertaining to the interpersonal dynamics which differentiate 

expertise in two-person groups to discover and exploit 

strategies that effectively solve a collaborative problem-

solving task referred to as the ‘human shepherding task’ 

(Nalepka et al., 2017). 

The human shepherding task requires dyads, holding 

motion controllers, to work together to corral and contain a 

set of evasive objects (target agents) towards a central red 

containment area for a prespecified period (see Figure 1). The 

target agents exhibit random, Brownian motion, but will flee 

from the participants if their controllers come near them. 

Early in the experiment, participants utilize a strategy 

referred to as Search & Recover (S&R) (Figure 1, middle). 

S&R involves both participants dividing the game space in 

half, and each participant pursues the target on their 

respective side that is farthest from the containment goal. In 

the original experiment (Nalepka et al., 2015, 2017), this 

strategy is effective if the number of target agents is low 

(three or five), but it becomes a challenge to solve the task 

using the S&R strategy when the number of targets is high 

(i.e., seven). 

In the most difficult condition, many dyads who continue 

to utilize the S&R strategy are more likely to fail at meeting 

the task completion criteria. For those who succeeded, some 

discovered a novel and nonobvious solution to solve the task. 

Instead of each participant pursuing individual target agents 

to corral towards the goal, some participants learn that when 

all targets are near the goal, a more effective strategy is to 

make rhythmic, oscillatory motions around the entire herd to 

collectively corral and contain them within the containment 

region. This strategy, referred to as coupled oscillatory 

containment (COC) (see Figure 1, right), once discovered, 

resulted in near-ceiling levels of performance. When 

participants implement COC, participants will either mirror 

the actions of their partner (in-phase) or oscillate in opposite 

directions (anti-phase). The observation of both in-phase and 

anti-phase behavior, and their relative likelihood, is 

consistent with previous literature regarding the emergent 
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stable patterns of rhythmic coordination more generally 

(Haken et al., 1985; Kelso, 1995; Schmidt et al., 1990; 

Schmidt & Richardson, 2008). 

In the original experiment, when participants were 

debriefed and questioned how they come to learn the COC 

strategy, anecdotally many participants utilize language to 

suggest that they experienced a moment of cognitive insight 

– an Aha! Moment. Specifically, participants will describe 

that they would suddenly see that the COC strategy was the 

preferred solution to the shepherding task. 

Current Study 

The discovery of the COC strategy to effectively contain the 

target agents was not observed by all participants. The current 

study sought to determine whether its discovery can be 

predicted by how participants interacted during the 

experiment. Previous research in social interaction has 

documented how interpersonal coupling, as well as strong 

forms of coupling such as behavioral synchronization, is 

associated with problem-solving ability (Miles et al., 2017; 

Valdesolo et al., 2010). This present experiment utilized 

Multi-dimensional Cross-Recurrence Quantification 

Analysis (MdCRQA) to measure the interactivity between 

participants – specifically of their perceptual-motor states. 

MdCRQA is a multidimensional extension of univariate 

CRQA, which is an analysis technique that describes the 

interactions between coupled dynamical systems via various 

quantifiable measures derived from recurrence plots (RPs), 

which is a two-dimensional pictorial representation of the 

time-lagged recurrences between the two systems. This 

analysis quantifies properties of unknown, complex 

dynamical systems with how such systems behave when they 

revisit states (Marwan et al., 2007). 

Method 

Participants 

Sixty participants, recruited as dyads, took part in the 

experiment. Participants received course credit for 

participating in the experiment. The average age of the 

sample was 19.07 years (SD = 3.68), with ages ranging from 

17 to 45 years. Thirty-nine of the participants self-identified 

as female, 19 as male, and two as gender non-binary or 

undisclosed. Sixteen of the dyads consisted of participants of 

the same self-identifying gender. For two of the dyads, 

participants had previously encountered their partner prior to 

taking part in the experiment. The remaining participants had 

never met their partner prior to the experiment. All but one 

participant reported to be right-hand dominant. 

Materials and Task 

The shepherding task was implemented in the Unity game 

engine (ver. 2018.4.23f, Unity Technologies, San Francisco, 

USA) as an immersive virtual reality (VR) experience 

(Figure 2). The task environment and game logic mirrored the 

implementation from previous work (Nalepka et al., 2019). 

Participants were situated on each long side of a table 

measuring 2.2 m (L) x 1.2 m (W) x 0.81 m (H). Each 

participant was equipped with an HTC Vive VR headset 

(Vive DevKit 2, HTC) with integrated eye tracking (Tobii 

AB). The participants were embodied as either a male-

presenting or female-presenting avatar. The avatars were 

created using Adobe Fuse CC (Beta Version 2014.3.14) 

(Caruana et al., 2021). The avatars head and eye movements 

were controlled by the data sent by the participant’s VR 

headset. An inverse kinematics calculator (FinalIK, 

RootMotion Inc.) was used to approximate the movement of 

the avatar’s torso and hips from the displacements of the head 

position. Additionally, participants held a custom-made 

paddle with their right hand, which was fitted with a Vive 

Tracker (HTC). Participant head, eyes and hand movements 

were transmitted at 90 Hz across a local network to the other 

participant using Mirror Networking API (https://mirror-

networking.com/).  

The virtual environment consisted of a grass field 

(measuring 1 × 1 m), seven target agents (TAs), and a herding 

agent (HA) for each participant. A fence surrounded the grass 

field to prevent the TAs from escaping. The TAs were 

depicted as white spheres (diameter = 2.5 cm) which, when 

left unperturbed, exhibited Brownian motion. The HA for 

each participant was either a blue or orange colored cube 

 
Figure 1: Original task environment and observed behaviors from Nalepka et al; (2015, 2017). Participants used handheld 

controllers (left) to move their player (the blue or orange square; middle, right) to corral and contain a set of evasive agents 

(the spheres) to the red containment circle by using repulsive forces caused by players being near the agents. Participants 

would subdivide the task space in half and pursue the agents farthest from the goal (termed Search & Recover [S&R]). Some 

dyads learned that a more effective strategy is to make oscillatory movements around the entire herd to keep the agents 

contained (termed Coupled Oscillatory Containment [COC]). See text for more details. Adapted from Nalepka et al., (2021). 
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(edge length = 2.5 cm) and were used by the participant to 

interact with the TAs. When a participant’s HA was within 

12 cm of a TA, the Brownian force acting upon the TA was 

changed to a repulsive force directed away from the 

participant’s HA (Nalepka et al., 2019). This was the only 

method by which the participants could interact with the TAs. 

Before each trial, each participant moved their HA to a start 

location on their respective side to jointly initiate a trial. Once 

started, the TAs appeared in a red circle (diameter = 20 cm) 

in the center of the grass field and began to disperse in 

different directions (see Figure 2 for their initial 

configuration). The participant’s task was to use their HA to 

keep all seven TAs within this red circle. The experiment 

consisted of one-minute trials in which participants jointly 

corralled the TAs towards the red circle. Successful trials 

were those in which all TAs were inside the red circle for at 

least 60% of the one-minute period. At the end of each trial, 

each participant received visual feedback regarding their 

performance. The feedback was the percentage of time that 

all TAs were contained in the red circle and whether the trial 

was successful or not. Participants were also informed of how 

many more trials they needed to finish the experiment. 

The positions of the TAs, HAs, and a Boolean indicating if 

all TAs were contained was recorded at a 90 Hz sampling 

rate. Participants’ head and hand position and orientation, as 

well as their eye gaze direction and position (i.e., where the 

gaze vector intersects with the task environment) was also 

recorded at 90 Hz. 

Procedure 

Following informed consent and completion of a form 

requesting demographic information, participants stood on 

either side of the long edge of the table and placed the VR 

headset on their head. The experimenter assisted each 

participant in adjusting the lens separation of the headset so 

that it closely aligned to the participant’s interpupil distance 

to maximize gaze detection. This was done using a visual aid 

provided by Tobii Pro’s SDK which represented the quality 

of gaze detection using colored circles (whereby green would 

indicate suitable gaze detection). Following this, participants 

completed a five-point calibration, where the calibration 

stimuli were represented as expanding red circles placed 50 

cm from the participant. To verify the calibration, 

participants were asked to gaze at the TAs which were placed 

at their initial starting positions at the center of the task 

environment. Participants were asked to gaze at a TA named 

by the experimenter, and if their gaze did not intersect on or 

near the object, the eye calibration procedure was redone. 

Following eye calibration, participants were given their 

controller, which they held in their right hand, and were told 

to keep the controller on the table. Participants were then told 

the goal of the task – to work alongside their partner to keep 

the TAs contained within the red circle for at least 60% of the 

trial. The experiment ended once dyads either met the success 

criteria on eight separate instances, if 45 minutes have 

elapsed while completing the task, or if the scheduled end 

time for the session has passed (sessions were scheduled for 

one hour). Participants were also told that they had to 

complete the task without verbal communication. 

To initiate each trial in the experiment, both participants 

placed their respective HA on the starting location in front of 

them. When both participants had done so, the TAs would 

appear, indicating the trial has started. Participants were 

informed that the trial had ended once they received visual 

feedback about their performance following the trial’s one-

minute duration. 

Data Preprocessing 

Behavior Classification. Behavioral classification was done 

using the method employed by Nalepka et al. (2019). For 

each participant, the two-dimensional (the transverse plane) 

hand position data was low-passed filtered at 10 Hz using a 

4th order Butterworth filter. Then, an angular timeseries was 

constructed with reference to the center of the red 

containment location. Following detrending and z-score 

normalization, Welsh’s power spectral density estimates 

(using MATLAB’s pwelch function) were conducted to 

determine the peak oscillatory frequency of the angular 

timeseries between 0 and 2 Hz. Windows of 512 samples 

were used, with 50% overlap. A participant was considered 

to use oscillatory behaviors if the peak frequency of the 

angular timeseries was greater than 0.5 Hz; otherwise, the 

participant was coded as using the S&R strategy. If both 

participants exhibited a peak frequency > 0.5, the trial was 

coded as a COC Trial. If this was true for only one 

participant, the trial was coded as an Oscillatory-S&R trial. 

MdCRQA Preprocessing. For MdCRQA, each participant’s 

two-dimensional hand and gaze position data (along the 

transverse plane) was submitted for analysis, resulting in a 

four-dimensional timeseries for each participant. No 

 
 

Figure 2: The virtual environment. Participants embodied 

a virtual humanoid avatar whose head and eye movements 

were driven by the participants. Participants controlled one 

of two cubes using their right hand which represented their 

player in the shepherding task. The avatars’ right arms were 

not visible to not occlude the task environment. 
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preprocessing was applied to the hand data. For the gaze data, 

missing values were replaced with the nearest valid datum. 

Measures 

The following measures were computed for all trials. 

Task Performance. Task performance was assessed using 

the trial’s containment time – the duration (s) all target agents 

were contained within the red containment location, with a 

maximum value of 60 s. 

Interpersonal Coupling Dynamics. Interpersonal coupling 

was quantified using multidimensional cross-recurrence 

quantification analysis (MdCRQA) (Wallot, 2019). 

MdCRQA is a nonlinear correlational analysis technique 

which quantifies the dynamics of coupling behavior between 

two dynamical systems (e.g., two people). MdCRQA is a 

multidimensional extension of CRQA (Marwan et al., 2007). 

The benefit of recurrence-based techniques is that few 

assumptions are made regarding the inputted data (e.g., the 

analysis can handle nonlinear data, data containing outliers, 

nonstationary signals) (Wallot, 2019). 

Measures from MdCRQA can provide a description of the 

number of shared states between two systems (referred to as 

%REC, see below) as well as the coupling’s strength 

(referred to as MaxL). MdCRQA computes these measures 

from the patterning of two-dimensional recurrence plots 

(RPs) (see Figure 3). RPs provide a visualization of the co-

occurrences of two different timeseries (in the case of a cross-

RP) at any two timepoints. Co-occurrences (i.e., recurrences) 

along the main diagonal of the RP represent co-occurrences 

at the same timepoint, while recurrences away from the main 

diagonal refer to time-delayed visitations by the second 

multivariate timeseries following the first (the order 

determined by whether recurrences appear above or below 

the main diagonal). Due to inherent stochasticity embedded 

in measured data, states are considered recurrent if they fall 

within a distance threshold parameter, which is a free 

parameter. The RP is a binary matrix consisting of 1s 

(recurrent/similar state) and 0s (dissimilar state). 

MdCRQA was performed using code provided by Wallot 

(2019) using MATLAB (R2020a, MathWorks Inc.). Each 

participant’s four-dimensional timeseries consisted of their 

hand and gaze position (each being two-dimensional along 

the transverse plane). Each dimension was z-scored 

normalized before being submitted to MdCRQA. A co-

occurrence was computed (i.e., given a value of 1) if the 

distance matrix was within 0.5 standard deviations from the 

mean distance between the two timeseries – otherwise the 

value for that timepoint was set to 0. 

The following measures were computed from the 

constructed RPs: 

Incidental coupling (%REC) is computed as the percentage 

of possible timepoints from the RP where a co-occurrence 

was detected (i.e., computed by summing all co-occurrences 

divided by the total possible number). 

Coupling strength (MaxL) is computed as the longest 

diagonal line length from the recurrence plot (i.e., the 

maximum number of diagonally co-occurring timepoints 

without interruption). A diagonal line on an RP indicates time 

periods where both timeseries followed similar trajectories. 

Previous research demonstrated that MaxL provides an 

estimate of the coupling strength between two interacting 

dynamical systems (Richardson et al., 2007), while %REC is 

sensitive to the amount of random variation in the timeseries 

(and thus is why it is referred to as incidental coupling). 

Social Impression. In addition to the task performance 

measures, participants completed a set of six questions 

following the experiment rating their impression of their 

partner. A composite score was constructed by taking the 

average response to all questions (rated on a scale from 1 [Not 

at all] to 9 [Very]). The questions were the following: How 

much do you like the other participant? How similar to you 

is the other participant? How close do you feel to the other 

participant? How connected do you feel to the other 

participant? How willing would you be to work with the other 

participant on a group task? How willing would you be to 

make friends with the other participant? 

Analysis 

For all analyses, linear mixed-effects (multilevel) models 

were constructed, whereby each trial (689 total observations) 

was nested under their respective dyad. The models were 

fitted following the recommendations by Barr et al. (2013) 

and Meteyard and Davies (2020). First, the maximal random-

effects structure was identified for each model by first 

including all random intercepts and random slopes (including 

interactions), and then removing model parameters 

iteratively until the model could reach convergence. 

Covariances between the random effects were not estimated. 

Once the random-effect portion of the model was defined, the 

fixed-effects were added and assessed whether they 

significantly improved the fit of the model using likelihood-

ratio (LR) test. Finally, once the final model was determined, 

the model was refit using restricted maximum likelihood 

(REML) so that Kenward-Roger estimates of degrees of 

freedom for the fixed effects could be calculated (Kenward 

& Roger, 1997). All pairwise comparisons following 

significant effects were adjusted using the Bonferroni 

correction. All models were constructed using the Stata/MP 

software (ver. 17; StataCorp). 

Results 

Twenty-four dyads (80%) completed the shepherding task 

successfully on eight instances. For the six unsuccessful 

dyads, three never completed the task successfully, two dyads 

had one successful trial, and one dyad had two successful 

trials. For those who were successful, dyads completed an 

average of 19.38 trials (SD = 8.92, ranging from 10 to 37 

trials). 

When considering all dyads, nine dyads (30%) discovered 

the COC strategy reported in previous research (Nalepka et 
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al., 2015, 2017). For an additional three dyads (10%), one 

participant in the dyad discovered and utilized oscillatory 

movements as a containment strategy, while the other 

participant exhibited S&R behavior. This strategy asymmetry 

was also observed by three (33%) of the COC-discovering 

dyads prior to COC discovery. In all instances, the participant 

exhibiting oscillatory behaviors was the same. This 

asymmetric strategy will be referred to as Oscillatory-S&R. 

The strategy dyads adopted when completing the 

shepherding task (Strategy: S&R, Oscillatory-S&R, COC) 

had a significant effect on task performance, F(2, 160.24) = 

10.79, p < .0001. Consistent with previous research (Nalepka 

et al., 2015, 2017), dyads utilizing the COC strategy exhibited 

greater performance compared to when the S&R strategy was 

used (average marginal effect [AME] = 13.43 s, SE = 3.18, 

95%CI = [7.00, 19.86]), t(136.7) = 4.13, p < .0001. A similar 

result was found when only one participant in the dyad 

utilized oscillatory behaviors as a containment strategy 

(AME = 11.51 s, SE = 3.90, 95%CI = [3.81, 19.20]), t(173.1) 

= 2.95, p = .011. No difference was found in task performance 

between Oscillatory-S&R and COC trials, t(225.8) = 0.43, p 

> .99, indicating that only one participant is required to 

discover oscillatory behaviors as an effective strategy. These 

results follow fitting a model consisting of the following 

fixed effects: Trial Success (Yes, No) and Strategy, and a 

random effect of Trial Success. 

Like the research findings of Abney et al. (2015) and 

Wallot et al. (2016), succeeding in the shepherding task was 

associated with less coupling of perceptual-motor states 

between participants than during failed attempts (AME = -

2.84 %REC, SE = 0.28, 95%CI = [-3.39, -2.29]), t(29.4) = -

10.0, p < .0001. Similarly, the strength of this coupling was 

also less during successful trials (AME = -4.63 √MaxL, SE = 

0.27, 95%CI = [-5.16, -4.10]), t(28.9) = -16.86, p < .0001. 

Additionally, the strategy dyads used influenced the strength 

of the coupling between perceptual-motor behaviors, F(2, 

12.01) = 4.96, p = .03. Specifically, dyads implementing the 

COC strategy exhibited weaker coupling as compared to 

when dyads implemented the S&R strategy (AME = -2.03 

√MaxL, SE = 0.63, 95%CI = [-3.27, -0.80]), t(251.8) = -3.16, 

p = .005 (all other comparisons p ≥ .82). The strategy dyads 

used did not have an effect on the number of perceptual-

motor states that were shared (%REC), F(2, 12.26) = 0.41, p 

= .68. The %REC and √MaxL models contained the 

following fixed effects: Trial Success and Strategy, and 

random effects for Trial Success and Strategy – Oscillatory-

S&R. MaxL was transformed by computing the square root 

due to skewness in the data. The models also controlled for 

potential confounding effects that may influence the amount 

of observed behavioral recurrences. Specifically, the models 

included 1) the mean proportion of gaze data that was valid 

and (%Gaze Validity) 2) the total distance participants’ hands 

traversed during the trial (averaged across participants, Hand 

Travel). 

Were there particular interactions between participants that 

differentiated whether they would discover that performing 

oscillatory behaviors was an effective strategy to contain the 

fleeing agents? To investigate this question, additional 

models predicting state coupling (%REC) and coupling 

strength (MaxL) were constructed. The models included the 

following trials: for dyads where at least one participant 

discovered the oscillatory movement strategy, S&R trials 

were included which occurred prior to the first observation 

of oscillatory behavior. For dyads where oscillatory behavior 

was never observed (non-discoverers), all trials were 

included. The models contained the following fixed effects: 

Trial Success and Discovered Oscillations (Yes, No). 

Additionally, the model predicting %REC also contained 

Trial Success as a random effect. Additionally, to control for 

confounding effects that may impact the recurrence results, 

%Gaze Validity and Hand Travel were also included as fixed 

effects for the model predicting %REC (their inclusion in the 

MaxL model did not improve model fit, χ2(2) = 4.79, p = .09). 

As before, successful trials were associated with fewer 

instances of shared perceptual-motor states between 

participants (AME = -2.95 %REC, SE = 0.25, 95%CI = [-

 
Figure 3: Three examples of recurrence plots (RPs) from the Multidimensional Cross-Recurrence Quantification Analysis 

(MdCRQA). Black regions indicate timepoints where both participants exhibited a similar perceptual-motor state. Non-

discoverers (left) exhibited fewer shared perceptual-motor states compared to Oscillatory-discoverers (middle). Once the 

Oscillatory-S&R or COC strategy was discovered (right), the length of time participants maintained perceptual-motor 

coupling decreased. See text for more details. 
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3.48, -2.42]), t(22.2) = -11.61, p < .0001, as well as weaker 

coupling strength (AME = -4.63 √MaxL, SE = 0.25, 95% CI 

= -5.12, -4.14], t(20.2) = -18.23, p < .0001. Additionally, 

dyads who go on to discover oscillatory behaviors exhibited 

more coupled perceptual-motor states when performing the 

S&R strategy compared to non-discovering dyads (AME = 

1.01 %REC, SE = 0.37, 95%CI = [0.26, 1.75]), t(31.2) = 2.76, 

p = .01. However, there was no difference in the strength of 

the coupling between participants (AME = 0.14 √MaxL, SE 

= 0.47, 95%CI = [-0.78, 1.06]), t(31.1) = 0.30, p = .78. 

Additionally, there was no difference in task performance 

between Oscillatory-discovering and non-discovering dyads, 

t(32.0) = -0.24, p = .81. 

Collectively, the interpretation of these results is that what 

may differentiate dyads who discover oscillatory behaviors 

from non-discoverers may be due to incidental moments 

resulting in the coupling of perceptual-motor behaviors, as 

opposed to differences in the amount of explicit interpersonal 

coupling (as would be indicated by MaxL). Although a 

baseline measure of social affiliation was not captured prior 

to participants completing the shepherding task, the post-

experiment measure of participants’ impressions of their 

partner did not show an effect whether participants 

discovered oscillatory movements (AME = 0.24, SE = .51, 

95%CI = [-0.77, 1.25]), t(16.0) = 0.46, p = .65. There was an 

effect of familiarity of one’s partner prior to the experiment 

on their social impression following the experiment (AME = 

1.69, SE = .77, 95%CI = [0.17, 3.21]), t(23.2) = 2.13, p = 

.044. However, of the four participants (2 dyads) who have 

previously interacted with their partner, only one participant 

discovered oscillatory movements as an effective 

containment strategy. The model predicting social 

impressions included observations at the participant level, 

which were nested within the dyad. The model contained the 

following fixed effects: Discovered Oscillations (Yes, No) 

and Familiarity (Yes, No), and a random effect of Discovered 

Oscillations at the dyad level. 

Discussion 

The experiment sought to determine whether the discovery of 

oscillatory behaviors as a containment solution in the 

shepherding task can be predicted by specific interactions 

between participants and their partner. The results 

demonstrate that oscillatory-discovers can be differentiated 

from non-discovers by an increase in the amount of shared 

perceptual-motor states (as measured using %REC) when 

completing the task using the S&R strategy. However, the 

strength of perceptual-motor coupling (as measured using 

MaxL) did not differentiate discoverers from non-discovers, 

suggesting that Oscillatory-discoverers were incidentally 

coupled to their partner. Future analyses will determine how 

the observed interpersonal coupling relates to chance-level 

interactions using surrogate data. This involves randomly 

selecting participants to construct new, unobserved dyads. 

In the human social interaction literature, there has been a 

historical bias in attributing increases in coordination, or 

synchronization of behavioral or physiological states, to 

beneficial outcomes (Mayo & Gordon, 2020). However, as 

highlighted by recent research, the utility of behavioral 

synchronization in goal-directed joint action is task-specific 

and may result in worse performance (Abney et al., 2015; 

Wallot et al., 2016). Here, the discovery of the COC strategy 

not only resulted in better task performance, but its use also 

reduced the synchronization of perceptual-motor states 

between participants, as indexed by MaxL. Although 

consistent oscillatory movement is more physically effortful, 

it may result in lesser attentional demands compared to 

chaining together discrete motions consistent with S&R 

behavior (Nalepka et al., 2019). 

The incidental coupling of perceptual-motor states is 

hypothesized to be driven by the interactions between 

participants and the task environment. Previous work using 

agent-based models demonstrated that COC-like behavior 

can emerge from agents implementing S&R behavior 

(Nalepka et al., 2021) when using an agent selection heuristic 

that incorporates an agent’s position as well as their velocity. 

Similarly, recent research using supervised machine learning 

and explainable-AI to elucidate the perceptual features 

novices and human experts use during the shepherding task 

found that experts incorporate direction of heading 

information when making pursuit decision, while novices 

relied heavily on positional information alone (Auletta et al., 

2023).  

Inspired by these findings, future analyses will evaluate 

whether Oscillatory-discovers incorporated, or learned to 

incorporate, a richer set of perceptual features when making 

their decisions as to which agent to pursue during the task. If 

so, then the resulting interactions between participants and 

the task environment may generate information that scaffold 

the emergence of oscillatory movements as an effective 

containment strategy. The feeling of insight some 

participants experience (Nalepka et al., 2017) may therefore 

be due to the realization that they can exploit these oscillatory 

movements explicitly as a task strategy (Nalepka et al., 

2021). Although this assumes non-discoverers perceive a 

different set of features that prevent these emergent dynamics 

from forming, it is also plausible that similar dynamics also 

emerge for non-discoverers, but these participants fail to 

perceive and exploit this dynamic explicitly. 

Finally, previous research has developed a dynamical 

model that accounts for the transitions between S&R and 

COC strategies (Nalepka et al., 2019). This model has been 

employed for human-machine interaction (Nalepka et al., 

2019), skill training (Rigoli et al., 2022), and to constrain the 

development of agents trained using deep reinforcement 

learning (Patil et al., 2021). Future research can adapt these 

same models to provide accommodation for individual 

differences in decision-making in social settings, affording an 

opportunity for artificial agents to play the role as teachers, 

coaches, or facilitators to encourage the development of 

effective or desired patterns of social behavior. 
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