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Abstract

In this investigation, formulas for calculating the stress ratio of simple and continuous
T, I and box beams are presented. The stress ratio is defined as the ratio of the longitudinal
stress at a point found by shear lag theory to the stress at the same point found by elementary
beam theory. In these formulas, geometric parameters, loading types and section location are
taken into account. A wide range of stress ratio problems are solved. Numerous examples

and comparisons are given to check the accuracy of the formulas.
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stress ratio = o,/0y

shear lag theory longitudinal stress at web-flange junction

[l

beam theory longitudinal stress at same point as o,
= distance from center of web to middle surface of top flange
= total bending moment and total axial force at a section

= distance from web center to centroid of overall
cross-section, positive upward

= area and moment of inertia of web within half
of total cross-section

= 2bhe?/1
2bh /A

ry' = (ri +r,)2

thickness of flange

= thickness of web within half of total cross-section (Fig. 1)

flange thickness of equivalent I beam, see Eq. (10)

see Eq. (14)

=n=n/l

overall depth of web
= half width of flange, measured from edge of web
= area and moment of inertia of half of total section

S - 1 = complementary stress ratio

b,/b = effective flange width coefficient

I - X = complementary effective flange width coefficient

= Half effective width of flange, measured from edge of web

= stress ratio of equivalent I beam
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= complementary stress ratio of equivalent I beam
= total length of beam

=L/b

= j-th span length of continuous beam

= relative x-coordinate of cross section

= relative x-coordinate of application point
of concentrated load or reaction (Fig. 2)

.76 (box beam)
.75 (I beam)

.60 (box beam)
) .65 (I beam)

0 (for box beam and I beam with / > 30)
.088-.0455 I (for I beam with / < 30)
= peak complementary stress ratio

= bending moment in a simple beam due to uniform load,
J-th concentrated load and j-th interior reaction

= complementary stress ratios in a simple beam
due to uniform load, j-th concentrated load and j-th interior reaction

= complementary stress ratio at the j-th interior support section
= reaction of j-th interior support of continuous beam

= total bending moment at j-th interior support section

= 2¢tL

=2(1-§)L

=L N* /A M*

= distance from center of web to middle surface of bottom flange






1. Introduction

In wide flange beams, the distribution of longitudinal stresses across the flange is
not uniform due to shear deformation in the flange, known as shear lag. An effective
flange width or a stress ratio, between which a simple relation can be found (see
later, section 2), are used to account for this effect in design. The effective flange
width is defined as that width which resists a longitudinal force equal to the actual
force in the flange, if the longitudinal stresses across the flange were constant and
equal to the actual maximum stress. The stress ratio is defined as the ratio between
the longitudinal stress found using shear lag theory and the stress at the same point
calculated by elementary beam theory. Only the stress ratio at the web-flange junc-
tion is dealt with in this study.

The problem of effective flange width for a T-beam has been studied for a long
time. Numerous research results have been published by many authors and various
recommendations have been suggested in design codes from various countries. How-
ever, among these research results and recommendations, a wide disparity can be
found [3, 4]. For I beams and box beams, the study of the related problem seems to
be insufficient. Therefore, a more rational approach to the problem is needed.

In a recent study [3], tables for determining the effective flange width of T
beams, which are helpful for design work, were presented. In Ref. [3], however, only
a geometric parameter b// and three loading cases were considered. Furthermore, at
the most critical sections, the section directly under a concentrated load or the inte-
rior support section, the effective widths were not given. A lower estimate for the
shear lag effect was obtained in Ref. [3] due to the use of a finite element analysis
with a rather coarse mesh (see later, section 4.2).

A rigorous analysis and the correct effective width or stress ratio can be
obtained by the computer program given in Ref. [2], provided a sufficiently large
number of harmonics is adopted. In Ref. [1], a simplified, but accurate, analysis and
a computer program SHLAG have been presented, by which the shear lag effect and
the stress ratio or effective flange width can be found with a minimum amount of
input data. However, using these programs would be somewhat cumbersome for
engineers who want to find quickly only the most important data on shear lag as it
affects design problems.

In this study, based on the results calculated by SHLAG of Ref. [1], formulas
for determining the stress ratio and effective flange width, in which loading types,
section location, / and r; (or r,) are taken into account, are suggested (see Notation
for definition of symbols). The computational work for all formulas can be done by
ordinary hand caiculator and most formulas are simple and easy to use. A variety of
shear lag problems for simple and continuous T, I and box beams can be solved by
these formulas. Moreover, these formulas can also be used as a tool to study the
stress ratio problem since the parameters included appear in an explicit form and the
effect of each parameter can be estimated easily.

In section 2 of this study, some basic relations developed in the present study
are given. The T section is more complicated than the I or box section with sym-
metric flanges. An extra parameter, the location of the centroid of the total cross sec-
tion, must be considered. To simplify the formulation, the calculation of the T beam
will be performed through an equivalent I beam. This problem will also be discussed
in this section.
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In section 3, some simple and essential formulas are presented, by which the
most important features of the shear lag effect for a simple or continuous beam can
be estimated quickly. These should be useful for design problems usually encoun-
tered.

In section 4, more complete formulas are given and a wide range of shear lag
problems are solved. These formulas should prove useful even for research as well as
design work in this field.

Although all formulas in this study are derived for T beams and I or box beams
with symmetric flanges, these formulas can be used approximately for beams with
slightly nonsymmetric flanges.

Numerous typical numerical examples are given to show how to use the formu-
las. Comparisons with the results by SHLAG and other authors have been per-
formed to check the accuracy of the formulas.

2. General Remarks

2.1 Basic Relations

Solutions for the stresses in T, I and box beams (Fig. 1) have been studied in
detail in Ref. [1]. For most practical structural materials, the Poisson’s ratio » varies
only from .15 to .3, the effect of which upon the stresses is negligible and will be
neglected in this study. Cross sections of beams studied in this investigation are
shown in Fig. 1.

At the web-flange junction, the longitudinal stress in a beam (Fig. 2) can be
expressed as [1] (see Notation for definition of symbols):

gs = XA, Fp(l)sinnwx (1)

n=1

F(l) can be found from Eqgs. (8) and (11) of Ref. [1] by letting y = b.

The total bending moment and axial force at any section of the beam can be
expressed as a Fourier series:

@

M* = M*(x) = X m,sinnxx

n=|

(2
N* = N*(x) = Eln,,sinn X
For a T beam
[ (l) + 2—;"—%(1)1/1,. =~ Fm+ —'Z’— + Znge 3)

For an I beam with symmetric flanges,
() + riga (DM, = - em, /I
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Fig. 1. Cross Sections of Beams



or
(1) + ragn (DM, = n,/ 4 (4)
where p,(/) and g,(/) can be found from Eq. (9), (10) of Ref. [1].
For a box beam with symmetric flanges (see Ref. [1]):

[2+r,(1 - tanh% + Eih—“)u,, --%m,
or
n
[2 + ro(1 - tanh%a + ‘a“ah"‘ My = = 5)

It can be seen from Egs. (4) and (5) that for an I or box beam, o; will be depen-
dent only upon /, r; (or r,), e/I or A and is independent of the specific dimensions of
the cross section. The beam theory stress can be expressed as*

N* Me _ N M e
A, T, A+rd)Ad 1+r, I

(6)

Therefore, the stress ratio S = o,/ 0, is further independent of e/I (or A) and
thus only loading types, location of section x, /, and r; (or r,) are chosen as the
parameters in the formulas of this study.

Both 7 and g are used in the formulas. These two quantities can be simply
related by
n=6/1(r; + 2bh3/ h,d? ' + 1 - B] (for bending) 7
or
n=06/(r;' +1 - B) (for axial load) (8)

2.2 Stress Ratio of a T Beam

It can be concluded from Egs. (3) and (4) that under bending the shear lag stress
o; of a T beam can be determined from an equivalent I beam, if I, b and e of both
these beams are the same but r; of the latter (denoted by r;) is equal to (r; + r;)/2 of
the former. Therefore, the longitudinal shear lag stress o, of the T beam to be calcu-
lated is equal to

M*e

= S.
ST T 1)+ bh36 ©)
where, S; and 4’ = stress ratio and flange thickness of the equivalent I beam, and
, I,
h' = Z_be—zri (10)
The beam theory stress of the T beam can be expressed as
* - * -
oy = M (; €) _ Me(ll c/e) (11)
t t

*I, = (1 + )l is used. Accurately, I, = (1 + r;)] + 2bh3/12.



we can find
Il ’ ra bh3
l-c/e—[l+fi+(l+-2—)m11 (12)
Hence, the stress ratio of a T beam under bending can be calculated by
S = o'.s'/a'b = ¢msi (13)
, Ta . bh3 ., bh?
¥m=[1+r"+(1+ 2 )ﬁ-]/(l '+ ¢ ) (14)

Similarly, when only axial load N is acting (m, = 0), it can be proved that the stress
ratio of a T beam is exactly equal to that of its equivalent I beam provided 4 of both
these beams are the same but 7, of the latter (denoted by r,") is equal to (r; + r,)/2 of
the former.

For a T beam, stress ratio S, and effective flange width coefficient A can be
related as follows.

Under bending, from Egs. (11) and (12) we can find

3
I l+r,’+(l+r—")-li
5 - A .- 2’7121 (1s)
Mre(l-c/e) ™ | v LN
A N

For axial load,
as 2+r,

S=N/A, T2+,

(16)

3. Formulas for Basic Cases

All formulas of this study were derived by empirically matching with the calcu-
lated results of the computer program SHLAG of Ref. [1] (see Appendix). The accu-
racies of the formulas are checked by comparison with the results of SHLAG and
other authors. Symbols in all formulas are defined in the Notation section.

3.1 Basic Formulas for Simple Beams

Under uniform load, from the results of various comparison calculations, it can
be concluded that the effect of ; upon the effective flange width can be neglected
when / > 4. At any section of a simple beam, the complementary effective width

B=37T1""1+(B31-99139|5-x|15]+48 (I24) (17)

Under a concentrated load at any point x = ¢ (Fig. 2), at the section directly
under the load x = ¢,

i B B .
E(l_s)l ('t CZ) (rz 2 6)
No = cs (18)

1 -0 +1-cy) 5O




1.35/18 - 02 (I <140)
¢3=.006 (I>140) (19)

If a simple beam is subjected to uniform load and n concentrated loads, S can
be obtained by superposition as:

n
S =(WM,S, + EM}’S}’)/M"
j=1
where

M,, S, = bending moment and stress ratio at section under consideration due
to uniform load alone;

M?, S? = as M,, S,, but due to the j-th concentrated load alone;
M* = total bending moment at the section under consideration.

3.2. Two-span Continuous Beam under Uniform Load

For a two-span continuous beam (Fig. 3), the stress ratio at any section can be
expressed as:
M,S, + M{S|

5= T (20)

where

M, = bending moment due to the uniform load in a simple beam formed by
removing the interior support;

1 = as M, but due to the reaction R, of the interior support;
M* = M, + M}.
Eq. (20) can be transformed to

My, + M; m’

11=S—l= e

(1)

At the interior support section x = ¢,
M, = ((1-§wL?/2
M, =-(U+¢§&-¢)wWLY8
Substituting in Eq. (21) and letting » = »n,, we can obtain
1+ £E- 22)’70 - 4(£ - Ez)ﬂw
m= p)
1-3(-¢)
n» and n, can be calculated by Egs. (17), (7), and (18), respectively.

Eq. (22) can be used for any continuous beam with two unequal spans. If the
two spans are equal, Eq. (22) can be simplified to:

4(3.771°19 + AB)
it + 1 - 377719 + AB)

(22)

4c
m= Tl(’i'3 -¢) - (23)
Some results calculated for equal and unequal two span beams are shown in

Tables 1 and 2. In Table 1, structures A, B, C and D are the box beams in Ref. [2]
with nonsymmetric flanges, for which the r; can be calculated by summation of the
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Table 1 Stress Ratios at Center Support Section of Continuous
Beams with Two Equal Spans under Uniform Load

beam stress ratio S
case / d r;
Eq. (23) | SHLAG Ref. [2]
I-1 16 9.72 2.14 2.18
I-2 30 9.72 1.65 1.66
B-1 16 24.3 2.83 2.84
B-2 30 243 2.00 2.00
Stru. A 32 1.5 5.90 1.51 1.41, 1.44*
StruuB Ref. [ 32| 5 7.76 1.58 1.58, 1.53* | 1.44, 1.46*
Stu.C [2] [ 64| 15 3.34 1.19 1.19, 1.17* | 1.13, 1.20*
Stru. D 64 | 10 471 1.23 1.13, 1.20*

*Stress ratio for top and bottom flange

Table 2 Stress Ratios at Interior Support Section of Continuous
Box Beam with Two Unequal Spans under Uniform Load

ratio stress ratio S
of spans | [/ r; B Nw Mo
Eq. (22) | SHLAG
16 | 4.86 | 0235 | 020 | 215 | 1.74 1.74
£E=1/3 | 60 | 486 |.0019 | 002 | 058 | 121 1.21
:—f =2 |16|243 | .0235| 023 | 428 | 251 2.53
30 | 243 | .0070 | .007 | 229 | 1.2 1.83
E=1/4 | 16 | 486 |.027 | .023 | 256 | 166 1.65
60 | 486 |.002 | .002{ 068 | 1.18 118
22 _3 016|243 |.027 | 027 | 509 234 | 234
l 30 {243 | .008 |.008|.2712| 172 1.73




9.

second moments of top and bottom flanges:

y o 2%9.375 x .75(d/2 - .375)% + 9.37 x 1(d/2 - .5)?
! 1.25d3/12

From Tables 1 and 2 it can be seen that the accuracy of Formulas (22) and (23)
is excellent for beams with symmetric flanges. For beams with nonsymmetric flanges,
the stress ratio is different for top and bottom flange and the results of Eq. (22) and
(23) agree well with the larger one.

The accuracy of Eqgs. (17) and (18) is much better than Egs. (22) and (23), since
in the latter subtraction of large numbers may occur. Therefore, for a simple beam
subjected to uniform load and numerous concentrated loads in the same direction,
Egs. (17) and (18) would be very accurate.

3.3. Multiple Span Continuous Beams under Uniform Load
For a continuous beam with »n spans (Fig. 4), similar to Eq. (21), at any section,

n-1

n =My, + M0}/ M* (24)

j=1
where
M] = as in Eq. (20), but due to the reaction R, of the j-th interior support
M* = total bending moment at section under consideration.

When calculating the stress ratio at a certain interior supported section of most
practical engineering structures, except when the total length, span and r; of the beam
is very small (say, / < 12, a < 4 and r; < .6), the effect of all other reactions can be
neglected. Hence, at the j-th interior supported section, Eq. (24) can be simplified to:

n; = (Myn, + Min))/ M;* (25)
For a continuous beam with n equal spans (Fig. 5)
M, = j(n - j)wL?/2n?

M] = -j(n - j)R;L/n? (26)
Substituting Egs. (26), (7), and (18) in Eq. (25), we can obtain
_Jn =) Bri _Ra 5 M?,
m =1 2n2 1+ -Br; wL | i = el wL? 27

where
B can be calculated by Eq. (17) and
M#*; = total bending moment at the j-th interior supported section.

For the stress ratio at the interior support section of a continuous box beam
with three equal spans and r; = 4.86, we can obtain
gy o 2526 45.7
mEmE T 1.206/'° - 4.57

(28)

Some results calculated for continuous beams with multiple equal spans are
shown in Tables 3 and 4, from which it can be seen that Eq. (27) is sufficiently accu-
rate even for continuous beams with ten equal spans and nonsymmetric flanges.
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Fig. 4. Multiple-Span Continuous Beam Under Uniform Load

Fig. 5. Multiple Equal Span Continuous Beam
Under Uniform Load
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Table 3 Stress Ratio S at Interior Support Sections of Continuous Box
Beams with Three Equal Spans under Uniform Load

l = 12 24 45 90
S Eq.(28) | 2.76 | 1.96 | 1.53 |1.27
S SHLAG | 2.76 | 1.97 | 1.54 |1.28

Table 4 Stress Ratio S at Interior Support Sections of Continuous
Beams with Ten Equal Spans under Uniform Load

beam case J 1 2 3 4 5
R;/wL 134 0964 | .1010| .0997 | .1002
10° x M;*/wL? -1.058 | -773 | -849 | -827 | -837
1 =100 Eq.(27) | 1.62 1.69 1.65 1.66 1.66
box beam S
ri = 3.07 SHLAG | 1.59 1.68 1.64 1.65 1.65
! =100 Eq.(27) | 1.57 1.63 1.60 1.61 1.61
I beam S
ri = 3.07 SHLAG | 1.56 1.64 1.61 1.62 1.62
‘B I = 240 Eq.(27) | 148 | 155 | 152 | 153 | 1.53
yog’k,“/cls r = 10.6 S
_Q.m d=2 SHLAG* | 1.47 1.55 1.53 1.53 1.53
[

*Stress ratio for bottom flange
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4. Extension of Basic Formulas and Application

To study the longitudinal distribution of the stress ratio in a simple or continu-
ous beam, it is a fundamental requirement that a formula for the longitudinal varia-
tion of the stress ratio under a single concentrated load must be derived.

4.1. Stress Ratio at Any Section of Simple Beam
under a Concentrated Load at Midspan

The complementary stress ratio can be expressed empirically as:
7 = noexpl-a) 29)

in which, u = |x - .5/, 9, can be found from Eq. (18) by letting ¢ = .5. When
r 2 .6,

o = dci(r3-c))/1

o= l‘ * b<exp[(%>‘“ In(-))-1) (30)
T .6

where, for box beams,
[11.1 0.0111 /" + 0114)  (I<6)

11.1 (I - .99) (I >6)
.14 ( 2 10)
= 11+.01( - 6) (! <10)
for I beams,
121 191 (<6)
T 1112 - 1.076) (I >6)
whenr;, < .6

o =c3/ (it + 1 -c3)
a=1.33r/n, 31

For a continuous beam with two equal spans under uniform load, the stress
ratio at any section can be calculated by Eq. (21), in which 7, and 5] can be found
from Eqgs. (17), (7), and (30).

For example, the stress ratio at section x = .3 of beam B-1 in Table 1 can be
computed as follows. 5, = .025 can be obtained from Egs. (17) and (7). From Eq.
(30), 7, = .382 and « = 59.1 can be found. Thus, n] = 2.8 x 10°= 0. Substituting
M, = .105wL? and M’ = -.09375wL? in Eq. (21), we can obtain

_ o105 x.025-0 _ o,
T 105 -.09375
S =1.23

The stress ratios for various sections of beams in Table 1 can be calculated similarly
and are shown in Tables 5 and 6.
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Table 5 Longitudinal Variation of Stress Ratio S for
Beams in Table 1 under Uniform Load

beam X 2 3 45 475 5
case u 3 2 .05 02510
n 0 0 .020 .087 .382
B-1 S Eq. (21) | 1.13 | 1.23 1.02 1.44 2.83
SHLAG | 1.15 | 1.23 .96 1.43 2.84
7 0 0 .003 .025 .204
B-2 S Eq.(21) | 1.04 | 1.07 .98 1.12 2.00
SHLAG | 1.05 | 1.07 93 1.08 2.00
7 0 0 .042 .249
I-1 S Eq. 21) | 1.16 | 1.30 1.15 2.14
SHLAG | 1.16 | 1.25 1.11 2.17
n 0 0 .008 133
I-2 S Eq. (21) | 1.04 | 1.06 1.03 1.65
SHLAG | 1.05 | 1.08 .98 1.66
Table 6 Longitudinal Variation of Stress Ratio
of Structure B and C of Ref. [2] (Table 1)
X .25 4667 4867 .4933
'H 0 .009 .042 .070
Stru. Eq. (21) 1.04 1.03 1.21 1.35
B SHLAG* | 1.06,1.0 1.01,1.01 1.16,1.15 .36,1.33
Ref. [2]* | 1.04,1.0 1.13,1.16 .35,1.37
X .1875 .25 4933 4967
i 0 0 .017 026
Stru. Eq. (21) 1.01 1.01 1.08 1.13
C SHLAG* | 1.01,1.01 | 1.01,1.01 1.08,1.07 12,1011
Ref. [2]* .99,1.01 .99,1.02 1.08,1.12 .13,1.19

*Stress ratio for top and bottom flange
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4.2. Calculation of T Beam

As mentioned in section 2.2, a T beam can be calculated from its equivalent I
beam, for which the above-mentioned formulas can be used.

A family of T beams from Ref. [3] were calculated by the above-mentioned
approximate formulas and the computer program SHLAG and are compared with
results in Ref. [3]. The geometric dimensions of the beams are shown in Table 7.
The stress ratios calculated for simple beams are shown in Table 8. The stress ratios
calculated for two equal span continuous beams, i.e., propped cantilever beam in
Ref. [3], are shown in Table 9.

From Tables 8 and 9 it can be seen that the approximate formula stress ratios
agree well with those of SHLAG, except for the two span continuous beam T-3, in
which the relative span a/b = 2.7 is very short and r;’ is large, but Ref. [3] gave a
somewhat lower estimate of the stress ratios. This is logical since in Ref. [3] a finite
element analysis with a rather coarse mesh was used. Furthermore, it can be
expected that at a section directly under the concentrated load or at the interior sup-
port section the stress ratios by the analysis of Ref. [3] would be even lower.

4.3. Longitudinal Distribution of Stress Ratio in Simple Beam
under A Concentrated Load at Any Point

For the case of a concentrated load acting at any point x = ¢, we shall calculate
the stress ratio S with the aid of two auxiliary beams, Beam 1 with span L, = 2¢(L
and Beam 2 with span L, = 2(1-¢§)L (Fig. 6). Both Beam 1 and Beam 2 are loaded
by a concentrated load at midspan, for which the complementary stress ratios », and
n, can be found by Egs. (30) or (31).

It can be easily found from Eq. (18) that the peak complementary stress ratio
of the original beam, Beam o, is equal to the average of those of Beam 1 and Beam
2. At a section A on the left side and far away from the load, the stress ratio S of
Beam o will approach the value S, at the corresponding section A’ of Beam 1 (Fig. 6).
Hence, we can assume approximately that at the left support section, S of Beam o is
equal to S, of beam 1. A similar assumption can also be used on the right side.

To meet the above requirements we can assume for the original beam: when
u=¢(-x20,

§ =310+ 58+ 0 - s

whenu = x - £20,

iy S
S = 3l0+ £ps:+ 0 - ) 51

and
%l(l+%)nx+(l—%)nz] ( =§-x 20)
L - - 1+ -4 - 0 (32)
Sl -Tjg)m+( + 1—5)"2] (u=x-£20)

in which, n, can be found from Egs. (29), (30), or (31) by using /, = 2¢/ for / and
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Table 7 Geometry of Beams in Ref. [3] (h/b = 2/39, h,./b = 1/13)*
beam | b'/I d/b r; r, r'i=r,| h'/b ¥m
T-1 3 | 7.18 | .359 8.19 | 3.71 5.98 .0373 | 1.011
T-2 S | 431 | .2154 | 10.78 | 6.19 8.49 .0403 | 1.057
T-3 8 | 2.69 | .1347 | 11.38 | 9.90 10.64 0479 | 1.243

*b’, I')X" denotes b, I, ) of Ref. [3] respectively, and / = 2.154/'/b’,
A (this study) = (14X -1)/13.

Table 8 Simple T Beams under Uniform and Concentrated Load*

approximate formula | SHLAG Ref. [3]
load beam
b'/L x B n;i S S by A S
3 325 | 128 123 .14 A3 .89 .882
T-1 475 | 111 .105 12 11 .90 .892
uniform 5 d11 105 A2
load
.5 325 | 294 357 | 1.44 1.41 .73 .709 | 1.38
T-2 475 | .264 .309 | 1.39 1.38 .76 742 | 1.32
.5 .264 309 | 1.39 1.38
3 325 025 | 1.04 1.05 95 946 | 1.05
T-1 475 293 | 1.31 1.30 .76 742 1 1.29
conce. 5 442 | 1.46 1.46
load
at .5 325 161 | 1.23 1.27 .81 795 | 1.24
T-2 475 .684 | 1.78 1.74 .60 569 | 1.67
midspan ] .870 | 1.98 1.99
.8 325 545 | 1.94 2.12 .58 548 | 1.92
T-3 475 1.328 | 2.92 3.00 43 .386 | 2.69
5 1.540 | 3.19 3.40

*)\'is given in Ref. [3), S = ¢, (1 + n;) in the approximate formula method.
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Table 9 Continuous T Beams with Two Equal Spans under Uniform Load*

beam approximate formula SHLAG Ref. [3]
case X B Nw M n; S S N S
T-1, 2375 | .044 | 039 216 | 1.23 1.19 .83 | 1.19
1=14.36 | .4875 | .034 | .030 151 703 | 1.72 "1.75 57 | 1.67
5 .034 | .030 221 985 | 2.01 2.02
T-2, 2375 | 106 | .105 .002 575 ] 1.66 1.62 .64 | 1.57
1=8.62 | .4875 | .081 | .079 3331 1.490 | 2.63 2.65 39 | 2.53
5 .081 | .078 435 | 1.863 | 3.03 3.06
T-3, 2375 | 229 | 267 018 | 1.400 | 2.98 2.95 44 | 2.62
1=5.39 | 4875 | .178 | .197 643 | 2.674 | 4.57 4.81 27 | 4.43
.5 178 | 196 770 | 3.066 | 5.05 5.44

*X\, S as in Table 8.
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|u|/2¢t for u, n, can be calculated similarly by using /, = 2(1 - £/ for / and
|u|/2(1-¢) for u.

For example, the stress ratio S at section x =.2 of the simple beam
(I = 8,r; =9.72) shown in Fig. 7 can be calculated as follows. Substituting /, =
2x.25x8=4 and u; =.05/2 x .25 =.1 in Egs. (29) and (30) for / and u, we can
~ obtain n, = .347. Similarly, using /, = 2(1 - .25) x 8 = 12 and u, = .05/2 x .75 = .0333,
we can find n, = .087. Substituting ¥« = .05 and 7,, n, in Eq. (32), we can obtain for
section x = .2

“ ﬂ

,,=%[(1 + )x 347+ ———)x .087] = .243
Similarly, at section x =.3,

%[(1 - )x 347+(l+—)x .087] = .208

Results for some simple box beams by the above approximate formulas are
shown in Fig. 7, in which those by SHLAG are also plotted for comparison.

4.4. Longitudinal Distribution of Stress Ratio
in Continuous Beams under Uniform Load

For a continuous beam with two unequal spans under uniform load, the stress
ratio at any section can be determined by Eq. (21), in which »] can be calculated by
Eq. (32) and #;, n, can be obtained from Eq. (29) and (30). The stress ratio calcu-
lated for some typical two span continuous box and I beams are shown in Table 10
and 11 with the necessary intermediate results.

For a continuous beam with n spans (Fig. 4) under uniform and m concentrated
loads, the stress ratio at any section can be found from Eq. (24) by adding the effect
of the concentrated loads:

n-1

m
n=Mun, + E ;+ 2 MPP)/ M* (33)
Jj=1 i=1
where M?, 5/ = bending moment and complementary stress ratio in a simple beam
due to the i-th concentrated load.

In most practical structures, for calculating the stress ratio at a section in the j-
th span, only the effect of uniform load, interior reactions R;_, and R, and the con-
centrated loads in this span need to be accounted for. Therefore if only uniform load
is acting, Eq. (33) can be simplified to:

n=Myn, + M_yn]_| + My))] M* (34)

For a continuous box beam with three equal spans, with / = 12 and r;, = 4.86,
subjected to uniform load (Table 12), at section x = .475, n can be computed as fol-
lows.

For reaction R,, from Eq. (32), we can obtain

rp_ 1o _ .475-1/3 475 -1/3
i 2[(l T-1/3 )><.0035+(l+—-———l_1/3 ) x .0018] = .0025

for reaction R,, similarly,
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Table 10 Longitudinal Variation of Stress Ratio for Two Span Continuous Beams

with ¢ = 1/3 and a,/a; = 2 under Uniform Load

beam | I, r; X .0833 .1667 3 .3333 .3667 .5 .75
60, n 0 0 .001 .058 .001 0 0
4.86 Eq. (21) co .98 1.00 1.21 1.00 1.01 1.01
SHLAG -72 1.02 .98 1.21 .98 1.00 1.01
box 16, 'H 0 0 .048 216 .047 0 0
beam 4.86 Eq. (21) oo .74 1.14 1.74 1.16 1.19 1.06
SHLAG | -571 .74 1.16 1.74 1.18 1.19 1.06
16, n 0 0 .065 428 0 0
24.3 Eq. (21) oo .69 1.20 2.51 1.23 1.07
SHLAG | -744 77 1.08 2.53 1.18 1.07
60, ' 0 0 .002 .054 .002 0 0
4.86 Eq. (21) oo .98 1.00 1.19 1.00 1.02 1.01
1 SHLAG -74 1.01 .98 1.20 1.00 1.00 1.01
beam
16, i 0 .001 .070 .202 .001| 0O
4.86 Eq. (21) o .68 1.21 1.67 1.25 1.08
SHLAG | -594 .72 1.18 1.69 1.21 1.07
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Table 11 Longitudinal Variation of Stress Ratio for Two Span Continuous Beams
with ¢ = 1/4 and a,/a; = 3 under Uniform Load

beam | /,r; X .10 22 24 25 .26 .29 5

60, 2 | 0 .001 .018 .068 0181 0 0
486 | S| Eq.(21) .99 1.00 1.05 1.18 1.05 1.00 1.01
SHLAG .99 .99 1.08 1.19 1.07 97 1.01

box | 16, n | O .074 170 .256 165 049 | 0
beam 486 | S| Eq.(21) 91 1.17 1.43 1.66 1.44 1.13 1.08
SHLAG .84 1.19 1.48 1.65 1.49 1.10 1.09

16, 7|0 074 267 509 .262 0391 0
243 S| Eq.(21) .89 1.16 1.69 2.34 1.71 1.17 1.09
SHLAG .80 1.14 1.75 2.34 1.75 99 1.10

60, n | O .003 .022 .064 .023 0010
486 | S| Eq.(21) | 1.00 1.01 1.06 1.17 1.07 1.00 1.00
I SHLAG .99 1.00 1.08 1.18 1.08 .98 1.01
beam ‘
16, n{ .002 .093 175 .239 .170 062 0

486 | S| Eq.(21) .89 1.21 1.43 1.60 1.44 1.16 1.11
SHLAG .85 1.20 1.45 1.61 1.46 1.13 1.10
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1y, 23-475 _Y3-415

Substituting in Eq. (34), we obtain
_ 12469 x .0290 - .06417 x .0025 - .05806 x .0004
n= .12469 - .06417 - .05806 -
Some results are shown in Table 12, from which the following conclusions for
calculating the stress ratio of a multiple span continuous beam can be made:

1. In most practical structures, only one reaction nearest to the section under con-
sideration needs to be considered, thus Eq. (34) can be further simplified.

2. For sections near midspan, the effect of interior reactions can be neglected, thus
Eq. (34) can be simplified to:

n = Myn,/M* (35)

) x .0007] = .0004

1.39

3. To estimate the general features of the shear lag effect in a continuos beam with
multiple spans, only the stress ratio at sections near midspan and at interior
supports are required and can be calculated by the simple formulas Egs. (17), (7)
and (18).

4.5. Beams under Prestress Load

The following two empirical formulas can be used to calculate the stress ratio
for beams under prestress load.

Under a pair of axial loads at two ends of a simple beam, 5 can be computed for
any section by:

for box beams,
n = 1.11 r;% % exp(-ax)
{1.271 [1+.189 18281, - 1)] (r, = .2)]
a =

1.271 (r, <.2) (36)

for I beams,
7 = 1, exp(-ax)
no = (.194 + .0009/){exp[(.99 - .0045/) In(5r,)] - 1) + 1.43
(if n, <O, let n, = 0) (37)
a=(3+1.19 - 64714}/, (I 2 4)

Eq. (37) can be also used for T beams, provided r, is replaced by (r, + r,)/2.

Under a partial uniform load symmetric about midspan (Fig. 8), at the midspan
section,

n=1w + (1, — n) exp(-av/l)
a=cqri 1%/, (38)

where, n, 7, can be found from Eq. (17), (7), and (18) by letting x = ¢ = .5 and



Table 12. Longitudinal Variation of Stress Ratio for Continuous Beams
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with Three Equal Spans and »; = 4.86 under Uniform Load

/ X 1 2 3 3233 | .3333 .3433 4 .5
N .052 .044 .037 035 035 .034 .032 .029
71 | O .004 .099 .209 .288 .205 034 .0015
12 77|10 0 0 0 0 0 0 .0015
Eq. (34) | 1.28 1.50 1.67 241 2.76 2.34 42 2.39
SHLAG | 1.48 1.59 1.79 2.51 2.76 247 .84 2.33
Nw .0041 .0034 .0029| .0028 0027 | .0027| .0025 .0022
n | 0 0 .0027| .0281 .0768 .0281 .0001| O
45 n7 |0 0 0 0 0 0 0 0
Eq. (34) | 1.02 1.04 .98 1.21 1.54 1.21 .87 1.10
SHLAG | 1.04 1.06 .89 1.27 1.54 1.27 1.06 1.01
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Table 13 Two Equal Span Continuous T Beam under Prestress Load

S of (Mp,)*
x i m | G/(e-c)
Eq. (39) | SHLAG | Eq. (39) | SHLAG | Ref. [3]
2375 485 041 -2.91 1.18 1.17 -2.56 -2.51 -2.68
.4875 | 1.500 1.733 -1.28 -1.00 .87 .68 52
.4933 | 1.663 1.627 -1.95 -1.82 1.21 1.12
5 1.851 1.520 -2.94 -3.06 1.62 1.67

*Stress in the middle of the top flange.

Table 14 Fundamental Formulas for Simple Beams

Loading Case No. of Formula
uniform load a7
concentrated load at midspan (29), (30)
concentrated load at any point (32)
partial uniform load symmetric
about midspan (38)
a pair of axial loads at the two ends (36), (37)




1.74 (for box beam)
€4 = 11.60 (for I beam)

The total prestress load from a tendon profile made up of parabolas can be con-
sidered as a combination of axial load N and uniform loads w. For I and box beams,
under the combination of bending moment M* and axial force N*, 4 is equal to

for the top flange,
0 + ﬂnG/(e -c)

"ET 156G/ - o) (39)
for the bottom flange,
m + 1, G/(e" + ¢
np = n G/ ( ) (40)

1+G.(e'+c¢)
where », and 5, = complementary stress ratio under bending and axial loads, the
latter can be found from Eq. (36) or (37).
For T beams, Eq. (39) should be replaced by

~¥m(l +00) + (1 + 20)G/(e - ¢)
Se=1+m = -1+G.(e -c¢) (41)
in which n;, and n; = complementary stress ratio of the equivalent I beam under
bending and axial load, ¢,, can be calculated by Eq. (14).

As the first example, a continuous T beam with two equal spans used as a design
example in Ref. [3] is analyzed. The loading and dimensions of the beam are:

Uniform distributed net load w = 33.72 KN/m
Prestressing axial force at two ends N = -4700 KN
b=464m,lb=2862 h,/b=.077, h/b=.0513,d/b = 215.

The results are shown and compared with Ref. [3] in Table 13.

A box beam, structure B of Ref. [2], can be used as the second example. Under
the prestress load (Fig. 9), the n due to each partial uniform load can be found by Eq.
(38). Under load w,, for instance, v// = .5 and n = .0052 can be obtained. The bend-
ing moment in the basic structure (a simple beam), due to w,, is equal to -.2488L2
Thus, », can be found by superposition (at the center support section):

_ (=310 x .0046 — .2488 x .0052 + .609 x .0446 + .0442 x .119)L2
T (-.310 - .2488 + .609 + .0442)L2

=.310

from Eq. (36), n, = 0. Substituting #,, n, and G = -2.11 in Eq. (39), we can obtain
n, = .141 and then o, =1.141 x (-1.99) = -2.28 ksi (¢, = -2.20 and -2.18 ksi by SHLAG
and Ref. [2] respectively.
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5. Summary and Conclusion

Empirical formulas for the stress ratio and effective flange width of a simple I or
box beam under various loading cases have been derived and the fundamental for-
mulas are listed in Table 14. All formulas in Table 14 can be used for any section of
the beam except Eq. (38), which can only be used for the midspan section.

Formulas for continuous beams are obtained from the formulas in Table 14 by
superposition. For convenience, numerous formulas for special cases have also been
given.

In section 3, some simple and essential formulas are presented. The most impor-
tant features of the shear lag effect for a simple or continuous beam can be estimated
quickly by thése formulas. These should be useful for design problems usually
encountered.

For a T beam, the shear lag calculation can be done by its equivalent I beam as
discussed in Section 2.

Several typical numerical examples have been given to show how to use the for-
mulas and to check the accuracy by comparison with the results by the method of
Ref. [1] and other authors. It is shown that the empirical formulas presented in this
study are accurate enough for design problems and useful for research studies on the
shear lag effect in beams as affected by various basic parameters.
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Appendix

All formulas of this study are derived empirically by matching with the results
calculated by the computer program SHLAG of Ref. [1]. For example, for the case
of a concentrated load at midspan of a simple I-beam, the formula for n, can be
derived as follows. If the calculated data by SHLAG for / = 4, 8, 24 and r;, = .6,
1.19, 2.85, 5.70, 9.72, 10.83 are plotted using r; as the horizontal coordinate, a fam-
ily of similar r; - 5, curves are formed as shown in Fig. Al. If we use x = r?%3 as the
horizontal coordinate, the above curves can be transformed to a family of straight
lines converging to a point (.65, 0), except for the case of / = 2, in which the curve
slightly deviates from a straight line. Therefore, for r; = 0.6, 7, can be expressed
approximately as:

0 = 3(ri> - .65)

All other formulas can be derived similarly, although for some cases the devia-
tion is somewhat more complicated.
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