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Key Points:15

• Community Earth Systems Model versions 1.1 and 2 significantly underestimate16

decadal surface freshening in the Canada Basin.17

• The surface freshening model bias is likely not related to seasonal freshwater in-18

put at the surface from sea ice melt or other sources.19

• The models distribute fresh water over an unrealistically large depth range in re-20

cent years, which contributes to the surface salinity bias.21
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Abstract22

The Canada Basin has exhibited a significant trend toward a fresher surface layer and23

thus a more stratified upper-ocean over the past three decades. State-of-the-art ice-ocean24

models, by contrast, tend to simulate a surface layer that is saltier and less stratified than25

observed. Here, we examine decadal changes to seasonal processes that may contribute26

to this wide-reaching model bias using climate model simulations from the Community27

Earth System Model and below-ice observations from the Arctic Ice Dynamics Joint Ex-28

periment in 1975 and Ice Tethered Profilers in 2006-2012. In contrast to the observations,29

the models simulate salinity profiles that show relatively little variation between 197530

and 2012. We demonstrate that this bias can be mainly attributed to unrealistically deep31

vertical mixing in the model, creating a surface layer that is saltier than observed. The32

results provide insight for climate model improvement with broad implications for Arc-33

tic sea ice and ecosystem dynamics.34

Plain Language Summary35

Climate models, which have been analyzed extensively to assess and predict cur-36

rent and future climate change and to inform policy, struggle to accurately simulate the37

rapid decline in Arctic sea ice. One possible source of this bias could be related to the38

vertical distribution of salt in the ocean, which controls the exchange of heat between39

the surface and deeper ocean. We compare simulations from two climate models to ocean40

observations collected below sea ice in the Canada Basin. In 1975, observations were col-41

lected by scientists living in ice camps, and in 2006-2012, they were obtained by auto-42

mated instruments attached to sea ice. The observations indicate as much as six times43

greater surface freshening than the models between 1975 and 2006-2012. We show that44

the salt bias can be partly attributed to the models’ tendency to mix fresh water from45

the surface deeper than in observations, resulting in a saltier ocean surface. The results46

may provide insight for climate model improvement that could have wide-reaching im-47

plications because the vertical distribution of salt in the ocean directly impacts the ver-48

tical transport of heat and nutrients.49

1 Introduction50

Rapid sea ice retreat has been extensively observed in the Canada Basin over the51

past several decades (F. McLaughlin et al., 2011). The increased sea ice melt and river52

runoff that have collected toward the center of the anticyclonic (convergent) Beaufort53

Gyre (Proshutinsky et al., 2009; Yamamoto-Kawai et al., 2009; F. A. McLaughlin & Car-54

mack, 2010; E. C. Carmack et al., 2016; Wang et al., 2018; Brown et al., 2020) drive a55

30-year 1.1-1.9 psu/yr trend toward a fresher surface layer (Peralta-Ferriz & Woodgate,56

2015). The addition of this relatively light fresh water at the surface has stabilized the57

upper ocean, altering ice-ocean processes, including wind-driven mixing, the vertical trans-58

port of heat and nutrients, and sea ice basal melt (Toole et al., 2010; Jackson et al., 2010,59

2011, 2012; Steele et al., 2011; E. Carmack et al., 2015; M. L. Timmermans, 2015; M. Tim-60

mermans & Marshall, 2020).61

Historically, climate models simulate a slower sea ice retreat than observed (Stroeve62

et al., 2007; Winton, 2011; Stroeve et al., 2012; Rosenblum & Eisenman, 2016, 2017; Nieder-63

drenk & Notz, 2018; SIMIP, 2020). One possible source of the model bias could be re-64

lated to simulated upper-ocean stratification, which tends to be less stratified in global65

ice-ocean models than in observations (Holloway et al., 2007; Ilicak et al., 2016). The66

ocean stratification bias could be related to unrealistic sea ice conditions, which could67

result in too little freshwater input from sea ice melt each season. Alternatively, the bi-68

ases could be related to unrealistic ocean processes, such as vertical diffusion (Zhang &69

Steele, 2007) or brine rejection schemes (Nguyen et al., 2009). Up until now, this strat-70

ification bias has mainly been investigated with numerical experiments or by compar-71

–2–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Geophysical Research Letters

Figure 1. Observed salinity profiles from 1975 AIDJEX data (blue) and 2006-2012 ITP data

(red). Solid line indicates May-December average and shading indicates one standard deviation.

(b) Map showing the Canada Basin, the locations of 1975 AIDJEX data (blue) and 2006-2012

ITP data (red), and the region considered for this study (black lines). (c-d) Simulated May-

December ensemble-mean basin average salinity profiles in 1970-2020 from (c) CESM1 and (d)

CESM2. AIDJEX (blue) and ITP (red) observations are repeated in panels (c,d).

ing simulations to annual climatologies with little to no attention paid to their season-72

ality (Holloway et al., 2007; Ilicak et al., 2016; Nguyen et al., 2009; Zhang & Steele, 2007;73

Jin et al., 2012; Barthélemy et al., 2015; Sidorenko et al., 2018).74

Here, we explore this problem by examining both sea ice conditions and ocean pro-75

cesses in models and observations using simulations from the two most recent genera-76

tions of the Community Earth System Model (CESM1 and CESM2), both of which are77

extensively used in polar studies and in the Intergovernmental Panel on Climate Change78

(IPCC) Fifth and Sixth Assessment Reports (AR5 and AR6), and using two sets of year-79

round ocean observations collected in the Canada Basin during 1975 and 2006-2012. Our80

main objective is to understand what governs the seasonal salinity evolution in the mod-81

els and observations in the Canada Basin by examining seasonal surface processes re-82

lated to sea ice conditions, freshwater input, and vertical mixing, all of which cumula-83

tively contribute to decadal surface freshening. Distinguishing between atmospheric and84

oceanic processes that cause surface freshening in the models and observations is crit-85

ical for determining if model freshening mechanisms are consistent with the natural world86

and helps to identify processes that might be missing or poorly simulated in the mod-87

els.88

2 Methods89

We use year-round below-ice observations of ocean salinity collected in the Canada90

Basin, defined as the region enclosed by 72◦N, 80◦N, 130◦W, and 155◦W (Fig. 1b), from91

the 1975 Arctic Ice Dynamics Joint Experiment (AIDJEX) program (Maykut & McPhee,92
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1995; Untersteiner et al., 2007) and during 2004-present from the Ice-Tethered Profiler93

(ITP) instrumentation system (Krishfield et al., 2008; Toole et al., 2011, 2016). There94

were four occupied AIDJEX ice camps between May 1975 and April 1976 and 30 ITPs,95

which were available for 2004-2012 at the time of the analysis. The data in this study96

are identical to those employed by Rosenblum et al. (2021), who showed that June-September97

surface changes between the ITP and AIDJEX datasets are consistent with 30-year mixed-98

layer trends reported by Peralta-Ferriz and Woodgate (2015) using data mainly associ-99

ated with low sea ice concentration in the same region. They used only quality-controlled100

data (level 3) in the ITP archive, screened profiles to select those that include samples101

shallower than 10 m depth (as in Jackson et al., 2010), and that were collected during102

the period May 1 - December 31, which is common to both datasets. In total, 754 AID-103

JEX profiles during 1975 and 3391 ITP profiles during 2006-2012 from 12 ITPs (#1, 3-104

6, 8, 11, 13, 18, 33, 41, and 53) satisfied these criteria, with average shallowest measure-105

ments of ∼6 m and ∼7 m, respectively (Fig 1b). Profiles were linearly interpolated onto106

a common 1 m vertical grid, and the shallowest values were extrapolated to z = 0, which107

we take as the ice-ocean interface, as in the models.108

To examine sea ice conditions associated with the ITP dataset, we identify co-located109

daily sea ice concentrations, provided by the Passive Microwave satellite data, Version110

1 (Cavalieri et al., 1996). Weekly, regional-mean sea ice concentrations associated with111

the AIDJEX data are provided by the Canadian Ice Service Digital Archive (CISDA)112

chart data for the western Arctic region (Tivy et al., 2011). We also examine estimates113

of the 1979-2018 effective sea ice thickness (sea ice volume per unit area) from the Pan114

Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) (Schweiger et al., 2011).115

PIOMAS effective sea ice thickness was regridded to the 25-km Equal-Area Scalable Earth116

(EASE) grid, and data were collected from each grid cell residing in the Canada Basin.117

While several studies have shown that PIOMAS tends to underestimate sea ice thick-118

ness in regions of thicker ice and overestimate sea ice thickness in regions of thinner ice119

(Stroeve et al., 2014; Wang et al., 2018), the seasonality, spatial structure, distribution,120

and decadal trends of the sea ice thickness are realistically reproduced (Labe et al., 2018).121

We use 30 simulations of 1970-2020 from CESM1 with historical and RCP8.5 forc-122

ing from the Large Ensemble project (Kay et al., 2015) and the first 50 CESM2 simu-123

lations from the Large Ensemble 2 project with historical and SSP 3-7.0 forcing (Rodgers124

et al., 2021). The CESM2 data was regridded onto a 1◦×1◦ grid to facilitate the anal-125

ysis. CESM1 and CESM2 are run with historical forcing until 2005 and 2015, respec-126

tively. Both models use the Parallel Ocean Program Version 2 (POP2) model with a dis-127

placed pole horizontal grid, a nominal 1◦ resolution, 60 vertical levels, and 10 m verti-128

cal grid spacing near the surface, although some of the physical parameterizations, in-129

cluding the K-profile parameterization (KPP) vertical ocean mixing scheme (Large et130

al., 1994), differ between the two models (Danabasoglu et al., 2020). We examine the131

ocean salinity, the effective sea ice thickness, and the sea ice concentration in each grid132

box within the Canada Basin of each simulation (Table S1).133

3 Results134

3.1 Upper-ocean salinity135

The May-December average ocean salinity over the top 300 m in the models and136

the observations is shown in Figure 1. The observations indicate a significantly fresher137

upper-ocean over the top 50 m in 2006-2012 than in 1975, with the largest differences138

occurring at the surface (Fig. 1a), consistent with previous studies. By contrast, the 1970-139

2020 ensemble mean shows only a modest freshening from the surface down to 300 m140

in both models (Fig. 1c-d). This results in a simulated upper-ocean stratification that141

is weaker than in recent observations, similar to most ice-ocean coupled models.142
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Figure 2. (a) Surface salinity from 1975 AIDJEX data (blue) and 2006-2012 ITP data (red).

Solid line indicates May-December average and shading indicates standard deviation. Blue and

red error bars indicate one standard deviation over all grid points and simulations in 1975 and

2006-2012, respectively. (b-c) Simulated 1970-2020 ensemble-mean surface salinity from (b)

CESM1 and (c) CESM2. Distribution of August surface salinity in (d) 1975 and (e) 2006-2012

from each observation in 1975 (blue) and 2006-2012 (red), and from each grid point of each

CESM1 (black) and CESM2 (purple) simulation of 1975 and 2006-2012 (distribution for CESM2

not shown). Solid dots and lines indicate mean and one standard deviation. AIDJEX (blue) and

ITP (red) observations are repeated in panels (b,c).

–5–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Geophysical Research Letters

Figure 3. (a) Observed sea ice concentration co-located to 1975 AIDJEX data (blue) and

2006-2012 ITP data (red). Solid line indicates monthly mean, and shading indicates standard

deviation. (b-c) Simulated 1970-2020 ensemble-mean sea ice concentration from (b) CESM1 and

(c) CESM2. (d-f) Effective sea ice thickness from (d) PIOMAS and (e,f) CESM1,2 ensemble

mean. (g-i) Distribution of the seasonal change of the effective sea ice thickness between May

and September during (g) 1979-1998, (h) 1999-2018, and (i) 2006-2012 using all grid points from

PIOMAS (red), and from each CESM1 (black) and CESM2 (purple) simulation (distribution for

CESM2 not shown). Solid dots and lines indicate the mean and standard deviation. AIDJEX

(blue) and ITP (red) observations are repeated in panels (b,c).

To eliminate the possibility that regional or internal variability could explain the143

bias, we examine the surface salinity from each observation and each grid point of each144

simulation during each month (Figure 2). In each dataset, we find a clear seasonal cy-145

cle where the surface becomes fresher in the summer and saltier in the fall, coinciding146

with seasonal sea ice evolution. In each month, we find that the models systematically147

simulate a 1970-2020 surface layer that is more consistent with observations in 1975 than148

in 2006-2012 (Figs. 2b-c).149

Focusing on August (the lowest monthly salinity in the models; Fig. 2d-e; Table S2),150

we find that CESM1 indicates a 2006-2012 August surface layer that is only 0.7±1.0 g/kg151

fresher than in 1975, similar to CESM2 (0.7±0.9 g/kg). By contrast, the observations152

indicate an average 3.6±1.0 g/kg change toward a fresher surface layer during the same153

time periods. As a consequence, we find that models are consistent with observations154

in 1975 but not in 2006-2012. From all simulations during August 2006-2012, only 1.4%155

of CESM1 grid cells and only 0.9% of CESM2 grid cells have a surface salinity that is156

as salty as any observation. We find similar results for other months (Fig. S1-S2) and157

after accounting for geographical differences between ITP and AIDJEX data (not shown).158

Overall, Figures 1-2 show that the models do not simulate the 1975 to 2006-2012159

surface salinity change observed in the Canada Basin and that this bias cannot be ex-160

plained by regional or internal variability present within the models. In the remainder161

of this section, we consider three factors related to seasonal surface processes to iden-162

tify sources of the surface freshening model bias.163
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Figure 4. (a) Observed sFWC from 1975 AIDJEX data (blue) and 2006-2012 ITP data (red).

Solid line indicates monthly-mean and shading indicates one standard deviation. (b-c) Simu-

lated 1970-2020 ensemble-mean sFWC from (b) CESM1 and (c) CESM2. Blue and red error

bars indicate one standard deviation over all grid points and simulations in 1975 and 2006-2012,

respectively. (d-e) Distribution of August sFWC in (d) 1975 and (e) 2006-2012 from each ob-

servation in 1975 (blue) and 2006-2012 (red), and from each grid point of each CESM1 (black)

and CESM2 (purple) simulation of 1975 and 2006-2012 (distribution for CESM2 not shown).

Solid dots and lines indicate mean and one standard deviation. AIDJEX (blue) and ITP (red)

observations are repeated in panels (b,c).

3.2 Sea ice conditions164

Seasonal changes to the Arctic Ocean surface layer are primarily driven by the sea-165

sonal melting and freezing of sea ice (McPhee & Smith, 1976; Morison & Smith, 1981;166

Lemke & Manley, 1984; Peralta-Ferriz & Woodgate, 2015). In the models, the observa-167

tions, and PIOMAS, we find a clear seasonal cycle and a considerable decline in both168

summer sea ice concentration (Fig. 3a-c) and effective sea ice thickness (Fig. 3d-f). To169

examine the decadal changes in seasonal sea ice volume evolution, which directly impacts170

the seasonal freshwater surface flux, we compute a seasonal change (September - May)171

in the effective ice thickness in each grid box in PIOMAS and in each simulation of CESM1172

and CESM2 during 1979-2018 (Fig. 3g-i).173

On average, PIOMAS, CESM1, and CESM2 indicate similar seasonal sea ice thick-174

ness changes during the melt season in 1979-1998 (0.9±0.6 m, 0.8±0.6 m, and 1.3±0.6 m,175

respectively), in 1999-2018 (1.1±0.6 m, 1.1±0.6 m, and 1.5±0.4 m, respectively), and176

in 2006-2012 (1.5±0.7 m, 1.4±0.6 m, and 1.5±0.3 m, respectively). These results sug-177

gest that CESM1 and CESM2 are able to realistically simulate the seasonal sea ice vol-178

ume evolution in the Canada Basin, consistent with previous studies (see references in179

Methods). This suggests that, while there are differences in sea ice concentration between180

the models and observations (Fig. 3a-c; Table S2), seasonal sea ice volume biases are un-181

likely to explain the surface freshening model bias (Fig. 1-2).182
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3.3 Seasonal freshwater storage183

We next estimate the amount of fresh water stored seasonally in the upper ocean184

by examining the seasonal evolution of the observed and simulated salinity profiles, which185

reflects any process that drives changes to the upper-ocean salinity, including sea ice melt,186

river runoff, precipitation, or advection. Specifically, we use the upper-ocean seasonal187

freshwater content relative to May-average conditions (sFWC), given by:188

sFWC(t) =

∫ 0

Zfw(t)

SMay − S(t, z)

SMay
· dz, (1)

where S is salinity, and Zfw indicates the vertical extent of mixing defined by S(Zfw) =189

SMay, where z and Zfw are both negative. SMay is the May-average surface salinity, which190

is computed separately for each grid box of each year in each model simulation and is191

computed separately for each ITP or AIDJEX ice camp of each year in the observations.192

We compute sFWC from May-December at each grid point in each simulation of 1970-193

2020 from each model and for each observation in 1975 and 2006-2012 (Fig. 4). The value194

sFWC, therefore, represents the amount of fresh water necessary to explain the transi-195

tion from a well-mixed May salinity profile (SMay) to any subsequent profile (S(t, z)) for196

z ≥ Zfw at a given location in the models or observations. Figure S3 shows examples197

of this calculation from single profiles.198

The expression for sFWC differs from the more often used expression for freshwa-199

ter content in which the reference salinity is set to 34.8 g/kg. Instead, we use a refer-200

ence salinity that is set to the May-average surface salinity. This difference implies that201

sFWC reflects the seasonal near-surface freshwater content over a well-defined volume202

(see SI for full derivation of sFWC), which avoids errors that can arise when using an203

arbitrary reference salinity (Schauer & Losch, 2019). Furthermore, we use the same cri-204

terion for SMay in both the models and observations, allowing for a fair comparison.205

In both models and observations, we find that the average sFWC increases through206

the summer and into the fall, coinciding with the summer melt season, river runoff, and207

the intensification of the convergent Beaufort Gyre circulation. In late fall and early win-208

ter, both the models and observations indicate an average decrease of sFWC, coincid-209

ing with brine rejection from freeze-up. As in Section 3.1, we consider the distribution210

of the sFWC from every observation and from every grid point of every simulation in211

August 1975 and 2006-2012 (Fig. 4d-e). We find that, on average, the August sFWC is212

0.4-0.5 m larger in the models than in the observations during both time periods (Ta-213

ble S2). We find similar results for other months, with the bias decreasing in fall 2006-214

2012 and increasing in fall 1975 (Fig. 4a-c;S4-S5). Together, this causes a smaller change215

in sFWC between 2006-2012 and 1975 in the models than in the observations.216

We note that the simulated internal variability appears to be smaller in CESM2217

than in CESM1 (compare standard deviations in Figs. 2-4). This could be related to dif-218

ferences in climate sensitivity, which causes a reduced sea ice volume in CESM2 than219

in CESM1 (DeRepentigny et al., 2020, Fig. 3b,c,e,f) and thus a reduced variability in fresh-220

water input and surface salinity.221

Overall, we find that the models appear to simulate somewhat more fresh water222

stored near the surface on seasonal timescales than observed. This suggests that, while223

there are differences in sFWC between the models and observations, insufficient seasonal224

freshwater input at the surface is not the likely source of the bias toward too little sur-225

face freshening in the model (Figs. 1-2).226

3.4 Vertical freshwater distribution227

Qualitatively, the average 2006-2012 seasonal salinity evolution indicates seasonal228

freshwater input is stored deeper in the models than in observations (Fig. 5i). To quan-229
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Figure 5. (a-f) Black solid lines separating each gray shading indicate the monthly-average

depths of Z10%, Z20%, ..., ZMay (eq. 2) from (a,d) observations, (b,e) CESM1 ensemble-mean, and

(c,f) CESM2 ensemble mean in (a-c) 1975 and (d-f) 2006-2012. Dashed lines indicate Z90% in

1975 (a-c, blue) and 2006-2012 (d-f, red). Blue and red error bars indicate one standard deviation

over all grid points and simulations in 1975 and 2006-2012, respectively. (g-h) Distribution of

August Z90% in (g) 1975 and (h) 2006-2012 from each observation 1975 (blue) and 2006-2012

(red), and from each grid point of each CESM1 (black) and CESM2 (purple) simulation of 1975

and 2006-2012 (distribution for CESM2 not shown). Solid dots and lines indicate mean and one

standard deviation. (i) Simulated (dashed) and observed (solid) salinity profiles averaged over

May (blue) and August (red) of 2006-2012.
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tify this difference, we examine the the vertical distribution of seasonal freshwater stor-230

age in the models and observations during every month by rewriting the expression for231

sFWC as:232

sFWC =

∫ 0

Z10%

SMay − S(z)

SMay
· dz︸ ︷︷ ︸

=10% of sFWC

+

∫ Z10%

Z20%

SMay − S(z)

SMay
· dz︸ ︷︷ ︸

=10% of sFWC

+... +

∫ Z90%

Zfw

SMay − S(z)

SMay
· dz︸ ︷︷ ︸

=10% of sFWC

,

(2)

where Z10%, Z20%, ..., Zfw is the lower bound of the depth range that encompasses 10%,233

20%,...,100% of the sFWC. These depths are computed at each grid point of each sim-234

ulation and each observation during May-December of 1975 and 2006-2012 (Figure 5).235

We only include data points with positive values of sFWC, implying that some observed236

June profiles are not included in this portion of the analysis. As in Section 3.3, we also237

consider the August distribution of Z90% from every observation and from every grid point238

of every simulation in 1975 and 2006-2012 (5g-h; Table S2). Z90% is closely related to239

the mixed-layer depth in both the models and observations from July onward, when sFWC240

is large enough to form a well-defined summer mixed layer (Fig. S6). We use Z90% in-241

stead of the more commonly used mixed-layer depth because its value can vary based242

on its definition (Peralta-Ferriz & Woodgate, 2015) and because the precise definition243

of Z90% is both physically relevant and can be calculated in the same way for both mod-244

els and observations.245

The vertical distribution of sFWC reveals two main discrepancies between the mod-246

els and observations (Fig. 5). First, we find that the fresh water is spread over a deeper247

range in the simulations (Aug. Z90% =24±2.7 m, 26±3.1 m in CESM1, CESM2) com-248

pared to the observations (Aug. Z90% =14±3.7 m) in 2006-2012. Second, we find that249

the vertical distribution of sFWC remains relatively unchanged between 1975 and 2006-250

2012 in the simulations (less than 1 m change in Aug. Z90%), while the observations in-251

dicate that the fresh water is concentrated significantly closer to the surface in 2006-2012252

than in 1975 (∼ 8 m change).253

Interestingly, we also find that the models do simulate a 1975 vertical distribution254

of sFWC consistent with the observations during the summer (Aug. Z90% =23±3.5 m,255

25±2.8 m, and 25±2.8 m in the observations, CESM1, and CESM2, respectively), sim-256

ilar to the 1975 surface salinity (Figs. 1-2). However, an unrealistically large amount of257

fresh water (Fig. 4) is stored unrealistically deep in later months (Fig. 5), suggesting that258

this is a result of compensating errors.259

Overall, we find that the 2006-2012 seasonal freshwater storage has an unrealistic260

vertical distribution in the models, and that the discrepancy between the models and261

observations cannot be explained by regional or internal variability present within the262

models (Fig. 5g-h). Together this suggests that simulated vertical mixing of fresh wa-263

ter is inconsistent with observations in recent years and that this is a source of the sur-264

face freshening model bias (Fig. 1,2).265

4 Conclusions266

State-of-the-art coupled ice-ocean models struggle to accurately simulate upper-267

ocean stratification in the Canada Basin, and instead tend to simulate a surface layer268

that is saltier and less stratified than observed (Holloway et al., 2007; Ilicak et al., 2016).269

The bias could be related to sea ice, atmospheric, or ocean processes and, until now, had270

only been examined using numerical experiments and annual climatologies (Holloway et271

al., 2007; Ilicak et al., 2016; Nguyen et al., 2009; Zhang & Steele, 2007; Jin et al., 2012;272

Barthélemy et al., 2015; Sidorenko et al., 2018). Here, we examine this question by fo-273
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cusing on decadal changes to seasonal surface processes using observations from below-274

ice ocean measurements collected during May-December 1975 (AIDJEX) and 2006-2012275

(ITPs) and in the two most recent generations of the Community Earth Systems Mod-276

els (CESM1 and CESM2).277

We find that CESM1 and CESM2 have an upper-ocean stratification bias in 2006-278

2012, similar to most global ice-ocean models, but with an upper-ocean stratification that279

is fairly consistent with observations in 1975 (Figs. 1-2). That is, the models fail to cap-280

ture the fresh surface layer that appears in recent years. We show that this surface fresh-281

ening model bias is likely related to the unrealistically deep mixing of fresh water in the282

models (Fig. 5), rather than biases related to sea ice conditions (Fig. 3) or insufficient283

seasonal freshwater input (Fig. 4). This suggests that one source of the 2006-2012 ocean284

stratification bias is closely related to missing or unrealistic mixed-layer dynamics in re-285

cent years, rather than unrealistic sea ice conditions or seasonal freshwater input from286

ice melt, river-runoff, precipitation, advection, or other sources. These results are inde-287

pendent of differences in climate sensitivity and sea ice conditions between CESM1 and288

CESM2 (DeRepentigny et al., 2020, Fig. 3), and also do not depend on differences in sea289

ice concentration between the models and observations (Figs. S7-8).290

This result raises important questions as to what mechanisms must be included in291

climate models to simulate the decadal trend toward a shallower summer mixed layer292

in recent years. Previous studies have indicated that simulated vertical mixing is sen-293

sitive to several inter-connected processes, including Ekman dynamics (Zhang & Steele,294

2007), vertical mixing schemes (Liang & Losch, 2018), and ice-ocean momentum trans-295

fer (Dewey et al., 2018; Meneghello, Marshall, Campin, et al., 2018; Meneghello, Mar-296

shall, Timmermans, & Scott, 2018), and are directly linked to the representation of At-297

lantic Water circulation (Zhang & Steele, 2007). Identifying the role of each mechanism298

and improving their modelled representation will be particularly important in regions299

such as the Canada Basin, where the summer mixed-layer depth can be smaller than the300

vertical resolution in the models (∼ 10 m). This is an interesting direction of future study.301

Because the upper-ocean stratification directly impacts the vertical exchange of heat,302

energy, and nutrients, these results may have important implications for Arctic ecosys-303

tem dynamics and for sea ice cover. For example, if the unrealistically deep transport304

of fresh water carries heat downward and traps nutrients deeper, then there could be less305

heat available for summer sea ice melt, a weaker seasonal ice-albedo feedback, and re-306

duced primary productivity. These results, therefore, highlight the need for improved307

parameterizations of upper-ocean dynamics under a rapidly changing sea ice cover.308
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