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ABSTRACT OF DISSERTATION

Mapping and Planning for Autonomous Vehicles in Dynamic Urban Settings

by

David Paz Ruiz

Doctor of Philosophy in Computer Science

University of California San Diego, 2023

Professor Henrik I Christensen, Chair

In highly dynamic urban environments, software stacks for autonomous driving applica-

tions must quickly adapt to fast changing environments. Examples of dynamic scenarios include

construction sites, road closures, and lane level updates. Failure to adapt to changes in map

definitions can result in catastrophic failures in the system that can lead to accidents or, at best,

rule violations in shared public roads. This work focuses on identifying strategies that leverage

automatically generated map representations to minimize human-in-the-loop efforts and explores

methods for integrating nominal planners in the global planning task.

The first part of this dissertation covers multi-class semantic mapping for large scale urban

driving applications. As part of this framework, sensor fusion based strategies are applied to

xvi



provide robust depth and semantic estimates from the scene without making strong assumptions

about the road topology. Secondly, rasterized and graphical representations are jointly leveraged

to formulate a nominal global planning approach for lane-level navigation. This method utilizes

the semantic maps introduced and employs a conditional generative model to explicitly model the

multi-modal distribution of trajectories that are feasible when driving in an urban setting. We

additionally provide details from real-world testing and the open-source data collected from the

UC San Diego campus during 2020-2021. In the last chapter, 2D and 3D centerline prediction

methods are introduced to reduce the gap in real-time scene understanding. This contribution

outlines an automatic label generation process and additionally leverages an occlusion handling

approach to reason about centerline prediction with varying degrees of occlusion. The methods

proposed achieve robust performance in diverse driving scenarios with promising directions in

autonomous driving architectures.
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Chapter 1

Introduction

The evolution of autonomous driving technology has shown potential for a new era of

transportation, promising increased safety, efficiency, and convenience. The pursuit of fully

autonomous vehicles has spurred intensive research and innovation, leading to the development

of cutting-edge techniques that push research boundaries. In recent years, the challenges of

autonomous driving have shifted from mere navigation to encompass a deeper understanding of

the environment and dynamic decision making. As vehicles navigate complex and dynamic urban

landscapes and interact with a variety of agents, the need for sophisticated solutions becomes

evident. However, building autonomous systems for operation in urban environments requires

dynamic mapping, planning in the presence of dynamic objects, and generalization beyond fixed

environments. Hence, we propose a model for mapping and planning based on the use of a

minimal set of prior models and show that on-the-fly perception and interpretation allows design

of systems for operation in dynamic urban settings.

The subsequent chapters provide a detailed account of the contributions presented within

this dissertation. Chapter 2 introduces a framework for semantic map generation. Through

the integration of sensor fusion, this approach lays the groundwork for a more comprehensive

understanding of a surrounding environment.

1



Building upon the foundation laid by the previous chapter, Chapter 3 explores the concept

of dynamic trajectory generation by leveraging the power of conditional generative models. This

approach can enable planners to adapt to changing global plans while reducing dependence on

expensive map priors. The result is a step towards reducing the reliance on HD maps–which

present a considerable scalability and maintenance challenge for larger scale deployments.

Chapter 4 introduces real-time 2D and 3D centerline prediction models by leveraging

automatic label generation and occlusion handling techniques. The methods explored aim to

simplify the complexities in scene modeling while focusing on downstream applications such

as global planning. A number of quantitative and qualitative evaluations are performed with

various datasets. Finally, a number of conclusions and directions for future work are presented in

Chapter 5.

In addition to the technical contributions presented in this dissertation, the datasets and

code repositories associated with the different components are open and publicly available to

facilitate the development of future research directions within the scientific community. These

datasets and repositories can be accessed at http://avl.ucsd.edu and at https://github.

com/AutonomousVehicleLaboratory. Additional details are provided in the different sections

of the text.

2
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Chapter 2

Scene Understanding

High-definition (HD) maps provide useful information for autonomous vehicles to under-

stand the static parts of the scene. Due to the nature of the information encoded in HD maps–such

as centimeter-level definitions for road networks, traffic signs, crosswalks, stop signs, traffic

lights, and even speed limits–many of these maps become outdated during construction or road

network changes. Given these fast-changing environments, manually annotated HD maps become

obsolete and may cause vehicles to perform inadequate reference path tracking actions leading

to unsafe scenarios. In the process of HD map generation, extracting semantics and attributes

from data takes the most amount of the work [Jia18]. A model that automates this process could

improve HD map generation, reduce labor costs, and increase driving safety.

Retrieval of centimeter-level semantic labels of the scene is a non-trivial task. Prior work

such as [DFRDW11, SSLT12] adopted Conditional Random Fields (CRF) to assign semantic

labels. The advancement of deep learning also provides promising results in terms of retrieving

semantic information from images. State of the art semantic segmentation algorithms such as

[LSD15, ZSQ+17, CZP+18] generate pixel-level semantic labels with greater accuracy. Re-

searchers have also explored methods to create semantic maps of the environment: examples

are given in [MCUS18, MLU17, HML+19]. Multi-sensor fusion has been used to improve the
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robustness of these algorithms; however, these approaches either use aerial imagery to extract

road information or do not explicitly map the lane and crosswalk information, which are required

for HD maps. Therefore, a detailed semantic map for urban autonomous vehicle applications is

still of interest to explore.

To address these gaps, this work focuses on leveraging dense point maps built from a

16-channel LiDAR and state of the art semantically labeled images from deep neural networks,

trained only on a publicly available dataset, to automatically generate dense probabilistic semantic

maps in urban driving environments that provide robust labels for roads, lane marks, crosswalks,

and sidewalks. We create a bird’s eye view (BEV) semantic map of the environments by modeling

the uncertainty of the semantic segmentation network with a confusion matrix formulation. Fur-

thermore, the fusion of LiDAR intensity slightly improves the accuracy of lane mark segmentation

on the road. The comparison with a ground truth HD map that has been tested in our autonomous

vehicle for campus mail delivery tasks shows that the proposed model can identify semantic

features on the road and localize them accurately.

2.1 Related Work

2.1.1 Semantic Segmentation

Semantic segmentation is the task of assigning each observed data point (e.g. pixel

or voxel) to a class label that contains semantic meanings. Research in this field has made

tremendous progress as large scale datasets like CityScapes [COR+16], CamVid [BFC08],

Mapillary[NORBK17], become available. Given that HD maps require fine-grained labeling

for each object, building such maps can significantly benefit from the pixel level information

provided by semantic segmentation algorithms.

In 2D semantic segmentation, predominant works [LSD15, ZSQ+17, CPSA17] leverage

pyramid like encoder-decoder architecture to capture both global and local information in the
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images. Trained on the large scale datasets aforementioned, these network architectures can

easily detect objects on the road even when these objects only have textural differences like

colors. In 3D semantic segmentation, work has also been done by modeling 3D LiDAR point

clouds as range images and then feeding them to a classical CNN network to classify each

point[WWYK18, HPSS20, WSY+18]. While the results of these works seem promising, due to

the nature of LiDAR sensors, these methods cannot distinguish objects with texture differences

such as colors. Researchers have also proposed an alternative approach of segmentation on

voxelized point clouds [TCA+17]. However, such 3D convolutions are computationally expensive

and usually require dense raw point cloud measurements (i.e 32 or 64-channel LiDARs), making

it troublesome to operate in real time.

2.1.2 Semantic Mapping

Semantic mapping has a rich meaning in various literature [KG15]. We adopt the definition

from [WS08], which is the process of building maps that represent not only an occupancy metric

but also other properties of the environment. In the context of autonomous driving, the drivable

areas and road features are often included.

Other methods like [SSLT12] propose CRF based methods in dense semantic mapping.

They use associative hierarchical CRF for semantic segmentation and pairwise CRF for mapping.

The pairwise potential minimization enforces the output smoothness. Sengupta et. al. [SGST13]

utilize a stereo pair to estimate the depth robustly, but they do not explicitly map the lane and

crosswalk information, which are required for HD maps.

Daniel et. al. [MCUS18] fuse semantic images from a camera with LiDAR point clouds,

but they use real-time raw point clouds from a 64-channel LiDAR providing much denser real-

time information whereas we can build map from a 16-channel LiDAR that has lower cost.

Additionally, their focus is on off-road terrains, in contrast to our focus: the urban driving

scenario. Urban driving scenes require special treatment of classes that contain specific traffic
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rules, such as lane marks and crosswalks.

2.1.3 Probabilistic Mapping

Probabilistic maps have been successfully applied to localization [LT10] [STGBS17] and

pedestrian motion prediction [WRA18]. Probabilistic maps can capture the inherent distribution

information in a discrete space while filtering the noise. In this work, we successfully apply

these techniques to semantic map generation while leveraging the prior information in LiDAR’s

intensity channel to produce more stable semantic maps.

2.2 Semantic Segmentation for Mapping Applications

The framework consists of three parts: semantic segmentation, semantic association,

and semantic mapping. The overall architecture is shown in Figure 2.1. We use semantic

segmentation networks to predict semantic labels on 2D images and then associate semantic

labels with densified 3D point clouds. Afterwards we apply probabilistic mapping to capture the

distribution of labels assigned to each grid. In this section, we will describe each part in detail.
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Figure 2.1: Our pipeline for generating probabilistic semantic maps for road feature extraction
and HD mapping applications. Our model consists of three parts: i) Semantic Segmentation:
predict semantic labels based on 2D images. ii) Semantic Association: associate point clouds
with predicted semantic labels. iii) Semantic Mapping: use a probabilistic semantic mapping
method to capture the latent distribution of each label and utilize LiDAR intensity to augment
lane mark prediction.

2.2.1 Image Semantic Segmentation

A DeepLabV3Plus [CPSA17] network architecture is leveraged to extract the semantic

segmentation from 2D images. A lightweight ResNeXt50 [XGD+17] pre-trained on ImageNet

[RDS+15] is used as our feature extraction backbone. Compared with other backbones like

ResNet101 [HZRS16a], it can achieve the same mean of intersection over union (mIoU) value

with fewer parameters and faster inference times. We also adopt the depth-wise separable

convolution inspired by [CPSA17, Cho17] in our spatial pyramid layers and decoder layers to

further improve the inference time while preserving the same performance.

The semantic segmentation network is trained in the Mapillary Vistas dataset [NORBK17].

This dataset provides a large number of pixel-level semantic segmented images with 66 different

kinds of labels in autonomous vehicle scenarios. We reduce the labels into 19 classes by removing

labels that are not essential in our driving environment (e.g. snow) and merging labels with

similar semantic meanings together (e.g. zebra line and crosswalk). This decision is made based
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on the observation that some classes are unlikely to appear in our test environment. The details of

label merging can be found in Section 2.3. All the training labels and their associated colors are

presented in Table 2.1.

Table 2.1: Training Labels and Their Associated Colors for the Semantic Segmentation Network

Training Labels
curb crosswalk road sidewalk

building person bicyclist motorcyclist
lane marking (white) sky vegetation manhole

pole traffic-sign bicycle bus
car motorcycle truck

2.2.2 Point Cloud Semantic Association

Given a semantic image, estimating the relative depth for the semantic pixel data can

help us reconstruct the 3D scene with semantic labels. This information, however, is usually

not available. Depth estimation from multi-view geometry requires salient features, which is

prone to error on the road or in challenging lighting conditions. In contrast, LiDAR sensors

can readily capture the depth information of the objects, but as they are often equipped with

few optical channels (e.g. 16), it can be difficult to infer the underlying geometry in real time

due to their sparse resolution. To alleviate this problem, our method leverages centimeter-level

localization [PLH+19] to extract small dense regions of a previously built dense point cloud map.

These smaller regions are then projected into the semantically segmented image to retrieve depth

information. Building such a dense point map can be automated and only requires driving through

the area once and is thus less expensive than human labeling.

With localization in place, the intrinsic camera parameters and the relative transformation

between the camera and LiDAR are used to project point cloud data into the 2D image space. The

point cloud data is then associated semantically using the nearest neighbor search. The relative

transformation between the camera and the LiDAR is estimated using the PnP method [LMNF09],
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and the intrinsic matrix of the camera is determined by a traditional chessboard method.

2.2.3 Semantic Mapping

While a point cloud with semantic labels naturally preserves the 3D geometry of the

environment, such representation of the scene is subject to the sensor measurement noise and

small semantic label fluctuations. To address this, we maintain a local or global probabilistic

map, where the local map can provide direct dense semantic cues around the ego-vehicle and the

global map can help automate the process of building HD maps. Semantic occupancy grids are

used for both local and global semantic maps while the main difference is the reference frame.

Our quantitative comparisons are performed in the global frame.

A local probabilistic map is a bird’s eye view representation in the body frame (rear-axle)

of the ego vehicle. We build a local map for a given frame i, with the origin defined by the

corresponding pose, and update it by using the semantic point cloud. Only when the difference

of our new pose and old pose is beyond a threshold do we construct a new map and transform

the previous map to account for vehicle movement. In contrast, a global probabilistic map

operates directly in the global frame without the need of map transformations. A side-by-side

visual comparison is shown in Figure 2.3; where the top image corresponds to a local frame

representation and the bottom image corresponds to a global frame representation.

The semantic occupancy grid has height H, width W , and channels C. Each channel

corresponds to a semantic class of the scene. When the semantic point cloud is constructed, we

project it onto the grid using the x and y components. The semantic label of the point will be

regarded as the observed semantic label of its nearest cell ci j. Every cell in the grid covers a d×d

square area (in meters) of the physical world where the value d is a discretization factor.

The robustness of the semantic occupancy grid estimation is enhanced by a probabilistic

model which leverages both the semantic and LiDAR intensity information from the point cloud

to reduce the prediction error. We denote the semantic label distribution across all the channels
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as St , the observed semantic labels as zt , and observed LiDAR intensity as It . Hence, the task

is to estimate St from our past observations, i.e. the probability distribution of P(St |z1:t ,I1:t).

By following the Markov assumption and assuming that observed semantic labels and LiDAR

intensity are conditionally independent given St , the update rule of the semantic probability is

P(St |z1:t ,I1:t) =
1
Z

P(zt |St)P(It |St)P(St−1|z1:t−1,I1:t−1)

where Z is a normalization factor. Here we also assume that P(St |z1:t−1,I1:t−1) =

P(St−1|z1:t−1,I1:t−1). We model P(zt |St) with a 2D matrix M where an element in the ith row

and jth column represents the likelihood of label i being predicted as label j. It characterizes our

confidence of prediction to allow a more accurate probabilistic update. We model P(It |St) as a

function of the reflectivity rate of each class in the scene.

The intensity from LiDAR sensors serves a strong cue for different materials on the scene.

For example, the top image in Figure 2.6 illustrates a BEV intensity map on a road segment.

Because lane marks are painted white, they can reflect light at higher intensity and thus be

segmented out with a threshold k. We can use this as a prior to reason about the layout of the

scene: it can help for the cases when semantic segmentation fails to capture the true label in poor

lighting conditions.

2.3 Experiments and Data

The experimental data was collected by using a full scale autonomous vehicle platform

[PLH+19]. The vehicle is equipped with a 16-channel LiDAR and six cameras. The cameras are

set up as two on the front, one on each side and two on the back as shown in Figure 2.2. Data

from the front left camera, LiDAR, and vehicle position is recorded for experiments by driving

along multiple areas at the UC San Diego campus. The camera data is streamed at approximately

13 Hz and the LiDAR scans at approximately 10 Hz. We drive through the campus to collect
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Table 2.2: Quantitative evaluation on our labeled data for road, crosswalk and lane mark regions.
Refer to section 2.3.2 for details.

Methods
IoU

mIoU
Accuracy

roads crosswalks lane marks roads crosswalks lane marks
Vanilla 0.715 0.537 0.135 0.462 0.797 0.577 0.180

Vanilla+I 0.712 0.510 0.163 0.462 0.789 0.548 0.234
CFN 0.671 0.605 0.301 0.526 0.708 0.696 0.652

CFN+I 0.669 0.588 0.298 0.518 0.705 0.676 0.657

data for urban driving scenarios–including challenging scenarios like driving along steep hills,

intersections and construction sites.

Figure 2.2: Vehicle Sensor Configuration
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2.3.1 Image Semantic segmentation

Training Dataset

The Mapillary data set used comprises 18,000 training images and 2,000 validation

images. We merge terrain into vegetation, different types of riders into the human category,

traffic-sign-back and traffic-sign-front into traffic-sign, bridge into building, and different kinds of

crosswalks into a single crosswalk class. The training dataset is augmented by random horizontal

flips with 0.5 probability, random resize with the scale ranging from 0.5 to 2, and random

crop. These images are also normalized to a distribution with mean of (0.485,0.456,0.406) and

standard deviation of (0.229,0.224,0.225). Due to the similarity of the Mapillary dataset and

our driving scenarios, as well as the intense data augmentation in the training process, we do not

visually observe severe performance drop when testing it in the UC San Diego campus.

Hyperparameters

A batch size of 16 with synchronized batch normalization [ZSQ+17] is used to train the

network for 200 epochs on eight 2080Ti GPUs with input image sizes of 640×640. The output

stride of the network is eight. We use a SGD optimizer and employ a polynomial learning rate

policy [CPSA17, ZSR+19] where the learning rate is base lr× (1− epoch
maxepoch)

power with 0.005

base learning rate and power=0.9. The momentum and weight decay are set to 0.9 and 4e−5,

respectively.

Metrics

To quantify the performance of the network, the mean intersection-over-union (mIoU)

metric is used. This metric measures the average perfomance at the pixel-level across the test

samples. The mIoU of ResNeXt50 in the validation set is 68.32%. Compared with ResNet101,

ResNeXt50’s performance slightly decreases but requires much less memory (from 367MB to
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210MB), which is preferable for our onboard hardware where the memory may be limited. The

inference time of the network is approximately 0.2s per image.

2.3.2 Semantic Mapping

A region that spans 1.1 km of the UC San Diego campus is selected for evaluation in the

map generation benchmark. An HD map has been manually annotated in this area. It contains

road information such as crosswalks, sidewalks, and center of road lane definitions and has been

tested in realistic environments. Based on these labels, we generate our semantic map with five

channels: road, crosswalk, lane marks, vegetation, and sidewalk with resolution d = 0.2 meters.

The labeling of HD map is not a trivial work. However, it exactly showcases the value of being

able to automate the entire process.

The mIoU and pixel accuracy are used as the metrics of our evaluation. While mIoU

reflects our model’s segmentation recall and precision, it is worth noting these metrics are

influenced by the sparsity of the LiDAR point cloud: the model output may be very accurate but

may contain a lot of unclassified cells (holes). We address this problem by using a smoothing

kernel to interpolate the missing labels on our map.

For all the experiments in Table 2.2, we clip the local dense point maps extracted up to

15m along the longitudinal axis and −10 to 10 m along the lateral axis of the vehicle as the

semantic segmentation performance drops significantly for a longer range.

Modeling of Observation Uncertainty

We first validate the design of matrix M that models the observation uncertainty of the

semantic label zt given St . For numerical stability reasons, we represent the elements of M

logarithmically. We investigate two approaches: one is defined by µ(I+λI) where λ is a hyper-

parameter and µ is a normalization factor: we refer to this model as Vanilla. Another approach is

the confusion matrix of the semantic segmentation network in the Mapillary validation data set:
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we define this as CFN. During the inference time, we assign each cell to the label with the highest

probability. Quantitative results are shown in Table 2.2. Compared with Vanilla version, CFN

has a significant improvement in IoU and pixel accuracy on the classes of crosswalks and lane

marks. This indicates the advantage of utilizing the confusion matrix of the network to model the

prediction error in the semantic segmentation and thus provides a better map generation result.

Integration with LiDAR Intensity

In order to utilize the fact that different materials on the road have different reflectivity,

we first remove all the intensity data that is less than k = 14 (e.g. Figure 2.6); this normalized

threshold was manually calibrated for a Velodyne VLP-16 LiDAR. Then during the semantic

mapping step, if a label is predicted as lane marks, we increase its logarithmic probability by a

constant factor γ. This essentially suppresses our prediction of other classes and increases our

prediction confidence for lane marks. The models that contain the integration of intensity have

a ”+I” in Table 2.2. For Vanilla+I, we observe better results with respect to Vanilla in terms of

accuracy and IoU of the lane marks but slightly decreases for roads and crosswalks, indicating

the benefit of intensity integration for lane mark prediction. This tendency, however, does not

replicate for CFN+I with respect to CFN. To achieve further improvement, a more sophisticated

function may be needed to model the LiDAR intensity.

An example of the global map generated by our CFN+I model for the entire test region

is shown in Figure 2.7. A region of the map has been amplified in the figure, showing that our

model can capture the static elements on the road clearly. Additional maps generated for wider

regions are shown in Appendix A.1; these maps are utilized in Chapter 3.

2.3.3 Comparison to Sparse LiDAR Scan

One possible alternative for associating semantic images with depth information is to

use the point cloud data generated by the LiDAR in real time. By following a similar mapping
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Figure 2.3: The map generation result of our algorithm. Top image is the local map and the
blue car indicates the position of ego vehicles. Bottom image is the same region in global map.

Figure 2.4: The semantic map generated from real time LiDAR scan. The black region on the
scene indicates unknown area which is not detected by the LiDAR sensor.

approach, we project the point cloud onto the semantic image frame and build the semantic map.

Figure 2.4 shows that this approach gives real-time performance. However, for the 16-channel

LiDAR used, the point cloud scans are too sparse to construct a semantic map at greater distances.

This becomes worse when the car drives faster. Therefore, a pre-built dense point cloud map

allows us to construct semantic maps for longer ranges.

2.3.4 Comparison to Planar Assumption

Another method we explored is back-projecting the 2D semantic image into the 3D

space using a homography with the assumption that the ground is flat. The back-projection

approach leaves no black holes. Nevertheless, the planar assumption fails along steep hills or
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Figure 2.5: The semantic map generated by back-projecting 2D semantic image into the 3D
space with planar assumption. The map presented in the vehicle frame. The distortion of lines
indicates the failure case.

road intersections in urban driving scenarios as shown in Figure 2.5: this leads to considerable

distortion at longer ranges.

Figure 2.6: A visualization of our generated map (bottom left), the ground truth label (bottom
right), and the LiDAR point cloud map (top). The point cloud map has been thresholded based
on their intensity value. Any points that have intensity below a certain threshold k are discarded.
With this threshold, we can clearly see the layout of the crosswalk and lane marks on the road.

2.3.5 Summary

By fusing the rich information from semantic labels on image frames, our comparisons to

manually annotated maps indicate that this work effectively introduces a statistical method for

identifying road features and localizing them in bird’s eye view. This method can be extended for

automating HD map annotation for crosswalks, lane markings, drivable surfaces, and sidewalks.

These features can be incorporated for generating HD maps independently of predefined HD
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map formats with the additional extension of centerline identifications which are often used

for path tracking algorithms. By accounting for the road network junctions and forks, future

work involves the full automation of road network annotations that could leverage graphical

methods. While a combination of the techniques proposed can potentially address the scalability

drawbacks from HD maps, they also propose new areas of research on high-level dynamic

planning. Currently, many autonomous driving architectures require dense point cloud maps for

localization and come at a scalability and maintenance cost in a similar way that HD maps do.

By dynamically estimating drivable surfaces, centerlines, lane markings and other road features,

the notion of using centimeter-level localization could be removed as long as immediate actions

can be extracted from a high-level planner. Initial work towards this direction is covered in

Chapter 4–which focuses on real-time centerline detection in 2D and 3D without detailed scene

maps.

Chapter 2 includes material from the paper published in Probabilistic Semantic Mapping

for Urban Autonomous Driving Applications in International Conference on Intelligent Robots

and Systems (IROS), Las Vegas, NV, Oct 2020. David Paz, Hengyuan Zhang, Qinru Li, Hao

Xiang, and Henrik Christensen. The dissertation author was one of the primary co-authors and

contributed to the implementation, design, and the dataset associated with the approach. Zhang

contributed to the dataset, implementation, and evaluation of the semantic mapping module. Li

contributed to the semantic segmentation design, training, and evaluation of the semantic mapping

pipeline. Xiang contributed to the semantic mapping evaluation and formulation of the confusion

matrix formulation.
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Figure 2.7: The BEV version of our generated map in the entire region of our testing data set.
Our semantic map is displayed on top of the dense point cloud map. One segment of the map
has been magnified to show the details of the map. Best view in color.
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Chapter 3

Dynamic Trajectory Generation for Urban

Environments

A fundamental component for path planning and navigation in autonomous driving

systems involves mapping and localization. To generate sequences of control actions that can be

executed by an autonomous system, global planners must formulate a navigation strategy that

considers the position of the agent on the map and the reference paths needed to reach a goal.

These strategies can be characterized by utilizing map information and standard graph search

strategies such as A* [HNR68].

Global plans can be generated using different types of maps such as High Definition (HD)

maps or coarse maps. The former are commonly used in modern autonomous driving architectures,

providing detailed information about the road network, lane markings, crosswalks, and drivable

areas. With complete road network and lane definitions, trajectory information is readily available

during path planning, simplifying navigation, path tracking, and control. However, scalability is

a challenge for large-scale deployments due to the manual or partially automated map labeling

process, as well as the underlying maintenance process needed if construction displaces the

original definitions.
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In contrast, a coarse map representation for global planning can offer scalability advan-

tages in dynamic environments over HD maps. Examples of coarse maps include open-source

maps such as OpenStreetMaps (OSM) and proprietary maps like Google Maps. These lightweight

maps generally provide road segment and intersection labels but lack lane and trajectory informa-

tion. Therefore, a research objective entails dynamically identifying traversable trajectories by

aligning coarse plan representations with real-time perception. These research directions can also

enable autonomy applications with fewer priors that can generalize in areas that are constantly

changing such as construction sites.

In this chapter, we introduce conditional generative models for generating dynamic ego-

centric trajectories without manually annotated HD maps. Given a global plan Gt that represents

the plan to reach a destination and a local scene representation Lt at time t that encodes the

road features, lane markings and drivable areas, the task at hand becomes estimating a set of

traversible waypoints y = yt ,yt+1, . . . ,yt+H with respect to the ego-vehicle or a map frame– where

H corresponds to the generation horizon. In the next three subsections, we describe the global

plan approach and representation (Gt), the local scene representation (Lt), as well as the CVAE

approach for modeling the distribution of feasible trajectories p(y |m), where m = (Gt ,Lt). An

important note to make here is that while obstacle detection, tracking, and motion planning are

not covered in this work, the generated trajectory can facilitate the development of interfaces

for these tasks. Hence, making it possible to estimate if an obstacle is blocking the road and if

evasive maneuvers need to be taken. This is discussed in the conclusion and left for future work.

3.1 Related Work

In this section, we review related research on HD map generation. We then look at research

related to two key components of our approach: lightweight maps and scene representations.
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3.1.1 HD/Vector Maps

Over the years, many different methodologies have been developed for autonomous

navigation in urban environments. Many of these methodologies use HD maps to facilitate the

process of path planning. Examples of classical motion planning and control architectures that

utilize HD maps include Autoware [KTI+15] and Apollo [apo17]. These types of architectures

have shown promising results for micro-mobility applications over relatively extended periods of

time [CPZ+21]. Similarly, end-to-end strategies [BKO18, ZLS+, IER+20, HYC+23, ZLD+21]

have increasingly gained popularity in the research community. These methods generally rely on

large training datasets [CKT+21] or simulation environments [DRC+17, RST+20] for develop-

ment and validation.

Recent work additionally explores building HD maps automatically to remove the limit

of scalability imposed by human labeling. The data representations are often captured from

aerial imagery or ground vehicles. Works from aerial imagery [BZT+23] can be limited by the

availability of images and will not be able to capture traffic signs; however, vehicles can naturally

provide more effective coverage. Homayounfar et al. [HMLU18] and Zhou et al. [ZTTZ21]

build lane-level HD maps in highway and urban areas, respectively. VectorMapNet [LYW+23]

proposes to predict vectorized representations directly, and MapTR [LCW+23] improves predic-

tion performance by using permutation invariant representations and loss. TopoNet [LCG+23]

further considers the association between lane-to-lane and lane-to-traffic elements (signs and

traffic lights), which are essential elements to downstream tasks. However, in contrast to these

efforts, our work focuses on the direct trajectory prediction task that is amenable for downstream

applications instead of the mapping process itself.
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3.1.2 Lightweight Maps

Methods that reduce the dependencies and priors on maps have also been an active area of

research in recent years. The underlying representations that encode turn-by-turn directions for the

global planning task are comparable to Google’s proprietary maps or the publicly available OSM.

For instance, generative models have been developed to encode the multimodal characteristics

of driving implicitly [HDVG19] and explicitly [ARKR19] by utilizing coarse maps such as

OSM [HDVG18]. An advantage of these representations is that the overhead associated with

curating and updating maps can be reduced by relying more on raw sensor data such as camera

image streams. Other related work involves utilizing a discrete action space such as “turn left,”

“turn right,” or “go straight” to shift towards “mapless” strategies. This idea also focuses on

minimizing the priors and reliance on maps; examples include Light Detection and Ranging

(LiDAR) based methods [CSU21] and camera-based works [HSG+20] by using one-hot encoding

to represent the desired action specifically for intersections.

3.1.3 Scene Representations

Recent developments in the semantic segmentation and sensor fusion literature have

enabled methods for scene understanding that seek to build scene representations with highly

detailed and accurate localization of road features without manual input. For example, [CLU+22,

DMCD21] focuses on generating 2D bird’s eye view semantic scene representations from monoc-

ular camera streams. While these present advantages for real-time scene understanding, they still

present considerable limitations in terms of occlusions and localization errors of road futures. Al-

ternative offline methods [PZL+] can address some of these limitations through a spatiotemporal

fusion process that leverage camera and LiDAR fusion. Nevertheless, these efforts still require

additional post-processing to extract lane-level trajectories that can be ingested by downstream

modules. To address this challenge, our work seeks to align coarse representations (similar to
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those described in Chapter 2) with 2D bird’s eye view semantic maps to estimate traversable

lane-level trajectories. The motivation for utilizing coarse maps is centered around providing high-

level global planning information with minimum priors and the use of semantic maps is to utilize

scene representations that are accurate, up-to-scale, and that can be generated automatically.

3.1.4 Trajectory Forecasting

An important aspect of our work involves dynamic path generation to be capable of

estimating feasible trajectories for the ego-vehicle. Our work is inspired by the latest developments

on conditional generative models that have been applied for road user trajectory forecasting

including pedestrians and vehicles. While prediction for other road users is out of the scope of

this work, we leverage similar methods for trajectory generation. Examples of models utilized for

prediction include LSTMs [AGR+16], Conditional Variational Autoencoders (CVAEs) [ILSP20,

SICP20], GANs [GJF+18], Graph Convolution Networks (GCNs) [YYZ17], and most recently

with Equivariant Continuous Convolutions (ECCO) [WLY21].

3.2 Representing Global Plans

Navigation requires choosing an optimal maneuver that aligns with a global plan and

objective. An example of this involves intersection navigation: when the vehicle is approaching

an intersection, there are multiple traversible trajectories but only one should be chosen and

executed. This depends on global planning information that describes the actions that need to

be taken to reach a destination given the current state of the vehicle. To capture this global plan

information and context, we leverage OpenStreetMaps in a similar fashion as [ARKR19].

First, a global planner is implemented based on traditional graph search algorithms. This

is performed by utilizing Global Navigation Satellite System (GNSS) traces to fetch and download
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open-source OSM data.* Each OSM is saved in an Extensible Markup Language (XML) format,

which encodes map connectivity information. This format is parsed and post-processed to

populate a graph with full road connectivity, where distance and road element information is

preserved. In practice, we perform a projection from a geographic coordinate system into a

Cartesian space by using the Haversine distance formula to approximate the relative distance

on a sphere (earth). This approximation allows us to characterize a graph search strategy that is

performed on a plane and assign weights based on units of meters, and also perform an egocentric

transformation based on the position and orientation of the agent on the map. An example of this

transformation can be seen in Figure 3.1, where we visualize the vehicle-centric rasterized (left)

and vectorized (right) representations that are utilized in our work.

The rasterized representation is generated by defining a blank image canvas and drawing

straight line segments that represent the road. In this representation, the road segments are

represented by white lines and the planned road segments are denoted in green. The size of the

image is 200px×200px with a 0.5m/px resolution. Given that this is a raster, the information

provided in Cartesian space is discretized to convert the map information into an image and

encoded using a Convolutional Neural Network (CNN) based encoder.

*https://www.openstreetmap.org/
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Figure 3.1: Global plan representations generated by our open-source navigation package. On
the left, an image-based representation is shown and on the right, the graph-based representation
is shown with various road features such as stop signs, crosswalks, and information about the
history and planned trajectories.

In contrast, the graphical representation of the road network elements is directly extracted

from the original graph by performing a local search within the vehicle location and state.

The nearby elements are additionally decorated with various attributes from nearby features

on a per-node basis such as stop signs, crosswalks, and traffic lights. This representation

considers every node in the graph as a 3D vector–where the first two dimensions represent

the 2D coordinates of the node element in an egocentric frame and the last dimension denotes

if the node corresponds to a traffic signal, pedestrian crosswalk, or a stop sign. This compact

global plan gm = {(wd
x ,w

d
y ,w

d
f )}D

d=1 is represented by a 2D tensor of shape D×3, where D = 40

waypoints are utilized to represent the global plan. The first D
2 waypoints represent the trajectory

directly behind the vehicle and the last D
2 waypoints represent the relative plan ahead of the vehicle.

A self-attention mechanism [VSP+17] is then applied on this input representation as shown in

Equation 3.1; where C = 3 and Q, K, V are linear projections of the path. In Section 3.5.4, we

perform an ablation study on the most relevant global planner features.

SA(gm) = gm + softmax
(

QKT
√

C

)
V (3.1)
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An important note in the design of our approach for the global planner is that the egocentric

transformation is performed after a global plan is determined with respect to the map frame.

This permits the egocentric representation to encode relative target information from a local

perspective up to a fixed horizon, which applies to both representations: the rasterized and

vectorized representations. Our implementation for the planner is open-source and implemented

using the Robot Operating System (ROS) framework. †

3.3 Semantic Scene Representions

To estimate trajectories that a self-driving car can execute, sufficient contextual informa-

tion must be gathered to represent the environment including lane markings, drivable areas and

even side walks. To provide these contextual cues, we generate and utilize 2D semantic maps.

Semantic maps include information about road features that are critical for navigation like

roads, lane markings, crosswalks and sidewalks. Our approach for generating semantic maps is

based on the models proposed in our prior work [PZL+] and Chapter 2. By fusing LiDAR and

camera data, this approach is capable of automatically generating representations of the world

with robust road features in a single pass of the scene without human annotation.

The algorithm consists of three parts, i) an image based semantic segmentation module,

ii) a fusion and association module, and iii) a probabilistic mapping module as outlined in

Figure ??. The input camera data goes through a semantic segmentation neural network (Deeplab

v3+ [CZP+18]) with a light-weight backbone to generate labels for each pixel. LiDAR point

clouds are then used to generate a dense point cloud map. We leverage localization to crop a

portion of the point cloud map that is close to the vehicle. This cropped local dense map is then

projected onto the semantic image to associate labels with each point. The point cloud with

semantic labels is projected to 2D along the z-axis while performing a probabilistic update. A

†https://github.com/AutonomousVehicleLaboratory/gps_navigation
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confusion matrix formulation is also applied (i.e. the error matrix associated with the semantic

labels), to manage uncertainty and increase robustness.

Figure 3.2: The figure represents the semantic mapping framework utilized to generate large 2D
BEV semantic maps for the UC San Diego campus. It is composed of a camera-LiDAR fusion
strategy that can aggregate multiple estimates across time and perform updates. The automati-
cally generated maps can then be used with localization to provide egocentric representations
for navigation applications.

To represent the 2D BEV semantic map, we use an occupancy grid-based representation

with three dimensions: (H×W ×C). The height H and width W of the grid represent spatial

dimensions, and the three channels C represent the color of different semantic classes, such as

roads, sidewalks, and buildings. In practice, these maps are generated automatically offline and

utilized during training with the known vehicle poses (estimated from localization). The position

and orientation of the agent is used to extract local regions with respect to the rear-axle of the

vehicle and perform a rotation such that the semantic features are aligned with the longitudinal

axis of the vehicle, i.e. the front of the vehicle points up in the 2D BEV local semantic scene

representation and the center of the image represents the rear-axle of the robot.

The map representation is scalable and can be continuously updated over time. At the

same time the generated semantic map has labels that can be understood by humans. It is a

challenge for the vehicle to automatically determine a path based on the pixel-level semantic map,

thus we explore its capability of being potentially used for navigation.

Once a semantic map has been generated, localization can be leveraged to estimate the

ego-vehicle pose (T ∈ SE(2)) and extract local semantic representations that account for the
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translation and orientation of the vehicle. An example is shown on Figure 3.3, where the vehicle

is represented by the red square and the front of the car always faces upward on the image frame.

Figure 3.3: An example of the semantic map representation. An ego-centric representation is
shown on the top right: red box denotes the rear-axle of the autonomous vehicle agent with an
applied transformation T.

3.4 Generative Models for Dynamic Trajectory Generation

As previously introduced in Section 3.1.4, CVAEs have been used for estimating an

external road user’s future trajectory. One advantage of these models is that they allow us to

explicitly encode the multi-modal aspects of trajectory prediction: based on a limited number of

observations, a road user is likely to take multiple future trajectories. In other words, there is not

a single best estimate in many cases.

In this section, we extend CVAEs for dynamic trajectory generation in the urban navigation

task. Nevertheless, there are a few key differences between road user trajectory prediction and our

approach. While trajectory generation is a multi-modal problem and the model must be capable

of representing various modes for driving through intersections as an example, the intent and

plan is known in advance and becomes deterministic when a high-level plan is given. In other

words, the model should be capable of estimating the distribution of all possible modes and their

corresponding trajectories but generate a single optimal trajectory given a high-level plan. In this
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context, we let y = {(x1,y1), . . . ,(xH ,yH)} represent the lane-level trajectory of interest and s and

g are the local semantic scene representation and the local global plan, respectively. To simplify

notation and the derivation for a CVAE, we let m = {s,g} jointly represent the semantic and local

plan information and rewrite the probability distribution as p(y |m).

A CVAE is a directed graphical model (Figure 3.4) that is formulated using an input

variable m, an output variable y, and an approximation for the distribution p(y |m). To perform

an approximation, a latent variable z is introduced and marginalized over all possible values as

shown in (3.2), where p(y |m,z) can be understood as a decoder and p(z |m) as an encoder.

However, one problem arises while estimating p(z |m) as this requires inference of p(m) as

shown in (3.3).

To mitigate the intractable representation of the posterior p(z |m), a recognition model

q(z | m,y) is introduced as an approximation that can be learned rather than treating it as a

closed-form formulation.

p(y |m) = ∑
z∈Z

p(y |m,z) p(z |m) (3.2)

p(z |m) = p(m | z) · p(z)
p(m)

(3.3)

Similar to [ILSP20] and [SICP20], importance sampling can be performed by multiplying

(3.2) with q(z |m,y)/q(z |m,y) and rewriting the sum as an expectation over q(z |m,y):

p(y |m) = Eq

[
pφ (y |m,z) pθ(z |m)

qψ(z |m,y)

]
(3.4)

For numerical stability reasons, during training the log-likelihood of p(y |m) is optimized

as shown in (3.5) and due to the complexity of the right hand expression, Jensen’s inequality is

applied as shown in (3.6). Furthermore, the expression to be maximized can be rewritten using

Kullback-Leibler divergence (3.7). The probability distributions are parameterized by different
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weights and are represented by subscripts ψ, φ, and θ.

log p(y |m) = logEq

[
pφ (y |m,z) pθ(z |m)

qψ(z |m,y)

]
(3.5)

logEq

[
pφ (y |m,z) p(z |m)

qψ (z |m,y)

]
≥ Eq

[
log

pφ (y |m,z) pθ(z |m)

qψ(z |m,y)

]
(3.6)

log p(y |m)≥ Eq
[
log pφ (y |m,z)

]
−Eq

[
logqψ(z |m,y)− log pθ(z |m)

]
= Eq

[
log pφ(y |m,z)]−KL

[
qψ(z |m,y)∥pθ(z |m)

] (3.7)

While training, pθ(z |m), and qψ(z |m,y) are jointly optimized and the latent variables z

are sampled from qψ(z |m,y). As previously derived in (3.4)-(3.7), we seek to maximize (6) or

in other words minimize LCVAE =−Eq log pφ (y |m,z)
]
+KL

[
qψ(z |m,y)∥pθ(z |m)

]
. While

this formulation alone can capture the multi-modal aspects of intersection navigation, we further

improve the performance by incorporating a Mean-Squared-Error (MSE) loss term. Hence, the

loss is given by:

L =−Eq[log pφ (y |m,z)
]
+KL

[
qψ(z |m,y)∥pθ(z |m)

]
+

1
H

H

∑
i=1
∥yi− ŷi∥2 (3.8)

On the other hand, during testing the model can estimate the complete distribution p(y |m)

by explicitly computing (3.2) or the distribution p(y |m,z∗) that corresponds to the latent variable

with the highest probability:

z∗ = argmax
z

pθ(z |m) (3.9)

Here z∗ can be understood as the mode that best describes a deterministic trajectory.
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Figure 3.4: CVAE graphical model during training and testing.

This is intuitive from the perspective of having various traversible trajectories for intersection

navigation; however, by conditioning z on m – the global plan and the local scene representation –

a single output is generated.

With the global plan, the local scene representation and the CVAE formulation in place,

we focus on the implementation details for model. First, the global plan and the local scene

representation are processed using two different types of encoders as shown in Figure 3.5. The

local scene representation utilizes a sequence of CNN layers, while the global planner can use a

CNN or a Self-Attention encoder. The dimensionality of these representations is further reduced

using fully connected layers.

Figure 3.5: The CVAE network architecture is presented with the various components. The
global plan encoders can process graph-based or rasterized representations. Similarly, the
semantic scene representation is encoded using a sequence of CNN layers. Both representations
are jointly used as conditionals in the training and test process.

Given that the recognition model qψ(z |m,y) is dependent on the ground truth trajectories
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(y) during training, a bidirectional LSTM [HS97] is used to encode the next H ground-truth

positions. This embedding is then combined with the map representation embedding using another

fully connected layer. The latent variable z that is sampled from qψ(z |m,y) and pθ(z |m) is

assumed to be drawn from a categorical distribution.

Once z∗ is determined following (3.9), p(y |m,z∗) is assumed to be a multivariate normal

that is parameterized with a gated recurrent unit (GRU) [CvMG+14]: each multivariate normal is

characterized by parameters (µt , Σt) that are decoded from t→ t +H. Both graphical models that

correspond to the training and testing process are shown in Figure 3.4.

3.5 Experiments and Data

The approach utilizes synchronized global plan and local semantic scene representations

to condition the CVAE. The synchronized data samples are generated as part of a data collection

process and can be visualized in Figure 3.6. First, we set a destination using the OSM planner

described in Section 3.2. This planner utilizes GNSS and inertial measurement unit (IMU) data

to estimate and correct the position of the ego vehicle over time and perform the necessary

egocentric transformations. The output generated from the planner consists of a 2D raster and the

graph representation (Figure 3.1). Similarly, a local semantic scene representation is generated

in an egocentric frame by utilizing a LiDAR-based localization method. These representations

are extracted from full semantic maps. Both representations are synchronized based on nearest

timestamps. The intrinsic and extrinsic parameters that are used for estimating egocentric

transformations are estimated offline utilizing standard calibration methods such as checkerboards

and plane fitting methods with feature matching strategies. Additional details on the process for

calibration and localization can be found in [CPZ+21].
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Figure 3.6: The figure outlines the data generation process for the global plan and semantic
scene representations. The OSM planner generates egocentric global plans using a combination
of GNSS and IMU. On the other hand, LiDAR-based scan matching is utilized to localize
precisely and extract 2D egocentric semantic maps.

3.5.1 Datasets

With the data collection process described, various datasets are curated at the UC San

Diego campus. The NominalScenes dataset [PZC22] includes urban driving data with global plan

and semantic maps in various driving scenarios such as curved roads, loops, and intersections. On

the other hand, the IntersectionScenes dataset [PXLC22] includes global plans and semantics for

intersection-specific scenarios such as three-way and four-way intersections. We use these datasets

to train and test the performance of our methods. We additionally make our implementation

and benchmark publicly available.‡ Visualizations of the point cloud maps used in the semantic

mapping process are shown in Figure 3.7 alongside the output semantic maps.

‡https://github.com/AutonomousVehicleLaboratory/coarse_av_cgm.git
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Figure 3.7: The visualizations in a map frame perspective correspond to the pointcloud maps
used to generate 2D BEV semantic maps for various parts of a university campus. The pointcloud
maps are shown in the first and third columns, and the associated 2D semantic maps are shown
in the second and fourth columns. The camera-LiDAR fusion process is outlined in Chapter 2.

3.5.2 Experiments

To train and quantify the performance of the approach, we use the reported ego-vehicle

poses to characterize trajectories. However, since the position and the orientation of the vehicle is

reported at 10Hz, the data points recorded during data collection can be inconsistently spaced

apart. Hence, we interpolate as noted in Figure 3.6 and sample new trajectories during training

and evaluation. This allows us to sample trajectories with varying waypoint density and analyze

the limitations of each.

3.5.3 Metrics

We measure the quality of each trajectory produced based on two criteria: Driveable

Area Compliance (DAC) and Displacement Error (DE). DAC evaluates the model’s capacity to

generate trajectories that stay within drivable regions. This measurement is derived by averaging

the trajectories that coincide with drivable areas, including crosswalks, lane markings, and road

surfaces as defined in the local semantic map. If any waypoint of a trajectory overlaps with a

sidewalk or vegetation area, it is deemed non-compliant. We present the error associated with half

34



of the trajectory (DACHALF ) as well as the entire predicted trajectory (DACFULL); as shown in

Equations 3.10- 3.16. Both metrics characterize compliance in a range between [0,1] by utilizing

an indicator function to evaluate if a waypoint prediction ŷh
i lies within the semantic set of drivable

regions Cd .

We additionally employ metrics commonly used in the field of road user prediction

research to characterize the performance of trajectories: Average Displacement Error (ADE)

and Final Displacement Error (FDE) [GJF+18, FDSF19]. These metrics allow us to assess the

average error of each trajectory across all H waypoints (ADE) and the average error specifically

related to the last predicted waypoint (FDE). To provide a more comprehensive analysis, we

extend the evaluation of ADE by measuring the error associated with half of the trajectory

(ADEHALF ), considering that the waypoints closest to the autonomous agent are executed first

during navigation. The worst-case errors are also captured by calculating the average maximum

displacement error (MDE) along each predicted trajectory.

DACFULL =
1
n

n

∑
i=1

1
H

H

∑
h=1

s(ŷh
i ) (3.10)

DACHALF =
1
n

n

∑
i=1

1⌊H−1
2

⌋ ⌊H−1
2 ⌋

∑
h=1

s(ŷh
i ) (3.11)

s(ŷh
i ) =

 1, if ŷh
i ∈Cd

0, else
(3.12)

ADEFULL =
1
n

n

∑
i=1

1
H

H

∑
h=1

∥∥∥yh
i − ŷh

i

∥∥∥ (3.13)

ADEHALF =
1
n

n

∑
i=1

1⌊H−1
2

⌋ ⌊H−1
2 ⌋

∑
h=1
∥yh

i − ŷh
i ∥ (3.14)
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FDE =
1
n

n

∑
i=1

∥∥yH
i − ŷH

i
∥∥ (3.15)

MDE =
1
n

n

∑
i=1

max
h

∥∥∥yh
i − ŷh

i

∥∥∥ (3.16)

3.5.4 Results and Discussion

For all the experiments performed, we set the number of discrete states within the CVAE

to 12, i.e. |Z|= 12. The rationale for choosing 12 as the number of distribution modes is not only

motivated by performance results but also by the various navigation behaviors including i) making

left turns, ii) making right turns, iii) lane following, iv) driving straight across intersections, v)

driving along curved roads, and vi) making u-turns. This equates to utilizing two modes to model

each driving behavior explicitly.

Ablation Study: Waypoint Density

In our initial experiments, we compare trajectory predictions with varying waypoint

densities up to a 30m horizon. The first type H10 is defined by 10 waypoints spaced 3m

apart and the second H15 defines 15 waypoints spaced 2m apart. The performance of these two

characterizations of the model are shown in Table 3.1. From the results, we observe that increasing

the number of waypoints regressed also increases the likelihood of encountering compound errors.

We hypothesize that this is due to the dependency of the next waypoint prediction on the previous

cell state within the GRU decoder of the network. Therefore, for the remainder of the experiments,

we utilize H10 as the underlying trajectory representation.
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Ablation Study: Rasterized and Graph Representations

To further evaluate the performance implications of the underlying global plan representa-

tions, we compare the rasterized and the graph based global plan representations discussed in

Section 3.2. In Table 3.2, we evaluate four different models using the NominalScenes dataset

and benchmark. The first method evaluated utilizes the rasterized global plan, and the last three

leverage the graphs directly while aggregating various node features. For graphical models, we

analyze the value of incorporating information about the road segments traversed (P), the planned

road segments to be traversed (F), traffic signals and stop signs (S), and crosswalks (C). In these

experiments, we observe that the attention mechanism that makes use of all node features except

crosswalks outperforms the rasterized method and the methods that only make partial use of the

node features. However, we note that not all the node features necessarily boost performance.

For example, crosswalk features slightly deteriorate performance when we compare the two

models that make use of the full history, planned trajectory, and traffic signals and stop sign

features. While this may be unexpected, we find that OSM crosswalk information is not unique

to intersections and as a result may present difficulties distinguishing between intersections with

crosswalks and straight road segments with crosswalk features. On the other hand, this is not the

case when we incorporate stop signs and traffic signals, since they are consistently defined at

intersections.

Table 3.1: The comparison between the H10 and H15 models is presented. Rasterized global
plan representations are used to evaluate the performance of the models using the NominalScenes
dataset.

Method ADEFULL ↓ ADEHALF ↓ FDE ↓ MDE ↓

OSM - H10 1.056245 0.336941 2.447714 2.494614
OSM - H15 2.341875 0.753802 6.127183 6.177646
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Table 3.2: The results of an ablation study between rasterized and graph-based representations
are presented. These results include a comparison of the graph-based models as a function
of different types of node features. The experiments are performed with the NominalScenes
dataset.

Method ADEFULL
↓

ADEHALF
↓

FDE ↓ MDE ↓ DAC ↑ DACHALF
↑

OSM
Raster

1.056245 0.336941 2.447714 2.494614 0.849162 0.934218

OSM ATT
w/ PF

1.365685 0.538815 2.852894 3.047669 0.892321 0.933054

OSM ATT
w/ SPF

0.969206 0.353576 2.316740 2.393168 0.914869 0.944642

OSM ATT
w/ SCPF

1.131581 0.388303 2.717636 2.795832 0.905864 0.942408

In a subsequent set of experiments, we evaluate the performance of our methods for

intersection-specific scenarios using the IntersectionScenes dataset; these scenarios include

left turns, right turns, and driving straight across intersections for three-way and four-way

intersections. The results consistently show that explicitly utilizing the graphical representation

can boost performance.

Table 3.3: The graph-based and rasterized plan representations are evaluated an intersection-
specific dataset, IntersectionScenes. This includes three-way and four-way intersections for
urban driving scenarios specifically.

Method ADEFULL
↓

ADEHALF
↓

FDE ↓ MDE ↓ DAC ↑ DACHALF
↑

OSM
Raster

1.793062 0.673450 3.672231 3.728120 0.858367 0.913147

OSM ATT
w/ SPF

1.511415 0.619056 3.087722 3.226302 0.898473 0.924834

On average, we observe an 1.5m error across the full trajectory generated, and an average

error of 3.1m associated with the last waypoint of every trajectory predicted. We additionally

find that the worse case predictions average to 3.2m. Similarly, DAC indicates that 90% of the
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trajectories estimated overlap with a drivable region: including pavement, crosswalks, and lane

marks.

Figure 3.8: Various visualizations from the IntersectionScenes dataset using the SPF graph
encoder. Each row represents an intersection with different global plans (yellow boxes).
Groundtruth labels are denoted by blue waypoints and predictions by green waypoints.

In contrast, the errors associated with the first half of each trajectory predicted are

considerably lower. These results are particularly more relevant given that a motion planner will

utilize the nearby waypoints first. For instance, in an urban scenario with a 11m/s (25mph) speed

limit, the ego-vehicle can utilize the first H/2 waypoints to formulate a trajectory that spans 15m

without needing to replan or generate a new estimate before the 1s mark. Even though a motion

planner would still execute collision checking as part of a downstream process, this illustrates the

potential in real-time applications for urban driving. In fact, we find that our approach can keep
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up with real-time compute requirements by achieving an inference time of approximately 6.18ms

using the attention-based encoder and 6.22ms using the CNN-based encoder. As an added benefit,

the self-attention mechanism uses 31% fewer parameters than the CNN-based encoder, which

comprises 16.8M learnable parameters.

A number of visualizations from various intersection scenarios is shown in Figure 3.8.

These visualizations are generated using the SPF graph-based model and represent prediction

outputs from three-way and four-way intersections that capture the multimodal properties of the

CVAE.

3.5.5 Summary

In this work, a method for aligning coarse global plan representations with semantic

scene models was explored. Various datasets and benchmarks with open implementations for

the planner and CVAE formulation are made available. The contributions indicate potential use

cases for urban driving navigation with fewer map priors, such as the widely used HD maps. This

additionally presents directions for unifying dynamic path generation strategies with existing

frameworks that leverage offline maps in combination with map detection methods. Towards

this end, Chapter 4 introduces methods that aim to reduce the complexity of the semantic scene

models by directly predicting centerlines in 2D and 3D.

Chapter 3 includes material from three papers. The first paper corresponds to TridentNet:

A Conditional Generative Model for Dynamic Trajectory Generation in Intelligent Autonomous

Systems-16, Singapore, June 2021. David Paz, Henry Zhang, and Henrik I Christensen. The

second paper corresponds to Tridentnetv2: Lightweight Graphical Global Plan Representations

for Dynamic Trajectory Generation in International Conference on Robotics and Automation,

Philadelphia, May 2022. David Paz, Hao Xiang, Andrew Liang, and Henrik I Christensen. The

third paper corresponds to Conditional Generative Models for Dynamic Trajectory Generation

and Urban Driving in Sensors2023, July 2023. David Paz, Hengyuan Zhang, Hao Xiang,
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Andrew Liang, and Henrik I Christensen. The dissertation author was the primary co-author

and contributed to the implementation, design, datasets, and evaluation of the approach. Zhang

contributed to the dataset associated with the experiments. Xiang and Liang contributed to the

global planner implementation.
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Chapter 4

Centerline Networks

Open-source contributions have been instrumental in accelerating the development of

autonomous vehicle technology in recent years. Various contributions come in the form of

open-source datasets like Argoverse2 [WQA+21], Waymo Open Dataset [SKD+20], and Nu-

Plan [CKT+21]. These datasets contain meticulously labeled data, catering to various tasks such

as detection, tracking, prediction, and planning.

A core component in many of these datasets is the map information–which defines lane-

level details and road network connectivity as discussed in Chapter 2. This data is used in

prediction models to provide context and facilitate trajectory generation and path planning to

characterize traversable and obstacle free trajectories. However, the modules that utilize map

data make the assumption of a static world, which can lead to challenges when deployed in

real-world scenarios with changing road conditions due to construction or other factors. Hence,

as the operation design domain grows and scalability requirements become more important, the

need for dynamic and real-time scene understanding becomes evident.

To begin tackling these challenges, an automatic semantic mapping framework is char-

acterized in Chapter 2. These semantic maps effectively capture the contextual information

in-scene by leveraging a camera-LiDAR fusions approach to identify drivable regions, lane
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marks, sidewalks, vegetation, and crosswalks. One limitation however involves the computational

complexity of semantic segmentation in real-time computation. Hence, the mapping process is

performed offline. While the generated maps can be utilized for downstream tasks in real-time to

provide context, an open research remains that involves the identification of real-time methods

that are lightweight and can jointly provide the necessary information for prediction and motion

planning tasks.

To explore strategies that can reduce this gap, this chapter explores methods that focus

directly on identifying relevant features in the scene that are needed for the trajectory generation

task. One of those features relevant for the driving task, specifically for urban scenarios, include

the centerline tracks. In the presence of lane boundaries, a centerline corresponds to the virtual

line that falls in between the left and right lane boundaries of a lane. However, in the absence of

lane boundaries, such as intersections, the centerlines would be the line segments that connect

two lanes on opposite sides of an intersection.

To this end, we review a number of related research work in Section, and propose a

strategy for centerline prediction in 2D and 3D in Section. The formulation includes an approach

for automatic centerline label generation. This pipeline is leveraged to generate over 900,000

labels with 2D and 3D feature correspondences. We find that providing additional context during

the training process can help resolve issues related to severe to complete occlusion. These

experimental results and results are described in Section.

4.1 Related Work

Lane detection and semantic segmentation has remained an active area of research for

decades. Early work for autonomous driving applications relied on traditional edge detection

techniques, as described in [Dic07]. However, with the introduction of learning-based methods

for lane detection and segmentation tasks, a number of methods have been developed in recent
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years. These methods cover semantic segmentation as well as key-point and parametric-based

approaches.

The semantic segmentation task consists of a per-pixel prediction task, in which every

pixel from an image is classified into different classes. Public datasets including Mapillary

[NORBK17] and Cityscapes [COR+16] have enabled multiple open-source contributions in the

semantic segmentation task that leverage encoder-decoder architectures and spatial pyramid

pooling modules [CPSA17] and attention mechanisms to resolve fine grain details [TSC20a].

These methods are capable of resolving small details. However, semantic segmentation can

present a large computational overhead during training and inference time, which can limit the

use cases for real-time scene understanding.

Another approach for inferring drivable regions and trajectories involves key-point and

spline prediction for lanes directly. Examples of real-time image based key-point detection

include PINet [KLA+20]. In a similar way, the lane detection tasks have been extended to

include parameterized spline representations such as Bezier curves [FGT+22] that compress

a lane representation by using a fixed number of control points. However, these methods can

struggle when recovering irregular lanes and sharp curves that may not be fully characterized by

a finite number of control points. More recently, the lane detection task has also been extended to

3D [BCF+22] by using synthetic [GCZ+20] and real-world datasets [CSL+22].

In contrast to existing work, the work covered in this section focuses on directly predicting

centerline key-points as shown in Fig 4.1. A key benefit of directly predicting centerlines involves

downstream applications and post-processing. In practice, the centerlines of each lane provide

reference trajectories that can be directly utilized by motion planners. Standard methods for

detection and segmentation of lanes still infer an overhead for centerline extraction and reasoning

depending on the context of the scene and whether a bounded lane mark boundary is traversable

or not.
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Figure 4.1: In contrast to traditional lane detection tasks (shown in green), our work explores
an approach for centerline feature prediction, as denoted by blue lines. The approach leverages
automatic label generation to process a large image dataset from an urban driving scenario with
2D and 3D ground truth information.
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4.2 Centerline Networks

In this section, a baseline design for a 2D and 3D centerline prediction moduled termed

CLiNet is described. A number of design considerations are made to decouple sensor-specific

assumptions from the training process by incorporating the intrinsic parameters of each camera

during the depth prediction task. Furthermore, in contrast to semantic segmentation frameworks

that seek to classify each pixel with various semantic classes, we simplify the complexity of the

model by only predicting the centerline key-points that are directly relevant for the driving task.

4.2.1 CLiNet Architecture

Our approach is motivated by the stacked hourglass network described in the Point

Instance Network (PINet) work proposed in [KLA+20]. This approach stacks multiple hourglass

networks during the training process that can be separated during testing as a tradeoff between

inference time and precision. The model architecture and training process can be visualized in

Fig. 4.2; where each network jointly learns centerline key-point features and contributes to the

overall loss. First, an input image with known intrinsic parameters is normalized and resized to a

fixed representation I0 ∈RH0×W0×3. A sequence of convolutional layers with batch normalization

is then applied to increase channel depth to a final representation I1 ∈ RH1×W1×C1 such that

H1 = H0/s, where s is a scaling factor. The prediction heads for each hourglass block further

process the intermediate representation I1 and output a confidence map (F̂ ∈ RH1×W1×1), depth

estimates (D̂ ∈ RNe×1), and key-point offset values (Ô ∈ RH1×W1×2) for each key-point on the

centerline. For the experiments performed, C1 = 128, H1 = 256, W1 = 512, and s = 8.

Losses

The confidence map focuses on the binary classification of key-points, i.e. predictions

close to one indicate centerline key-point existence. Given a confidence prediction F̂i, j, the
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Figure 4.2: The method introduced utilizes stacked hourglass networks to localize centerline
key-points in 2D while generating depth estimates to transform key-point estimates to 3D.
Additional details on the hourglass networks can be found in [KLA+20].

confidence loss is characterized by Eq. 4.1, where the first term minimizes false negatives and the

second minimizes false positives. Each term is normalized based on the number of key-points

with a ground truth class that corresponds to a key-point Ne and the number of key-points that do

not correspond to a key-point Nd . A ground truth confidence label is denoted by Fi, j.

Lconf =
1

Ne
∑

{i, j|Fi, j=1}

(
1− F̂i, j

)2
+

1
Nd

∑
{i, j|Fi, j=0}

(
F̂i, j

)2 (4.1)

Together with the confidence map, a two-dimensional offset Ôi, j ∈ R2 is predicted that indicates

a scaling factor to map from a H1×W1 representation to the H0×W0 input scale. Therefore, the

transformed prediction F̂i, j in original scale, is given by
[

j+ s · Ôx
i, j, i+ s · Ôy

i, j

]⊤
and Ôx

i, j, Ô
y
i, j ∈

[0,1]. The offset loss is then characterized by

Loffset =
1

Ne
∑

{i, j|Fi, j=1}

(
Ox

i, j− Ôx
i, j
)2
+

1
Ne

∑
{i, j|Fi, j=1}

(
Oy

i, j− Ôy
i, j

)2
(4.2)

Given that the features are encoded in 2D, an additional multilayer perceptron (MLP)

is utilized to infer depth for each centerline key-point. A depth prediction Ẑi, j is estimated

by first converting a key-point prediction in pixel space [i, j]⊤ to camera coordinates. This
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Figure 4.3: A pipeline is designed to automatically generate image key-point labels that
correspond to centerlines via projective geometry. This is accomplished by aligning vector map
information (left hand side) regarding each camera on board of the ego-vehicle and projecting
3D features onto an image perspective. Line segments that are far and that correspond to
intersection road networks are removed.

transformation is given by the intrinsic camera parameters and by accounting for image resizing

and crop operations. The camera-centric coordinates
[
Xi. j,Yi, j

]⊤ are then concatenated with its

corresponding image embedding I1i, j to provide additional context. This final representation

is passed through the MLP to predict its z-component, namely Ẑi, j. The depth loss is then

characterized as shown below, where Zi, j denotes ground truth.

Ldepth =
1

Ne
∑

{i, j|Fi, j=1}

(
Zi, j− Ẑi, j

)2

In summary, the losses are added and optimized jointly during the training process

using the Adam optimizer with a constant learning rate. The overall loss is given by L =

Lconf +Loffset + γLdepth, where γ is a constant.

4.2.2 Experiments

To evaluate our reference solution, we introduce a large dataset for training, validation,

and testing based on the Argoverse2 sensor data [WQA+21]. The evaluation additionally consists

of a benchmark to quantify the performance of the approach for key-point localization in 2D and

depth estimation (3D). Additional details on the data and benchmarks are provided below.
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Centerlines Dataset

We augment the dataset to create a new reference termed AV Breadcrumbs that consists of

942,161 individually labeled image frames across three front-facing cameras with known camera

parameters. In contrast to standard labeling techniques that generally involve extensive manual

labeling, we design a pipeline that automatically generates image key-point features with ground

truth depth information. First, the ego-vehicle pose is synchronized to each camera by utilizing

the LiDAR; given the pose of each camera over time and performing pose corrections, we align

vector map information defined in a city coordinate frame and project its 3D features into each

image frame. Given that projection preserves 2D and 3D correspondences, this facilitates the

process of assigning unique lane IDs.

The dataset includes labels for centerlines and lane boundaries; where each label is

interpolated in 3D and post-processed in an image frame to remove features that are too far or too

tightly packed after projection. An important consideration involves intersections: although the

full road network connectivity for each intersection is available, we find that sufficient context

to identify entry and exit points of each intersection lane is often lacking when the vehicle is

at an intersection. For this reason, we additionally remove labels that are too short or are part

of intersections. The total split for the train, validation, and test sets corresponds to 659,720,

141,138, and 141,303 image frames, respectively. The auto-labeling pipeline is shown in Fig.

4.3 and a few data labels can be observed in the first row of Fig. 4.4. On average, we observe

adequate alignment between the automatically generated features and the lanes visualized in each

image.

Results

Each of the logs in the training, validation and test set comprises of sequential frames of

data. We take a subset of these logs for our training and testing as two consecutive frames of

data present similar features. As a result of which, we empirically chose every 10th image in the
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Figure 4.4: Data visualizations correspond to ground truth 2D labels (top row), 2D predictions
from our approach (CLiNet - middle row), as well as depth estimates where the vertical axis
corresponds to the z-axis and the horizontal axis corresponds to the x-axis regarding each
camera frame (bottom row). Predictions and ground truth labels are denoted in green and blue,
respectively.

sequence for training and testing. This reduced the number of test images to 13,046 images.

Fig: 4.4 shows the results from our model for the test set of our dataset. It can be seen that

our model performs well in detecting the key-points on the straight line segments (row:2, col:4)

as well as curved line segments (row:2, col: 2). Additionally, we observe that there are some

challenging scenarios due to lack of context (col:1) and complexities due to complete occlusions

(col:6).

The third row of the figure illustrates predicted depth versus ground truth depth for each

of the input images in the top row. We observe that the points that are at a greater distance from

the camera center have relatively large error compared to those that are closer to the camera center

(row:3, col:4).

Table 4.1 shows the average precision, recall and F1 score of our model on the test set.

We create an occupancy grid map of the predicted key-points where the centerline key-point

indices are set to 1. To calculate the number of true positives, false positives and false negatives,

we then create a window of size n x n. If the occupancy grid does not contain a key-point within

the windowed region, we count this key-point to be a false negative. We zero out the windowed

region otherwise, which we later use for counting false positives.
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To calculate the average depth error, we use the L1 norm between the ground truth and

the predicted z values. We normalize this error based on the distance of the key-point from the

camera center. Error for key-points closer to the camera center is penalized more than the error

for key-points farther away. Average normalized depth error for the test set is 2.0834.

Table 4.1: Benchmark Results on the Test Set

Window Size Precision Recall F1 Score
5 0.822 0.585 0.684
3 0.748 0.512 0.608
1 0.378 0.229 0.285

4.3 Occlusion Handling and Semantics

In Section 4.2, the centerline prediction method proposed leveraged ego-vehicle localiza-

tion, sensor parameters, and lane-level map information to automatically label and process image

data; this pipeline is shown in Figure 4.3. Nevertheless, one challenge that is observed in the

training process involves occlusion. Since the map information is directly utilized to automatically

label images based on projective geometry, some road structures and moving agents can severely

occlude the centerline features of interest. An example can be visualized in Figure 4.5: while

the centerline features from the nearby road elements have valid projections with respect to the

camera’s field of view, the keypoints are fully occluded by a bus that is too close to the camera

and cannot be realistically recovered.

To model occlusions caused by dynamic and large static objects observed in the train-

ing data, semantic segmentation strategies can be utilized to reason about objects undergoing

occlusion. For example, in Figure 4.6, a number of centerline labels are superimposed on their

corresponding image frame shown in the first row and the outputs of a semantic segmentation

model are shown in the second row. Each of the semantic mask outputs generated contains
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Figure 4.5: Data sample generated by the automatic labeling process without explicitly modeling
occlusion. In this scenario, a bus is fully occluding centerline features.

information about drivable regions, vehicles, buildings, etc. and by comparing the semantic

classes that each of the centerline keypoints overlap with, various strategies can be derived to

remove the keypoints from the training set. For example, in the last row of Figure 4.6, only the

centerline keypoints that directly overlap with the drivable region class are maintained.

In this section, the centerline prediction task specifically focuses on utilizing semantic

segmentation to reason about occluded regions and introduces this information in the training

process. In the first part of the section, occlusion is modeled in terms of percent occlusion

thresholds to better reason about light vs severe occlusion. A number of experiments are then

performed in the second part of the section, which include 2D and 3D keypoint prediction as a

function of various percent occlusion increments. Finally, qualitative experiments are performed

using data from a full scale autonomous driving platform.
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Figure 4.6: Visualization of various urban driving scenarios. On the top row, the centerline
labels are projected using the first version of the automatic label generation pipeline. In the
middle row, a semantic segmentation process is applied to the original image data to reason
about different object classes. Using the object classes to formulate occlusion, centerlines are
removed based on the semantic classes that infer occlusion as shown in the bottom row.

4.3.1 Semantic Segmentation for Occlusion Handling

Objects and structures of various sizes and shapes play a significant role when quantifying

occlusion from a camera centric perspective. For instance, a vehicle driving on its lane that is far

away from the camera will only partially occlude its centerline. On the other hand, if the vehicle

is close to the camera, it will occlude more of the lane features. While it may be impossible

to recover road information from full occlusion, the latter scenario with partial occlusion can

be potentially resolved by inferring the missing keypoints based on the lane features that are

observable. Evidently, there are other possibilities in between as the vehicle moves away from

the camera: from full occlusion to light occlusion.

In addition to occlusion generated by dynamic objects such as cars and pedestrians, large

and stationary objects such as buildings can impact the quality of the predictions. For instance, on

the last column of Figure 4.4, we observe that centerline features behind buildings can influence

53



Figure 4.7: Semantic categories utilized to quantify occlusion specific logic. The various
categories and subcategories are derived using the Mapillary dataset class definitions.

the training process and ultimately cause the network to hallucinate during prediction. In other

words, objects that are not on the road are often more difficult to associate with centerline features

and as a result provide less context in the training process. With these observations in mind, we

characterize occlusion from objects based on three different categories. The first one corresponds

to occlusion from objects with insufficient context (invalid). The second one captures occlusion

from on-road objects such as pedestrians and vehicles (occlusion valid) that are directly related to

the driving task and contain contextual information. Finally, the third one corresponds to road

level semantic classes such as road and crosswalk (valid). Figure 4.7 illustrates the different

classes of objects that are included in each category set. For simplicity we refer to these categories

as invalid, occlusion valid, and valid and utilize the well established Mapillary dataset semantic

classes in the formulation of these categories.

The Mapillary dataset contains up to 124 semantic object classes. From these classes, we

cluster individual classes into nine different subcategories based on their semantic meanings and

assign each subcategory into the valid, occlusion valid, or invalid parent categories. This provides

a straightforward formulation for calculating percent occlusion as outlined in Algorithm 1. An

important benefit of this formulation is that we can create class exceptions for unique classes as

shown in line 13. For example, the Mapillary dataset includes a bike lane class and in the event

that bike lane centerline features are included in the map information, we can leverage this class
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to eliminate keypoints that overlap with the bike lane class.

Algorithm 1 Filtering Keypoints Algorithm
1: Input: List keypoints, List keypoints classes, List class ids
2: Output: List filtered kp, List filtered classes,
3: Initialize empty lists: filtered kp,
4: for i in range len(keypoints) do
5: lane← keypoints[i]
6: classes← keypoints classes[i]
7: init lane length← len(lane)
8: invalid count← 0
9: f iltered lane← []

10: for j in range len(classes) do
11: current label← labels[int(classes[ j])]
12: if current label.category ∈ semantics config[”invalid categories”] then
13: invalid count← invalid count +1
14: continue
15: else if current label.category ∈ semantics config[”occlusion valid categories”]

then
16: invalid count← invalid count +1
17: filtered lane.append(lane[j])
18: else if current label.category ∈ semantics config[”valid categories”] then
19: filtered lane.append(lane[j])
20: end if
21: end for
22: if invalid count/init lane length < semantics config[”semantic threshold”] then
23: filtered kp.append(np.array(filtered lane))
24: filtered classes.append(class ids[i])
25: end if
26: end for

4.3.2 Experiments

To quantify the performance implications of the centerline prediction task subject to

different occlusion threshold profiles, the dataset introduced in Section 4.2.2 is augmented with

semantic segmentation attributes. To achieve this, a semantic segmentation process is incorporated

into the pipeline proposed in Figure 4.3. The semantic segmentation process leverages the

model introduced in [TSC20b]–which is trained on the Mapillary dataset. The model processes
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individual image frames and decorates the 2D and 3D centerline features based on the semantic

segmentation masks generated and their overlap with the keypoints. A benefit of the approach lies

in the performance and robustness of the hierarchical multi-scale attention method of the network.

This attention approach achieves state of the art performance by combining the outputs of a single

input processed at different scales (i.e. 0.5x, 1.0x, and 2.0x). The lower scale representations

focus on regions that span a larger portion of the image, whereas the higher scales resolve

smaller and fine-grain features with respect to the image frame. A few visualizations from this

semantic segmentation model can be seen in the second row of Figure 4.6. In general, robust

performance is achieved for the semantic classes of interest–such as vehicles, driveable regions,

and buildings–which makes it a suitable option for our pipeline and task. Readers are referred to

the original work for additional details on the implementation of the network architecture.

The Argoverse2 dataset described in Section 4.2.2 is augmented with the semantic at-

tributes generated from the semantic segmentation pipeline. In total, 942,161 individual frames

are processed across the train, validation, and test sets. In the remainder of the section, the

network implementation, the training process, and the results are presented.

Semantic Centerline Prediction

The model utilized for 2D and 3D centerline prediction differs from the approach imple-

mented in Section 4.2.1 in a number of ways. First, the depth estimation process is performed

with respect to a ground frame of reference perspective rather than predicting depth given a 2D

coordinate in a camera frame. Overall, by switching to a ground plane perspective, the observed

reconstructed depth estimates are more consistent and less noisy compared to the results presented

in Figure 4.4. The frames utilized are shown in Figure 4.8–in combination with a high-level

overview of the model architecture. This architecture is adapted from the 3D lane detection task

introduced by Wang et al. [WQLC22]; however, a number of modifications are performed to

extend the implementation for the centerline prediction task.
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Figure 4.8: Frames of reference used in the 2D and 3D centerline prediction tasks adapted
from [WQLC22].

The image frame (I) is processed using a ResNet backbone [HZRS16b]. The output

generated from the backbone (Ih) is then processed to generate the 2D (I2d) and the 3D (I3d)

centerline predictions. The 2D output includes a confidence mask over the keypoints with

dimensions (N×1×H1×W1) and a 2D feature embedding represented by a (N×2×H1×W1)

tensor, where N corresponds to the batch size. The confidence output defines the existence of

a centerline keypoint based on the score for each given cell. On the other hand, the feature

embedding is useful for clustering centerlines and separating different instances. This is another

key difference compared to the previous implementation for centerline prediction discussed in

Section 4.2.1.

Similarly, the 3D prediction head includes information about confidence (N×1×H2×W2),

a 2D feature embedding (N× 2×H2×W2), an x-axis offset (N× 1×H2×W2), as well as an

estimate for the height along the z-axis with dimensions (N×1×H2×W2). The H2×W2 grid

corresponds to a discretized representation of the ground plane defined below the camera center.

The rigid body transformation between the camera and the ground plane is performed for each of

the labels to represent the 3D centerlines in a ground frame. The secondary outputs generated

by the 3D prediction head include an x-axis offset and a height estimate along the z-axis. Given

that the 2D output grid loses information as a result of the discretization process due to the grid
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representation, the x-axis offset allows for lateral corrections for a particular cell and retrieves

estimates at a centimeter-level. In addition, the height estimate provides an estimate for the

elevation along the z-axis to predict variations in road elevations and slopes. To provide a more

intuitive explanation, pinpointing the keypoint Fi, j along the orange centerline shown in Figure 4.8

can be localized with more precision using the grid representation by using the x-offset and height

predictions.

Another difference compared to the centerline prediction introduced in Section 4.2.1 lies

in the objective function utilized to train the model. The loss function shown in Equation 4.3

incorporates a 2D loss and a 3D loss component. The 2D loss is calculated using the Binary Cross

Entropy loss for confidence predictions and a 2D embedding loss. The embedding loss [WQLC22]

is estimated using a distance metric between the 2D feature embeddings that aims to maximize

the distance between keypoints that belong to different centerline instances while minimizing the

distance between keypoints that belong to the same centerline instance. Similarly, the 3D loss

incorporates the confidence and feature embedding components but additionally incorporates

an offset loss for correcting the centerline predictions along the x-axis and a height component

to penalize large errors in elevation. Additional details on each of the loss terms can be found

in [WQLC22].

Ltotal = Lbce
2d +Lembed

2d +Lbce
3d +Lembed

3d +Loffset
3d +Lheight

3d (4.3)

Results and Discussion

Using the augmented dataset with the categories and subcategories defined, an evaluation

of the centerline prediction model is performed as a function of various percent occlusion

thresholds. The evaluations are performed using standard metrics from lane detection which

include F1-score, precision, recall, as well as distance metrics to evaluate the errors along the x

and z axes. Since the values along the y-axis are sampled at fixed increments during evaluation,
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this axis is omitted from the benchmark.

For each percent occlusion increment, a new training process is instantiated as a result of

the occlusion handling logic outlined in Algorithm 1. This implies that the capabilities of each

of the methods can differ as the occlusion logic becomes more or less strict. To provide further

intuition, occlusion thresholds closer to zero are more strict and filter out the highest number

of centerlines in the training set. On the other hand, occlusion thresholds closer to one are less

strict and the condition is relaxed thus permitting most of the centerlines in the training set even

under severe to complete occlusion scenarios. This further implies that a direct comparison is not

trivial in the sense of using a single dataset to quantify the performance. Thus, the evaluation and

benchmarks instead provide insights on the difficulty of predicting centerline features under light

to severe occlusion rather than a direct comparison between each model trained.

For each threshold, a separate training process is initiated using two NVIDIA RTX 3090

GPUs trained for 70 epochs. While the training set is initially composed of 659,720 samples,

the data was collected from a moving vehicle. This implies that in many scenarios, the variation

between adjacent frames collected may be minimal. Thus, rather than using all of the training

samples within a single epoch, a binning approach is performed by separating the training set

in windows of size 20. For each group, a single frame is then randomly selected to provide

variability throughout the training process. This equates to sampling a random data frame within

a time window of 2s for the data collected since each camera generates data at 10Hz. The

motivation for this windowing approach is to speed up the training process. For the experiments

performed in this section, H1 = 144, W1 = 256, H2 = 200, and W2 = 48. For the BEV features,

the discretization factor is selected based on a 0.5m/px discretization factor–implying that the

longitudinal perception range is up to 100m.

The results across 10 occlusion thresholds are presented in Figure 4.9. On the right plot,

we visualize the error along the x and z axes at close and far ranges with respect to the groundtruth

3D centerline information. For consistency, the evaluation is performed using the BEV perception
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Figure 4.9: The performance of various models trained using different occlusion thresholds
are shown. On the left, the F1 score, precision, and recall are plotted as functions of occlusion
thresholds. On the right, the distance errors in terms of meters are shown as functions of the
different occlusion thresholds; the errors are divided based on the x and z axes and close and far
range. Close vs far range errors are quantified using a 40m distance threshold.

region: x ∈ [−10m,10m] and y ∈ [3m,103m]. Aside from the 0.1 to 0.2 range, the distance errors

remain consistent throughout the remaining occlusion thresholds and negligible differences are

observed. This can imply that distance errors are not directly influenced as a function of occlusion

thresholds. On the contrary, the F1 score, the precision, and recall are plotted on the left of the

figure. We can observe that precision remains steadily but gradually decreases as the occlusion

threshold increases. In contrast, recall exhibits a behavior that is less straightforward: it increases

and peaks at 0.4 and begins to decrease again. The F1 score which takes into account precision

and recall follows a similar pattern as recall. To better understand these patterns, a number

of visualizations are extracted from the test set. A specific sample from the test set evaluated

across all 10 occlusion thresholds is shown in Figure 4.10. In the figure, we observe that for low

occlusion thresholds (i.e. between 0.1 and 0.2), the model does not generate valid predictions

and it does not produce an initial prediction until a threshold of 0.3 is reached. Even in light

occlusions scenarios, the model appears to be conservative in the predictions, which explains

why the false positive rate is lower and as result the precision is slightly higher compared to the

other models with higher thresholds. Hence, since the models with lower thresholds are more
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Figure 4.10: A sample that corresponds to a long curved road from the Argoverse2 dataset is
presented using different occlusion thresholds in increments of 0.1. The 2D predictions are
superimposed on the original image data where the different colors denote individual centerline
instances extracting using a clustering algorithm that leverages the feature embedding predicted
by the network. Similarly, two BEV visualizations are provided for each sample. The first
visualization showcases the ability of the model to cluster individual centerlines in BEV and the
second visualization allows for comparisons between the groundtruth (green) and the predictions
(red); the units are given in meters.

conservative, they tend to increase the number of false negatives which in turn lowers recall.

In contrast, as the occlusion threshold increases, the models begin to predict centerlines

under more severe occlusion and the quality of the predictions significantly improve in 2D and

3D. While referring back to the F1 score, we observe that within the 0.4 and 0.8 range, the best

performance is reached before it decreases again. This performance gap is captured in Figure 4.11,

where we observe that the models with thresholds 0.9 and 1.0 must predict heavily occluded

centerlines within an adjacent intersection road with little direct visibility. Evidently, the models

with higher occlusion thresholds infer a higher number of false positives in these more difficult

scenarios causing the recall to decrease. Nevertheless, a qualitative analysis indicates that the

performance in 3D remains adequate in 2D and 3D up to a 0.9 threshold. We note that when
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Figure 4.11: A sample that corresponds to a heavily occluded scene from the Argoverse2 dataset
is presented. The same visualization tools presented in Figure 4.10 are utilized. The units of the
3D projection plots are given in meters

the threshold reaches 1.0, some of the predictions become more noisier in particular to the 2D

prediction task.

To perform a qualitative analysis and evaluate how well the models generalize, a data

collection process is performed using a camera setup outside of the training distribution. The

data specifically is collected at the UC San Diego university campus and captures various road

topologies including turns and steep hills. Figures 4.12 showcases some of the capabilities of the

models across different occlusion thresholds. Evidently, the models trained with lower occlusion

thresholds remain consistent with the evaluation on the Argoverse2 dataset. For higher thresholds

up to 0.9, the models generalize well in the image frame but present visible errors in the 3D

perspective given the domain gap and different sensor configurations from the training set. An

important note to make is that for the threshold of 1.0, the performance in the image domain does

not necessarily increase. For instance, we note that on 2D predictions corresponding to 1.0, the

centerline corresponding to the ego vehicle does not fully extend compared to 0.9. In general,
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Figure 4.12: Curved road predictions for a university environment. The BEV prediction from the
3D prediction head is shown to the left of each output and the 2D predictions are superimposed
to the right. In average, an inference time of 10ms is observed.

we note that the model trained with a threshold of 0.9 performs and generalizes better for the

university dataset. As an added benefit of the approach utilized, we note that the architecture can

accommodate camera streams with rates up to 95.7fps. In average, we observe that the inference

time is within a 10ms and can thus meet real-time requirements across multiple camera streams.

Additional visualizations from the Argoverse2 and UC San Diego test sets can be found

in Appendix B.1 and B.2.

4.3.3 Summary

In this chapter, we introduced a large-scale dataset with multiple reference solutions for 2D

and 3D centerline detection. By explicitly modeling occlusion through the use of keypoint-level

semantics, the methods show real-time and robust performance in scenarios with light and severe

occlusion. This novel task shows promising results on the Argoverse2 2D and 3D dataset for

real-time scene understanding and urban navigation applications. On different sensor platforms

(i.e. the UC San Diego data set), the models generalize well in the 2D detection task; however,

additional work is necessary to reduce the gap in the 3D modeling task. This gap be potentially

addressed from multiple directions including a fusion based strategy similar to the camera-LiDAR

method proposed in Chapter 2 or by improving performance on depth estimation of the networks.

Future work includes the integration of similar real-time centerline prediction methods with
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global planning strategies. This integration can be explored using conditional generative models

(i.e. Chapter 3) or using traditional map matching strategies with coarse standard definition maps.

Chapter 4 includes material being prepared for peer review. The dissertation author is

the primary co-author and contributed to the design, implementation, dataset generation, and

evaluations. Narayanan Elavathur Ranganatha contributed to the implementation and dataset

generation process. Srinidhi Srinivas contributed to the implementation, and dataset generation.

Yunchao Yao assisted in the development of the datasets and data curation.
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Chapter 5

Conclusion

In conclusion, this dissertation showcases a comprehensive exploration of cutting-edge

techniques for advancing autonomous driving capabilities. The three chapters collectively con-

tribute to addressing critical issues within this domain. By introducing a framework for semantic

map generation in Chapter 2, the work enables accurate localization and semantic mapping

through a sensor fusion process. The dynamic trajectory generation approach in Chapter 3

leverages conditional generative models to adapt to changing global plans while reducing reliance

on extensive map priors. Chapter 4 further extends the research by introducing real-time cen-

terline prediction models, emphasizing the practicality of real-time scene understanding. These

advancements and findings can pave the way for more efficient, cost-effective, and adaptable

autonomous driving solutions and applications.

In regards to future research, the integration of the methodologies presented in this study

holds paramount importance as they transition towards autonomous driving software stacks. A

pivotal step forward involves conducting extensive long term evaluations across different types

of deployments, ranging from small scale to expansive scenarios. A fundamental question that

demands additional exploration pertains to the optimal balance between fully dynamic approaches

and reliance on static maps (i.e. HD maps). This investigation is essential in quantifying the
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potential of achieving fully dynamic strategies without dependence on high-definition maps, or

whether a judicious fusion of both paradigms is requisite. In the event that a hybrid solution

proves optimal, a promising avenue for subsequent research emerges: the development of a

dynamic management system capable of real-time scene understanding and decision-making, a

direction that could involve the map change detection and online HD mapping research domains.

Ultimately, this trajectory shows potential to reshape the architecture and design of autonomous

driving systems, imbuing them with enhanced adaptability and real-time capabilities. It is evident

that the diverse operational design domains demand varied requisites for autonomous systems

and architectures. As we strive towards a universally applicable and scalable system, tailored for

the intricacies of dynamic, lengthy path planning missions, the aforementioned contemplations

emerge.
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Appendix A

Semantic Mapping

A.1 2D Semantic Maps - UC San Diego Data

Figure A.1: 2D semantic map for Gilman Dr. shown at 11% of the original scale. Various
artifacts are observed as a result of construction elements in the fusion process.
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Figure A.2: 2D semantic map for East Campus shown at 14% of the original scale. The map
showcases diverse road geometries.
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Figure A.3: 2D semantic map for North and East Campus shown at 6% of the original scale.
North points in the downward direction.
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Figure A.4: The largest 2D semantic map generated for the UC San Diego campus that covers
the South, West, and North parts of campus. The map is shown at 8% of the original scale.
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Appendix B
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Centerline Networks

B.1 2D and 3D Centerline Predictions - Argoverse2

Figure B.1: Argoverse2 test samples using different occlusion thresholds in increments of 0.2.
The 2D predictions are superimposed on the original image data where the different colors
denote individual centerline instances extracting using a clustering algorithm that leverages
the feature embedding predicted by the network. Two BEV visualizations are provided for
each sample. The first visualization showcases the ability of the model to cluster individual
centerlines in BEV and the second visualization allows for comparisons between the groundtruth
(green) and the predictions (red); the units are given in meters.
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Figure B.2: Argoverse2 test samples using different occlusion thresholds in increments of 0.2.
The 2D predictions are superimposed on the original image data where the different colors
denote individual centerline instances extracting using a clustering algorithm that leverages
the feature embedding predicted by the network. Two BEV visualizations are provided for
each sample. The first visualization showcases the ability of the model to cluster individual
centerlines in BEV and the second visualization allows for comparisons between the groundtruth
(green) and the predictions (red); the units are given in meters.
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Figure B.3: Argoverse2 test samples using different occlusion thresholds in increments of 0.2.
The 2D predictions are superimposed on the original image data where the different colors
denote individual centerline instances extracting using a clustering algorithm that leverages
the feature embedding predicted by the network. Two BEV visualizations are provided for
each sample. The first visualization showcases the ability of the model to cluster individual
centerlines in BEV and the second visualization allows for comparisons between the groundtruth
(green) and the predictions (red); the units are given in meters.
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B.2 2D and 3D Centerline Predictions - UC San Diego Data

Figure B.4: Data samples from UC San Diego data using different occlusion handling models
(using Argoverse2 data). The samples show various road topologies including intersectinos and
curved road segments undergoing light to full occlusion.
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